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Status of particle physics

e Standard Model (SM): successful theory of
strong (QCD), weak and electromagnetic (EW)
elementary interactions

e Yet, no fundamental theory:
theoretical issues + unexplained phenomena (e.g. gravity,
matter anti-matter asymmetry, dark matter, dark energy, ...

 The LHC is designed to

M unravel EW symmetry breaking (test origin of mass through
the Higgs mechanism)

[Jfind physics beyond the SM (still to be done)




Do we know what this really means?

What is the problem with particles having a mass?

What is the Higgs mechanism & how does it solve the problem?

Why should there be New Physics at the TeV scale?




Step back

l Duality in qguantum field theory: wave < particle '

electromagnetic wave < photon

Magnetic field @ 2 transverse polarisations,
no longitudinal polarisation

« an empirical but crucial fact

Electric field Direction




Gauge symmetry

If a 3" longitudinal polarization existed
(7 =)

= scattering probability grows with energy

\ y,
jolation of unitarity (probability > 1) = field theory breaks down




Gauge symmetry

If a 3" longitudinal polarization existed
72 -

= scattering probability grows with energy

\_ /
Violation of unitarity (probability > 1) = field theory breaks down

In QED Longitudinal

_ _ polarization
3rd polarization does not
exist & gauge symmetry

Transverse Photon in QED
polarizations

Gauge symmetry crucial to keep theory sensible at high energy
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Gauge filter and masses

From relativity: the speed of Iight IS the same in all frames




Gauge filter and masses

From relativity: the speed of light is the same in all frames

In that frame, the distinction between transverse and longitudinal
polarizations breaks rotational invariance

Gauge trick does not work with massive particles
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EW symmetry breaking

SppS (1983-1985) pp collider at CERN, LEP-11 (1990-2001) e*e" collider at CERN,
Geneva, running at Epeam = 450 GeV Geneva, running at E = 91.2 m 206 GeV

Z/W interactions are described by a EW gauge theory
But Z/W masses break EW symmetry = theory breaks down at high E

gauge symmetry « massless states < sensible field theory

At what energy does this happen?




EW symmetry breaking

SppS (1983-1985) pp collider at CERN, LEP-11 (1990-2001) e*e" collider at CERN,
Geneva, running at Epeam = 450 GeV Geneva, running at E = 91.2 m 206 GeV

Z/W interactions are described by a EW gauge theory
But Z/W masses break EW symmetry = theory breaks down at high E

gauge symmetry « massless states < sensible field theory

At what energy does this happen?

That’s why the LHC was designed to investigate
- the mechanisms of mass generation
- how to keep the theory sensible at higher energy
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Spontaneous symmetry breaking

Most popular solution:

Higgs mechanism, i.e. EW symmetry spontaneously broken

Spontaneous symmetry breaking (SSB): symmetry of equations
but not of solutions

What does this mean ?

configuration breaks
rotational invariance,
laws do not




Spontaneous symmetry breaking

With SSB relations implied by the exact symmetry can be modified

e.g. laws invariant under @ « @ with solutions ‘ = @

but also solutions with . > @ are possible

as long as ® < 0 also exists




Spontaneous symmetry breaking

With SSB relations implied by the exact symmetry can be modified

e.g. laws invariant under @ « @ with solutions . = @

but also solutions with . > @ are possible

as long as ® < 0 also exists

Typical of SSB is degeneracy of solutions.
Quantum interpretation: zero energy
excitation, I.e. massless particle

Goldstone ’61

Problem: in Nature there is no massless Goldstone boson
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EW symmetry breaking

Higgs mechanism

with gauge interactions, zero-energy excitation absorbed by the
gauge field = massive gauge particles and no Goldstone boson
Brout, Englert, Higgs '64; Weinberg and Salam ’'67




EW symmetry breaking

Higgs mechanism

with gauge interactions, zero-energy excitation absorbed by the
gauge field = massive gauge particles and no Goldstone boson
Brout, Englert, Higgs '64; Weinberg and Salam ’'67

Higgs field

continuum medium pervading the whole universe. Particles
interacting undergo a slow-down just as particles propagating in
any medium do

slow down = inertia = mass




EW symmetry breaking

__ massless particles < gauge invariance
The problem was

\ massive particles < unitarity violation

Higgs mechanism

A

Small distance (large E):
no effect from medium
no unitarity violation

NB: EW charge distribution carries no electric charge = photon remains massless even after EWSB
1l




Higgs mechanism in EW

e |[f the Higgs field exists, then quanta of the field must exist too
= Higgs boson

e Coupling of a particle to Higgs is proportional to the particle’s mass

/___—\
rm~A\
N - - =

e The Higgs boson will have a mass too ... because the Higgs
slows itself down as it propagates in the (Higgs) vacuum

e [n the SM the Higgs mass is a free parameter, but once its value
is determined everything else (couplings/masses) is fixed
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A brief history

First combined exclusion limits
2011 2012
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Limit on 64,,/0),
S
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300 400 500 600
Higgs boson mass (GeV/c?)

First 1fb! (7TeV):
no Higgs boson between 160 and 500GeV

EPS-HEP '"11
Lepton-Photon 11




A brief history

First hints
2011

| "CMS Preliminary. \s = 7 TeV [—— CL Observed ||
| Combined, L _=1.1fb" | B CL, Expected t 1o

: | st CL Expected + 20 ||
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First 5tb' (7TeV):

SM Higgs boson excluded for 127 < m < 600GeV
Excess (local significance 2.80) for m ~125GeV

CMS/ATLAS Higgs Jamboree

Moriond 2012
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A brief history

Evidence of a new boson
2011 2012
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4" July 2012: CMS and ATLAS announce Evidence for a new boson.




A brief history

|dentification of the Higgs boson
2011 2012

CMS Preliminary 15 =gV, L<51b 1s=8TeV.Ls1961"
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5fb! (7TeV) + 20fb'(8TeV)
Characterization of the new state with full Run | dataset:
Production and decays rates consistent with SM Higgs

0* spin parity favoured by data.

8™ October 2013: Nobel Prize for
Physics awarded
to prof. Higgs and Englert.




A brief history

The Run I legacy
2011

—tt
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Final results on Run | full dataset published 1-2 years after the discovery
of the new boson.

Ultimate precision for this dataset attained.

Preliminary combined analysis of all channels presented in July 2014.
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A brief history

2012-2014 remarkably intense and
exciting years for particle physics

// MIND- %L_O\NING
/o ARTICLEFEVER

WITH ONE SWITCH, EVERYTHING CHANGES

’
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The hierarchy problem

e the Higgs mass receives corrections from vacuum fluctuations
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¢ the size of the correction should be proportional to the
maximum allowed energy Mpianck , Maur, . . .
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¢ the size of the correction should be proportional to the
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e Mu < Mpianck requires fine-tuning up to 17 digits or New Physics!




The hierarchy problem

e the Higgs mass receives corrections from vacuum fluctuations

¢ the size of the correction should be proportional to the
maximum allowed energy Mpianck , Maur, . . .

e Mu < Mpianck requires fine-tuning up to 17 digits or New Physics!

Analogy with thermal fluctuations

At large t expect to have
Lig~ Lg

While the observation is
thermalisation E. N 1()_17E.

While there is no inconsistency, it just seems hard to believe!
20




Explanations for gauge hierarchy

« |n the analogy: natural explanation could be that red does
not really interact with blue because the interaction is screened
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by new forces/particles




Explanations for gauge hierarchy

« |n the analogy: natural explanation could be that red does
not really interact with blue because the interaction is screened

« In the Higgs case: similarly, the interaction could be screened
by new forces/particles

A variety of possible explanations exist to protect the Higgs
mass from having a sensitivity to high-energy scales

(supersymmetry, technicolour, Randall-Sundrum warped space, pseudo-
Goldstone Higgs, Little Higgs, ...)

Currently these are all speculations. Only experimental data
can discriminate between the predictions of various models




Status of New Physics searches

Unfortunately, direct searches are so far not successful

ATLASISUSY [Searches™” - 95% CL Lower Limits
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Status of New Physics searches

Unfortunately, direct searches are so far not successful

Large ED (ADD) : monojet + £, ...
Large ED (ADD) : monophoton +E, .
Large ED (ADD) : diphoton & dilepton, m,,
UED : diphoton + E, ...
$'z, ED : dilepton, m,
RS1 :dilepton,m,,
RS1: WW resonance, m,,,,,
Bulk RS : ZZ resonance, m,,
RS g, — tt (BR=0.925) : ti - I+jets, m_
ADD BH (M,,, /IM,=3) : SS dimuon, N, m
ADD BH (M, /M p=3) ! leptons + jets, Y p
Ouantum black hole : dijet, F (m,
qqqq contact interaction : i(m )
qqll Cl : ee &y, h
SS dilepton +jets + E, .
Z' (SSM): Mgy
Z' (SSM) :m.,
Z' (leptophobic lopoolor) tt — I+jets, m,
W' (SSM) : m‘w
W'(—=tq, g =1): m,
W', (= tb, LREM) : m
Scalar LQ pair (f=1) : kin. vars. in eejj, evjj
Scalar LQ pair (f=1) : kin. vars. in ppjj, pvjj
Scalar LQ palr ([5 1) - kin. vars. in ttj, wvjj

generauon 't'— WbWb
4th generation : b'b’' — SS dilepton + jets + E

Vector-like quark : TT— Ht+X

Vector-like quark : CC,m,,

Excited quarks : y-jet resonance, m
Excited quarks : dijet resonance, n'7:

Excited b quark : W-t resonance, m,,,

Excited leptons : |-y resonance, ml
Techni-hadrons (LSTC) : dilepton, m,,,
Techni-hadrons (LSTC) : WZ resonance (ivIl), m e
Major. neutr. (LRSM, no mixing) : 2-lep + jets

Heavy lepton N* (type Ill seesaw) : Z-l resonance, my,
H:* (DY prod., BR(H >ll)=1) : SS ee (), m

Color octet scalar : dijet resonance, m
Multi-charged particles (DY prod.) : highly ionizing lracks
Magnetic monopoles (DY prod.) : highly ionizing tracks

Extra dimensions

uut_t_ Cl:

few TeV

ATLAS Exotics Searches*
L

- 95% CL Lower Limits (Status: May 2013)
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Future direction

e Run Il at almost twice the energy will allow us to push the reach
of these direct searches considerably

¢ Yet, the possibility must be taken into account, that no new state
is produced directly (simply because the energy is not enough)

¢ |[ndirect searches and precision tests more prominent in Run |

e the Higgs sector in particular will undergo scrupulous precision
tests (remember: given the Higgs mass everything is predicted in
the SM, so everything can and must be tested)

e Precision tests require both accurate measurements and precise
theoretical predictions




Precision through Perturbation

At the LHC, QCD and electroweak (EW) interactions are weak. We
can compute perturbative expansions in the (small) coupling. Higher-
order terms will improve predictions. Different expansions:

fixed order all order (L = some large logarithm)

LO In 2 — onpntl LL
g0

+ciax NLO + ot L™ NLL

+ ¢ NNLO -a” L™ INNLL

QCD: a ~ 0.1 expect NLO to be O(10%) correction, NNLO O(1%) ...
EW: a~0.01 expect NLO to be O(1%) correction, ...

25




Higgs production at the LHC

\s= 8 TeV

L L LLLLL
\ LHC HIGGS XS WG 2012

300




Higgs decay modes

Higgs decays very very quickly.... fortunately, its mass lies in a
sweet spot (M1 ~125 GeV) where many decay modes are available

51
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bbj

LHC HIGGS XS WG 2013

Higgs BR + Total Uncert

—
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Status of Higgs measurements

Precision Higgs phenomenology (based on full 7 and 8 TeV data)
shows so far no departure from a plain SM Higgs boson pattern

\s=7TeV,L<5.1fb' \s=8TeV,L<19.6fb"

CMS Preliminary m, =125.7 GeV
=0.65

CMS Preliminary |2=7TeV,L=51%" {2=8TeV.L= 196"
1 1 1 LI LI 1 |l 1 L !

T I I Illlllllllllﬂﬂll
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| |[—95% CL t
wZ :

-
L
.
P -
4 -
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=
Q.
-
O
O

—h
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H— 1t :
w=1.10+0.41 : i

H— vy
uw=0.77+0.27

H— WW
u=0.68+0.20

H—ZZ
n=092+0.28

1 1 L1 11 lll 1 1 1 L1 llllllllllllllllm
1 2 345 10 20 1OOG20\(}
1.5 2 ) mass =
Best fit G/O'SM ( )

Run Il at the LHC about to start: focus will be on accurate Higgs

measurements using high-precision theory
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Inclusive Higgs production

One example: the simplest (and dominant) Higgs production
mechanism via gluon-gluon fusion (no decays).
How well do we know this cross-section?

Most calculations based on the large mi-limit effective theory:

| ) y
- = = H # y i
“One Ioop” becomes tree IGVGM

Kilgore, Harlander ’02; Anastasiou, Melnikov ’02



Inclusive Higgs production

Higgs cross section my =125 GeV @ LHC 8 TeV

.3 L (L
\

e perturbative series for gg = H converges very slowly

e renormalization scale variation (commonly used to estimate theory

uncertainty) underestimates the shift to the next order
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Inclusive Higgs production

Higgs cross section my =125 GeV @ LHC 8 TeV
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\

Two ways to go:

e try to compute higher orders approximately (resummations)

e try to compute exact N3LO i.e. O(as®) correction. Is it that difficult?
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Facts about N3LO

e O(100000) interference diagrams (1000 at NNLO)
e 68273802 loop and phase space integrals (47000 at NNLO)
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Facts about N3LO

e O(100000) interference diagrams (1000 at NNLO)
e 68273802 loop and phase space integrals (47000 at NNLO)
e about 1000 master integrals (26 at NNLO)
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Approximate N3LO

Approximate N3LO from different groups (possibly including higher

order logarithmic terms) together with their uncertainty
approx N3LO from Anastasiou et al 14
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ggF inclusive cross section, s =13 TeV, 2, u,=my

Uncertainty band: largest scale-var deviation from nominal

© Arrows: N°LO approximation uncertainty

Run 1 HXSWG
recommendation

m,=125GeV s=13TeV
No EW correction

MSTW2008nnlo68cl, o, = 0.1171
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What is the most reasonable approximation based on our current

knowledge? Central value and size of uncertainty hotly debated!
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THE SOCRATIC PROBLEM

HOW DO WE ESTIMATE THE AMOUNT OF OUR IGNORANCE?

[218] évretBev o ToUTw TE dmnyBSUNV kai ToAAoig TV TapdvTwy:
0C EHAUTOV O’ oUV Amiwy EXOYI{OMNV OT1 jea SeliR s Sli i Al iy & 1T
| y:(b COPUTEPOG ELUL: KIVOUVEUEL HEV YOtp UV oUdETEPOG OUOEV KaAOV
kayadov eideval, aAN’ ovtog pev oletal T eldevar ovk e1dw, yw de,
DOTEP OUV OUK 018a, 0UOE olopat: Eotka yolv TOUTOU YE OHIKPG TIVi
JTG) TOU WTEPOG Efval, OT1 & pf) oida oUE oloual eidéval

gvrevBev en @Adov Na TWV EKEIVOL JOKOUVTWY COPWTEPWYV ETVAL Kal

Plato. Platonis Opera, ed. John Burnet. Oxford University Press. 1903.

I am wiser than this man; for neither of us really knows anything fine and good, but
this man thinks he knows something when he does not, whereas I, as I do not know
anything, do not think I do either. I seem, then, in just this little thing to be wiser
than this man at any rate, that what I do not know I do not think I know either.

talk given by S. Forte at the 8th Workshop of the
Higgs Cross Section Working Group, 22" Jan.’ |5
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Conclusions

e Fantastic data available and expected from LHC (restarts
operation for three years this summer)

-iggs discovery was a true milestone for particle physics, but also
eaves many questions open (hierarchy problem, naturalness, ...)

Run Il will focus on precision studies: what does the future hold?

r.




