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Al and strings: History and motivation




A short history of about three years, starting in Oxford TP . . .

i

Fabian Ruehle Sven Krippendorf Yang-Hui He

Fabian Ruehle: arXiv:1706.07024

“Evolving neural networks with genetic algorithms to study the string landscape

Yang-Hui He: arXiv:1706.02714

“Deep learning the landscape”

A burst of activity since - but still in its infancy . . .



The “obvious” motivation . . .

® String theory leads to very large data sets, very different
from the “usual” data (pictures, videos,...).

(latest estimate: 10272°%Y solutions to string theory)

® Machine learning provides a set of “large-data” techniques

Can machine learning help uncover features of string data?



Perhaps machine learning can do more . . .

Example: Game of go (~ 103°° games)
(For comparison: ~ 10*° “sensible” chess games)

Tackling the game of go with machine learning:
(Silver et al, DeepMind, Nature 2017)
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. . . and help reveal mathematical structures.

30 40 50 60 70

Training time (h)



So two basic questions:

® Can ML help reveal mathematical structures within string theory?
(Can it be more than a “*black box“?)

Example: Learning line bundle cohomology
(C. Brodie, A. Constantin, R. Deen, AL, arXiv:1906.08769)

® Can ML help sort through the large amount of string data?

Example: Learning string theory standard models
(R. Deen, Y.-H. He, S.-J. Lee, AL, in preparation)



Machine learning basics




Simplest approach: supervised learning

Structure of neural network:

R" 5 x o fop: R" - R™ » fo(x) € R™
S

“trainable parameters

Training:

training set: {(x;,y:) € R" x R™}

1
training: minimise loss L(6) = — » [fo(x;) — yi|”
Validate and test: Compute L(6y) for unseen data (x;,y:)

Predictions: x — fy,(x)



A basic building block: the perceptron

R™ 5 x x = wox+b 2= 0(2) > fown)(x) =0c(w-x+b) €R

Cw: weights b :bias> o : activation function
r
0

. 1 /
Typically: o(z) = T+ o J

AAAAAAAAAAAAAAAAAAAA

Perceptron relates to the (hyper)plane {x € R" |w-x + b = 0}

1 w-x+b>0 “above plane”
0 w-x+b<0 “below plane”

fw,b(X) = {

-> Example



The next step: m perceptrons in paral

R™ 3 x

Introduce weight matrix (v =

R™ o x

X — W1 X+ by

X — W, - X+ by,

>

x—Wx+b

z € R™

z — 0(z2)

el

z — 0(2)

> fiwiby) =0(W1-x+b)€eR

> 7z — 0(z)

g
0

> f(W,b) (X) = O'(WX -+ b) c R™

Learns position of m hyperplanes -> pattern recognition



Generalisation: multi-layer perceptron

m
R" 5 x »x—)Wx—l—bﬂ» z — o(z) > fowp)(x) =c(Wx+b) € R™
\4
Rnl ]RTQ Rnl—l "
R" — R" - R™ |—| R s R™2 |—> ... —— R  RYM|f—» R™
layer 1 layer 2 IR layer |

Many more generalisations of this . . . -> Example



Unsupervised learning: example auto-encoder

encoder: dimension decreasing

bottleneck

Rnl na ny—1 \
Rn_’ R & R™ ——p R™ 5 R™2 i} o o o R_’ R™-1 _y R"™|——p Rnl
layer 1 layer 2 layer |
< L 4
decoder: dimension increasing
. Rnl—l Rnl—2 R™
R™MY— 3 R — Rt f——p R0 5 RM2 ——p — R -5 R"}f—» RY
layer 1 layer 2 layer |
Training set: {x;}
Training: minimise loss L(6 E x; — fo(x;)]? -> Example



String theory basics




String theory recap

o open string closed string

1

® One free constant: string tension T =
2ma’

e Consistent in 10 (or 11) space-time dimensions



n=0 — observed particles

. 2
* spectrum: a'm” =n €N { n>0 — superheavy

massless (n = 0)modes contain: graviton (closed string)
gauge fields (open string)

M, = ~ Mp; ~ 1017GeV > My ~ 10'1°GeV




Dimensions

We need to ““curl up” six (or seven) of the dimensions to make
contact with physics -> compactification

D=10/11
string/M—theory

\1/ on d=6/7 — dim. space

N

C)=4 theorD

— Calabi-Yau manifold
(bi-cubic)




How does the 4d theory depend on the ““curling-up”?

topology : <\O/> or ?

-> determines structure of 4d theory: forces, matter content, . . .

(Maths: Algebraic Geometry)

T

focus for this talk

dope: (> ) o >

-> determines couplings/particle masses in 4d theory
(Maths: Differential Geometry)




Topologies for curling up, e.g in 2d:

sphere: o g=0
only consistent choice for 2d
‘/////’curnng-up
torus: QO/) g=1

In 2d topology is classified by the genus g = “number of holes”.

More generally, in éd, it is classified by intfeger data -> many choices.



The large number of string solutions mentioned
earlier counts these different topologies!

Some choices lead to a 4d theory close to the
standard model of particle physics, many others do not.



How to find the 4d theory from a given topology?

The space X carries additional structure, for example line bundles.

X
':"A \
X
N "\ “
"Ox Ox (1) Ox(2)

Line bundle topology is specified by integers

Ox (k) = Ox ki, ko, ... kn)



Line bundles have sections:
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Number of independent section is counted by cohomology.

A borrendous calculation

L=0x(k)—(

l

Counts

R°(L), k' (L), h* (L), h*(L))

\ /

particles in 4d

-> Example



Machine learning string theory




Learning line bundle cohomology

Q1l: Can a machine learn the map k — h?(Ox(k))?

Q2: Can a machine provide information about the mathematical
structure of this map?

Training data: {k;, h?(Ox (k;)} from horrendous calculations



Q1l: Example for line bundle cohomology on X = dP
Want to learn h°(Ox (k)) where k = (kq, k1, ko).

Training data: about 1000 cohomology values from a box |%;| < 10

Number of neurons in first layer: 100

rounds
k 1000 2000 3000
10

\ —— validation
o 100

8 Q training
107" \

\

Box |k;| < 10: net gives correct cohomology for 98% of line bundles

Box |k;| < 15: this rate decreases to 73%



This can be repeated, with refinements, for other spaces.

Advantages:

e Fast computation of cohomology dimensions from trained net
e Accurate in 90% of cases, sometimes more

Disadvantages:

e Accurate in only 90% of cases
® Fails outside the ““training box”
e Black box: offers no insight into structure of cohomology

Q2: Can we use ML to conjecture formulae for h?(Ox(k))?




Expectation: Formulae are ““piecewise” polynomial

Design a net which maftches the expected structure:

o b= (W, by) —

R
RN /
X = (k’z, k‘kj, .. ) — (Wg,bg)

Assume net has been trained: — go,, W30, bsg
aop =~ go, (k) - bsg a >~ gg, (k)Wsg

Line bundles with similar (ag,a) are in the same region. This can
be used to identify regions and polynomials.



Example 1: bi-cubic X €

1) Train and identify regions:
ko

15|

10

-10

15}

Dk

2) Find correct cubic polynomial for each region by a fit:

blue: h*(Ox (k1,k2)) =0

W (Ox (k1. k2)) = =5 (K + ko) (2 4 ko)



3) Use these equations to find the exact regions:
k2

15|

10

4) Find equations for boundaries of regions

'%(—1 F ko) (=24 ka) . k=0, k>0
h'(Ox (k) = —ind(Ox(k)) k<0, kg > —Fk

0 otherwise |,
ind(Ox (k) = 3 (k1+kz)(2+k1k2)

Has been proved mathematically.



Example 2: h°(Ogp, (ko, k1, ko))

e region 1
region 2
e region 3
region 4
region 5
region 6

e not identified

1+ ko + Sk2+ Lk — Lk2 4 Ly — Li2 in region 1,

1+ 2ko + k3 + k1 + koky + k2 + koko + k1ks  in region 2,

BO(Oup, (K)) = 1+ %ko + %k% + %k‘g — %k% in region 3,
1+ %ko + %k% + %kl — %k% in region 4,

1+ %ko -+ %k% in region 5.

\O in region 6 .

Region 1: —k1 >0 —ko >0 ko+ki+k>0

Region 2: ko t+ki+ko<O0 ko+k1 >0 kog+ko>0
Region 3: —k1 <0 —k9>0 ko + ko >0
Region 4: —k1 >0 —ko <0 ko + ko >0
Region 5: —k;1 <0 —ko <O ko > 0

Region 6: otherwise

Has also been proved mathematically.



ML can be used to generate mathematic conjectures.




Learning string theory standard models

A model with the right forces (strong, electro-weak) requires:
éd space X five line bundles Ox (ky),...,0x(ks)

Model characterised by integer matrix K = (ki,...,ks)

For a given X, we can create a training set of the form

{K — 0or 1}

/N

non-SM SM

Q: Can ML distinguish standard models from non-standard models?



Example

s

—
— === OO
_ = O O = =

OO ==

This space has ~ 17000 standard models, found by ““brute force”.
We also generate the same number of random non-SMs.

Two examples from the data sef:

SM non-SM
1 -1 -1 1 2 2 -1 -1 0 0
( 0 -2 0 1 1 \ ( 0 1 0 -1 0 \
1 1 -1 0 1 1 2 2 -1 -2
K=1 1 o9 1 o o |71 K=1 1 ¢ o o -1 |7V
0o 1 0 0 -1 1 0 1 1 -1
\ 1 0 1 -2 0 ) \ 1 -1 0 -1 1 )

Can you tell them apart? Can the machine?



Network: simple 2 or 3 layer
N

5000 }

4000

3000

2000 }

1000 ¢

training set validation set test generalisation to
matrices with larger entries

|

100% 100% 977%

This provides a fast method tfo distinguish SM and non-SMs
which works beyond the training range.
Still requires ftesting every matrix -> limited improvement.




Use auto-encoder on same data. Encoder maps into 2d space:

SMs 2
non-SMs j | K| <5
SMs —
| ; K| >5
non-SMs — 5

-1.0 -0.5 0.0 0.5 1.0

Auto-encoder can distinguish SMs and non-SMs and generalises
beyond training range.




Conclusions




e ML in string theory is still in its infancy. The challenge is to
match the right problems and techniques.

® ML can be used to generate non-trivial mathematical conjectures.
® ML can distinguish standard models from non standard models.
e Can ML techniques lead to substantial progress in string theory?

e Can the “unusual” data sets and problems in string theory lead
to insights info ML?

Thanks



