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Few Conservation laws ⇔

2d

Consider classical hard spheres [a

“loss of memory” of the initial condition

Only conserve Number, Energy, Momentum⇒

⇒ Specify the local equilibrium state with 

Few hydrodynamic equations⇒

{n(x, t), e(x, t), g(x, t)}

{
Dn
Dt

= 0,
De
Dt

= 0,
Dg
Dt

= 0}
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• Initial distribution of velocities is conserved
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Np ≃ 105

Very many!

Do they all matter? No.

Yes, quantum integrable systems: special mathematical structure  

How many conserved charges does a QM system have?

Quantum systems with extensive memory

Are there QM systems with extensively many conserved charges with local density?

Integrable quantum field theories

???

Integrable “spin-chains” Integrable quantum many-body systems

t

t

U
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Quantum systems with extensive memory



t = 0

t = 15τ

f(p)

p

Quantum systems with extensive memory

•  “Remembers” the initial momentum distribution like 1d classical spheres

•  Instead, in the 3d case it rapidly randomise
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Can we describe these systems using hydrodynamics?

Example: back to the 1d lattice of length L

ψ(r1, …, rN, t)  numbersLN

- ;  for solids  (  for cold atoms)L ∼ 10 N ∼ 1023 N ∼ 105

-

Monumental Simplification!

Hydro description only requires a few functions of 1+1 variables

Important practical question

To describe a quantum system of  particles one needs a wavefunction of 3 +1 variables N N

This is becomes extremely expensive for  largeN
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: “Tracer” of velocity Tv1
v1

don’t need to know !t0

t0

x1(t) = v1t0 − v2(t − t0)

- Tracers (or labels) of the velocities 
move in a simpler way 

xTv1
(t) = v1t + a

- Spheres follow complicated trajectory
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- How does it evolve?

Change in the number of quasiparticles in 
the parcel

Flux of quasiparticles through 
the surface=

∂tρ(v, x, t) + ∂x(veff(v, x, t)ρ(v, x, t)) = 0

{qn} ↔ ρ(v, x, t)

Densities of conserved charges
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- How does it evolve?

- The velocity depends on the state of the system

veff(v) = v + a∫ dw ρ(w)(veff(v) − veff(w))

“Generalised hydrodynamics” 
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- State of the system described by emergent quasiparticles

- Move with effective velocities depending on the state

- Same equations (with velocity-dependent jumps)

veff(v) = v + ∫ dw ρ(w)(veff(v) − veff(w))a(v, w)

∂tρ(v) + ∂x(veff(v)ρ(v)) = 0

The same description applies to all quantum integrable models! 

Can we describe these systems using hydrodynamics?



Does it work?

Quantum Newton’s Cradle Revisited 



• Some interesting physical systems have an extensive number of conservation laws

• In these systems hydrodynamics can be defined by describing the state of the system 
in terms of emergent quasiparticles

• The nature of quasiparticles depends on the state of the system 

Summary
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Thank  you !


