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Odyssey - a long adventure with many strange and
unexpected episodes
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* |s Cosmological Inflation true, and what drives it?
can we test inflation n new ways?

* Quantum gravity?
can we get evidence fov Stving Theovy?

* Physics of very early Universe!?
unlikely to be just (boﬁvxg) thevwal equilibvium 3all the way back: -



Looking for New Physics

* EM-radiation observations: Observations over many wavelengths,especially
Cosmic Microwave Background (CMB) observations, have given us
detailed information about the Universe back to ~400,000 yrs after “birth”

The Cosmic Microwave Background as seen by Planck and WMAP
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Looking for New Physics

* EM-radiation observations: Observations over many wavelengths,especially
Cosmic Microwave Background (CMB) observations, have given us
detailed information about the Universe back to ~400,000 yrs after “birth”

The Cosmic Microwave Background as seen by Planck and WMAP
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Gravitational Waves

* GWs are a prediction of GR

OO e

* The amount of relative stretching and squeezing is the strain of
the GW, h, which is generated by (changing) energy-momentum
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* GWs are a prediction of GR
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* The amount of relative stretching and squeezing is the strain of
the GW, h, which is generated by (changing) energy-momentum
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Gravitational Waves

* GWs are a prediction of GR

OO e

* The amount of relative stretching and squeezing is the strain of
the GW, h, which is generated by (changing) energy-momentum

GW detectovs ave desTQV\ed +0 detect
the (tiny) Stvain of an tncoming Gw



GW Sensitivity Curves
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Astrophysical GW Sources
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Early Universe GW Sources?

We instead interested in GWV sources in the very early Universe, just after
birth, 10™%° s <t < 1 s, the epoch that is currently completely unexplored

10~434

log(t/sec)
ls 10°yr lOlo(now)

What powered the big bang?

Only gravitational waves can escape from
the earliest moments of the Big Bang

Inflation
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GWs as Probes of Early Universe

GWs have properties that make them excellent probes of the Early Universe

* GWVs freely travel from the earliest times

uwnlike ov light, the universe 1S transpavent to Gws
beSore 300000yrs!

* Gravity couples to all sources of energy-momentum
nothing can hide $vow 3vav1t\j! (unlike situation for all
othev fovces)

* Gravity couples universally

theve 1S nwo amb’\gu\'\t\j w the s-l;veV\S-l;h of the 3\(3\/?{;350%3\
nwtevraction! (aga’w\ unlike othev fovces)



Lastening to Early Universe GWs

Relic gravitational waves from the early evolution of the universe:

Similarly to the CMB, these GWs arise from a large number of independent,
random events combining to create a random (stochastic) cosmic gravitational
wave background that effectively GW detectors “listen” to
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An example signal from an stochastic gravitational wave source. [Image:A. Stuver/LIGO]

The sound these gravitational waves would produce is a continuous static-like
“noise” and will (likely) be statistically same from every part of the sky, like CMB



Lastening to Early Universe GWs

The detailed SI-\rec\u\evxc;\j spectrum 0§ the “noise”
carvies all the inforwmation about the processes

g0ng on ™ the E3vrly universe!

cf CMB case...
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Early Universe GW Sources

* To efficiently source GWs need large mass densities moving relativistically
(and in non-spherically symmetric way)

* A very interesting possibility is the relativistic collision of the “walls”
separating regions of two different phases (think water boiling, or
better supercooled vapour condensing)

Anand etal



Early Universe Phase Transitions

T ~ 1018 GeV (10*'k)

* In the Early Universe the visible
sector was at very high temperatures

* As the temperature dropped, electvoweak 4+ ~ (00 Gev
phase transitions took place

* If some of these phase transitions acd ~ 100 Mev
were first order, bubble collisions
would produce a stochastic GW
background
v
T ~1MeV (10°k)




Ist order Phase Transition
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Ist order Phase Transition

K’Bubb\es %ovwx.}

ko

* | st order electroweak phase transition could provide the necessary
out of equilibrium dynamics required for Baryogenesis

vevry well wxotwated, but NOT tvue ¥ SM 1S all theve i§---

* Stochastic GWV background with peak frequency ~ | mHz
Pev§ect Sov LISA to detect
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Ist order Phase Transition
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Hidden sectors

* Hidden sectors: degrees of freedom beyond those of the SM that
interact very weakly with the visible secto

Q\\—V Dark Mattev
genevrd| feature of Stving Theovy

* They may have never been in thermal equilibrium with us, and could be
at a completely different temperature (and in our case cold)

* They could have rich structure and dynamics, and could undergo phase
transitions/vacuum decay processes

* They may only interact with us gravitationally, so GW detectors may be
our only chance to discover them!



GWs from String Theory

* The existence of multiple vacua is a general prediction of String Theory
— a “String Landscape”

* Some of this vacua are metastable — a decay to the true vacuum could
take place in the Early Universe

* A stochastic GWV background from a process of vacuum decay in the
context of String Theory could be within observable reach

Isabel Garcia Garcia, Sven Krippendorf, JM-R; arXiv:1607.06813

“The String Soundscape”



Metastable String Vacua

Giddings, Kachru, Polchinski: hep-th/0105097
Kachru, Pearson, Verlinde: hep-th/0112197
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Metastable String Vacua
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Metastable String Vacua
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GWs from String Theory

o~ FsM { Va(1h)y/1 — 9up0rap + %(M — sin 2%0)}
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P/M contvols the

Gw frow Shaye of the potential
T——\_ vacuuwm deca\j?

| [ +tvue vacuuw




GWs from String Theory

In our case the transition is dominantly a quantum tunnelling event

Bubbles quantuw wucleate
and then expand ultva-
velativistically and collide



GWs from String Theory

Three important parameters describing transition are

T - the visible sector (SM) tewmperature when transition occurs

. = Puvac
Prad (Tc)

- va+io of liberated vacuuwm enevgy to SM thevrwal enevqgy

t. - the duvation of the tvansition

In terms of these the characteristic properties of transition can be computed...

0%
1+ o

)2 (1 H(T,))?

Gw enevng QGW,peak ~ 10_6 (

T 1
Pedk frequen cak ~ 107°H :
quency JGw,peak “ <1OOG€V> tH(T,)



Quantum vs Thermal

Quantuw -l-,uvw\e\\’\V\S

Bubble walls reach ultra-
relativistic limit:

vl (y>1)
Duration of transition is long
te ~ H(T,) ™!

Main source of GVV is bubble
wall collisions

Thevrwal transition

* Thermal plasma (usually)
prevents relativistic limit:

v~ 0.01 —-0.1

e Duration of transition is short

t, < H(T.) "

* Other sources of GW:e.g.
turbulence in plasma

see e.g. Caprini ef al. arXiv:1512.06239



GW Signal-Strength
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Future Work

* Thermal vs quantum transitions lead to qualitatively different GW
signals — new features not yet well understood in detail

* High-frequency part of GWV signal from String Theory likely different
from other “non-stringy” scenarios — again new features not yet
well understood

* Fluctuations from sphericity on nucleated bubbles may be sizeable, in
particular in non-thermal cases

Gws could be emitted 3as bubbles expand too!

Primordial Black Holes could be formed in wall collisions!



Gvavitationadl waves provide 3 unique and exceptionally

exciting probe of the very Edvly universe (and of very
high energy Physics)!

The wmiany upcoming GW observatories (opevating

over 3 (0% frequency vange) will wmake great discoveries!




