SWIFT: Studying Galaxy Evolution with Integral Field Spectroscopy

Lisa Fogarty University of Oxford SWIFT Team: Prof. Niranjan Thatte, Matthias Tecza, Fraser Clarke, Tim Goodsall, Graeme Salter, Susan Kassin

Oxford Astrophysics

Overview

• The SWIFT Instrument

- Slicer based Integral Field Spectroscopy.
- What is SWIFT?
- SWIFT as a niche instrument.
- Installation and Commissioning.
- The Scientific Exploitation of SWIFT
 - First Science Results: Arp147
 - Galaxy Kinematics to z~1.4

Integral Field Spectroscopy: Observing a data cube

Spatially stepping a long slit spectrometer

Scanning with a Fabry-Perot interferometer

3D Spectroscopy: Data cube in a single exposure - efficient, homogeneous, large fov.

Different IFS Methods.

Slicing the Image

Principle of the Image Slicer

(used in MPE 3D, SINFONI)

output to spectrometer

located in telescope focal plane (angles exaggerated for clarity)

The SWIFT Slicer

SWIFT: Instrument Overview

- SWIFT loosely stands for Short Wavelength Integral Field Spectrograph.
- SWIFT is an AO-assisted, I/z band integral field spectrograph.
- Classicaly polished glass image slicer with 44x89 spatial pixels - ~4000 simultaneous spectra.
- Twin spectrographs
 - 650nm-1020nm fixed spectral range
 - Optional 750nm cut-off to enable guiding on fainter stars.
- LBNL CCDs with QE >80% at 950nm
- The instrument has a very high throughtput -50% (excluding AO and detector).

PALM3000

SWIFT: Instrument Overview

- SWIFT loosely stands for Short Wavelength Integral Field Spectrograph.
- SWIFT is an AO-assisted, I/z band integral field spectrograph.
- Classicaly polished glass image slicer with 44x89 spatial pixels - ~4000 simultaneous spectra.
- Twin spectrographs
 - 650nm-1020nm fixed spectral range
 - Optional 750nm cut-off to enable guiding on fainter stars.
- LBNL CCDs with QE >80% at 950nm
- The instrument has a very high throughtput -50% (excluding AO and detector).

SWIFT: Instrument Overview

- SWIFT loosely stands for Short Wavelength Integral Field Spectrograph.
- SWIFT is an AO-assisted, I/z band integral field spectrograph.
- Classicaly polished glass image slicer with 44x89 spatial pixels - ~4000 simultaneous spectra.
- Twin spectrographs
 - 650nm-1020nm fixed spectral range
 - Optional 750nm cut-off to enable guiding on fainter stars.
- LBNL CCDs with QE >80% at 950nm
- The instrument has a very high throughtput -50% (excluding AO and detector).

- SWIFT works in the I/z band, thus occupying a spectral niche benefiting from lower sky background.
- SWIFT builds on three new developments:
 - Next generation AO system with good correction shortward of 1000nm.
 - Extremely red sensitive CCDs.
 - A classically polished all-glass image slicer with very high throughput.

- SWIFT works in the I/z band, thus occupying a spectral niche benefiting from lower sky background.
- SWIFT builds on three new developments:
 - Next generation AO system with good correction shortward of 1000nm (PALM3000).
 - Extremely red sensitive CCDs.
 - A classically polished all-glass image slicer with very high throughput.

- SWIFT works in the I/z band, thus occupying a spectral niche benefiting from lower sky background.
- SWIFT builds on three new developments:
 - Next generation AO system with good correction shortward of 1000nm (PALM3000).
 - Extremely red sensitive CCDs.
 - A classically polished all-glass image slicer with very high throughput.

- SWIFT works in the I/z band, thus occupying a spectral niche benefiting from lower sky background.
- SWIFT builds on three new developments:
 - Next generation AO system with good correction shortward of 1000nm.
 - Extremely red sensitive CCDs.
 - A classically polished all-glass image slicer with very high throughput.

Measured Throughput of SWIFT

Installation

• SWIFT was installed at the 200" at Palomar on 10th Oct. 2008.

Credit: Scott Kardel, Palomar.

Commissioning (Science) Results.

Credit : Dr. F. Clarke.

First Science Results: Arp147

- Arp147 is a ring galaxy and companion system.
- Observed as part of the January badweather programme.

SWIFT Kinematics

- H-alpha line map.
- Strong H-alpha in blue object.

SWIFT Kinematics

- H-alpha velocity map.
- See strong velocity gradient in the ring.

SWIFT Kinematics

 Easier to see velocity structure in a movie...

Arp147 Formation Scenario

- Collisionally created ring, similar to the Cartwheel.
- But Arp147 has an empty ring.

Refs:Chris Mihos, CWU Lynds & Toomre, 1976 Gerber et al., 1992

Formation Timescales.

- Expansion Vel: 302.25 kms⁻¹
- Diameter of Ring: 9.25 kpc
- Rough Expansion timescale (from half current size): 7.85 Myrs
- Distance to companion: 12.7 kpc
- Qualitative match to starburst age?
- More Fogarty et al, 2009 (in prep.)

High Redshift Galaxy Kinematics.

- Complementary to the IMAGES survey
 - Sample of 63 gals
 - Extensive work done on evolution of kinematics, TFR, metallicity etc (e.g. Yang et al 2008, Peuch et al 2008, Neichel et al 2008, Rodrigues et al 2008)
 - Sample from z~0.4-0.75
- The SWIFT sample will look at z~0.8-1.4, looking at OII and/or OIII perfect for SWIFT.
- I am particularly interested in evolution of galaxy kinematics.

S_{0.5} Kinematic Indicator

Indicator of total KE, in V and σ .

Kassin et al., 2007

Disk Settling?

Flores, Hammer et al. (2006); VLT/GIRAFFE IFU

High Redshift Galaxy Kinematics

- Eventually have a large SWIFT sample ~50 galaxies
- Selected kinematically from DEEP2 and GOODS-N surveys.
- HST Imaging.
- Natural seeing/NGS/LGS targets.
- Currently working on 3 galaxies, data collected in May.
- More time in August to expand the sample, complementary SINFONI time.

High Redshift Galaxy Kinematics

Bulge+Disc z=0.8 SWIFT Obs: OIII at 9125nm

Ring z=1.16 SWIFT Obs: Oll at 6755nm Oll at 8106nm

Eagle z=0.8 SWIFT Obs: OII at 6592nm OIII at 8855nm

Future Work

- Expand the current sample.
- Probe the spatially resolved V and σ for each of the galaxies.
- Establish the origin of the σ .

- Disk settling?

 Study evolution of relation between photometric and kinematic morphology over z~0.8-1.4

Acknowledgements

The SWIFT Team
The PALAO and PALM3000 Team
– Dr. A. Bouchez
– Dr. J. Roberts

Questions?

Image Slicer Demagnification

