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Why should we want to
break through the
“quantum barrier” and
what is it in the first place?
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Superconductivity

@ 1911 Discovery of superconductivity } 1913
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@ 1920s and 30s: quantum mechanics, Schrédinger equation ‘} 1933
@ 1957 explanation given by Bardeen, Cooper and Schrieffer ?) 1972
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High-temperature Superconductivity

@ 1986 High temperature superconductivity in Laj gsBag.15CuQy4
(Bednorz and Miiller 2 1987)

World record:
138 K (-135 °C)

@ 2077 explanation 3
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Quantum Hall Effect

classical case:

R
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Quantum Hall Effect

v=4

K. v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

1980 Integer Quantum Hall Effect
3 1985
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Quantum Hall Effect

K. v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980) Magnetic Field (T)

1980 Integer Quantum Hall Effect 1982 Fractional Quantum Hall Effect
3 1085 3 1998
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Why such effects are |ncred|b|y hard to descrlbe

The Schrodinger Equation

(_ Z 2]2,7/ i + Z Vint(ri - rj) aF Z ext(rl)) wn(rl, ceey rM)

i—1 i>j=1 i—1
= E, ¢n(r17 2009 rI\/l)
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Why such effects are |ncred|b|y hard to descrlbe

The Schrodinger Equation

i>j=1 i=1

M 2 M M
— Z oy Vi + Z Vine (ri — 1;) + Z Vet (ri) | ¥n(re, ..., rm)
=1 <M;

Hamiltonian A
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The quantum barrier

M identical particles in a box)

I Classical system
|
\. {I’l,rz,...,r/\//}
R {i17f27"'7iM}

— 6M numbers € R
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The quantum barrier

M identical particles in a box)

Classical system

{ri,ro, ..., rpm}
{I"l, ro, ..., fM}

P(r) — 6M numbers € R

Quantum mechanical problem, M =1

W(r) € C, p(r) = [(r)[?
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The quantum barrier

M identical particles in a box)

Classical system
‘ {ri,r2,...,rm}
{'.'17 l"27 ooog rM}

P(re,r — 6M numbers € R

Quantum mechanical problem, M =2
Y(ri,r2) € C, p(r1,r2) = [¢h(r1, r2)[?
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The quantum barrier

M identical particles in a box)

Classical system

{ri,ro, ..., rpm}
{I"l, ro, ..., fM}

P(r1, .. \rwv) — 6M numbers € R

Quantum mechanical problem, M arbitrary
(e, 1) €C, plre, . tua) = |01, - o) 2
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The quantum barrier

M identical particles in a boxJ

Classical system

10

{ri,ra, ..., rm}
. P10, T
@ {f1, 12 MY
P(re, . . \rwm) — 6M numbers € R
10

10 x 10 x 10 = 1000

Quantum mechanical problem
G(r1, - tm) €C, p(ra,- . tua) = (01 o) 2

1000" numbers € C (impossible for M > 4)
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Physical motivation for a lattice model

—@—@—@—@—@—
\

nuclei including
inner electrons

Tensor Network States
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Physical motivation for a lattice model
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nuclei including
inner electrons
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Physical motivation for a lattice model

Representation of a state
P(r,ra, ..., rn) = [9)
Orthonormal basis:

{|Q01>, |<)02>) SRR) |90k>7' : }
) = 2k cklex)

nuclei including
inner electrons
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Physical motivation for a lattice model

Representation of a state
P(r,ra, ..., rn) = [9)
Orthonormal basis:
{|Q01>, |<)02>) cey |90k>7 .- }

[v) = >k cklek)
nuclei including possible configurations:
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Physical motivation for a lattice model

Representation of a state
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Physical motivation for a lattice model

Representation of a state
P(r,ra, ..., rn) = [9)
Orthonormal basis:
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[v) = >k cklek)
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Physical motivation for a lattice model

Representation of a state
P(r,ra, ..., rn) = [9)
Orthonormal basis:

{|Q01>, |<)02>) cey |90k>7 .- }

[v) = >k cklek)
nuclei including possible configurations:
inner electrons
|000...0)
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6 7 ... |010...0)
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Physical motivation for a lattice model

Representation of a state
P(r,ra, ..., rn) = [9)
Orthonormal basis:
{|Q01>, |<)02>) cey |90k>7 .- }

1) = 3ok ckleok)
nuclei including possible configurations:
inner electrons
|000...0)
% g § {.1 § |100...0)
6 7 .. 010...0)
¢ ¢ o o 0 |110...0)

o o o o N 1111...1)
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Physical motivation for a lattice model

Representation of a state
P(r,ra, ..., rn) = [9)
Orthonormal basis:

{|Q01>, |<)02>) cey |90k>7 .- }

1) = 3ok ckleok)

nuclei including possible configurations:
inner electrons ‘000 0>
% 2 3 f)l 5 |100...0)
6 7 ... |010...0)
° ° |110...0)

o o o ] S

o o N 111...1)

1

‘1/}> = Z Ciliz...iN i1i2 v IN>

M
usually N = const. it,iny..,in=0
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Physical motivation for a lattice model

Representation of a state

P(r,ra, ..., rn) = [9)
Orthonormal basis:

[9) = >k ckleok)

nuclei including possible configurations:

inner electrons ‘000 0> ‘ >

% 2 3 f)l 5 |100...0) |o2)

6 7 ... 010...0) |03)

> C |110...0) |©a)

o o o o .
o o N 1111...1) | pon)
1

M
usually N = const. it,iny..,in=0
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Problem
Calculations exponentially hard
- both in the continuum and on the lattice!

Reduction to polynomial scaling:
O naive ansatz: Hartree-Fock
@ Quantum Monte Carlo

Based on physical insight
© sophisticated ansatz:
Tensor Network States
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Idea 1: Naive approximation ansatz - Hartree-Fock

Idea: no correlations

wave function is built of independent states for the
individual electrons (= orbitals)

@ exact solution for non-interacting electrons

@ otherwise approximation of the true ground state
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Idea 1: Naive approximation ansatz - Hartree-Fock

Idea: no correlations

wave function is built of independent states for the
individual electrons (= orbitals)

@ exact solution for non-interacting electrons

@ otherwise approximation of the true ground state

e e Disdvantage: bad approximation

fails at

explains

@ high temperature super-

@ low temperature super- ..
conductivity

conductivity
o fractional Quantum Hall

int t Hall Effect
@ In eger Quan um a eC EfFect
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Idea 2: Quantum Monte Carlo

"

SOy
VAR

oﬂo o o

o o
importance sampling
Ci

1

)= Y. Cineiylitiz. .. in)

1,02, iy =0

@ does not work for fermionic systems (sign problem)
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Idea 3 based on profound physical insight

Ground states of realistic Hamiltonians fulfil the
Area Law of Entanglement.
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Idea 3 based on profound physical insight

Ground states of realistic Hamiltonians fulfil the
Area Law of Entanglement.

Entanglement

Consider the state |¢) = % (T4 = [41)
* X
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Idea 3 based on profound physical insight

Ground states of realistic Hamiltonians fulfil the
Area Law of Entanglement.

Entanglement

Consider the state |¢) = % (T4 = [41)
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Idea 3 based on profound physical insight

Ground states of realistic Hamiltonians fulfil the
Area Law of Entanglement.

Entanglement

Consider the state |¢) = % (T4 = [41)

AP 50% ¢5
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Idea 3 based on profound physical insight

Ground states of realistic Hamiltonians fulfil the
Area Law of Entanglement.

Entanglement

Consider the state |¢) = % (T4 = [41)

AQ 50% ¥

Entanglement!

No such effect for [¢)') = |11).
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Idea 3 based on profound physical insight

)= D Ciniylitiz. .. in)

i1,02,...,in=0
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Idea 3 based on profound physical insight

Area Law (realistic Hamiltonians) 1
Entanglement (A, B) « 0A W)= Y Chpinliti2. .. in)
1,02,y in=0
generic state: o o )
Entanglement(A, B) o< num(A) B
° ° °
. Area Law -
exp. scaling ———— poly. scaling A
° ° ° °
° ° °
o (]
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Idea 3 based on profound physical insight

Area Law (realistic Hamiltonians) 1
Entanglement (A, B) « 0A W)= Y Chpinliti2. .. in)
50,0 iN=0
generic state: Y Y Y
Entanglement(A, B) o< num(A) B
@ O O o o
. Area Law .
exp. scaling ———— poly. scaling A
e O o (@ o
® ® °
° ©® @©@ @ o
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Idea 3 based on profound physical insight

Area Law (realistic Hamiltonians) 1
Entanglement (A, B) « 0A W)= > Caninliti...in)
102,00, iN=0
generic state: ) ) Y
Entanglement(A, B) o< num(A) B
9 9 o
. Area Law .
exp. scaling ———— poly. scaling A
) ° ] 9
9 o °

Construct states that fulfil the Area
Law: (] 9
Tensor Network States




Motivation The quantum barrier Efficient approximation schemes Tensor Network States

Overcoming the exponential scaling problem

Problems of previous approximation schemes
© Hartree-Fock: Limited applicability
© Quantum Monte Carlo: sign problem

(N)

’HN DAY

@ strong restriction on physical

ground states |10) ~ poly(N)

@ Tensor Network States
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Construction of Tensor Network States

Tensor Network States

Tensor Network States fulfil the Area Law:
2!1042...(11

@ bond dimension: a=1,...,D, i= 0,1

@ every site gets a tensor A
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Construction of Tensor Network States

Tensor Network States fulfil the Area Law:
2!1042...(11

@ bond dimension: a=1,...,D, i= 0,1

@ every site gets a tensor A

In1D: © o o o o

Al BE CE - 250
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Construction of Tensor Network States

Tensor Network States fulfil the Area Law:

o every site gets a tensor A, .

@ bond dimension: «a=1,...,D, i = 0,1

In 1D: o o o (] -
Al BE CE - 250

Matrix Product States

) = Z AlgBE C5 .. ZM |iviais . .. in)

iyee5in=0

Citiniz...iy

@ number of parameters = 2D?N
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Performance of Matrix Product States

Ground state energies
@ extremely high accuracies
e.g., spin-1/2 anti-ferromagnetic Heisenberg chain:

‘ exact numerical
Eo | —0.4431471806 —0.4431471825
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Time Evolution

@ optical lattice

@ time-dependent Schrddinger equation

|4imit) = [0101010101)
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Time Evolution

@ optical lattice

@ time-dependent Schrddinger equation

|4imit) = [0101010101)

o o o o
0.6
_ 04
3
i U/J=516(7)
02 K/J=17 x10-2
o \
0 1 4 5
4jt/h

S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwéck, J. Eisert, and I. Bloch, Nature Physics 8, 325 (2012).
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Two dimensional Tensor Network States

o given by tensors Al 5 s, a=1,...,D
o efficient algorithms are being developed

@ promising results for the Hubbard model (high temperature super-
conductivity):

-1.48
+ U jj’_
-1.5 — B -W5 jj
<— Diag| /
-1.52 / m
= y v

-1.54 b
W 156 //"
w
-1.58 A
-1.6

0 0.05 0.1
1/D

P. Corboz, T. M. Rice, and M. Troyer, PRL 2014

hole
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2D Tensor Network States in High Energy Physics

1. Simulation with 2. Simulation with
@ classical quarks @ quantum quarks (no sign
@ quantum fields problem!)

@ quantum fields

Confinement:
" AN
E=0

confining phases

-2 =il 0 1 2
E. Zohar, M. Burrello, T. B. Wahl, and J. I. Cirac, Ann. Phys. 363, 385 (2015)
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Summary

Description of Quantum Matter

solving the Schrodinger equation:
exponentially hard

Tensor Network States: use Area Law = polynomial overhead

@ no sign problem
@ huge successes in 1D

o first impressive results in 2D
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