
An Introduction to deep learning

Ard Louis



Learning machines? 
Instead of trying to produce a programme to 
simulate the adult mind, why not rather try to 
produce one which simulates the child's ? If this 
were then subjected to an appropriate course 
of education one would obtain the adult brain 
…..
We have thus divided our problem into two 
parts. The child-programme and the education 
process. 

Alan Turing, Computing Machinery and 
Intelligence,  Mind 59, 433 (1950)



History of modern AI: Hype and AI winters

1950    –Turing test

1960

1970

1980

1990

2010

2020

1957 Rosenblatt invents perceptron 

The Navy revealed the embryo of an electronic computer 
that it expects will be able to walk, talk, see, write, 
reproduce itself and be conscious of its existence.
NYT 1957

1973 -- Lighthill report – combinatorial explosion will make AI only suitable for toy problems
No major UK investment till 1983  

First automated translators

1969 Perceptrons book by Minsky and Papert – connectionism takes a big hit

1s
t A

I w
int

er

1980’s – Expert systems, XCON, LISP based companies etc… 

2n
d
AI

 w
int

er

2012 AlexNet wins Imagenet 2012 competition,  deep learning era begins

2000

[Investors] were put off by the term 'voice 
recognition' which, like 'artificial intelligence', 
is associated with systems that have all too 
often failed to live up to their promises, 
Economist 2007



AI is one of the most profound things we’re 
working on as humanity. It’s more profound 
than fire or electricity.

Google CEO Sundar Pichai
At  World Economic Forum in Davos, 2020



Image from https://www.zdnet.com/article/why-is-a-i-reporting-so-bad/



March 2016 – Alpha Go beats Lee Sedol,  18 times world champion at Go

Dec, 2017 Alpha Go Zero beats Alpha Go,  but playing only against itself.
It can also beat top chess computers and “learns” the game from “scratch”.



2012 – start of the deep-learning era

Fei-Fei Li

14 million images
20,000 categories

2012 -- a team from U of Toronto 
used a deep neural network (Alex 
Net)  to beat all competitors with 
40% lower error.

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, Imagenet classification with deep convolutional neural networks
Advances in neural information processing systems, 1097 (2012)

Annual competition  

Alex Net

60 million parameters



Growth and growth of deep learning research

Top 3 of the 5 most cited Nature papers in 2019  are on deep learning 



Deep learning has revolutionized artificial intelligence

2019 Turing Award (highest prize in computer science) 
Yann LeCun, Geoffrey Hinton andYoshua Bengio, 

For many years these pioneers worked without much recognition: 
Hinton on the referee report for an AI conference submission  "It said, Hinton's been working on 
this idea for seven years and nobody's interested, it's time to move on,"



Will machine learning revolutionise Physics? 

https://physicsworld.com/a/a-machine-learning-revolution/ (March 2019)

-- many applications, for example 
• Data analysis (long standing, e.g. in particle physics)
• Image analysis  

• E.g. biological physics, astrophysics, etc…
• Analysis of quantum states in experiment  ( see e.g. Nature 570, 484 (2019))

• Approximating quantum many-body wave function
• Finding new materials 
• Control experiments 
• Much more  (see next two talks for some cool examples) 

https://physicsworld.com/a/a-machine-learning-revolution/


Basics

https://interestingengineering.com/whats-the-difference-between-machine-learning-and-ai

https://interestingengineering.com/whats-the-difference-between-machine-learning-and-ai


Basics

Child-programme: Neural Network

17/10/2018 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 4/50

inputs to the output. The neuron's output,  or , is determined by
whether the weighted sum  is less than or greater than some
threshold value. Just like the weights, the threshold is a real
number which is a parameter of the neuron. To put it in more
precise algebraic terms:

That's all there is to how a perceptron works!

That's the basic mathematical model. A way you can think about the
perceptron is that it's a device that makes decisions by weighing up
evidence. Let me give an example. It's not a very realistic example,
but it's easy to understand, and we'll soon get to more realistic
examples. Suppose the weekend is coming up, and you've heard
that there's going to be a cheese festival in your city. You like
cheese, and are trying to decide whether or not to go to the festival.
You might make your decision by weighing up three factors:

1. Is the weather good?
2. Does your boyfriend or girlfriend want to accompany you?
3. Is the festival near public transit? (You don't own a car).

We can represent these three factors by corresponding binary
variables , and . For instance, we'd have  if the weather
is good, and  if the weather is bad. Similarly,  if your
boyfriend or girlfriend wants to go, and  if not. And similarly
again for  and public transit.

Now, suppose you absolutely adore cheese, so much so that you're
happy to go to the festival even if your boyfriend or girlfriend is
uninterested and the festival is hard to get to. But perhaps you
really loathe bad weather, and there's no way you'd go to the festival
if the weather is bad. You can use perceptrons to model this kind of
decision-making. One way to do this is to choose a weight  for
the weather, and  and  for the other conditions. The
larger value of  indicates that the weather matters a lot to you,
much more than whether your boyfriend or girlfriend joins you, or
the nearness of public transit. Finally, suppose you choose a
threshold of  for the perceptron. With these choices, the
perceptron implements the desired decision-making model,

w1

w2

w3

We have thus divided our problem into two parts. The 
child-programme and the education process.  
- A Turing (1950)



Basics

Education process:

1)  Supervised learning

First: pick a training set to find parameters 
Next: apply network to a test set of unseen data
How well you do on unseen data Is called generalization

We have thus divided our problem into two parts. The 
child-programme and the education process.  
- A Turing (1950)



Basics

Education process:

1) Supervised learning
2) Reinforcement learning

- Parameters are updated with some kind of 
cumulative reward.  AlphaZero is a reinforcement 
learning system.

Image: wikipedia

We have thus divided our problem into two parts. The 
child-programme and the education process.  
- A Turing (1950)



We have thus divided our problem into two parts. The 
child-programme and the education process.  
- A Turing (1950)

Basics

Education process:

1) Supervised learning
2) Reinforcement learning
3) Unsupervised learning

Patterns are learned from 
unlabeled data

Figure: B. Qian arxiv: 1910.05433



Why do DNNs work so well? 



Universal approximation theorem for NN

B. Hanin Approximating Continuous Functions by ReLU Nets of Minimal Width. arXiv preprint arXiv:1710.11278.

Neural networks are highly expressive -

Neural networks are fundamentally function approximators.  The following theorem holds:

https://arxiv.org/abs/1710.11278


Conundrum: if DNNs are highly expressive, why do 
they pick functions that generalize so well?

CIFAR-10 dataset

C. Zhang et al., Understanding deep learning 
requires rethinking generalization.
arXiv:1611.03530 (2016) 
Showed that you could randomise the labels, and 
still easily train to zero training error.  

If a DNN can “memorize” a dataset, why does 
it pick functions that generalise so well? 



Drawing an elephant with four complex parameters
Jürgen Mayer; Khaled Khairy; Jonathon Howard; American Journal of Physics 78, 648-649 (2010)

With four parameters I can fit an elephant, and 
with five I can make him wiggle his trunk
-- John von Neuman  (according to Fermi) 

4 parameters 5 parameters

F. Dyson, A meeting with Enrico Fermi.
Nature. 427, 287 (2004)

Neural networks are typically highly over-parameterized:  
number of parameters >> number of data points

AI researchers allege that machine learning is alchemy
M Hutson - Science, 2018



Comparison of a polynomial fit to a DNN fit (with thousands of parameters) 

Why do the DNNs not over-fit?

Neural networks are typically highly over-parameterized:  
number of parameters >> number of data points



assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

NOTE: upper bound only!

AIT Coding theorem for input-output maps

K. Dingle, C. Camargo and A.AL,  Nature Communications  9, 761 (2018); K Dingle, G. Valle Perez, and AAL, arxiv:1910.00971.  

Kamal Dingle Chico Camargo
(2 Dphils of work)

INTUITION:  likelihood P(x) for a monkey to type
0101010101010101010101010101010101010100101010101010101010101010101010101010100101010101
0101010101010101010101010101010101010100101010101010101010101010101010101010100101010101

On a binary keyboard, P(x) = 1/2^100

Into a programming language “print “01” 50 times” , P(x) ~1/2^19 

Kolmogorov complexity K(x)=  the length of shortest program that describes x on a UTM 



DNNs as an input-output map

Input = parameters of the DNN
Output = the function it produces



Theorem 4.1. For a perceptron f✓ with b = 0 and weights w sampled from a distribution which is

symmetric under reflections along the coordinate axes, the probability measure P (✓ : T (f✓) = t) is

given by

P (✓ : T (f✓) = t) =

⇢
2�n

if 0  t < 2n

0 otherwise
.

Proof sketch. We consider the sampling of the normal vector w as a two-step process: we first
sample the absolute values of the elements, giving us a vector wpos with positive elements, and then
we sample the signs of the elements. Our assumption on the probability distribution implies that
each of the 2n sign assignments is equally probable, each happening with a probability 2�n. The
key of the proof is to show that for any wpos, each of the sign assignments gives a distinct value of
T (and because there are 2n possible sign assignments, for any value of T , there is exactly one sign
assignment resulting in a normal vector with that value of T ). This implies that, provided all sign
assignments of any wpos are equally likely, the distribution on T is uniform.

A consequence of Theorem 4.1 is that the average probability of the perceptron producing a partic-
ular function f with T (f) = t is given by

hP (f)it =
2�n

|Ft|
, (3)

where Ft denotes the set of Boolean functions that the perceptron can express which satisfy T (f) =
t, and h·it denotes the average (under uniform measure) over all functions f 2 Ft.

We expect |Ft| to be much smaller for more extreme values of t, as there are fewer distinct possible
functions with extreme values of t. This would imply a bias towards low entropy functions. By
way of an example, |F0| = 1 and |F1| = n (since the only Boolean functions f a perceptron can
express which satisfy T (f) = 1 have f(x) = 1 for a single one-hot x 2 {0, 1}n), implying that
hP (f)i0 = 2�n and hP (f)i1 = 2�n

/n.

Nevertheless, the probability of functions within a set Ft is unlikely to be uniform. We find that,
in contrast to the overall entropy bias, which is independent of the shape of the distribution (as
long as it satisfies the right symmetry conditions), the probability P (f) of obtaining function f

within a set Ft can depend on distribution shape. Nevertheless, for a given distribution shape, the
probabilities P (f) are independent of scale of the shape, e.g. they are independent of the variance
of the Gaussian, or the width of the uniform distribution. This is because the function is invariant
under scaling all weights by the same factor (true only in the case of no threshold bias). We will
address the probabilities of functions within a given Ft further in Section 4.3.

4.2 SIMPLICITY BIAS OF THE b = 0 PERCEPTRON

The entropy bias of Theorem 4.1 entails an overall bias towards low Boolean complexity. In Theo-
rem B.1 in Appendix B we show that the Boolean complexity of a function f is bounded by1

KBool(f) < 2⇥ n⇥min(T (f), 2n � T (f)). (4)

Using Theorem 4.1 and Equation (4), we have that the probability that a randomly initialised per-
ceptron expresses a function f of Boolean complexity k or greater is upper bounded by

P (KBool(f) � k) < 1� k ⇥ 2�n ⇥ 2

2⇥ n
= 1� k

2n ⇥ n
. (5)

Uniformly sampling functions would result in P (KBool(f) � k) ⇡ 1�2k�2n which for intermediate
k is much larger than Equation (5). Thus from entropy bias alone, we see that the perceptron is much
more likely to produce simple functions than complex functions: it has an inductive bias towards
simplicity. This derivation is complementary to the AIT arguments from simplicity bias (Dingle
et al., 2018; Valle-Pérez et al., 2018), and has the advantage that it also proves that bias exists,
whereas AIT-based simplicity bias arguments presuppose bias.

1A tighter bound is given in Theorem B.2, but this bound lacks any obvious closed form expression.

5

Neural networks are a priori biased towards Boolean functions with low entropy, Chris Mingard, Joar Skalse, Guillermo Valle-
Pérez, David Martínez-Rubio, Vladimir Mikulik, Ard A. Louis arxiv:1909.11522

Chris Mingard

A-Priori probability: If we randomly sample parameters θ, how likely are 
we to produce a particular function f? 



A-Priori probability: If we randomly sample parameters θ, how likely are 
we to produce a particular function f? 

G. Valle Perez, C. Camargo and A.A. Louis, arxiv:1805.08522 – ICLR 2019 

Model problem for a 7 bit string,  study  all Boolean functions f.
There are 27 =128 different strings, and2128⋍1038 different functions. 
You might  expect a 10-38 chance of finding any function. 
Instead, we find strong simplicity bias.

108 samples of parameters for (7,40,40,1) vanilla fully connected DNN system.

Zipf law P ~ 1/r

Guillermo
Valle Perez



Does simplicity bias help generalisation? 

(a) Target function LZ complexity: 38.5 (b) Target function LZ complexity: 164.5

Figure 2: Generalization error versus learned function LZ complexity, for 500 random initialization
and training sets of size 64, for a target function with (a) lower complexity and (b) higher complexity.
Generalization error is defined with respect to off-training set samples. The blue circles and blue
histograms correspond to the (7, 40, 40, 1) neural network, and the red dots and histograms to an
unbiased learner which also fits the training data perfectly. The histograms on the sides of the plots
show the frequency of generalization errors and complexities. Overlaid on the red and blue symbols
there is a black histogram depicting the density of dots (darker is higher density).

always 2n�m functions consistent with the training set. Because the number of simple functions
will typically be much less than 2n�m, for a simple enough target function, the functions consistent
with the training set will include simple and complex functions. Because of simplicity bias, the
low-complexity functions are much more likely to be considered than the high complexity ones. On
the other hand, for a complex target function, the functions consistent with the training set are all
of high complexity. Among these, the simplicity bias does not have as large an effect because there
is a smaller range of probabilities. Thus the network effectively considers a larger set of potential
functions. This difference in effective hypothesis class causes the difference in generalization. This
intuition is formalized in the next section, using PAC-Bayes Theory.

4 PAC-Bayes generalization error bounds

In order to obtain a more quantitative understanding of the generalization behaviour we observe,
we turn to PAC-Bayes theory, an extension of the probably approximately correct (PAC) learning
framework. In particular, we use Theorem 1 from the classic work by McAllester [32], which gives a
bound on the expected generalization error, when sampling the posterior over concepts. It uses the
standard learning theory terminology of concept space for a hypothesis class of Boolean functions
(called concepts), and instance for any element of the input space.
Theorem 1. (PAC-Bayes theorem [32]) For any measure P on any concept space and any measure
on a space of instances we have, for 0 < �  1, that with probability at least 1� � over the choice
of sample of m instances all measurable subsets U of the concepts such that every element of U is
consistent with the sample and with P (U) > 0 satisfies the following:

✏(U) 
ln 1

P (U) + ln 1
� + 2 lnm+ 1

m

where P (U) =
P

c2U P (c), and where ✏(U) := Ec2U ✏(c), i.e. the expected value of the general-
ization errors over concepts c in U with probability given by the posterior P (c)

P (U) . Here, ✏(c) is the
generalization error (probability of the concept c disagreeing with the target concept, when sampling
inputs).

5

Published as a conference paper at ICLR 2019

F.4 EFFECTS OF TARGET FUNCTION COMPLEXITY ON LEARNING FOR DIFFERENT
COMPLEXITY MEASURES

Here we show the effect of the complexity of the target function on learning, as well as other com-
plementary results. Here we compare neural network learning to random guessing, which we call
“unbiased learner”. Note that both probably have the same hypothesis class as we tested that the
neural network used here can fit random functions.

The functions in these experiments were chosen by randomly sampling parameters of the neural
network used, and so even the highest complexity ones are probably not fully random12. In fact,
when training the network on truly random functions, we obtain generalization errors equal or above
those of the unbiased learner. This is expected from the No Free Lunch theorem, which says that no
algorithm can generalize better (for off-training error) uniformly over all functions than any other
algorithm (Wolpert & Waters (1994)).

(a) Generalization error of learned functions (b) Complexity of learned functions

(c) Number of iterations to perfectly fit training set (d) Net Euclidean distance traveled in parameter space
to fit training set

Figure 13: Different learning metrics versus the LZ complexity of the target function, when learning
with a network of shape (7, 40, 40, 1). Dots represent the means, while the shaded envelope corre-
sponds to piecewise linear interpolation of the standard deviation, over 500 random initializations
and training sets.

F.5 LEMPEL-ZIV VERSUS ENTROPY

To check that the correlation between LZ complexity and generalization is not only because of
a correlation with function entropy (which is just a measure of the fraction of inputs mapping to

12The fact that non-random strings can have maximum LZ complexity is a consequence of LZ complexity
being a less powerful complexity measure than Kolmogorov complexity, see e.g. Estevez-Rams et al. (2013).
The fact that neural networks do well for non-random functions, even if they have maximum LZ, suggests that
their simplicity bias captures a notion of complexity stronger than LZ.

27

DNN works much better than random learner

DNN works well on simple functions,
but less well on complex functions



Problem; DNNs are not trained by randomly sampling parameters

DNNs are trained using Stochastic gradient 
descent (SGD)  on a loss function.

The most common view in the field:

SGD is the cause of the good generalisation.
A-priori P(f) may be irrelevant



Problem; DNNs are not trained by randomly sampling parameters

Intuition:  Basin of attraction ~ Basin size (a-priori P(f) 
Chris 
Mingard



Problem; DNNs are not trained by randomly sampling parameters

Intuition:  Basin of attraction ~ Basin size (a-priori P(f) 

(a) Training Set/Test Set: 10000/100. Trained on a
FCN with 2 hidden layers, size 1024 with MSE loss

and SGD. Dataset: Binarised MNIST (even numbers
classified as 0; odd numbers as 1). Sample size 105.

(b) Training Set/Test Set: 10000/100. We sampled
from the GP approximation with 2 fully connected
hidden layers (infinite width). Dataset: Binarised
MNIST. Each datapoint is a function.

Figure 3: We present an example which does not use the EP approximation – in (a) we have the same
experiment performed in Figure 2a, but with a mean-squared error (mse) loss function instead of
using cross entropy. This avoids using the EP approximation. In (b), we sampled from the posterior –
sampling from the distribution of functions correct on the training set, using a test set of size 100. No
function was found by SGD in (a) that was not found by sampling in (b)· We can thus say with high
confidence that there are no functions that are common and give poor generalisation (something not
guaranteed by Figure 2c). It finds the true function, and 39 functions with 1 error.

2.4 Comparing SGD, NTK and GP

In this section, we compare NTK (Neural Tangent Kernel) methods with SGD and the Gaussian
Processes. We compare NTK with GP in Figure 4a; and NTK with SGD in Figure 4b. It is clear from
the two figures that there are some functions that SGD finds with high probability and/or have high
probability in the GP posterior, but are not found by NTK in 106 samples. For the purpose of the
graphs, these functions have their probability set to 10�5 (the minimum allowed, as we cut off at
frequencies < 10) so they can be displayed on the axes. This is consistent with NTK’s infinitesimal
learning rate preventing it jumping over small barriers in the loss landscape, which are not noticed
(on average) by SGD (and clearly Gaussian Processes do not suffer from this, as they have no
gradient-descent based optimiser).

The lines of best fit (which we restrict to functions found by both NTK and SGD/GP) are much closer
to y = x than for SGD vs GP. As expected, it is particularly close to y = x for NTK vs SGD (as
NTK is closer to SGD than GP in principle).

We also include a comparison of MSE vs CE. Not sure if it’s needed here tbh?

11

10,000 training set
100 test set on MNIST

Chris 
Mingard

PSGD(f) ≃ P(f)



Problem; DNNs are not trained by randomly sampling parameters

(a) Training Set/Test Set: 10000/100. Trained on a
FCN with 2 hidden layers, size 1024 with MSE loss

and SGD. Dataset: Binarised MNIST (even numbers
classified as 0; odd numbers as 1). Sample size 105.

(b) Training Set/Test Set: 10000/100. We sampled
from the GP approximation with 2 fully connected
hidden layers (infinite width). Dataset: Binarised
MNIST. Each datapoint is a function.

Figure 3: We present an example which does not use the EP approximation – in (a) we have the same
experiment performed in Figure 2a, but with a mean-squared error (mse) loss function instead of
using cross entropy. This avoids using the EP approximation. In (b), we sampled from the posterior –
sampling from the distribution of functions correct on the training set, using a test set of size 100. No
function was found by SGD in (a) that was not found by sampling in (b)· We can thus say with high
confidence that there are no functions that are common and give poor generalisation (something not
guaranteed by Figure 2c). It finds the true function, and 39 functions with 1 error.

2.4 Comparing SGD, NTK and GP

In this section, we compare NTK (Neural Tangent Kernel) methods with SGD and the Gaussian
Processes. We compare NTK with GP in Figure 4a; and NTK with SGD in Figure 4b. It is clear from
the two figures that there are some functions that SGD finds with high probability and/or have high
probability in the GP posterior, but are not found by NTK in 106 samples. For the purpose of the
graphs, these functions have their probability set to 10�5 (the minimum allowed, as we cut off at
frequencies < 10) so they can be displayed on the axes. This is consistent with NTK’s infinitesimal
learning rate preventing it jumping over small barriers in the loss landscape, which are not noticed
(on average) by SGD (and clearly Gaussian Processes do not suffer from this, as they have no
gradient-descent based optimiser).

The lines of best fit (which we restrict to functions found by both NTK and SGD/GP) are much closer
to y = x than for SGD vs GP. As expected, it is particularly close to y = x for NTK vs SGD (as
NTK is closer to SGD than GP in principle).

We also include a comparison of MSE vs CE. Not sure if it’s needed here tbh?

11

10,000 training set
100 test set on MNIST

Chris 
Mingard

PSGD(f) ≃ P(f)(a) Example implementation of Algorithm 1. Dataset:
Binarised MNIST (even numbers classified as 0; odd
numbers as 1). Sample size 106.

(b) Example implementation of Algorithm 3. Dataset:
Binarised MNIST. Sample size: 107. No functions in
(a) were not found by sampling.

(c) Example implementation of Algorithm 2. Dataset:
Binarised MNIST.

Figure 2: We present an example of our main experiments. To generate (a), we trained 106 DNNs
with the same architecture, training and tests sets, but different random initialisations to 100% training
accuracy. We recorded the function on the test set (i.e. the classification of the images in the test
set) to give us a probability distribution over functions found by SGD. We then used the GP/EP
volume estimate, to give us an estimate of the ‘volume’ for each of these functions divided by the
‘volume’ of all functions which are 100% accurate on the training set (i.e. the ‘conditional volume’
of the function). Each datapoint is a function. Clearly there is a strong correlation between these
two measures, indicating that the probability that SGD finds a function is highly dependent on the
parameter ‘volume’ associated with the function. We remove datapoints which have a frequency
of < 10, due to finite-size effects. To make (b), we sampled from the GP/EP posterior distribution
when conditioning on 100% training accuracy. No functions were found with an error > 9, and no
functions were found by SGD but not found in 107 samples. As in (a), we remove functions which
had frequency < 10. To make (c), we generated random functions with fixed errors on the test set of
size 100 (from 0 to 10 in steps of 2; and from 10 to 100 in steps of 5, with 20 random functions at each
error). We then estimated the ‘conditional volume’ of each function. Clearly the parameter-function
map is strongly biased towards simple functions, and (b) rules out any high probability functions with
poor generalisation.

9

P(f) versus generalisation error

Simplicity bias in MNIST
many orders of magnitude

282 = 784 dimensional space, but numbers are typically subspaces of d ≃ 12-16



Scaling of error with training set size m

Guillermo
Valle Perez

Data complexity

Published as a conference paper at ICLR 2019

probability at least 1 � � over the choice of sample S of m instances, all distributions Q over the
concept space satisfy the following:

✏̂(Q) ln
✏̂(Q)

✏(Q)
+ (1� ✏̂(Q)) ln

1� ✏̂(Q)

1� ✏(Q)


KL(Q||P ) + ln
�
2m
�

�

m� 1
(2)

where ✏(Q) =
P

c
Q(c)✏(c), and ✏̂(Q) =

P
c
Q(c)✏̂(c). Here, ✏(c) is the generalization error

(probability of the concept c disagreeing with the target concept, when sampling inputs according
to D), and ✏̂(c) is the empirical error (fraction of samples in S where c disagrees with the target
concept).

In the realizable case (where zero training error is achievable for any training sample of size m),
we can consider an algorithm that achieves zero training error and samples functions with a weight
proportional the prior, namely Q(c) = Q

⇤(c) = P (c)P
c2U P (c) , where U is the set of concepts consistent

with the training set. This is just the posterior distribution, when the prior is P (c) and likelihood
equals 1 if c 2 U and 0 otherwise. It also is the Q that minimizes the general PAC-Bayes bound
2 (McAllester (1999a)). In this case, the KL divergence in the bound simplifies to the marginal
likelihood (Bayesian evidence) of the data3, and the right hand side becomes an invertible function
of the error. This is shown in Corollary 1, which is just a tighter version of the original bound by
McAllester (1998) (Theorem 1) for Bayesian binary classifiers. In practice, modern DNNs are often
in the realizable case, as they are typically trained to reach 100% training accuracy.
Corollary 1. (Realizable PAC-Bayes theorem (for Bayesian classifier)) Under the same setting as
in Theorem 1, with the extra assumption that D is realizable, we have:

� ln (1� ✏(Q⇤)) 
ln 1

P (U) + ln
�
2m
�

�

m� 1

where Q
⇤(c) = P (c)P

c2U P (c) , U is the set of concepts in H consistent with the sample S, and where
P (U) =

P
c2U

P (c)

Here we interpret ✏(Q) as the expected value of the generalization error of the classifier obtained
after running a stochastic algorithm (such as SGD), where the expectation is over runs. In order to
apply the PAC-Bayes corollary(which assumes sampling according to Q

⇤), we make the following
(informal) assumption:

Stochastic gradient descent samples the zero-error region close to uniformly.

Given some distribution over parameters P̃ (✓), the distribution over functions P (c) is determined
by the parameter-function map as P (c) = P̃ (M�1(c)). If the parameter distribution is not too far
from uniform, then P (c) should be heavily biased as in Figure 1a. In Section 7, we will discuss
and show further evidence for the validity of this assumption on the training algorithm. One way to
understand the bias observed in Fig 1a is that the volumes of regions of parameter space producing
functions vary exponentially. This is likely to have a very significant effect on which functions SGD
finds. Thus, even if the parameter distributions used here do not capture the exact behavior of SGD,
the bias will probably still play an important role.

Our measured large variation in P (f) should correlate with a large variation in the basin volume V

that Wu et al. (2017) used to explain why they obtained similar results using GD and SGD for their
DNNs trained on CIFAR10.

Because the region of parameter space with zero-error may be unbounded, we will use, unless stated
otherwise, a Gaussian distribution with a sufficiently large variance4. We discuss further the effect
of the choice of variance in Appendix C.

3This can be obtained, for instance, by noticing that the KL divergence between Q and P equals the evidence
lower bound (ELBO) plus the log likelihood. As Q⇤ is the true posterior, the bound becomes an equality, and
in our case the log likelihood is zero.

4Note that in high dimensions a Gaussian distribution is very similar to a uniform distribution over a sphere.

6

Observed: error ~ m-α

1)  α decreases with data complexity (bad 
news for machine learning) 
2)  α appears independent of algorithm
3)  We can reproduce this scaling with PAC-
Bayes theory approach we have derived.

But, WHY this scaling? 

m-α



Conclusions

• Machine learning is already transforming physics, it is not just hype

• Deep learning may work because they have a natural bias towards 
simple functions (Occam’s razon)

THANK YOU


