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Gravity and the metric

1
Ry — 59w B+ Agu = A

2

Geometry (metric) = Energy (and/or mass)



Our Hero: The Metric

Ax

Distance in 2 dimensions: ASQ — Agpz -+ AyZ
Infinitesimal distance in 2 dimensions: d82 — CZ$2 -+ dy2

Infinitesimal distance in 3 dimensions: d82 — dCIZ‘Q —|— dy2 —|— d2’2



Our Hero: The Metric (continued)

Infinitesimal distance in D dimensions:

ds® = (dx')? + (dz*)* + (dz°)? + - - - + (dz®)?
In matrix form in D=2 dimensions with r =x, r =1y

ds® = 9z’jd$id$j = 91161%2 + g12dxdy + g21dydx + 9226@2
= dz* + dy”

g = (910 912 _ 10
Y g21 922 0 1



The Metric Tensor

Infinitesimal distance in any dimension:

. . Z
ds® = g;j(x)dz"dx’ | (1.0, 0)
9i5 = Gji is a symmetric tensor r
9/
ds® = dx* + dy® + dz°
ds® = dr® +r2d6* + r? sin” 0 d? /q,
X
1 0 0 1 0 0
g@'j(fb,y,z) — O 1 O gzg(rveagp) — 0 T2 0
0 0 1 0 0 7r?sin®d

The moral: different-looking metrics correspond to the same space



Examples of (flat) metrics

ds® = dx® + dy* + dz°

Euclidean flat metric in 3 dimensions

ds? = —cdt?* + dz* + dy® + dz°

Minkowski (flat) metric in 3+1 — dimensional SPACE-TIME
ds® = —c*dt* + dr® + r* (d6? + sin® 0dp°)

Minkowski (flat) metric in 3+1 — dimensional SPACE-TIME in spherical coordinates



How do we know the space is curved?

Nikolai lvanovich Lobachevsky Janos Bolyai

A

a+ [+ v =180° a+ B+ v < 180° a+ B+ > 180°




Hyperbolic space

 *Lines" that are paraliel at one

dx? + dy?

2 __
ds® = i




The Riemann tensor
as the local measure of curvature
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Bernhard Riemann Ri; = Rz’jl Ricci tensor

y
R = g% Rij Ricci scalar

A space is flat if and only if its Riemann tensor is zero



° ° ’ °
Einstein’s equations
We now have all ingredients to write down Einstein’s field equations:

1 8tz
Ry — QQW/R + Aguw = C—4TW

They are second-order non-linear coupled partial differential equations
for the components of the metric tensor

The right hand side is a source (energy-momentum tensor)

0 g, B 87TGT
OxPOx? B

Compare with Maxwell’s equations:
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Solutions to Einstein’s equations

Even in a simpler case with zero cosmological constant and zero matter source

1
R'u,/ — QgNVR =0

generic solution is unknown (recall Navier-Stokes equations) and is not unique

However, solutions corresponding to highly symmetric situations can be found
by making relevant assumptions about the form of the metric

For example, if the source is spherically symmetric, we can assume
the solution will be spherically symmetric, too

‘ spherically—symmetric distribution of mass M

ds® = —A(r)c*dt® + B(r)dr® + r? (d92 + sin? @d(b2)

Substitute into equations, solve for A and B (A=1,B=1 correspond to flat space-time)




The Schwarzschild metric

2GM dr?
2 2 2 2 2 <2 2
ds® = —c (1— o )dt + iy + 7% (d6? + sin® 0d¢*)

Describes the metric of space-time
OUTSIDE of a body of mass M

Corrections to “1” are very small for stars & planets

Note the (coordinate) singularity at

2GM

T:RS:
CQ

(the Schwarzschild radius) Karl Schwarzschild (1873-1916)



Black holes

2GM dr?
2 2 2 2 2 -2 2
ds® = —c (1— o )dt + iy + 7% (d6? + sin® 0d¢*)

Describes the metric of space-time OUTSIDE of a body of mass M

2GM
2

r=7Ts —
C

For most objects, the Schwarzschild radius is located deep inside the object and thus is not
relevant since the solution is valid only outside (inside the metric is different). For example,
for Earth the Schwarzschild radius is about 1 cm, for Sun — 3 km.

Surface of the body —

A

Schwarzschild radius



Black holes (continued)

2GM dr?
2 2 2 2 2 <2 2
ds® = —c (1— o )dt + iy + 7% (d6? + sin® 0d¢*)

Describes the metric of space-time OUTSIDE of a body of mass M

2G M
- 2

r=T7Ts
C

However, if the matter is squeezed inside its Schwarzschild radius (e.g. in the process of a
gravitational collapse of a star), we get a black hole

Singularity at r=0
Event horizon at r=r, =




Black holes: True and coordinate singularities

2GM dr?
2 2 2 2 2 -2 2
ds®> = —c (1— o )dt + (1= 291 + 7% (d6° + sin® 0dp*)

Recall that the metric is a TENSOR = looks different in different coordinates
ds® = dx? + dy? ds® = dr® + r?dy?
Example: Cartesian vs polar coordinates - r=0 is a coordinate singularity

Similarly, one can write the Schwarzschild metric in different coordinates
(e.g. Eddington-Finkelstein) where the metric is smooth at r=r,

To check whether we have a true or coordinate singularity, need to compute something
That stays invariant when coordinates are changed. For example, the Kretschmann invariant

48G? M?

K = RijuRV" =
J cAr6

The only true singularity is r=0



Black hole horizon

The fate of light cones
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Black hole singularities
and the limits of modern physics

2GM dr?
2 2 2 2 (102 | w12 2
ds* = —c¢ (1 -2 ) dt (1 - ngy) +r (d@ + sin” Od¢ )

\4 /¥
Vv

Singularity

S = /d4513\/—_g (R—2A+61R2 —|—62Rinij —|—>

Corrections to the metric are expected near the singularity (quantum gravity, strings?)

Gravity as an effective theory at large distances & times
(difficult to test experimentally; no complete theory currently exists)



Symmetry yields solutions: Reissner-Nordstrom

O

spherically—symmetric distribution of mass M and charge Q

Now we need to solve a system of Einstein-Maxwell equations to find a metric sourced
by a charged non-rotating spherically symmetric body of mass M and charge Q

2G M 2 dr?
ds> = —[1— ¢ + GQ Adt? + 4 + r? (d6” + sin® 0d¢?)
c2r Ameqr? (1 _2GM | GQ? )
c2r 4dmeqr?

Reissner-Nordstrom solutions have two horizons

When the horizons coincide, the solution is called extremal
(M=Q in relevant units)



Symmetry yields solutions: Kerr

A rotating axially-symmetric uncharged distribution of mass
Parameters: mass M and angular momentum J

Ergosphere

Singularity

Roy Kerr

Another exact solution (Kerr-Newman) describes
a rotating axially-symmetric charged distribution of mass
Parameters: mass M, charge Q and angular momentum J



The four laws of black hole mechanics

(J.Bardeen, B.Carter, S.Hawking, 1973)
Zeroth Law: The horizon of a stationary black hole has constant surface gravity &

First Law: In perturbations of stationary black holes, the change of mass M is related to
the change of charge Q, angular momentum J and horizon area A by

AM = SidA +QdJ + ®dQ
T

(here Q is the angular velocity and O is the electric potential)

Second Law: The horizon area A is a non-decreasing function of time

Third Law: It is impossible to achieve zero surface gravity by a physical process



Laws of black hole mechanics vs laws of thermodynamics

Zeroth Law (BH): The horizon of a stationary black hole has constant surface gravity

Zeroth Law (TD): The system in thermal equilibrium has a constant temperature T

First Law (BH): In perturbations of stationary black holes, the change of mass M is related to
the change of charge Q, angular momentum J and horizon area A by

AM = 8idA + QdJ + ®dQ
T

First Law (TD): In thermodynamic processes the change of energy E is related to the change
of entropy S (plus relevant work terms)

dEl =TdS —pdV — udN

Second Law (BH): The horizon area A is a non-decreasing function of time

Second Law (TD): The entropy S is a non-decreasing function of time

Third Law: It is impossible to achieve zero surface gravity by a physical process

Third Law: It is impossible to achieve zero temperature by a physical process




Black hole thermodynamics

In 1972, Jacob Bekenstein suggested that a black hole should have a well defined entropy
proportional to the horizon area. He was laughed at by some (many...) since black holes
are BLACK (do not radiate) and thus cannot have a temperature associated with them

Jacob Bekenstein Stephen Hawking

However, in 1974 Hawking demonstrated that black holes do emit radiation at a quantum
level and so one can in fact associate a temperature with them



Hawking temperature and Bekenstein-Hawking entropy

Hawking showed that black holes emit radiation with a black-body spectrum at a temperature

o hed o 1.2x10%kg
 8mkpGM M

K

(a black hole of one solar mass has a Hawking temperature of about 50 nanoKelvin)

This fixes the coefficient of proportionality in Bekenstein’s conjecture:

A
SBH = AGH

Immediate consequences and problems:
e Black holes “evaporate” with time
e Information loss paradox
e What are the microscopic degrees of freedom underlying the BH thermodynamics?



Entropy and microstates

In statistical mechanics, entropy is related to the number of microstates:

N=1 particle with spin: l I 2 microstates
N=2 particles with spin: 1 1 l T I 1 T T 4 microstates
N particles with spin: 2N microstates

Boltzmann entropy: S = ]{JB InW = kB In 2N = kBNIDQ

Can we count the microstates of a black hole and recover the Bekenstein-Hawking result?



Counting microstates of a black hole

A
NI
\

A.Strominger and C.Vafa (1996) were able to count the microstates of a very special
(supersymmetric) black hole in 5 dimensions. The result coincides EXACTLY with the
Bekenstein-Hawking thermodynamic entropy.

Strominger-Vafa result has been generalized in many ways since 1996.

However, we still do not know how to count the microstates of “normal” BHs,
e.g. Schwarzschild BH in four dimensions...



Holographic principle
In thermodynamic systems without gravity, the entropy is extensive (proportional to volume)

In gravitational systems, it is proportional to the AREA

It seems that gravitational degrees of freedom in D dimensions are effectively described
by a theory in D-1 dimensions (‘tHooft, Susskind, 1992)



Gauge-string duality (AdS-CFT correspondence)

4
/
]
/
// >
]
/
Open strings picture: Closed strings picture: dynamics of strings
dynamics of strings & branes at low energy & branes at low energy is described by
is desribed by a gravity and other fields
guantum field theory without gravity in higher dimensions
conjectured

exact equivalence

Maldacena (1997); Gubser, Klebanov, Polyakov (1998); Witten (1998)



Black holes beyond equilibrium

Undisturbed black holes are characterized by global charges: M, Q, J...

A thermodynamic system in equilibrium is characterized by conserved charges: E, Q, J...

If one perturbs a non-gravitational system (e.g. a spring pendulum), it will oscillate with
eigenfrequencies (normal modes) characterizing the system

k
W =1/ —

M

What happens if one perturbs a black hole?



4-dim gauge theory —large N,
10-dim gravity strong coupling

g=mmp ~\HoloOgraphically dual system
in thermal equilibrium

M,J, Q

THawking SBekenstein-Hawking <~ T S
Gravitational fluctuations < Deviations from equilibrium
0 ?P7?7?
g;(w) + hpv =
ji = =D + -+
""" hyy =0 andB.C. 0:7° + 8,5 = 0

Quasinormal spectrum

I

w=—7qu2—|—~~



Black hole’s quasinormal spectrum encodes
properties of a dual microscopic system

Comparing eigenfrequencies of a black hole

C 7} 3—2In?2
w=4+—k— — k%24 k>
V3 67T 2472/3T2

with eigenfrequencies of a dual microscopic system (described by fluid mechanics)

2
w:ivsk—z’—n K2+

3sT’
one can compute viscosity-entropy ratio and other quantities of a microscopic system
n h
— : —|— e o o
S 47’(’1’63

Moreover, one can relate Navier-Stokes equations and Einstein’s equations...



Conclusions

Black holes are fascinating objects from the theoretical point of view

They test the limits of our knowledge:
Any decent candidate for a theory of quantum gravity must be able to explain their properties

Black holes have entropy and temperature and behave like thermodynamic systems,
and we think we know why (holographic principle)

Black hole spectra of excitations encode non-equlibrium properties of a dual microsystem

We do not know how to resolve the BH singularity

Einstein’s gravity is an approximation, an effective theory...
We do not know the full theory at quantum level



We should not forget about practical applications and REAL Black hole in our
very own Universe! Talks by John Magorrian and James Binney - NEXT...

Landau & Lifschitz, “Field Theory”...
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