Quantum Field Theory and Condensed Matter Physics: making the vacuum concrete

Fabian Essler (Oxford)

Oxford, June 2013

Lev Landau

"This work contains many things which are new and interesting. Unfortunately, everything that is new is not interesting, and everything which is interesting, is not new."

The Field is real!

hbar>0!

$$
\begin{aligned}
& \text { inands.10 }
\end{aligned}
$$

$\cdots \Delta \Delta \sqrt{6}+1$ \％ $\%-5+5=$
\qquad为
\because
\qquad
\cdots

3 nand $s .1$
乐乐水ic
$\%<$
inandsol
为
\％
$\times-x^{6+10}$

Inand 6
\cdots
$x \rightarrow-i$

hbar＞0！
－

The Field is real！

为 $a n=12$
$*$
$\xrightarrow{2-16}$

$\%$

Here:

Relativistic QFT as an emergent (rather than fundamental) phenomenon.

Length/Energy Scales: Organizing Principle of Physics

high energies \Leftrightarrow short distances low energies \Leftrightarrow large distances

Think of this in terms of probing a physical system by e.g. light:

to resolve what happens at length scale a, the wavelength λ must be smaller than a.
short distances \rightarrow small $\boldsymbol{\lambda} \rightarrow$ high energies as $E=h c / \boldsymbol{\lambda}$

Length

A Reductionist View of the World

Quantum Field Theory

Quantum Mechanics

Chemistry
"If we understand QFT/ToE, we understand everything."

A Reductionist View of the World

Quantum Field Theory

Quantum Mechanics

Chemistry

"If we understand QFT/ToE, we understand everything."

Depends on what
"understand" means...

Following 30 minutes:

interesting perspective on QFT (and perhaps the reductionist view)

Example: Lattice Vibrations in Crystals

Crystal: atoms in a periodic array

(b)

Interaction between the atoms (e.g. Coulomb) $V\left(\vec{R}_{1}, \vec{R}_{2}, \ldots, \vec{R}_{N}\right)$
\rightarrow causes oscillations of atoms

Crystal \leftrightarrow mean ("equilibrium") positions

$$
\vec{R}_{1}^{(0)}, \vec{R}_{2}^{(0)}, \ldots
$$

Lattice Vibrations of a Linear Chain

equilibrium positions: $\quad R_{j}^{(0)}=j a_{0}$

-••
oscillations: $\quad r_{j}=R_{j}-R_{j}^{(0)}$

deviations from equilibrium positions

- Main interactions between nearest neighbours
- Oscillations around equilibrium positions typically small:

$$
\left|r_{j}\right| \ll a_{0}
$$

$$
V\left(R_{1}, R_{2}, \ldots, R_{N}\right)=V_{0}+\frac{\kappa}{2} \sum_{j=1}^{N-1}\left(r_{j}-r_{j+1}\right)^{2}+\ldots
$$

$\diamond \quad V_{0}=V\left(R_{1}^{(0)}, R_{2}^{(0)}, \ldots, R_{N}^{(0)}\right)$
\diamond The linear terms add up to zero \leftrightarrow equilibrium positions
$\diamond \ldots \rightarrow$ small cubic, quartic etc "anharmonic" terms

$$
H=\underbrace{\sum_{l=1}^{N} \frac{p_{l}^{2}}{2 m}}+\frac{\kappa}{2} \sum_{l=1}^{N-1}(\underbrace{r_{l}-r_{l+1}})^{2}+\ldots
$$

Kinetic energy Potential energy

$\rightarrow \mathrm{N}$ coupled harmonic oscillators!

Quantum mechanically: $\quad p_{l}=-i \hbar \frac{\partial}{\partial r_{l}}$

Solution of the Classical Problem

Newton's equations:

$$
m \frac{\partial^{2} r_{l}}{\partial t^{2}}=\kappa\left(r_{l+1}-r_{l}\right)-\kappa\left(r_{l}-r_{l-1}\right) \quad l=1,2, \ldots, N
$$

Ansatz:

$$
r_{l}(t)=A \cos \left(k l a_{0}-\omega t+\delta\right)
$$

Works if

$$
\omega\left(k_{l}\right)=\sqrt{\frac{2 \kappa}{m}\left[1-\cos \left(k_{l} a_{0}\right)\right]}
$$

periodicity in $k \leftrightarrow$ periodicity of the lattice
finite number of atoms \rightarrow finite number of normal modes

Quantum Mechanics

Each $\omega(k)$ gives a simple harmonic oscillator (in an appropriate coordinate) \rightarrow

quantized energies:

$$
E_{n}\left(k_{l}\right)=\hbar \omega\left(k_{l}\right)\left[n+\frac{1}{2}\right], \quad l=1, \ldots, N
$$

Ground State ("Vacuum"):

zero-point energy:
wave function:

$$
E_{\mathrm{GS}}=\sum_{l=1}^{N} \frac{\hbar \omega\left(k_{l}\right)}{2}
$$

$$
\Psi\left(r_{1}, \ldots, r_{N}\right) \propto \exp \left(-\frac{1}{2} \sum_{j, k} r_{j} M_{j k} r_{k}\right)
$$

Probability distr. of $2^{\text {nd }}$ atom

Excited states:

Single particles ("Phonons")

$$
E=E_{\mathrm{GS}}+\hbar \omega\left(k_{l}\right)
$$

wave function:

$$
\Psi\left(r_{1}, \ldots, r_{N}\right) \propto\left[\sum_{n=1}^{N} \cos \left(k_{l} n\right) r_{n}\right] \Psi_{\mathrm{GS}}
$$

Two phonons:

$$
E=E_{\mathrm{GS}}+\hbar \omega\left(k_{l}\right)+\hbar \omega\left(k_{n}\right)
$$

Quantum Field Theory

Recall that $\quad H=\sum_{l=1}^{N} \frac{p_{l}^{2}}{2 m}+\frac{\kappa}{2} \sum_{l=1}^{N-1}\left(r_{l}-r_{l+1}\right)^{2}+\ldots$

$$
p_{l}=-i \hbar \frac{\partial}{\partial r_{l}}
$$

Quantum Field Theory

Define $\quad \Phi\left(l a_{0}\right)=\frac{1}{\sqrt{a_{0}}} r_{l}$

Hamiltonian
becomes

$$
H=a_{0} \sum_{l=1}^{N} \frac{m}{2}\left[\frac{\partial}{\partial t} \Phi\left(l a_{0}\right)\right]^{2}+\frac{\kappa}{2}\left[\Phi\left([l+1] a_{0}\right)-\Phi\left(l a_{0}\right)\right]^{2}
$$

Now consider the limit

$$
N \rightarrow \infty, \quad a_{0} \rightarrow 0, \quad \kappa \rightarrow \infty
$$

$$
L=N a_{0} \text { and } \bar{\kappa}=\kappa a_{0}^{2} \text { fixed }
$$

volume
vibrations
remain < a_{0}

$$
\begin{gathered}
l a_{0} \longrightarrow x \\
\Phi\left(l a_{0}\right) \longrightarrow \Phi(x) \\
a_{0} \sum_{l} \longrightarrow \int_{0}^{L} d x
\end{gathered}
$$

$$
H \rightarrow \int_{0}^{L} d x\left[\frac{m}{2}\left(\frac{\partial \Phi}{\partial t}\right)^{2}+\frac{\bar{\kappa}}{2}\left(\frac{\partial \Phi}{\partial x}\right)^{2}\right]
$$

$$
\mathcal{L}(t, x)=\left[\frac{m}{2}\left(\frac{\partial \Phi(t, x)}{\partial t}\right)^{2}-\frac{\bar{\kappa}}{2}\left(\frac{\partial \Phi(t, x)}{\partial x}\right)^{2}\right]
$$

Massless (relativistic) Scalar Field

Which part of the physics does QFT describe?

- Large distances compared to "lattice spacing" ao
- Small frequencies $\omega(k)$, i.e. low energies

i.e. normal modes in this region

Which part of the physics does QFT describe?

atomic scale

non-relativistic Physics

"emergent" collective wave-like excitations

relativistic

 QFTWhich part of the physics does QFT describe?

atomic scale

non-relativistic Physics

"emergent" collective wave-like excitations

relativistic QFT

"Emergent Physical Law"

Measuring the collective modes: inelastic neutron scattering

neutron gives energy ω and momentum k to the crystal
\rightarrow excites a single normal mode if ω and k "match"

Phonon spectrum of Cu

Main Points so far

- Quantum mechanics of atoms in solids can give rise to collective excitations, which are described by a QFT
- The lowest energy state ("vacuum") has a non-trivial wave function.

Main Points so far

- Quantum mechanics of atoms in solids can give rise to collective excitations, which are described by a QFT
- The lowest energy state ("vacuum") has a non-trivial wave function.

Much more exotic physics and QFTs can arise in this way!

"Splitting the Electron"

Consider electronic degrees of freedom in "quasi-1D crystals"

low energy electronic physics due to outer electrons on Cu atoms (black)
anisotropy $\rightarrow e^{-}$move essentially only along ID chains

Basic model:

Lattice: on each site either 0, 1 or 2 electrons (spin!)

Electrons can hop to neighbouring sites

Electrons repel through Coulomb interaction

Field Theory Limit: description in terms of

$$
\Psi_{1}(t, x)=\binom{R_{\uparrow}(t, x)}{L_{\uparrow}(t, x)}, \quad \Psi_{2}(t, x)=\binom{R_{\downarrow}^{\dagger}(t, x)}{L_{\downarrow}^{\dagger}(t, x)}
$$

2 species of 2-dimensional Dirac spinors

$$
\mathcal{L}(t, x)=\sum_{a=1}^{2} \bar{\Psi}_{a}(t, x)\left[i \gamma^{0} \frac{\partial}{\partial t}-i \gamma^{1} \frac{\partial}{\partial x}\right] \Psi_{a}(t, x)+g \sum_{\alpha=1}^{3} J_{1}^{\alpha}(t, x) J_{1}^{\alpha}(t, x)-J_{0}^{\alpha}(t, x) J_{0}^{\alpha}(t, x)
$$

$$
\begin{aligned}
\bar{\Psi}(t, x) & =\Psi^{\dagger}(t, x) \gamma^{0} \\
J_{\mu}^{\alpha} & =\frac{1}{2} \bar{\Psi}_{a} \gamma_{\mu} \sigma_{a b}^{\alpha} \Psi_{b}, \quad \mu=0,1
\end{aligned}
$$

$$
\begin{aligned}
& \gamma^{0}=-\gamma_{0}=i \sigma^{y}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \gamma^{1}=\gamma_{1}=\sigma^{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

"SU(2) Thirring Model"

Measure excitations by scattering photons (Angle Resolved Photo Emission Spectroscopy)

Count emitted electrons with given energy and momentum (\leftrightarrow angles)

Measure excitations by scattering photons (Angle Resolved Photo Emission Spectroscopy)

If the collective excitations are electrons, we expect to see something like this

Spectral Function : ARPES on SrCuO_{2}

Instead, for quasi-1D systems one observes

The electron has fallen apart! ("spin-charge separation")

How to understand this? In $\mathrm{Sr}_{2} \mathrm{CuO}_{3}$ we have 1 electron per site
1

Ground State (vacuum)

e^{-}emitted
e^{-}hopping

"holon"

spin flip

The origin for this "splitting of the electron" is the highly non-trivial nature of the ground state (vacuum)!!

Summary

- Quantum Field Theories often describe collective properties of solids at large distances/low energies.
- Lorentz covariance can be an emergent feature in this regime.
- Low-energy physics can be very exotic because the "vacuum" is highly non-trivial.
- In the Cond. Mat. context it is possible to vary the spatial dimensionality $D=1,2,3$ (anisotropy!).

