Quantum Computing

The Laws of Nature,

Computers and how they work

How everything works

Professor Andrew M. Steane

Oxford University

Popular Mechanics magazine, March 1949:
"Where a calculator on the Eniac is equipped with
18,000 vacuum tubes and weighs 30 tons, it is
possible that the computer of the future may have only 1,000 vacuum tubes and weigh only 1.5 tons."

Summary

1. Quantum entanglement shows that the physical world is not fully separable into component parts
2. Quantum computing offers a tremendous speedup on certain specialised mathematical problems
3. A brief impression of how it works
PART 1:

QUANTUM

ENT ANGLEMENT

Quantum "Superposition"

Examples of objects that are "two things at once"

1. an oscillating guitar string

Quantum superposition

Examples of objects that are "two things at once"

1. an oscillating guitar string

2. a step up a hill:

3. A small magnet

Atoms

Things (for example, a brick) are made of atoms.

Atoms are small magnets!

Quantum superposition with atoms

B

$$
|\rightarrow\rangle|\rightarrow\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle) \frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle)
$$

Two atoms

$\frac{1}{2}(|\uparrow\rangle|\uparrow\rangle+|\uparrow\rangle|\downarrow\rangle+|\downarrow\rangle|\uparrow\rangle+|\downarrow\rangle|\downarrow\rangle)$

An important property of entanglement

It is possible to place two atoms in the "entangled" state:

A
The order of writing doesn't matter, so

Turn atom A upside down:

Now turn atom B upside down:

But this is exactly what we started with!!!

The unity of the entangled state

8

After turning one atom upside down, if I want to get back to where I started I can now turn either of the two atoms.

It is as if I only have ONE object, even though it is made of two parts which can be in separate places.

The Oxford Atom Trap Quantum Computer

A string of calcium atoms held in a vacuum chamber and manipulated by laser beams:

8 atoms in the trap!
PART 2:

INFORMATION AND PHYSICS

"The quantum computer is very interesting."
"L'ordinateur quantique est très intéressant."
$a \rightarrow 97, b \rightarrow 98, c \rightarrow 99:$
1161041013211311797110116117109 ...
1110100110100011001011000001110001 ...

Compare with other basic concepts in physics

c.f. Energy, momentum
kinetic energy example:

Proton at CERN $\quad \leftarrow$
 a rolling marble

Information is another basic physical property whose behaviour is described by the laws of Nature.

Examples of the physics of information

1. "Speed of light"
= speed of information

Information cannot travel faster than 299,792,458 metres per second

2. Thermal physics
... information and entropy

Classical computer science: 2 main ideas

- All computers are alike (Turing 1920s)
\rightarrow Universal machine:
One machine can simulate another
- Speed of an algorithm is measured by how the number of steps scales with the input size ("polynomial" verses "exponential")

Flexibility of information processing

E'Soogle - Microsoft Internet Explorer											- - - $\overline{\text { x }}$		
File Edit View Favorites Tools Help													部
Address 易 http://www.google.co.uk/									\rightarrow				nks

Google

Web Images Groups News more n

Financial Markets

SelectedTopics

Advertising Products - All About Google - Go to Google.com

pen Market Operations
oreign Exchange Market

The flexibility of information processing

$1010010001010111110101111101010010101 \ldots$

1111000100000101111001100000101 ...

Quantum computers are fast at some calculations

241763241763241763241763241763

Period finding: Given $f(x)$ such that $f(x+n p)=f(x)$ (i.e. periodic with period p), find the period p.

241763189265724578122228364755275164 181983241745192333253752638392163143 8772739131141143812031310152518263029 34423537396171469048495356866221273424 17631892657245781222283647552751641 8198324174519233325375263839216314387 7273913114114381203131015251826302934 42353739617146904849535686622127342417 63189265724578122228364755275164181 9832417451923332537526383921631438772 7391311411438120313101525182630293442 3537396171469048495356866221273424176 318926572457812222836475527516418198 3241745192333253752638392163143877273 9131141143812031310152518263029344235

Repeats every 78 numbers

"Complexity classes"

"BQP"=Bounded error, quantum, polynomial time

"BQP"=Bounded error, quantum, polynomial time

Quantum computing cannot calculate anything that could not in principle be calculated by an ordinary computer that runs for long enough.

However, "long enough" might be millions of years!

That is to say, there exist significant tasks for which a traditional computer would require millions of years (or millions of processors), whereas a quantum computer would complete the calculation in seconds or hours.

PART 3:

HOW Q QUNTUM
COMPUTER
WORKS

Two atoms

$\sin _{A}^{2} \underset{B}{\infty}=\binom{N}{S}+\underbrace{S}_{A}\binom{N}{N}+\underbrace{S}_{B}\left(\begin{array}{l}N\end{array}\right)$

=
3
2
1
0

More atoms

$111 \& 110 \& 101 \& 100 \& 011 \& 010 \& 001 \& 000$
so 3 atoms can keep track of
... 4 atoms can keep track of
... ... 23 atoms can compute
... ... 100 atoms can compute

8 numbers
16 numbers
10 million numbers
100 billion billion Gbytes !

Universal quantum computer (Deutsch 1985)

1. Well-behaved and controllable set of 2-state systems
(e.g. atoms) $=$ set of qubits $=$ quantum register
2. Prepare initial state, e.g. all in ground state
3. Single-bit gate $=$ general rotation of any one qubit
4. Two-bit 'logic gate' (for example, controlled-rotation) between chosen neighbouring pairs
5. Measure final state

Sufficient to simulate ANY quantum evolution!

Entanglement and quantum parallelism

The computer:
2 registers, n qubits eaeh

Fourier transform network:

Effect of U :

$$
\sum_{\mathrm{x}=0}^{2^{\mathrm{n}}-1} \mid x
$$

"Quantum Parallelism"

The periodicity of $f(x)$ in register B is now reflected in register A by entanglement Second Fourier transform: reorganise register A to move a random offset into the overall phase of the state \rightarrow makes the (inverse) period appear in measured result.

A quantum algorithm: e.g. period-finding

1417631892621273445781222283647 985192333253752638392163243877273 9131241143851141763189262127 ...

Put into A the numbers $x=0,1,2,3,4 \ldots$ all at once

In B calculate the sequence $f(x)=14,17,6,3,18, \ldots$ all at once
$\begin{array}{ll}A, B= \\ 0, & 14 \\ \& & 1, \\ \& & 2 \\ \& & 6 \\ \& & 4, \\ \& & 3\end{array}$
...
Next, observe ("measure") B.
e.g. suppose number 17 is found in B. Suddenly, by entanglement, the only numbers left in A are 1, 43, 85, ...

The Quantum Computer: period-finding

The number in A gives the period r of the Fourier series, and the period of the original function is $p=N / r$.

Feasibility?

To factorize a 200-digit (600 bit) number the algorithm needs approximately
$2 n=1000$ qubits,
$n^{3}=10^{9}$ operations

Therefore each operation has to have precision about 1 part in 10^{9} !!

This looks impossible.

Controlling errors

Stabilization requires detection and feedback,

BUT you can't observe a quantum state without disturbing it!

Quantum Error Correction

quantum network for preparing error-correcting code word, and getting error syndrome

- Quantum information is now distributed in a subtle way in multi-qubit entangled states
- With these states we can find global check measurements which observe (and disturb) the errors without observing the stored quantum information.

Most financial and diplomatic transactions done in the world today derive their security from coding methods which a quantum computer can break ... but you can still resort to very long keys.

Fortunately, quantum mechanics also provides new methods that allow truly unbreakable codes.

However, the most interesting scientific and commercial application of quantum computers is in quantum chemistry and biochemistry ... possible impact on pharmaceuticals etc.

The other thing I learn from all this is how subtle and wonderful the world is.

