Cube_Combine
Python program to combine images
I.A.Khan

1. Introduction

	The program “cube_combine.py” is designed to combine astronomical images correctly into one composite image. The images are three-dimensional and result from integral field spectroscopy. Hence, there are two spatial dimensions in each image with the third being that of wavelength.
	This is an accompanying document further to the documentation accessible from the program itself outlining the main features and methods of the script. Copies of the codes implemented can be found in the appendices.

1.1. General method

	The scope of the problem is thus: given a set of images and their relative offset from one another, can we combine them to give a fully representative view? On the face of it, this is a fairly easy task and indeed, without further complications, this can be done very efficiently by simple addition and averaging. However, further complications do exist. For example, the relative offset between two images may not be an integer number of pixels. In this case, some form of interpolation must be used in order to obtain the correct final image. In another case, we may be supplied with a corresponding bad pixel mask for each image, requiring us to remove the faulty pixels appropriately. Furthermore, there is the task of background reduction; this is to be done in the simple manner of pairwise subtraction in order to remove common noise between the images. Care must be taken to ensure that the regions of the images that contain the object in question are not subtracted unnecessarily.

1.2. The language- Python

	The program is written specifically for the SWIFT/Harmoni data pipline at Oxford University, which is currently running in IRAF. Due to a Python/IRAF interface being implemented on this pipeline, it was decided that this image combination software be written in Python in order to speed up the process given the language’s greater efficiency.
	The program makes extensive use of the Numpy and Scipy modules as well as various sub-modules, such as ndimage and MaskArray that accompany those two. The data are generally assumed to be given within a FITS file and can be converted to a numpy array using the PyFITS module.

2. The Program

	There are currently two scripts: one is the “cube_combine” (CC) module itself and the other is a script to perform a combination by using the functions written in CC. This is written as a convenience function that can be run with a list of images without using the CC module interactively. 

2.1. The Main cube_combine module

	There are two major functions in this module: offset and precise_combine. 
	A word on offsets: the offsets should be entered as a tuple of lists in ([x],[y]) form. Also, it is assumed that the offsets are calculated from some ‘zeroth’ image, which has an offset of (0,0) if it is included in the list of images to be combined. Thus, the number of offsets must match the number of images.
	 The offset function takes a list of images and determines the dimensions of a final array should the offset images be combined later on. This is done using the information in the offsets. The maximum distance between the edges of the images determines the length of the composite image in the final image. For example, if we have a minimum x offset of -15 and a maximum x offset of 15, then the length of the x-axis in the composite image is 30 (all values are in units of pixels). The same reasoning applies for the y-axis of course. The images are then ‘pasted’ into a copy of this large image, at their correct location. The output is a list of these larger images, ready to be combined by precise_combine.
	The precise_combine function has a basic input of a list of images, assumed to be the same size and shape (hence why the offset function gives an output of images of a uniform size). If just this input is given, then the function will simply add the images and then average them. The averaging process in this case is not necessary but it does normalize the output of the function due to the fact that the images are also averaged if masking is required. The optional input of this function comprises of a list of bad pixel mask arrays, the threshold for determining a “bad” pixel, a fill value for the faulty pixels (0 by default and recommendation) and a boolean True/False input for whether the images are to be masked. 
	When masking is required, the procedure is to take a wavelength ‘slice’ across each image, mask them using ma.mask_where and then average over them using ma.average, which takes the masked entries into account, giving a single image for that particular wavelength. This is then added to what will become the final image once all the slices have been looped over. For each slice, the ma.count function is used to count how many ‘good’ pixels each entry in the final image represents. A ‘good pixel array’ of this information is given as an output, along with the final image. 
	The other functions in the module are not as important and are included as a convenience. For example, the open_refine function will extract the data array from a FITS file and crop the edges if required, using the refine_array function. The last function is the pairwise background removal. This is the simplest function and is not strictly necessary but is useful for looping over. It has two lines of operational code that subtract two arrays from each other in turn and gives an output of two arrays, each one corresponding to the ‘positive’ array. For example, if the two input arrays are A1 and A2, then the first output will correspond to A1-A2 and the second to A2.

2.2. The Combine module

	This is a simple, one function program that employs the CC module to combine a list of given images. It is included as a ‘one-stop’ solution to correctly use the functions in CC in order to perform the combination. It can be viewed as a kind of test code for the CC module. Indeed, it can be ignored entirely! That said, it can be useful in providing a means to view the correct implementation of CC.
	The most involved part of this function (‘image_combine’) is that of background subtraction. This is straightforward if an even number of images is given, seeing as the subtraction process occurs in pairs. However, if an odd number of images are given to combine, then one of the images must be re-used in the subtraction with the odd one out. 
[bookmark: _GoBack]	The image pairs must be selected carefully, making sure that the objects in the two images do not overlap and in the case of an odd number of images, the reused image is selected by the code to have the two objects as far apart (along the x-axis) as possible. This is done using the offsets file. Thus the ordering of the images in the input list should be such that object overlap is avoided. This is usually the case anyway in observations.
	Of course, if there is no offset between any of the images, then a background subtraction in this manner makes no sense and one can simply use arraychange.precise_combine. The noise level will be reduced by the averaging process as would be the case otherwise. Also, if using the CC module interactively, as is recommended, then the background subtraction can be done manually, through cube_combine.background_subtraction.

2.3. Speed Considerations

	The difference in run time between the basic form of the program (no offset or masking) and implementing the full features is an order of magnitude. The basic version, when supplied with 5 images, runs in approximately 40 seconds, while including the masking features extends this to 2-4 minutes. 
	These times can vary of course, depending on the machine used and the state of its operation. For example, the basic version can run in under 10 seconds.













