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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.
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First we describe the equations of motion, those corresponding to an active nematic, that

we use to model the active suspension. These are the standard equations of liquid crystal

hydrodynamics, written in terms of a tensor order parameter Q, together with an active

term which means that any gradient in Q will produce a flow field. Evolution of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qij − Sij = ΓHij, (4)

ρ(∂t + uk∂k)ui = ∂jΠij. (5)

Here the generalised advection term

Sij =(λEik + Ωik)(Qkj + δkj/3) + (Qik + δik/3)(λEkj − Ωkj)

− 2λ(Qij + δij/3)(Qkl∂kul)

Here, the strain rate tensor, Eij = (∂iuj + ∂jui)/2

and the vorticity tensor, Ωij = (∂jui − ∂iuj)/2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotational diffusivity is denoted by Γ and the molecular field

Hij = −
δF
δQij

+
δij
3
Tr

δF
δQkl

(6)

isermined from the free energy,

F =
K

2
(∂kQij)

2 +
A

2
QijQji +

B

3
QijQjkQki +

C

4
(QijQji)

2 (7)

. Here K is the elastic constant, A,B and C are material constants. The total stress

generating the hydrodynamics has 3 parts;

1. the viscous stress, Πviscous
ij = 2µEij
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Active turbulence: topological defects are created and destroyed
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Topological defects in colonies of bacteria

Topological defects in eukaryotic cells
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‘Turning off’ motility

Topological defects in epithelia govern the 
extrusion of dead cells

T. Beng Saw, A. Doostmohammadi et al, 
Nature 544 212 (2017)



Topology in biology?

Positions of apoptosis correlated with +1/2 
topological defects

High stress drives YAP from nucleus to 
cytoplasm which is a signal for cell death

Cell dies and is ejected from the monolayer



Topological defects turn up in biological systems – and, at least
in model systems, have biological relevance

• nucleation sites in bacterial monolayers

• colony shape

• Cell death in epithelial cell layers
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To further test the contribution of intercellular junctions to this 
mechanism, we perturbed collective cell movements and intercellu-
lar forces by knocking down α -catenin17,18, which is known to be a 
core mechanosensor of force transmission at cell–cell junctions28. We 
observed that α -catenin knock down (α -catKD) MDCK cells main-
tained similar levels of orientational order and similar extrusion–defect 
correlation patterns as WT MDCK at a similar cell density range 
(Extended Data Fig. 4a, b, Fig. 1f, Extended Data Fig. 1e–h). However, 
the defects were smaller in size and had more spatially focused stress 
patterns compared to WT MDCK (Fig. 3a, f, Supplementary Movie 4). 
From the nematic model, the size of the defect core is known to scale as 
R ∝  √K, where K is the orientational elasticity constant characterizing 
the resistance of nematic directors to a change in the orientation12, 
and thus the smaller defect size seen in α -catKD experiments can be 
interpreted as a reduction in K (Extended Data Fig. 4c). Collective cell 
bending may be favoured in epithelial α -catKD cells, as the alteration of 

the mechanical connection between cell–cell adhesion proteins and the 
contractile actomyosin cytoskeleton facilitates the relative movements 
of adjacent cells17,28. More importantly, nematic theory predicts that the 
number of topological defects is inversely related to the orientational 
elasticity (Extended Data Fig. 4d), therefore a reduction in the orien-
tational elasticity is expected to result in a larger number of topological 
defects. Indeed, experiments showed that there was an increase of about 
40% in the number of defects on going from WT cells to α -catKD cells 
(Fig. 3g), which can explain a marked increase in the extrusion rate 
in α -catKD cells (Fig. 3h). These results suggest that the weakening 
of cell–cell junctions in α -catKD cells facilitated collective in-plane 
bending of multiple cells that decreased orientational elasticity, K, thus 
increasing defect formation and extrusion.

To further prove the causal role of defects in extrusions, we sought to 
control defect locations in the monolayer29, thus allowing the control 
of extrusion hotspots. Since MDCK cells preferentially align tangential  
to the boundary between monolayer-adherent and non-adherent  
substrates18, we microcontact printed (Methods) a star-shaped cell 
monolayer (Fig. 4a) to geometrically force comet-like defects to 
the four tips of the star. The length scale of the tip of the star (about  
100–200 µ m) was chosen to match the size of the defects. We indeed 
found that the defect density increased at the corners of the star, 
and that extrusions predominantly happened close to the four tips  
(Fig. 4b, c, Extended Data Fig. 5a, Supplementary Movie 5). In contrast, 
the −  1/2 defect density became larger near the centre of the star, but 
there was no increase in extrusion events in this region. This biased 
distribution of extrusions was not found in a circle-shaped monolayer 
(Fig. 4d–f, Extended Data Fig. 5a). The extrusions were also more  
correlated with + 1/2 defects (more decorrelated with −  1/2 defects) in 
the star-shaped than in the circle-shaped monolayer (Extended Data 
Fig. 1e–h, Extended Data Fig. 5b, Fig. 1f). Thus, we demonstrated that 
extrusions could be controlled by artificially controlling the positions 
of + 1/2 defects in the monolayer.

These findings reinforce the idea that comet-like defects in epithe-
lia can mechanically induce cell apoptosis and extrusions. However, 
the reverse question may be asked: can apoptotic cells destined for 
extrusion produce certain biochemical signals that can increase cell 
activity1,30 and hence generate new local defects to expedite their own 
extrusion? To investigate this possibility, we first checked defect-related 
properties in a caspase-3 inhibited monolayer, and found that the defect 
density was similar to that of a non-treated monolayer, and the flow 
field patterns at + 1/2 defects still showed an extensile flow field albeit 
having a reduced pattern size (Extended Data Fig. 5c). This suggested 
that cell death signals did not contribute to the extensile nature and  
activity of the epithelium. In another more direct experiment, we  
used an ultraviolet laser to induce a single cell apoptosis31 (Methods), 
and followed the time evolution of the number of + 1/2 defects imme-
diately afterward (within a radius of 80 µ m, Fig. 4g) and up to several  
hours, until the first extrusion occurred. We did not observe any 
increase in the average number of defects after the laser induction of cell 
apoptosis (Fig. 4h), which confirmed that there was minimal influence  
of apoptotic signalling on the triggering of more defects.

Taken together, our results show that as cells collectively move in the 
epithelial monolayer, topological defects in cell alignments are formed 
spontaneously. The emergence of + 1/2 defects provides hotspots of 
compressive stress, which lead to a higher probability of cell apoptosis 
and extrusion (Fig. 4i). This newly identified mechanism appears to 
be the main pathway that triggers apoptotic extrusion in epithelia, as 
around 70% of cell extrusion events occurred at compressive stress 
regions (Extended Data Fig. 5d). Such regions increased in compres-
sion as a function of time on average, leading to extrusion (Fig. 3b). 
Knowledge of this mechanism allows tuning of extrusion hotspots 
through the control of topological defects in the tissue29. Notably, 
the magnitude of compressive stress needed for extrusion is modest  
(up to 350 Pa µ m, or about 35–70 Pa taking the typical cell height to 
be approximately 5–10 µ m, Extended Data Fig. 3e) compared to other 
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Figure 4 | Topologically induced +1/2 defects can control extrusion 
hotspots. a, d, Confluent MDCK monolayer confined on star and circle 
shapes (respectively a and d, Methods). Scale bar, 100 µ m. Red lines show 
local cell orientation. b, e, Heat map of normalized extrusion number  
per unit area. c, f, Normalized average areal density of extrusions,  
+ 1/2 defects and −  1/2 defects as function of distance from confinement 
centre, rfc. Each point on the curve is averaged over the full 360° for each 
specific range of rfc. n =  145 extrusions, n =  6,738 (+ 1/2) defects and 
n =  5,083 (−  1/2) defects from 12 independent movies in 2 independent 
experiments (star). n =  361 extrusions, n =  5,389 (+ 1/2) defects and 
n =  4,858 (−  1/2) defects from 8 independent movies in 3 independent 
experiments (circle). g, Diagram of laser induction of single cell apoptosis. 
h, Time evolution of average number of + 1/2 defects within radius of  
80 µ m around laser induced cell apoptosis (laser induction at t =  0 min, 
n =  9 independent apoptotic induction experiments). A ks-test is 
performed for each time point against t =  0 min, P-values for t =  50–300 min  
are respectively P =  0.86 (t =  50 min), 0.74 (t =  100 min), 0.81 (t =  150 min),  
0.75 (t =  200 min), 0.30 (t =  250 min) and 0.73 (t =  300 min). NS, not 
significant. Data represented as mean ±  s.e.m. i, Diagram of apoptotic 
cell extrusion induced by nematic defect. 1, 2, 3 denote event sequence in 
order. Red arrow, + 1/2 defect. Green arrow, −  1/2 defect. Blue, cell nuclei. 
Orange, apoptotic cell.
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