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What are gravitational waves?

Spacetime tells matter how to move;
matter fells spacetime how to curve.

John Archibald Wheeler (2000)




Likely sources: Supernova
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Likely sources: Binary neutron star
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Likely sources: Binary black hole




Likely sources: Rapidly rotating neutron star




) ... are all out there




Indirect evidence for gravitational waves

Hulse-Taylor binary pulsar

NS-NS binary Pulsars are clocks with
exceptional intrinsic

a NS observed as pulsar : b'll)'t )

) Sle¢ f

(P = 59 ms) PRE ,
(comparable to atomic

discovered 1974 clocks)

Timing residuals affected by
various effects due to GR
(e.g. Roemer, Einstein and
Shapiro time delays)

Gravitational waves

Orbital period = 7.75 hr, Minimum separation (periastron) ~ 1.1Rg



Indirect evidence for gravitational waves?

A ‘click’ every 59 ms and 27 yrs of data!

Fitting the timing formula, the parameters of the system are known very

accurately

: Keplerian parameters
(1/c)apsine (s)  2.3417725(8) — =
e 0.6171338(4)
To (MJD) 52144.90097844(5)
Py, (days) 0.322997448930(4)
wop (deg) 292.54487(8) : =
(@) (@eglyD) 4.22659505) post-Keplerian paraters. Two
5 (9 & O:OO 42919(8) quantities fix mp, mc, the rest give
P, —2.4184(9) x 10— 12 pure predictions
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m, = 1.4414(2) My, m. = 1.3867(2)M



Indirect evidence for gravitational waves

Now everything is fixed and GR gives a prediction for P, due to GW
emission. Using Einstein quadrupole formula:
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Comparing to observation:
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(Pp)obs/(Pp)mn = 1.0013(21)
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General Relativity Prediction
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Direct detection of gravitational waves with a laser interferometer

Made possible by 40+ years of work, including:

> Experimental ‘miracles’ (measure h ~ 1021) ’% -

= overL =4km, DL ~ 103 fm! ,I
Y 4
> Theoretical breakthroughs Y 4
(predicting the signal waveform) £
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propagating orthogonal to screen

Courtesy: Giacomo Ciani (LIGO-G1101293)
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Direct detection of gravitational waves

— laser beam size ~ 12 cm. Even if AL = 1073 fm, we measure a coherent displacement
of all atoms in the mirror! A better figure is given by the phase shift in the interferometer,

Ad = i‘-j{LihoL ~ 108 rad

— does not detect a mirror motion x(#) but X(f) in a selected range of frequencies
~ 10Hz — 3kHz. We are only sensitive to GW frequencies in this range



Direct detection of gravitational waves

seismic attenuation: factor 1019 at 10 Hz
AL = hl. = long arm-length + FP cavity (Leg ~ 750 km)

power recycling: 750 kW of laser light circulating!
(from a 200 W laser)

mirrors: scatter less than 10 ppm of incident light
micro-roughness < 0.16 nm

shaped to control diffraction

M = 40 kg to reduce radiation pressure
and heating

controls and locking: keep the FP cavities
in resonance: 6L < (A /4F) ~ 1073 cm




Detector sensitivity
Detector noise n(t). In Fourier space 7n(f)

For stationary noise, (n*(H)n(f")) = o(f —f’)%S,,(f)
S,(f) o Hz~! is the noise spectral density

N~ (f) o< Hz~'/? characterizes the detector sensitivity

1072

It

Strain Noise ( 11\/ Hz )
&

N5
a0 ///

10 100 1000
Frequency (Hz)

=
R




strain (1/VHz)

1022

Detector sensitivity

— (uantum noise - = - coating thermo-optic noise

— SeISMIC Noise . -« Substrate Brownian noise
— gravity gradients excess gas
— suspension thermal noise = total noise

- coating Brownian noise

frequency (Hz)

Martin, Killow & Hammond, CERN Courier, 13 Jan 2017



... helps to know what one is looking forl

Accurate predictions of the waveform are crucial for
— extracting the signal from the noise
— extracting the physics from the event

Three phases: inspiral-merger-ringdown

Thanks to decades of theoretical work, the waveform is fully under control

Q3f

— Numeioal Redatvity (Caltech-Coradl) ! Y g " ] oo

|
i
i
%3 ——POB (a5 ~ 0: ag--20) !
i
|
|

R(Waal /1
e :
L

1:1 mmess retio |

| .
i Micoger timo

1 1 1 1 1 1 1 1 L L 1
= - 3500 3520 3580 3860 3530 3900 39X M0 3960 IO 4000
f t




10*

103

p—
(@)
[=

e RO R

1 llllllll 1 llllllll

L1 1 llllll

llll

post-Newtonian theory

effective one-body theory

numerical relativity

e ) 0' {
=

————

perturbatidhn theory
gravitational self-force

10°

10! 102
my/my

10°

I llllllll LA

10*

10°

Courtesey: Alessandra Buonanno, CERN Courier, 13 Jan 2017



The long awaited discovery ...

|24 Selected for a Viewpoint in Physics week ending
PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRUARY 2016

S

Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott et al.” 1004 authors

(LIGO Scientific Collaboration and Virgo Collaboration) 90 institutions
(Received 21 January 2016; published 11 February 2016) 15 countries

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10~2!. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater

than 5.16. The source lies at a luminosity distance of 410f11868 Mpc corresponding to a redshift z = 0.09_*8‘83.

In the source frame, the initial black hole masses are 363 M, and 297} M, and the final black hole mass is
6274 M, with 3.0702 M, c? radiated in gravitational waves. All uncertainties define 90% credible intervals.

These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

Awarded:

» The Gruber Cosmology Prize (2016)
» The Fundamental Physics Prize (2016)
» The Kavli Prize (2016)

» The Shaw Prize (2016)

GRAVITATIONAL WAVES
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http://arxiv.org/abs/1602.03841
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Ronald Drever
(1931-2017)

Experimental physicist key to the detection of gravitational waves

It is well known that Drever and I had

different views about the direction for tech-
nical development for LIGO. I disagreed with
him about the use of optical cavities; it turned
out he was right. I held out for a solid-state
laser while he insisted on a green argon one;
Drever was wrong on that one. But we always
respected each other’s views, and as LIGO’s
construction progressed we became close
colleagues and friends.m  Rainer Weiss

298 | NATURE | VOL 544 | 20 APRIL 2017



The detectors

Hanford,
Washington

P Re-wroia

Livingston,
Louisiana
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Number of events

The detection

Generic transient search
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“Modeled search” (which makes use of waveform predictions)

uses 16 days of coincident Livingston-Hanford data

.Significance > 5.10

.False alarm rate < 1 in 203000 years



The detection

Hanford, Washington (H1) Livingston, Louisiana (L1)
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GW frequency rises from 35 to 150 Hz in 0.2 s, so orbital frequency (which is 1/2)
must = 2 black holes of ~equal mass orbiting each other before merging



o 'Chirp mass’ of binary black hole merger:

(sl @ |5 emo i
= (my + my) '/ ~—G 196" WA == 30

o Parameters measured by matching millions of
trial waveforms in 15-dim. parameter space

| | | |

Inspie) Megergna. Primary black hole mass 36; M
Secondary black hole mass 297IM
Final black hole mass 627 M,
Final black hole spin 0-67f8.'875
Luminosity distance 4107} Mpc
Source redshift z 0.0970%
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Biggest bang since the Big Bang!



Four Breakthroughs!

o First direct detection of gravitational waves

a First direct evidence for the existence of black holes
o First obbservation of a binary black hole merger

o First fests of genuinely strong-field dynamics of GR



Tests of General Relaftivity
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Measure masses, spins of component black holes from inspiral signal
o General relativity predicts mass, spin of final black hole

o Measure these from post-inspiral signal and compare with prediction!



Tests of General Relafivity
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Measure masses, spins of component black holes from inspiral signal
o General relativity predicts mass, spin of final black hole

o Measure these from post-inspiral signal and compare with prediction!



Black hole spin y

Open guestion
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Three detectors will make astronomy possible

20h 20h

LIGO Hanford + LIGO Livingston LIGO Hanford + LIGO Livingston + Advanced Virgo

90% confidence error box can be reduced from ~180 deg? fo 10 deg?



Global GW Detector Network

Operational

Under Construction
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Current state-of-the-art: Second-generation
(“advanced”) laser interferometers.




Observing plans

Advanced LIGO Advanced Virgo
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o 2015-16 (O1): 4-month run with only Advanced LIGO

e Detfection of GW150914

e Second half of data analysed — detection of GW 151226

o 2016-17 (02): 6-month run with Advanced Virgo joining (... delayed)
o 2017-18 (03): 2-month run LIGO + Virgo + KAGRA?

o 2019+: LIGO + Virgo (towards full sensitivity) + KAGRA

g 2022+: LIGO-India joins the network

http://arxiv.org/abs/1304.0670 [ 7



Multi-wavelength astronomye

radio [
s optical/lR [

' 24h X-ray 1
20h 4-ray (all-sky)

No coincident signals seen in photons ... not unexpected however!

Astrophys. J..826, L13 (2016)



Could neutrinos be emitted?

neutron star

waves /

neutron star

merger

gravitationa\

Waves

?

black hole /
accretion disk . black hole

massive star

accretion disk

gravitati ‘ ‘

core collapse




However no coincident neutrinos seen ...
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Detecting binary neutron star coalesence
o Equation of state of neutron stars is currently unknown

o With multiple binary neutron star coalescences, from the GW signal alone
one can distinguish between “soft”, “intermediate”, “hard” equation of state

A NEUTRON STAR: SURFACE and INTERIOR

Phys Rev. Lett. 111, 071101 (2013)
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Cosmography with sources as ‘standard sirens’

Distance information in strain amplitude
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The next few decades ...

o Einstein Telescope (~2030¢)
e 3'd generation observatory
e 10° binary mergers per year
e Evolution of the Universe

o eLISA (approved for 2034)
e 3 probes orbiting the Sun, 104 km apart
e Probe low frequencies: 102 - 10" Hz
e Mergers of supermassive binary black
holes throughout the Universe
e Pathfinder mission launched in 2015

a Pulsar fiming arrays (active now)
e Correlate variations in pulse arrival
times between pulsars to see GW effects
e Ultra-low frequencies: 107 — 10 Hz
e Supermassive binaries before they
merge




The Gravitational Wave Spectrum

Quantum fluctuations in early universe
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‘“The rea voyage o C iscovcry consists not in see ing new
[ands ... but in 5ccing with new cycs’ Marcel Proust




