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AI and strings: History and motivation



A short history of about three years, starting in Oxford TP . . .

Fabian Ruehle Sven Krippendorf Yang-Hui He

Fabian Ruehle: arXiv:1706.07024
``Evolving neural networks with genetic algorithms to study the string landscape

Yang-Hui He: arXiv:1706.02714
``Deep learning the landscape”

A burst of activity since - but still in its infancy . . .



The ``obvious” motivation . . .

• Machine learning provides a set of  “large-data” techniques

Can machine learning help uncover features of string data?

• String theory leads to very large data sets, very different  
from the ``usual” data (pictures, videos,…).
(latest estimate:             solutions to string theory)10272000



Perhaps machine learning can do more . . .

. . . and help reveal mathematical structures.

Example: Game of go (         games)⇠ 10800

(For comparison:         ``sensible” chess games) ⇠ 1040

(Silver et al, DeepMind, Nature 2017)
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from 700,000 mini-batches of 2,048 positions. The neural network  
contained 20 residual blocks (see Methods for further details).

Figure 3a shows the performance of AlphaGo Zero during self-play 
reinforcement learning, as a function of training time, on an Elo scale25 . 
Learning progressed smoothly throughout training, and did not suffer 
from the oscillations or catastrophic forgetting that have been suggested 
in previous literature26–28. Surprisingly, AlphaGo Zero outperformed 
AlphaGo Lee after just 36 h. In comparison, AlphaGo Lee was trained 
over several months. After 72 h, we evaluated AlphaGo Zero against the 
exact version of AlphaGo Lee that defeated Lee Sedol, under the same 
2 h time controls and match conditions that were used in the man–
machine match in Seoul (see Methods). AlphaGo Zero used a single 
machine with 4 tensor processing units (TPUs)29 , whereas AlphaGo 
Lee was distributed over many machines and used 48 TPUs. AlphaGo 
Zero defeated AlphaGo Lee by 100 games to 0 (see Extended Data Fig. 1 
and Supplementary Information).

To assess the merits of self-play reinforcement learning, compared to 
learning from human data, we trained a second neural network (using 
the same architecture) to predict expert moves in the KGS Server data-
set; this achieved state-of-the-art prediction accuracy compared to pre-
vious work12,30–33 (see Extended Data Tables 1 and 2 for current and 
previous results, respectively). Supervised learning achieved a better 
initial performance, and was better at predicting human professional 
moves (Fig. 3). Notably, although supervised learning achieved higher 
move prediction accuracy, the self-learned player performed much  
better overall, defeating the human-trained player within the first 24 h 
of training. This suggests that AlphaGo Zero may be learning a strategy 
that is qualitatively different to human play.

To separate the contributions of architecture and algorithm, we 
compared the performance of the neural network architecture in 
AlphaGo Zero with the previous neural network architecture used in 
AlphaGo Lee (see Fig. 4). Four neural networks were created, using 
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Figure 3 | Empirical evaluation of AlphaGo Zero. a, Performance of self-
play reinforcement learning. The plot shows the performance of each 
MCTS player αθi from each iteration i of reinforcement learning in 
AlphaGo Zero. Elo ratings were computed from evaluation games between 
different players, using 0.4 s of thinking time per move (see Methods). For 
comparison, a similar player trained by supervised learning from human 
data, using the KGS dataset, is also shown. b, Prediction accuracy on 
human professional moves. The plot shows the accuracy of the neural 
network θf i, at each iteration of self-play i, in predicting human 
professional moves from the GoKifu dataset. The accuracy measures the 

percentage of positions in which the neural network assigns the highest 
probability to the human move. The accuracy of a neural network trained 
by supervised learning is also shown. c, Mean-squared error (MSE) of 
human professional game outcomes. The plot shows the MSE of the neural 
network θf i, at each iteration of self-play i, in predicting the outcome of 
human professional games from the GoKifu dataset. The MSE is between 
the actual outcome z ∈  {−  1, + 1} and the neural network value v, scaled by 
a factor of 1

4
 to the range of 0–1. The MSE of a neural network trained by 

supervised learning is also shown.
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Figure 4 | Comparison of neural network architectures in AlphaGo 
Zero and AlphaGo Lee. Comparison of neural network architectures 
using either separate (sep) or combined policy and value (dual) networks, 
and using either convolutional (conv) or residual (res) networks. The 
combinations ‘dual–res’ and ‘sep–conv’ correspond to the neural network 
architectures used in AlphaGo Zero and AlphaGo Lee, respectively. Each 
network was trained on a fixed dataset generated by a previous run of 

AlphaGo Zero. a, Each trained network was combined with AlphaGo 
Zero’s search to obtain a different player. Elo ratings were computed from 
evaluation games between these different players, using 5  s of thinking 
time per move. b, Prediction accuracy on human professional moves 
(from the GoKifu dataset) for each network architecture. c MSE of human 
professional game outcomes (from the GoKifu dataset) for each network 
architecture.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Tackling the game of go with machine learning:



So two basic questions:

• Can ML help reveal mathematical structures within string theory?

   (Can it be more than a ``black box”?)

Example: Learning line bundle cohomology
(C. Brodie, A. Constantin, R. Deen, AL, arXiv:1906.08769)

• Can ML help sort through the large amount of string data?

Example: Learning string theory standard models
(R. Deen, Y.-H. He, S.-J. Lee, AL, in preparation)



Machine learning basics



Simplest approach: supervised learning

Rn 3 x f✓ : Rn ! Rm f✓(x) 2 Rm

Structure of neural network:

Training:

training set: {(xi,yi) 2 Rn ⇥ Rm}

Predictions: x ! f✓0(x)

trainable parameters

training: minimise loss �! ✓0L(✓) =
1

N

NX

i=1

|f✓(xi)� yi|2

Validate and test: Compute        for unseen data  L(✓0) (xi,yi)



A basic building block: the perceptron

w : weights b : bias � : activation function

-10 -5 0 5 10

0.0
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�(z) =
1

1 + e�zTypically:  

x ! w · x+ bRn 3 x
z

z ! �(z) f(w,b)(x) = �(w · x+ b) 2 R

-> Example

Perceptron relates to the (hyper)plane {x 2 Rn |w · x+ b = 0}

fw,b(x) '
⇢

1 w · x+ b > 0 “above plane”
0 w · x+ b < 0 “below plane”

✓



The next step: m perceptrons in parallel

Rn 3 x

z
z ! �(z)x ! w1 · x+ b1

z
z ! �(z)

...
...

...
...

f(w1,b1) = �(w1 · x+ b1) 2 R

f(wm,bm) = �(wm · x+ bm) 2 Rx ! wm · x+ bm

Rn 3 x x ! Wx+ b
z 2 Rm

z ! �(z) f(W,b)(x) = �(Wx+ b) 2 Rm

W =

0

B@
w1
...

wm

1

CA b =

0

B@
b1
...
bm

1

CAIntroduce weight matrix                and bias vector

Learns position of m hyperplanes -> pattern recognition 

✓



Generalisation: multi-layer perceptron

Rn 3 x x ! Wx+ b
z 2 Rm

z ! �(z) f(W,b)(x) = �(Wx+ b) 2 Rm

. . .Rn Rn ! Rn1 Rn1 ! Rn2 Rnl�1 ! Rnl
Rn1 Rn2 Rnl�1

Rnl

layer 1 layer 2 . . . layer l

Many more generalisations of this . . . -> Example



Unsupervised learning: example auto-encoder

Rnl. . .Rn Rn ! Rn1 Rn1 ! Rn2 Rnl�1 ! Rnl
Rn1 Rn2 Rnl�1

layer 1 layer 2 . . . layer l

Rnl . . .
Rn

Rn1Rnl�1

layer 1 layer 2 . . . layer l

Rnl ! Rnl�1 Rnl�1 ! Rnl�2 Rn1 ! RnRnl�2

encoder: dimension decreasing

decoder: dimension increasing

bottleneck

Training set:  {xi}

Training: minimise loss  L(✓) =
1

N

NX

i=1

|xi � f✓(xi)|2 -> Example



String theory basics



String theory recap

•        open string closed string

• One free constant: string tension T =
1

2⇡↵0

• Consistent in 10 (or 11) space-time dimensions



• spectrum: ↵0m2 = n 2 N

massless         modes contain: graviton (closed string)

                                     gauge fields (open string)

(n = 0)

⇢
n = 0 ! observed particles
n > 0 ! superheavy

Ms =
1p
↵0

⇠ MPl ⇠ 1019GeV > MU ⇠ 1016GeV



Dimensions
We need to ``curl up” six (or seven) of the dimensions to make

contact with physics -> compactification

D=4 theory

D=10/11
string/M−theory

on d=6/7 − dim. space X

Calabi-Yau manifold

(bi-cubic)



How does the 4d theory depend on the ``curling-up”?

topology :                            or                    ? 

-> determines structure of 4d theory: forces, matter content, . . .  
   (Maths: Algebraic Geometry)

shape :                            or                         ? 

-> determines couplings/particle masses in 4d theory  
   (Maths: Differential Geometry)

focus for this talk



Topologies for curling up, e.g in 2d:

sphere:

torus:

g = 0

g = 1

g = 2

.


.


.

In 2d topology is classified by the genus g = ``number of holes”.

only consistent choice for 2d

curling-up

More generally, in 6d, it is classified by integer data -> many choices.



The large number of string solutions mentioned 

earlier counts these different topologies!

Some choices lead to a 4d theory close to the

standard model of particle physics, many others do not.



How to find the 4d theory from a given topology? 

The space X carries additional structure, for example line bundles.

X

OX OX(2) · · ·

Line bundle topology is specified by integers

OX(k) = OX(k1, k2, . . . , kn)

OX(1)



Line bundles have sections:

X

L = OX(k)

section

Number of independent section is counted by cohomology.

L = OX(k) �! (h0(L), h1(L), h2(L), h3(L))

Counts #particles in 4d

A horrendous calculation

-> Example



Machine learning string theory



Learning line bundle cohomology

Q2: Can a machine provide information about the mathematical  
     structure of this map?

Training data:                    from horrendous calculations {ki, h
q(OX(ki)}

Q1: Can a machine learn the map                   ? k ! hq(OX(k))



Training data: about 1000 cohomology values from a box |ki|  10

���� ���� ����

��-�

��-�

���

���

���

��
��

������

validation

training

Number of neurons in first layer: 100

Box          : net gives correct cohomology for 98% of line bundles|ki|  10

Box          : this rate decreases to 73%|ki|  15

Q1: Example for line bundle cohomology on  X = dP2

Want to learn               where                  .  h0(OX(k)) k = (k0, k1, k2)



This can be repeated, with refinements, for other spaces.

Advantages:

• Fast computation of cohomology dimensions from trained net

• Accurate in 90% of cases, sometimes more

Disadvantages:

• Accurate in only 90% of cases

• Fails outside the ``training box”

• Black box: offers no insight into structure of cohomology

Q2: Can we use ML to conjecture formulae for              ? hq(OX(k))



(W1,b1)k (W2,b2)� �
Rn Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)
RN

Rn2 · R

Design a net which matches the expected structure:

g✓

Assume net has been trained:  ! g✓0 , W30, b30

a0 ' g✓0(k) · b30 a ' g✓0(k)W30

Line bundles with similar         are in the same region. This can  
be used to identify regions and polynomials.

(a0,a)

Expectation: Formulae are ``piecewise” polynomial



1) Train and identify regions:

-15 -10 -5 0 5 10 15
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0
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k1

k2

2) Find correct cubic polynomial for each region by a fit:

yellow/green: h1(OX(k1, k2)) = �
3

2
(k1 + k2)(2 + k1k2)

blue: h1(OX(k1, k2)) = 0

2.3 Complete intersection manifolds

Our three-fold examples will be taken from the class of complete intersection (CI) manifolds in
products of projective spaces [18, 26, 27]. Underlying the construction is an ambient space A =
Pn1⇥· · ·⇥Pnm , a product of complex projective spaces. The manifold X ⇢ A is defined as the common
zero locus of homogeneous polynomials P1, . . . , PK . Their degrees of homogeneity are encoded in a
configuration matrix

X 2

2

64
Pn1 q

1
1 · · · q

1
K

...
...

...
Pnm q

m
1 · · · q

m
K

3

75
D1
...

Dm

(2.10)

Specifically, the entry q
i
a of this matrix is the degree of the polynomial Pa in the homogeneous

coordinates of the i
th projective space. The complex dimension of the space is given by d =

Pm
i=1 ni�

K and we are interested in the case of CI surfaces (d = 2) and CI three-folds (d = 3). The Di

listed after the configuration matrix are the divisor classes dual to the standard Kähler forms of the
projective space (restricted to X) and we will focus on favourable cases, where these Di span the
entire fourth homology of X. For such cases, the rank of the Picard group is h = h

1,1(X) = m

and line bundles are labelled by integer vectors k = (k1, . . . , km) 2 Zm and denoted by OX(k) =
OX(k1D1 + · · · + kmDm).

The anti-canonical bundle of such a complete intersection is given by

� KX =
mX

i=1

(ni + 1 �

KX

a=1

q
i
a)Di . (2.11)

This means, by choosing polynomial degrees, we can create CI manifolds with ample anti-canonical
bundle (such as del Pezzo surfaces), CI Calabi-Yau manifolds (CICYs) if we choose

PK
a=1 q

i
a = ni +1

for all i = 1, . . . , m, so that KX = 0, or CI manifolds with an ample canonical bundle.
Line bundle cohomology on CI manifolds can be computed using the algorithm of Refs. [20–24]

which relies on the Bott-Borel-Weil representation of cohomology on projective spaces combined with
spectral sequence methods. We expect line bundle cohomology dimensions on CI manifolds to be
described by piecewise polynomial formulae, with quadratic polynomials for CI surfaces and cubic
polynomials for CI three-folds. For the case of three-folds, this has first been shown in Ref. [11] where
several examples have been given.

As an illustration, consider the bi-cubic CICY three-fold in A = P2
⇥ P2, defined by the configu-

ration matrix

X 2


P2 3
P2 3

�
. (2.12)

Line bundles OX(k) are labelled by a two-dimensional integer vector k = (k1, k2). Since the coho-
mology dimensions are invariant under the exchange k1 $ k2 we can assume that k1  k2 without
loss of generality. Under this assumption, the analytic formulae for the zeroth and first cohomology

6

Example 1: bi-cubic                  , h1(X,OX(k1, k2))



3) Use these equations to find the exact regions:
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4) Find equations for boundaries of regions

are [11]

h
0(OX(k)) =

8
>>>><

>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(OX(k)) , k1, k2 > 0

0 otherwise

(2.13)

h
1(OX(k)) =

8
>>>><

>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(OX(k)) , k1 < 0, k2 > �k1

0 otherwise ,

(2.14)

with the index given by ind(OX(k)) = 3
2(k1+k2)(2+k1k2). In line with our general discussion, we have

two-dimensional regions as well as one-dimensional ones, the latter along the positive coordinate axis.
Moreover, it is evident from the above formulae that cohomology dimensions jump discontinuously
across boundaries. As for surfaces, we would like to be able to conjecture formulae such as the above
from machine learning.

2.4 Set-up for machine learning

In summary, we are interested in exploring machine learning of line bundle cohomology on manifolds
X with complex dimensions d = 2, 3, of the type introduced above. Line bundles on these manifolds
are labelled by integer vectors k 2 Zh with components ki and are denoted OX(k). The cohomology
dimensions h

q(OX(k)) 2 Z�0, where q = 0, . . . , d, can be explicitly computed using the various
algorithmic methods outlined above. This leads to our training/validation data which is of the form

Zh
3 k �! h

q(OX(k)) 2 Z�0
. (2.15)

In practice, this data can only be obtained algorithmically for relative small values of |ki|. It will be
taken from a “training box” defined by |ki|  kmax, where kmax varies from 5 to 20, depending on the
manifold.

As discussed, there is evidence - and proofs in some cases - that cohomology dimensions on these
spaces are described by formulae which are piecewise polynomial, with polynomials of degree d. For
this reason, it will sometimes be useful to modify the training data to

(ki, kikj)ij �! h
q(OX(k)) for d = 2

(ki, kikj , kikjkl)ijl �! h
q(OX(k)) for d = 3 .

(2.16)

By providing all monomials up to degree d in ki as an input the problem is e↵ectively converted into
a piecewise linear one.

A common measure for how successfully a trained network performs is the mean square loss
on the validation set. In the case of function approximation, a mean square loss translates into a
typical accuracy with which the function in question is approximated. For our application to bundle
cohomology it makes sense to introduce a di↵erent and often more stringent measure of success. In
practice, we are not necessarily satisfied with cohomology dimensions approximated by the network
within, say, a few percent. We would like the network to predict the exact cohomology dimensions,
after rounding to the nearest integer. We will, therefore, measure the success of training by the
percentage of cohomology dimensions within the training box which are correctly reproduced after
rounding.

Our networks have been realised with the Mathematica machine learning suite, and the fully-
connected networks in the next section as well as the networks that learn cohomology formulae have

7
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Has been proved mathematically.
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Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present
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In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
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is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].
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Example 2: h0(OdP2(k0, k1, k2))

Has also been proved mathematically.



ML can be used to generate mathematic conjectures.



Learning string theory standard models

A model with the right forces (strong, electro-weak) requires:

6d space X five line bundles OX(k1), . . . ,OX(k5)

Model characterised by integer matrix  K = (k1, . . . ,k5)

XFor a given   , we can create a training set of the form 

{K ! 0 or 1}

SMnon-SM

Q: Can ML distinguish standard models from non-standard models?



Example

X 2

2

6666664

P1 0 1 1
P1 0 1 1
P1 1 1 0
P1 1 1 0
P1 1 0 1
P1 1 0 1

3

7777775

⇠ 17000This space has           standard models, found by ``brute force”.  
We also generate the same number of random non-SMs. 

Can you tell them apart? Can the machine?

K =

0

BBBBBB@

�1 �1 �1 1 2
0 �2 0 1 1
�1 1 �1 0 1
1 0 1 0 �2
0 1 0 0 �1
1 0 1 �2 0

1

CCCCCCA
! 1 K =

0

BBBBBB@

2 �1 �1 0 0
0 1 0 �1 0
�1 2 2 �1 �2
1 0 0 0 �1
�1 0 1 1 �1
1 �1 0 �1 1

1

CCCCCCA
! 0

SM non-SM

Two examples from the data set:



3 4 5 6 7
0

1000

2000

3000

4000

5000

|K|

N

test generalisation to

matrices with larger entries

training set validation set

100% 100% 97%
This provides a fast method to distinguish SM and non-SMs

which works beyond the training range.

Still requires testing every matrix -> limited improvement.

Network: simple 2 or 3 layer



Use auto-encoder on same data. Encoder maps into 2d space:

-1.0 -0.5 0.0 0.5 1.0 1.5

0

1

2

3

|K|  5
SMs

non-SMs

-1.0 -0.5 0.0 0.5 1.0

0

1

2

3

|K| > 5
SMs

non-SMs

Auto-encoder can distinguish SMs and non-SMs and generalises

beyond training range.



Conclusions



• ML in string theory is still in its infancy. The challenge is to  
 match the right problems and techniques.

• ML can be used to generate non-trivial mathematical conjectures.

• ML can distinguish standard models from non standard models.

• Can ML techniques lead to substantial progress in string theory?

• Can the ``unusual” data sets and problems in string theory lead  
 to insights into ML?

Thanks


