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Overview 

• Why do we need plasmas? For fusion, among other things 

• Basic properties of a plasma 

• Magnetized plasmas 
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Burning matter to get energy 
• Burning coal = breaking chemical bonds 

• Much less energetic than nuclear bonds 
•  Chemical bonds due to electromagnetic force 
•  Nuclear bonds due to strong force 
•  Strong force > electromagnetic force because 

it overcomes Coulomb repulsion of nucleons 

•  “Burning” nuclear bonds seems more 
productive… 
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Igniting nuclear fusion reactions 
•  Initial energy to start reactions 

•  Smaller energy barrier for fusion reaction 
Deuterium-Tritium 

•  Sufficient average energy  
= sufficient temperature T 

• Use energy from reaction to overcome 
barrier to produce more reactions 
•  Keep energy for sufficiently long time: τE [s] 
•  Thermal insulation 

• Have sufficient number of reactions 
•  Fueling ⇒ sufficiently dense: n [particles/m-3] 
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Conditions for fusion  
• Temperature: T = 150 millions K 

•  At this temperature, matter is ionized = plasma 
•  Hottest place in solar system: JET, Oxfordshire 

• Density: n = 1020 particles/m3 

•  A millionth of the atmospheric density 

• Pressure: p = 10 atm 
• Energy confinement time: τE = 1 – 10 s 

• Nuclear fusion is harder than fission, but 
•  Fuel is virtually inexhaustible 
•  No long-lived radioactive waste 
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What does plasma mean? 
•  Langmuir 1929: plasma = Greek for “to mold” 

• Misnomer! 
  Fusion plasmas at 100 million K do not “mold” 
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Definition of a plasma 

•  Ionized gas 

• Dominated by long range interactions 

• Quasineutral 
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Ionized gas 
• Collisions between energetic electrons 

and atoms ⇒ IONIZATION 

• Temperature T > ionization energy ~ eV 
~ 10,000 K 
•  Sufficient with hot electrons 
•  Electrons isolated from ions due to small mass 
•  In fusion plasmas T = 100 million K 

• How do we ionize? Usually with electric 
fields 

8 



Long range vs. short range 
•  Long range interactions: plasma currents and charge give 

magnetic and electric field 

• Short range interactions: Coulomb collisions 
•  Balance potential energy with kinetic energy 
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Long range interactions dominate 
• Very few particles in sphere of radius b 

• Kinetic energy much larger than Coulomb potential 

• Note that 
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Continuum approach 
• Distribution function 

• Maxwell’s equations 
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Particle conservation 
• Number of particles must be conserved along trajectories 

•  Equation with characteristics = particle trajectories 

• Weak coupling means only binary collisions matter 

• But Coulomb interaction is long range. Do particles 
infinitely far away matter? No, because… 
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Quasineutrality 
• Natural tendency to neutrality: opposite charges attract 

• Not sufficient energy to separate opposite charges 

• Surprisingly, every volume in an ionized gas is almost 
perfectly neutral! 
•  By definition, plasma is quasineutral 
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•  Layers of positive and negative charge in uniform plasma 

Debye length 
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•  Sufficient potential difference to 
attract electrons 

•  Poisson’s equation 
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Validity of quasineutrality 
• Plasma size >> λD ⇒ any charge is shielded 

• Electrons have to be sufficiently fast to respond 

• Need sufficient electrons in Debye sphere 

 

•  Weak coupling = sufficient particles for shielding 
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Coulomb collisions 
• Coulomb interaction is long range, but it does not reach 

beyond λD ! 

• Equation with binary collisions valid  
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Confining very hot plasmas 
• Do not confine: just get fusion faster 

than plasma life time 
•  H bombs 
•  Inertial confinement fusion 

• Within a physical container 
•  Lots of plasma energy lost to the wall 
•  Very low temperatures (at most 100,000 K) 

• With gravity 
•  Only star-size entities can achieve fusion 

• Magnetic confinement 
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Magnetized plasmas 
• For strong magnetic field plasmas show a particular 

behavior 

• Quasineutrality helps magnetization: makes E small 
•  In principle, 

• Need to satisfy 
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Gyromotion 
• Gyromotion or Larmor motion (∂B/∂t = 0 = ∇B) 

• Free motion parallel to B 

• Perpendicular force balance 

• Gyroradius: 

• Gyrofrequency: 
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E×B drift 
• Gyromotion + perpendicular electric field? 

• Perpendicular drift 
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Gyrokinetic motion 
• Two-scale expansion [Catto, Plasma Phys. 1978] 

•  Separate fast and slow times tg = Ωt, tt = ωt ~ ρ*tg to calculate 
particle position r(tg, tt) 

•  Simplified for approximately circular gyromotion 

• Gyrokinetic equations of motion 
•  To lowest order perpendicular average motion = 0 
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Gyrokinetic equations 
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• Moving rings of charge 
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Tokamaks and stellarators 

• Need to account for drifts in design 
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