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Aims of this talk

o Give an appreciation of the complexity of modern quantum mechanics experiments.

o Understand why they are well suited to machine learning techniques.

o Showcase examples where machine learning has been used to optimise these experiments.




Why build these experiments?

c E ~
TTIII

20 I/s ion pump

Lattice

Auxillary coils




A typical apparatus

Trapping,
Evaporation, p—
‘Science’ ’

Laser cooling

Transport




tal parameters.

o Large number of
experimen

TAShutter

mpeFreqSwitch

A typical sequence

QuickstartThyristor
CoolingProbeTTL

Rey

siouueYD E6Q

o Complex sequence in time-
domain.

umperAOMT TL
MWProbeTTL

RogumparSionShuter
RepumperFaradayProbeShutter

RepumperGassceliShutier

> Vast parameter space.

MosfelQuadBypass

MosfetPush
MosfetHelmholtz

MosfetAuxilary

° ...but already computer

controlled!

FEFEESES
3353385833
233337323
REREE LY
28553232
mmxxmmmw
£z ch
S g
&
sjpuuey) Boeuy

YBiasCurrent

[

Interval




Machine learning:
optimisation

PRODUCING ULTRACOLD GASES




Why machine learning?

o Learner acquires an intuitive understanding of how an experiment behaves
with no a priori model.

° Unbiased, led only by the data itself. May find counter-intuitive and
unexpected solutions.

o Patience: Can meticulously and rigorously explore a parameter space,
without distraction.

o Optimisation frees experimentalists to think about the physics.



Two workhorse techniques:
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Evaporative cooling
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Optimisation of evaporative
cooling

b)

o

Atoms confined through the
dipole force.

o

Trap formed by red-detuned laser
beams.

o

Trap depth proportional to the
intensity of the laser beams.

o Maximum here of ~¥70 uK
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Evaporative cooling by ramping
the laser beam intensity.

Measure temperature by imaging the atom
distribution after time-of-flight

— provides a means to measure
performance

Wigley et al, Scientific Reports, (2016)




Optimisation of evaporative
cooling

° Goal: Maximise phase space density at the end of evaporative cooling —
produce colder, denser clouds

o Wigley et al model the experiment as a Gaussian Process.
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The cost function
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(Model of the experiment)

The experiment
(Driven by parameters X)

Wigley et al, Scientific Reports, (2016) 11




Optimisation of evaporative
cooling
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Optimisation of evaporative
cooling

cost

evaluation

Optimising using Gaussian Process gives fast convergence and allows the most important
parameters to be determined.

Wigley et al, Scientific Reports, (2016)




Benchmarking the Gaussian

Process
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Laser cooling
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Photons have
momentum hk.

Absorption from a well-
defined direction.

Re-emission in a
random direction.

Net force applied.
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o Atoms scatter photons within

a narrow range of
frequencies.

Use doppler shift to favour
absorption from laser beam
opposite to direction of travel.

A

o To make a trap, apply a magnetic field
gradient.

o Detuning becomes spatially
dependent through the zeeman
effect.
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Optimisation of laser cooling

3 control variables:
o Cooling light detuning

J

Trapping

o Repumping light detuning

MOT coils

Experimental
control

o Magnetic field gradient
Experimental o Separated into 21 time bins
parameters

o 21x3=63 total parameters

Lock
monitors

J
—y > Optimise optical density.

o Absorption through cloud
measured using a photodiode.
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o Use 3 Neural networks to model
behaviour of experiment.
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Tranter et al, Nat. Comm, (2018)
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Optimisation of laser cooling
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Multi-stage optimisation

o We perform a full optimisation of all stages of our apparatus.
° First, use Gaussian Process to reduce the parameter space.

o Optimise most important parameters from each stage.
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Tailoring the cost function

o Easily re-optimise for specific scenarios — just redefine the cost function to
suit goal!
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Barker et al, Mach. Learn. Sci. & Tech, (2020)




Machine learning:
characterisation

FAST AND EFFICIENT EVALUATION OF DEVICES
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Efficiently Measuring a
Quantum Device

° Goal: to accurately
characterise a quantum
device with as few
measurements as
possible.

o Device characterised by
measuring conductance
for different electrode
voltages.

o> What measurements
should we make to
extract the largest
possible amount of
information?

Lennon, NPJ Quantum Information, (2019) 22




Efficiently Measuring a
Quantum Device

(1) Initial scan

v

» (i) Reconstructions

v

(1ii) Predicted information
gain

v

—(Iv)Next measurement(s)

Lennon, NPJ Quantum Information, (2019) 23




Efficiently Measuring a
Quantum Device
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Efficiently Measuring a
Quantum Device

o Define gradient:
(10N (a1t
V(x) a \/< aVG > * (aVbias>

Define information content:
X, v(m)
X v(m)

T =

Lennon, NPJ Quantum Information, (2019)
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The ML performance is close to optimal, it
greatly outperforms a simple raster scan.
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Conclusions

o Learner acquires an intuitive understanding of how an experiment behaves
with no a priori model.

° Unbiased, led only by the data itself. May find counter-intuitive and
unexpected solutions.

o Patience: Can meticulously and rigorously explore a parameter space,
without distraction.

o Optimisation frees experimentalists to think about the physics.
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More detail on the cost
function

T T T T i T i T — 10
<3
2t : : ~| E
! | ' Bl % S
I I I
L["§ Titted PSD | i oo 3 | g
a § 180 pm radivs : : . 9.8 ]
0 ¥ 50 pm radius ! ! P
o 0F | | I 04 =
= I | [
0 I % I I g
- | | |
I I
o | | L2 B
I I I I =
| | | ]
-2 14 ] | | | 409 =
(o) L L™y ‘ @1 L9
82 84 86 88 90 92 94 96 98 100
Evaporative cooling stage completion (%)

(b) (c)

LT WH'\\\ L __,-"‘ A\\,\_ i /’ \““ \*

Integrated
Density (arb.)

Horizontal Position (arb.)




