Quantum Field Theory and Condensed Matter Physics: making the vacuum concrete

Fabian Essler (Oxford)

Oxford, June 2013

Lev Landau

"This work contains many things which are new and interesting. Unfortunately, everything that is new is not interesting, and everything which is interesting, is not new."

The Field is real!

hbar>0!

Tuesday, 25 June 13

Here:

Relativistic QFT as an emergent (rather than fundamental) phenomenon.

Length/Energy Scales: Organizing Principle of Physics

high energies \Leftrightarrow short distances low energies \Leftrightarrow large distances

Think of this in terms of probing a physical system by e.g. light:

to resolve what happens at length scale a, the wavelength λ must be smaller than a.

short distances \rightarrow small $\lambda \rightarrow$ high energies as E=hc/ λ

Length

A Reductionist View of the World

A Reductionist View of the World

interesting perspective on QFT (and perhaps the reductionist view)

Example: Lattice Vibrations in Crystals

Crystal: atoms in a periodic array

Interaction between the atoms (e.g. Coulomb) $V(ec{R}_1, ec{R}_2, \dots, ec{R}_N)$

 \rightarrow causes oscillations of atoms

Crystal ↔ mean ("equilibrium") positions

 $ec{R}_1^{(0)}, ec{R}_2^{(0)}, \dots$

Lattice Vibrations of a Linear Chain

deviations from equilibrium positions

- Main interactions between nearest neighbours
- Oscillations around equilibrium positions typically small: $|r_j| \ll a_0$

$$V(R_1, R_2, \dots, R_N) = V_0 + \frac{\kappa}{2} \sum_{j=1}^{N-1} (r_j - r_{j+1})^2 + \dots$$

$$\diamond \quad V_0 = V(R_1^{(0)}, R_2^{(0)}, \dots, R_N^{(0)})$$

 \diamond The linear terms add up to zero \leftrightarrow equilibrium positions

◇ ... → small cubic, quartic etc "anharmonic" terms

$$H = \sum_{l=1}^{N} \frac{p_l^2}{2m} + \frac{\kappa}{2} \sum_{l=1}^{N-1} (r_l - r_{l+1})^2 + \dots$$

Kinetic energy Potential energy

→ N coupled harmonic oscillators!

TITLE "-) TITLE " TITLET (+) TITLE

Quantum mechanically:

$$p_l = -i\hbar \frac{\partial}{\partial r_l}$$

Solution of the Classical Problem

Newton's equations:

$$m\frac{\partial^2 r_l}{\partial t^2} = \kappa(r_{l+1} - r_l) - \kappa(r_l - r_{l-1}) \qquad l = 1, 2, \dots, N$$

Ansatz:

$$r_l(t) = A\cos(kla_0 - \omega t + \delta)$$

Works if

$$\omega(k_l) = \sqrt{\frac{2\kappa}{m}} [1 - \cos(k_l a_0)]$$

periodicity in $k \leftrightarrow$ periodicity of the lattice

finite number of atoms \rightarrow finite number of **normal modes**

Quantum Mechanics

Each $\omega(k)$ gives a simple harmonic oscillator (in an appropriate coordinate) \rightarrow

quantized energies:

$$E_n(k_l) = \hbar \omega(k_l) \left[n + \frac{1}{2} \right] , \quad l = 1, \dots, N$$

Ground State ("Vacuum"):

zero-point energy:

$$E_{\rm GS} = \sum_{l=1}^{N} \frac{\hbar\omega(k_l)}{2}$$

wave function:

$$\Psi(r_1,\ldots,r_N) \propto \exp\left(-\frac{1}{2}\sum_{j,k}r_jM_{jk}r_k\right)$$

Probability distr. of 2nd atom

Excited states:

Single particles ("Phonons")

$$E = E_{\rm GS} + \hbar\omega(k_l)$$

$$\Psi(r_1,\ldots,r_N) \propto \left[\sum_{n=1}^N \cos(k_l n) r_n\right] \Psi_{\rm GS}$$

Two phonons:

$$E = E_{\rm GS} + \hbar\omega(k_l) + \hbar\omega(k_n)$$

Quantum Field Theory

Recall that

$$H = \sum_{l=1}^{N} \frac{p_l^2}{2m} + \frac{\kappa}{2} \sum_{l=1}^{N-1} (r_l - r_{l+1})^2 + \dots$$

$$p_l = -i\hbar \frac{\partial}{\partial r_l}$$

Quantum Field Theory

Define

$$\Phi(la_0) = \frac{1}{\sqrt{a_0}} r_l$$

Hamiltonian becomes

$$H = a_0 \sum_{l=1}^{N} \frac{m}{2} \left[\frac{\partial}{\partial t} \Phi(la_0) \right]^2 + \frac{\kappa}{2} \left[\Phi([l+1]a_0) - \Phi(la_0) \right]^2$$

Now consider the limit

$$N \rightarrow \infty$$
, $a_0 \rightarrow 0$, $\kappa \rightarrow \infty$
 $L = Na_0$ and $\bar{\kappa} = \kappa a_0^2$ fixed
 \uparrow \uparrow \uparrow
volume vibrations
remain «a₀

$$H \to \int_0^L dx \left[\frac{m}{2} \left(\frac{\partial \Phi}{\partial t} \right)^2 + \frac{\bar{\kappa}}{2} \left(\frac{\partial \Phi}{\partial x} \right)^2 \right]$$

corresponding Lagrangian density

$$\mathcal{L}(t,x) = \left[\frac{m}{2} \left(\frac{\partial \Phi(t,x)}{\partial t}\right)^2 - \frac{\bar{\kappa}}{2} \left(\frac{\partial \Phi(t,x)}{\partial x}\right)^2\right]$$

Massless (relativistic) Scalar Field

Which part of the physics does **QFT** describe?

- Large distances compared to "lattice spacing" a_0
- Small frequencies $\omega(k)$, i.e. low energies

i.e. normal modes in this region

Measuring the collective modes: inelastic neutron scattering

AccessScience | Search : Neutron diffraction

neutron gives energy ω and momentum k to the crystal \rightarrow excites a single normal mode if ω and k "match"

Phonon spectrum of Cu

Main Points so far

- Quantum mechanics of atoms in solids can give rise to collective excitations, which are described by a QFT
- The lowest energy state ("vacuum") has a non-trivial wave function.

Main Points so far

- Quantum mechanics of atoms in solids can give rise to **collective excitations**, which are described by a QFT
- The lowest energy state ("vacuum") has a non-trivial wave function.

Much more exotic physics and QFTs can arise in this way!

"Splitting the Electron"

Consider electronic degrees of freedom in "quasi-1D crystals"

 Sr_2CuO_3

low energy electronic physics due to outer electrons on Cu atoms (black)

anisotropy $\rightarrow e^-$ move essentially only along 1D chains

Lattice: on each site either 0, 1 or 2 electrons (spin!)

Field Theory Limit: description in terms of

$$\Psi_{1}(t,x) = \begin{pmatrix} R_{\uparrow}(t,x) \\ L_{\uparrow}(t,x) \end{pmatrix}, \qquad \Psi_{2}(t,x) = \begin{pmatrix} R_{\downarrow}^{\dagger}(t,x) \\ L_{\downarrow}^{\dagger}(t,x) \end{pmatrix}$$

fermionic quantum fields

2 species of 2-dimensional Dirac spinors

$$\mathcal{L}(t,x) = \sum_{a=1}^{2} \bar{\Psi}_{a}(t,x) \left[i\gamma^{0} \frac{\partial}{\partial t} - i\gamma^{1} \frac{\partial}{\partial x} \right] \Psi_{a}(t,x) + g \sum_{\alpha=1}^{3} J_{1}^{\alpha}(t,x) J_{1}^{\alpha}(t,x) - J_{0}^{\alpha}(t,x) J_{0}^{\alpha}(t,x)$$

$$\bar{\Psi}(t,x) = \Psi^{\dagger}(t,x)\gamma^{0}$$

$$\gamma^{0} = -\gamma_{0} = i\sigma^{y} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$J^{\alpha}_{\mu} = \frac{1}{2}\bar{\Psi}_{a}\gamma_{\mu}\sigma^{\alpha}_{ab}\Psi_{b} , \quad \mu = 0,1$$

$$\gamma^{1} = \gamma_{1} = \sigma^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

"SU(2) Thirring Model"

Measure excitations by scattering photons (Angle Resolved Photo Emission Spectroscopy)

Count emitted electrons with given energy and momentum (↔angles) Measure excitations by scattering photons (Angle Resolved Photo Emission Spectroscopy)

If the collective excitations are electrons, we expect to see something like this

Spectral Function : ARPES on SrCuO₂

Instead, for quasi-1D systems one observes

The electron has fallen apart! ("spin-charge separation")

How to understand this? In Sr₂CuO₃ we have 1 electron per site

The origin for this "splitting of the electron" is the highly non-trivial nature of the ground state (vacuum)!!

Summary

- Quantum Field Theories often describe collective properties of solids at large distances/low energies.
- Lorentz covariance can be an **emergent** feature in this regime.
- Low-energy physics can be very exotic because the "vacuum" is highly non-trivial.
- In the Cond. Mat. context it is possible to vary the spatial dimensionality D=1,2,3 (anisotropy!).