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“This work contains many things which are new and interesting. Unfortunately, 
everything that is new is not interesting, and everything which is interesting, is 
not new.”

Lev Landau
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The Field
is real!

hbar>0!

Tuesday, 25 June 13



The Field
is real!

hbar>0!
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Here:

Relativistic QFT as an emergent
(rather than fundamental) phenomenon.
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Length/Energy Scales: Organizing Principle of Physics

high energies ⇔ short distances

low energies ⇔ large distances

Think of this in terms of probing a physical system by e.g. light:

to resolve what happens at length scale a,
the wavelength λ must be smaller than a.

short distances → small λ → high energies as E=hc/λ
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ToE?

Standard Model

Quantum Mechanics

Length

Classical Mechanics
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Quantum Field Theory

Quantum Mechanics

Chemistry

A Reductionist View of the World

“If we understand 
QFT/ToE, we understand 

everything.”
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Quantum Field Theory

Quantum Mechanics

Chemistry

A Reductionist View of the World

“If we understand 
QFT/ToE, we understand 

everything.”

Depends on what
“understand” means...
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Quantum Field Theory

Following 30 minutes:

Quantum Field Theory

Quantum Mechanics

interesting perspective on QFT (and perhaps the reductionist view)
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Example: Lattice Vibrations in Crystals

Crystal: atoms in a periodic array

Interaction between the atoms (e.g. Coulomb)

Crystal ↔ mean (“equilibrium”) positions

→ causes oscillations of atoms
V (~R1, ~R2, . . . , ~RN )

~R(0)
1 , ~R(0)

2 , . . .
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Lattice Vibrations of a Linear Chain

r1

. . .

r2

a0 a0 a0 a0

equilibrium positions:

oscillations:
. . .

deviations from equilibrium positions

r3

R(0)
j = ja0

rj = Rj �R(0)
j
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• Main interactions between nearest neighbours 
• Oscillations around equilibrium positions typically small:

|rj|≪ a0

V (R1, R2, . . . , RN ) = V0 +


2

N�1X

j=1

(rj � rj+1)
2 + . . .

V0 = V (R(0)
1 , R(0)

2 , . . . , R(0)
N )

◇ The linear terms add up to zero ↔ equilibrium positions

◇

◇ ...→ small cubic, quartic etc “anharmonic” terms
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SS 09 - 20 140: Experimentalphysik IV – K. Franke &  J.I. Pascual Lattice vibrations

Lattice vibrations
H =

NX

l=1

p2l
2m

+


2

N�1X

l=1

(rl � rl+1)
2 + . . .

Potential energyKinetic energy
|{z} |{z}

pl = �i~ @

@rl
Quantum mechanically:

→ N coupled harmonic 
oscillators!
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Solution of the Classical Problem 

Newton’s 
equations:

Ansatz:

Works if

SS 09 - 20 140: Experimentalphysik IV – K. Franke &  J.I. Pascual Lattice vibrations

Lattice vibrations

periodicity in k  ↔ periodicity of the lattice

m
@2rl
@t2

= (rl+1 � rl)� (rl � rl�1)

rl(t) = A cos(kla0 � !t+ �)
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finite number of atoms → finite number of normal modes
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Quantum Mechanics

Each ω(k) gives a simple harmonic oscillator
 (in an appropriate coordinate) →

quantized energies:
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Ground State (“Vacuum”):

zero-point energy:

wave function:  (r1, . . . , rN ) / exp

0
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Excited states:

Single particles 
(“Phonons”)

wave function:

Two phonons:

 (r1, . . . , rN ) /
"

NX

n=1

cos(kln)rn

#
 GS
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Quantum Field Theory

H =
NX

l=1

p2l
2m

+


2

N�1X

l=1

(rl � rl+1)
2 + . . .Recall that

pl = �i~ @

@rl
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Quantum Field Theory

Define

Hamiltonian
becomes

Now consider the limit

volume vibrations 
remain ≪a0

H = a0

NX

l=1

m

2


@

@t
�(la0)

�2
+



2

h
�([l + 1]a0)� �(la0)

i2

N ! 1 , a0 ! 0 ,  ! 1

L = Na0 and ̄ = a20 fixed
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Massless (relativistic) Scalar Field

H !
Z L

0
dx

"
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✓
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2
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#

corresponding
Lagrangian density
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Which part of the physics does QFT describe?

• Large distances compared to “lattice spacing” a0 

• Small frequencies ω(k), i.e. low energies

SS 09 - 20 140: Experimentalphysik IV – K. Franke &  J.I. Pascual Lattice vibrations

Lattice vibrations

i.e. normal modes in this region
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Which part of the physics does QFT describe?

length
a0

atomic scale “emergent” collective 
wave-like excitations

 relativistic
QFT

non-relativistic
Physics
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Which part of the physics does QFT describe?

length
a0

atomic scale “emergent” collective 
wave-like excitations

 relativistic
QFT

non-relativistic
Physics

“Emergent Physical Law”
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Measuring the collective modes: inelastic neutron scattering

neutron gives energy ω and momentum k to the crystal
→ excites a single normal mode if ω and k “match”
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Fig  2.  

Fig.  2    Neutron  diffraction  patterns  from  polycrystalline  manganese  oxide,  MnO,  at  temperatures  (a)  below  and  (b)
above  the  antiferromagnetic  transition  at  122  K  (−240°F).  At  293  K  (68°F),  only  nuclear  reflections  are  observed,  while
at  80  K  (−316°F),  additional  reflections  are  obtained  from  the  indicated  antiferromagnetic  structure.  The  atomic  magnetic
moments  in  this  structure  are  directed  along  a  magnetic  axis  within  the  (111)  planes.
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Fig  4.  

Fig.  4    Phonon  dispersion  curves  for  copper  at  49  K  (−371°F),  which  relate  phonon  frequency  ν  to  phonon  wave  vector  ζ
along  major  symmetry  directions  indicated  in  brackets.  Solid  circles  are  results  from  inelastic  neutron  scattering
experiments  and  smooth  curves  are  calculations  based  on  an  axially  symmetric  interatomic  force  model  extended  to  six
nearest  neighbors.  (L  and  T  correspond  to  longitudinal  and  transverse  modes  of  vibration,  respectively  ,  while  π  and  Λ
represent  modes  of  vibration  with  both  longitudinal  and  transverse  components.)

Phonon spectrum of Cu

Tuesday, 25 June 13



6/18/13 AccessScience | Search : Neutron diffraction

www.accessscience.com/overflow.aspx?SearchInputText=Neutron+diffraction&ContentTypeSelect=10&term=Neutron+diffraction&rootID=795113 1/1

Print  |    Close  Window

ENCYCLOPEDIA  ARTICLE:  Neutron  diffraction Add  to  'My  Saved  Images'

Copyright  ©  McGraw-Hill  Global  Education  Holdings,  LLC.  All  rights  reserved.  
Privacy  Notice.  Any  use  is  subject  to  the  Terms  of  Use.  Additional  credits  and  copyright  information.

Fig  4.  
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experiments  and  smooth  curves  are  calculations  based  on  an  axially  symmetric  interatomic  force  model  extended  to  six
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Lattice vibrations
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Main Points so far

• Quantum mechanics of atoms in solids can give rise to 
collective excitations, which are described by a QFT
• The lowest energy state (“vacuum”) has a non-trivial 
wave function.

Tuesday, 25 June 13



Main Points so far

• Quantum mechanics of atoms in solids can give rise to 
collective excitations, which are described by a QFT
• The lowest energy state (“vacuum”) has a non-trivial 
wave function.

Much more exotic physics and QFTs can arise in this way!
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“Splitting the Electron”

Consider electronic degrees of freedom in “quasi-1D crystals”

Sr2CuO3 low energy electronic
physics due to outer

electrons on Cu atoms 
(black)

anisotropy → e- move essentially only along 1D chains
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. . .

Basic model:

Lattice: on each site either 0, 1 or 2 electrons (spin!)

. . .

Electrons can hop to neighbouring sites

Electrons repel through Coulomb interaction

. . .
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Field Theory Limit: description in terms of 

10.3 Continuum Limit 367

can be derived directly from the current-algebra (10.27)-(10.29) as is shown in
[12]. Under an appropriate choice of renormalization scheme the RG equations
(to all orders in the coupling constant) can be cast in the form [503] (see also
[115, 164, 302])

r
∂λ
∂r

= − 2λ2

4π−λ2 , (10.30)

where r is the RG length scale. The RG equations (10.30) imply that λ dimin-
ishes under remormalization. This means that if we start with λ > 0 as is the
case for the spin sector of (10.24), then the current-current interaction flows to
zero. In other words, the interaction of spin currents in Hs is marginally irrele-
vant and hence we will ignore it in what follows. Taking it into account would
generate extra logarithms in certain formulas below. On the other hand, if ini-
tially λ < 0 as in the charge sector of (10.24), then the interaction grows under
renormalization: it is marginally relevant.

Let us now show that in the scaling limit the model (10.24) is equivalent to
the SU(2) Thirring model. We define a metric

gµν =
(
−1 0
0 1

)
, (10.31)

two-dimensional Gamma matrices {γµ,γν} = 2gµν,

γ0 = iσy =
(

0 1
−1 0

)
, γ1 = σx =

(
0 1
1 0

)
, (10.32)

and two spinor fields

Ψ1(t,x) =
(

R↑(t,x)
L↑(t,x)

)
, Ψ2(t,x) =

(
R†
↓(t,x)

L†
↓(t,x)

)
. (10.33)

In terms of these spinor fields the Hamiltonian (10.24) without the marginally ir-
relevant interaction of spin currents can be expressed in the scaling limit Ua0→
0+as

H =
Z

dx ivF

2

∑
a=1

Ψ̄a(t,x) γ1∂xΨa(t,x)−
g
4

Z
dx

3

∑
α=1

Jα
µ (t,x) Jαµ(t,x),

(10.34)

where
Jα

µ (t,x) =
1
2

Ψ̄a(t,x) γµ σα
ab Ψb(t,x) . (10.35)

In (10.34) we recognize the standard expression for the Hamiltonian of the
SU(2) Thirring model [93, 186, 327]. We note that the SU(2) Thirring model
as well as its U(1) generalization are Bethe Ansatz solvable [110, 222, 455].

fermionic quantum fields

“SU(2) Thirring Model”

2 species of 2-dimensional Dirac spinors

L(t, x) =
2X

a=1

 ̄a(t, x)


i�

0 @

@t

� i�

1 @

@x

�
 a(t, x) + g

3X

↵=1

J

↵
1 (t, x)J

↵
1 (t, x)� J

↵
0 (t, x)J

↵
0 (t, x)

 ̄(t, x) =  †(t, x)�0

J↵
µ =

1

2
 ̄a�µ�

↵
ab b , µ = 0, 1

�0 = ��0 = i�y =

✓
0 1
�1 0

◆

�1 = �1 = �x =

✓
0 1
1 0

◆
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Measure excitations by scattering photons 
(Angle Resolved Photo Emission Spectroscopy)

Count emitted electrons
with given energy and 
momentum (↔angles)
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Measure excitations by scattering photons 
(Angle Resolved Photo Emission Spectroscopy)

If the collective excitations 
are electrons, we expect to

see something like this
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Spectral Function : ARPES on SrCuO2 (Kim et al ’06)

Instead, for quasi-1D systems
one observes

The electron has fallen apart!
(“spin-charge separation”)
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How to understand this? In Sr2CuO3 we have 1 electron per site

Ground State (vacuum)

e- emitted

e- hopping

spin flip

“holon” “spinon”
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The origin for this “splitting of the electron” is the
highly non-trivial nature of the ground state (vacuum)!!
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Summary

• Quantum Field Theories often describe collective properties
  of solids at large distances/low energies.
• Lorentz covariance can be an emergent feature in this regime.
• Low-energy physics can be very exotic because the “vacuum”
  is highly non-trivial.
• In the Cond. Mat. context it is possible to vary the spatial
  dimensionality D=1,2,3 (anisotropy!).
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