James Binney

Rudolf Peierls Centre for Theoretical Physics

# Why stars explode

#### Outline

- How stars age
- The physics of a degenerate gas
- Application to stars
- 2 types of commital
  - burial and cremation

## How stars age

- Stars radiate energy
- Self-gravitating objects have negative specific heat (Sat Jan 2018)
  - So they respond to heat loss by heating up
- They heat by contracting/compressing
  - Gravity now stronger so more pressure needed
- Moderate rise in T greatly enhances rates of nuclear reactions
  - They are driven by collisions of nuclei in the high-E tail of the Maxwellian
- As charge on nuclei rises, higher T required to drive fusion
- Summary
  - Through stellar life central T rises while  $\rho$  rises more strongly
- Conclusion
  - Cores degenerate in old age

## Gas in quantum mechanics

- Classical kinetic theory not valid at high density
  - → QM needed
- Pressure mostly provided by Fermions e or n
- Pauli exclusion principle:
  - max 1 particle in each state
- So count states
  - Box L on a side
  - $k = n(\pi/L)$



# State counting

In 3d  $\mathbf{k} = (k_x, k_y, k_z)$  with  $k_i = n_i \frac{\pi}{L}$   $\mathbf{k}$  is position vector of points on a lattice spaced by  $\Delta k = \frac{\pi}{L}$ Number of points in sphere radius  $k_{\rm F}$  is

$$\frac{\frac{4}{3}\pi k_{\rm F}^3}{(\Delta k)^3} = \frac{4}{3\pi^2} (k_{\rm F} L)^3$$

For spin  $\frac{1}{2}$  particle, 2 states for each point. Also  $p = \hbar k$ , so number of states with  $p \le p_{\rm F}$ 

$$N = \frac{8}{3\pi^2} \left(\frac{p_{\rm F}L}{\hbar}\right)^3$$



### Enter relativity

If we have N particles in box, minimum momentum of fastest particles is  $Fermi\ momentum\ p_{\rm F}$ 

Particle density 
$$n = N/L^3 = \frac{8}{3\pi^2}(p_F/\hbar)^3 \Rightarrow$$

$$p_{\rm F} = K v^{-1/3} \text{ with } \begin{cases} K \equiv (3\pi^2/8)^{1/3} \hbar \\ v \equiv 1/n \end{cases}$$

We'll find that stellar cores have  $kT \ll E(p_{\rm F})$  so states up to  $p_{\rm F}$  full, states above empty Special relativity:

$$m^{2}c^{2} = \frac{E^{2}}{c^{2}} - p^{2}$$

$$\frac{E_{F} dE_{F}}{c^{2}} = p_{F} dp_{F} = -p_{F} \frac{1}{3}Kv^{-4/3}dv = -\frac{1}{3}K^{2}v^{-5/3}dv$$



# Adiabatic compression

2nd law of thermodynamics:

$$dU = T dS - PN dv$$
 with  $U = xNE_F$ 

with 
$$\frac{3}{5} \le x < \frac{3}{4}$$
, so

$$P = -x \frac{\partial E_{\rm F}}{\partial v} = A \frac{v^{-5/3}}{E_{\rm F}}$$
 where  $A = \frac{1}{3}K^2c^2x$ 

with  $\partial E_{\rm F}/\partial v$  from last slide

#### Two adiabatic laws

$$p_{\rm F} = K v^{-1/3} \qquad P = A \frac{v^{-5/3}}{E_{\rm F}}$$

$$m^2 c^2 = \frac{E^2}{c^2} - p^2$$

If non-relativistic  $E_{\rm F} \simeq mc^2$  so  $Pv^{5/3} = {\rm constant}$ If ultra-relativistic  $E_{\rm F} \simeq cp_{\rm F}$  so  $Pv^{4/3} = {\rm constant}$ In either case  $Pv^{\gamma} = {\rm constant}$ 

# Enter gravity

Ball of gas radius R, so  $dv = 4\pi R^2/N dR$ 

$$dU = -PNdv = -\text{const} \times v^{-\gamma} dv$$

$$= \text{const} \times R^{-3\gamma+2} dR = \text{const} \times \begin{cases} R^{-3} dR \text{ non-rel} \\ R^{-2} dR \text{ ultra-rel} \end{cases}$$

$$U_{\rm grav} = -y \frac{GM^2}{R} \quad \Rightarrow \quad dU_{\rm grav} = y \frac{GM^2}{R^2} dR \text{ with } y \sim 1$$

Non-rel case: on contraction U rises faster than  $U_{\text{grav}}$  diminishes: stable Ultra-rel case: U rises at same rate as  $U_{\text{grav}}$  drops so neutral stability GR tips the balance towards contraction because P as well as M generates gravity

#### Numerical results

- Radius of WD decreases as M increases
  - R $\rightarrow$ o as M $\rightarrow$ 1.44Msun (Chandrasekhar) [M<sub>C</sub> ~ (hc/Gm<sub>n</sub><sup>2</sup>)<sup>3/2</sup>]
- Electrons become relativistic at M ~ 0.5 Msun





# Central $E_F(M)$

- E<sub>F</sub> shoots up as
- $M \rightarrow M_{Chandra}$



#### Neutron-star models

- Fundamentally same as WD model
- Changes to r and n scales but not to M scale
- Caveat
  - NSs not ideal gas



#### Stellar evolution

- Stars with  $0.5M_{sun} < M_i < 8 M_{sun}$  turn H  $\rightarrow$  He  $\rightarrow$  C,O
- Then envelope blown away as a planetary nebula
- Leaves white dwarf: no bigger than Earth, M  $\sim$   $M_{sun}$ , supported by  $E_F$  of electrons
- Set to cool for ever
- Stars with  $M_i > 8M_{sun}$  turn  $H \rightarrow He \rightarrow C,O \rightarrow Si \rightarrow Fe$
- $\rightarrow$  Fe core M ~ M<sub>sun</sub> supported by E<sub>F</sub> of electrons
  - Essentially an Fe WD
- Either endpoint can give rise to an explosion



# Core-collapse SNe $(M_i > 8M_{sun})$

- Fe is the most tightly bound nucleus, so now only E source is gravity via contraction
- In core most P contributed by E<sub>F</sub> of electrons
  - but T so high that radiation pressure can also be important
- As E<sub>F</sub> /m<sub>e</sub>c<sup>2</sup> goes >> 1, core becomes squashy
  - $dU/dR \sim dU_{grav}/dR \sim R^{-2}$
- As T rises radiation field contains harder photons
  - Some have sufficient E to blast a Fe nucleus apart



# Core-collapse SNe

- Electrons have choice: live free or marry a  $p \rightarrow n$ 
  - Cost of living free (E<sub>F</sub>) constantly rising → rise in n/p ratio (n now stable)
- Result: loss of P contributed by electrons & photons
  - Contraction raises T, exacerbating the problem
  - A runaway; core goes into free-fall
- Myr of nucleosynthesis undone in a few seconds
  - High T and high E<sub>F</sub> favour n
  - Masses of E required, but gravity can serve it up

# Core-collapse SNe

- e and  $\gamma$  absorption by nuclei  $\rightarrow$  many free neutrons
- Eventually they become degenerate and start to exert useful pressure
- Collisions become more & more energetic as T and E<sub>F</sub> of neutrons rise
  - > copious emission of neutrinos
- The density is so high neutrinos can't simply escape (as from Solar core) but they diffuse out
- Impart momentum to envelope as they brush by
- M of neutron core inevitably close to Chandrasekhar limit
  - if core goes over limit, it collapses to black hole

#### Thermonuclear SNe

- White dwarf = powder keg
  - If heated to ~ 1010K, C+O will release E as they fuse to Ne, Si, etc
  - E released would be enough to unbind star
- Burning in Sun is stable:
  - If T rises, rate of burning increases but also region expands, slowing E production
- In WD reaction rate rises with T, but P depends on E<sub>F</sub> rather than T
  - So rise in T increases reaction rate further rise in T with no regulation until kT reaches E<sub>F</sub>
- Consequence: possibility of converting ~M<sub>sun</sub> to Fe-group elements in seconds

#### Thermonuclear SNe

- What's the detonator?
- Shock of merging with companion white dwarf?
- M pushed over M<sub>Chandra</sub> by accretion of gas from binary companion?
- We aren't sure

# Chandrasekhar-mass models

- Star becomes squishy
  - Fundamental P mode has very low frequency & large amplitude?
- Rise in central density
  - Gas heats by compression
  - Fusion rate rises steeply with T
- Screening by dense e bath allows nuclei to approach very closely
  - Fusion proceeds at low level once T~109 K
- Core becomes convective
- URCA process (e absorption followed by  $\beta$  decay) cools core by neutrino emission
- System smoulders for ~1000 yr
- Then deflagration front or detonation wave sweeps through converting ~M<sub>sun</sub> of C+O to Fe-peak elements in ~2 seconds
- E released blasts star into interstellar space



# Energetics

$$v_{\text{escape}}(M_{\text{C}}) = \sqrt{\frac{2GM_{\text{C}}}{2000\,\text{km}}} = 12\,000\,\text{km}\,\text{s}^{-1}$$

$$E(M_{\text{C}}) = \frac{GM_{\odot}^2}{2000\,\text{km}} = 1.5 \times 10^{44}\,\text{J} \,\,(10^{51}\,\text{erg})$$

- E of SN remnant about this
- E(NS) is 200 times larger because R~10 km
- But E of all SN remnants ~ 1044 J because this is E of WD starting point
  - Most E from core-collapse SNe carried off by neutrinos
  - (with help from gravitational waves)

#### Conclusion

- Stars develop degenerate cores that can explode by two fundamentally different processes
  - Thermonuclear runaway shatters CO WD converting most of it to Fe-group elements
  - Blast of neutrinos following implosion of massive Fe core kicks much of envelope out
- In each case starting point is M<sub>Chandra</sub> supported by E<sub>F</sub>
- KE of debris similar in both cases and ~ binding E of WD
- Big picture is reasonably clear but the details are complex, intractable and so poorly understood