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Space and time form a fixed canvas upon which 
processes happen. The action of  F is `at a distance’  and 
instantaneous. 

In 1687 this was a triumph — suddenly a whole swathe 
of observations are explained by a single principle.

In 1890 it still works pretty well but there are a couple 
of issues…

1.1 the picture in circa 1890

Newtonian Gravity is a force law

     G M m_____
r2

F = M m



1.2 the picture in circa 1890

Le Verrier used the Newtonian law to analyse in great 
detail the orbit of Uranus and concluded
• The orbit is indeed inconsistent with the then 

known objects in the Solar System
• The anomaly could be removed by hypothesising a 

new planet — Neptune, whose exact location he 
announced 31 August 1846 & was confirmed by 
Galle and d’Arrest on 23 September

But the trick failed with the perihelion of Mercury problem, 
the necessary correcting planet was not present!



1.3 the picture in circa 1890

Electromagnetism was a triumph of 19th century physics,
culminating in Maxwell’s unification of 1861/2

• Light is an electromagnetic wave travelling with a finite 
speed - reassuring as Fizeau had measured it in 1849

• Signals travel at the speed of light and we don’t have 
‘action at a distance’ - feels right

• But Maxwell’s equations transform differently from 
Newton’s laws between relatively moving frames

∇.B = 0       ∇.E = 4πρ



∇ × B =    + 4πJ     ∇ × E = - ∂t
∂B−−∂t

∂E



2.1 special relativity and observers  

Lorentz and Lamor realised that to fix this time must 
transform non-trivially…  

Einstein’s Special Theory of Relativity published 1905
• Consistent theory of mechanics and electromagnetism
• Time itself is not absolute — it is observer dependent and 

our notion of simultaneity fundamentally changed
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2.2 special relativity and observers  

Light cone divides space-time… 

Coordinates are observer dependent but the invariant interval
ds2 = dx2 + dy2 + dz2 - c2 dt2 = dx’2 + dy’2 + dz’2 - c2 dt’2

is invariant. Note that light rays follow straight lines ds2 = 0
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and initially parallel trajectories remain so.



3.1 equivalence and mach  

Newtonian gravity is not consistent with this picture, as the 
action of  F is `at a distance’  and instantaneous. 

It would have been possible to emulate Maxwellian 
Electrodynamics, but Einstein took a different approach.

Equivalence is the observation that bodies in a gravitational 
field have the same space-time trajectory independent of 
their mass

     G M m_____
r2

F = = m a

Gravitational mass = Inertial mass



3.2 equivalence and mach  

Einstein interpreted this principle as the statement that 
The gravitational influence of a massive body is to distort space-
time itself
rather than to generate a field that reaches out over a fixed 
space-time.  Furthermore
The trajectory of a body moving under the influence of gravity 
alone (ie in free-fall) is a geodesic of the space-time (ie is an 
extremum of the invariant interval)
This formulation is the essence of General Relativity. 
Whether it is `right’ is ultimately an experimental and 
observational question.



3.3 equvalence and mach  

Einstein coined the term ‘Mach’s Principle’ in his discussion 
of one consequence that was immediately clear — the notion 
of an independent inertial observer has been lost…
• The structure of space-time everywhere is determined by 

what is there, including the observer itself
• Only by knowing the structure of space-time between 

observer and the observed can the observer correctly 
interpret what is seen



4.1 metrics and Parallel transport  

To implement this theory we need to describe curved space-
times. They are characterised by the metric g

     ds2 = g11 dx2 + g22 dy2 + g21 dx dy + … + c2 g00 dt2

We need a more compact notation so define
xμ = (x0 , x1 , x2 , x3) = (ct, x, y, z)  μ=0,1,2,3



gμν = g00  g01  g02  g03



g10  g11   g12   g13



g20  g21  g22  g23



g30  g31  g32  g33

ds2 = Σ gμν dxμ dxν  = gμν dxμ dxν
μν

“Contraction”



4.2 metrics and Parallel transport  

An example of curved space is

ds2 =  K2  (dθ2 + sin2θ dφ2)θ

φ
How do we know whether these two
vectors are the same?

For the flat space time in Cartesian coords we simply have 


gμν = ημν = -1   0   0   0



     0  1  0  0



     0  0  1  0



     0  0  0  1

— the Minkowski metric

gθθ = K2,  gφφ = K2 sin2θ, gφθ = gθφ = 0



4.3 metrics and Parallel transport

vμ(x)  is parallel transported along tν

0 = tν∇ν vμ

∇ν vμ =      + Γμνλ  vλ

Flat space

∂xν—∂vμ

• NB Transport along different paths gives different results!

Connection (Christoffel) 
2gλρΓρμν =      +      -     __    __    __ 

∂xμ     ∂xν     ∂xλ
∂gλν    ∂gλμ    ∂gμν



The result of parallel transport round a closed path measures 
the curvature 

5.1 curvature and Geodesics

δvμ = δaαδbβ Rαβλμ vλ 
0 δaλ

δaλ + δbλδbλ

• Rαβλμ has dimension L-2



• Rαβλβ = Rαλ is called the Ricci Tensor
• Rαλ gαλ= R  is called the Ricci Scalar
• Rμν -  Rgμν = Gμν is called the Einstein Tensor1—2

Riemann Tensor



5.2 curvature and Geodesics

A geodesic is a curve whose tangent vector tν  satisfies

This condition extremises the proper interval locally — it is 
the straightest possible path between two points.  If the 
curve is xμ(s) then

0 = tν∇ν tμ

d2xμ
ds2— dxν

ds—+ Γμνλ             = 0
ds—
dxλ

Finally we can show that the separation δμ  of nearby 
geodesics accelerates

δμ = - δβ Rαβλμ tα tλ 
..

tμ = _dxμds and so

δβ



6.1  einstein’s equations

Einstein required a theory in which
• Gravitational Field (ie as an analogue of EM field) is 

replaced by space-time curvature
• Space-time curvature is generated by mass/energy 
• The motion of particles under gravitational influence  is 

described by the geodesics — these exist as properties of 
the space-time alone independently of the particle

• Special Relativistic physics is recovered as Rμνλρ → 0, and 
Newtonian Gravity is recovered as  c →∞ 



6.2  einstein’s equations

 Rμν                  =  8πGc-4 Tμν 

We must have an equation of the form
              curvature  =  constant x  (Mass or Energy)
so that doubling the sources will double Rαβλμ  and double the 
effect on geodesics. The correct choice is not totally obvious 
and Einstein had some trouble with it… 

+ Λgμν1
2—

-  Rgμν

The form of the stress tensor Tμν is very specific to the source
and still poorly understood. We know which choices work   -
eg for a perfect fluid it is  

Tμν = ρ uμ uν + P ( gμν+ uμ uν )



6.3  einstein’s equations

 Rμν                  =  8πGc-4 Tμν + Λgμν1
2—

-  Rgμν
The tensor form shows that this is an equation which is true 
in any coordinate system and thus rectifies the inconsistency 
of Newtonian gravity with Special Relativity. 

Unfortunately the tensor form also masks very efficiently the 
horrendously complicated non-linear nature of the equations
 

— Rμν = ∂ρΓρμν - ∂μΓρρν  +  Γρμν Γλρλ - Γρλμ Γλρν,   ∂ρ = ∂
∂xρ

Remember Γρμν is a first derivative of g so Einsteins Equations 
are second order non-linear p.d.e.’s for g 


