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Learning machines?

Instead of trying to produce a programme to
simulate the adult mind, why not rather try to.
produce one which simulates the child's ¢ If this
were then subjected to an appropriate course
of education one would obtain the adult brain

We have thus divided our problem into two
parts. I he child-programme and the education
process.

Alan Turing, Computing Machinery and
Intelligence, Mind 59,433 (|9503/




History of modern Al: Hype and Al winters

The Navy revealed the embryo of an electronic computer

1950 | Turing test | that it expects will be able to walk, talk, see, write,
First automated translators reproduce itself and be conscious of its existence.
1960 1957 Rosenblatt invents perceptron NYT 1957
1970 S 1969 Perceptrons book by Minsky and Papert — connectionism takes a big hit
S
= 1973 -- Lighthill report — combinatorial explosion will make Al only suitable for toy problems
g P P i
1980 f No major UK investment till 1983
1980's — Expert systems, XCON, LISP based companies etc... [Investors] were put off by the term "voice
1990 5 recognition’ which, like ‘artificial intelligence’,
k= s associated with systems that have all too
2000 ; often failed to live up to their promises,
o Economist 2007
2010 N

2012 AlexNet wins Imagenet 2012 competition, deep learning era begins
2020



Al Is one of the most profound things we're
working on as humanity. It's more profound
than fire or electricity.

Google CEO Sundar Pichal
At World Economic Forum in Davos, 2020
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March 2016 — Alpha Go beats Lee Sedol, |8 times world champion at Go

Dec, 2017 Alpha Go Zero beats Alpha Go, but playing only against itself.
It can also beat top chess computers and “learns” the game from “scratch”.



2012 — start of the deep-learning era

|4 million images
20,000 categories

Annual competition

Fel-Fel Li

2012 -- a team from U of Toronto

used a deep neural network (Alex
Net) to beat all competitors with
40% lower error.

o 60 million parameters

Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, Imagenet classification with deep convolutional neural networks
Advances in neural information processing systems, 1097 (2012)



Growth and growth of deep learning research
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Top 3 of the 5 most cited Nature papers in 2019 are on deep learning



Deep learning has revolutionized artificial intelligence

2019 Turing Award (highest prize in computer science)
Yann LeCun, Geoffrey Hinton and Yoshua Bengio,

For many years these pioneers worked without much recognition:
Hinton on the referee report for an Al conference submission "ft said, Hinton's been working on
this idea for seven years and nobody's interested, it's time to move on,"



Wil machine learning revolutionise Physics?
thSicsl'.‘.(~ }I{}' Q Magazine | Latest ¥ | People ¥ | Impact ¥ | Collections ¥ | Audio and video ¥ TOPICS ¥

sa D200

A machine-learning revolution

https://physicsworld.com/a/a-machine-learning-revolution/ (March 2019)

-- many applications, for example
* Data analysis (long standing, e.g. in particle physics)
* Image analysis
* E.g biological physics, astrophysics, etc. ..
* Analysis of quantum states in experiment ( see e.g. Nature 570,484 (2019))
* Approximating quantum many-body wave function
* Finding new materials
* Control experiments

e Much more (see next two talks for some cool examples)


https://physicsworld.com/a/a-machine-learning-revolution/

Basics
ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

https://interestingengineering.com/whats-the-difference-between-machine-learning-and-ai



https://interestingengineering.com/whats-the-difference-between-machine-learning-and-ai

- We have thus divided our problem into two parts. The
BaS|CS child-programme and the education process.

- ATuring (1950)

Child-programme: Neural Network
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- We have thus divided our problem into two parts. The
BaS|CS child-programme and the education process.

- ATuring (1950)

Education process:
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- We have thus divided our problem into two parts. The
BaS|CS child-programme and the education process.

- ATuring (1950)

Education process:

Tr—

-

|) Supervised learning

2) Reinforcement learning Environment
- Parameters are updated with some kind of
cumulative reward. AlphaZero is a reinforcement %
learning system. nterpreter
S (OO
tate o/
Agent

Image: wikipedia

Action



Basics
- ATuring (1950)

Education process:

|) Supervised learning

2) Reinforcement learning

3) Unsupervised learning
Patterns are learned from
unlabeled data

We have thus divided our problem into two parts. The
child-programme and the education process.
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Figure: B. Qian arxiv: 1910.05433



Why do DNNs work so well!




Universal approximation theorem for NN

Neural networks are fundamentally function approximators. The following theorem holds:

For any Lebesgue-integrable function f : R™ — R and any ¢ > 0, there exists a fully-
connected RelLU network A with width d,, < n + 4, such that the function F'4
represented by this network satisfies

[ 1@ - Fa@)dz < e

Neural networks are highly expressive -

B. Hanin Approximating Continuous Functions by Rel U Nets of Minimal Width. arXiv preprint arXiv: | 710.11278.



https://arxiv.org/abs/1710.11278

Conundrum: it DNINs are highly expressive, why do
they pick functions that generalize so well?
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CIFAR-10 dataset

C. Zhang et al,, Understanding deep learning
requires rethinking generalization.
arXiv:1611.03530 (2016)

Showed that you could randomise the labels, and
still easily train to zero training error.

If a DNN can “memorize” a dataset, why does
it pick functions that generalise so well?



Neural networks are typically highly over-parameterizea:
number of parameters >> number of data points

F. Dyson, A meeting with Enrico Fermi.
Nature. 427,287 (2004)

5 parameters

4 parameters

Al researchers allege that machine learning is alchemy

Drawing an elephant with four complex parameters M Hutson - Science, 2018
JUrgen Mayer; Khaled Khairy; Jonathon Howard; American Journal of Physics 78, 648-649 (2010)



Neural networks are typically highly over-parameterizea:
number of parameters >> number of data points

—— 1 hidden layer

71 —— 2 hidden layers

—— 5 hidden layers : :

— =~ 5th order polyfit § )
64 . | Why do the DNNs not over-it

Comparison of a polynomial fit to a DNN fit (with thousands of parameters)



AlT Coding theorem for input-output maps

/ NOTE: upper bound only!

P(QZ) g ‘(Q—ak(x)—b

Kamal Dingle (2 Dphils of work)

Chico Camargo

Kolmogorov complexity K(x)= the length of shortest program that describes x on a UTM

INTUITION: likelihood P(x) for a monkey to type

OI0101OTOIOI0IOIOI0IOIOI0I0I0OTOI0I0I0OT00IOI0I0IOI0OIO0I0OI0I0I0T0T0I0I0I0I0I0I0I0010101010]
OI0I0I10TOIOI0IOTOI0IOIOI0I0IOTOI0I0I0OT00IOI0I0I0OT0OI0I0OI0I0I0T0OT0I0I0I0I0I0I0I0010101010]

On a binary keyboard, P(x) = /27100

Into a programming language “print “01" 50 times™, P(x) ~ /2719

K. Dingle, C. Camargo and A/AL, Nature Communications 9,761 (2018); K Dingle, G.Valle Perez, and AAL, arxiv:1910.00971.



DNNSs as an input-output map

Input = parameters of the DNN
Output = the function it produces

Let the space of functions that the model can express be JF. If the model has p real
valued parameters, taking values within a set © C R¥,

the parameter-function map, M, is defined as:

M:0 5 F
0*—)f0

where fj is the function implemented by the model with choice of parameter vector 6.



A-Priori probability: If we randomly sample parameters 6, how likely are
we to produce a particular function f/

) output
Chris Mingard

XT3

Theorem 4.1. For a perceptron fg with b = 0 and weights w sampled from a distribution which is
symmetric under reflections along the coordinate axes, the probability measure P(0 : T (fg) = t) is
given by

P<e:T<f9>=t>:{2" FUsT <2t

0 otherwise

Neural networks are a priori biased towards Boolean functions with low entropy, Chris Mingard, Joar Skalse, Guillermo Valle-
Pérez, David Martinez-Rubio, Viadimir Mikulik, Ard A. Louis arxiv:1909.1 1522



A-Priori probability: If we randomly sample parameters 6, how likely are
we to produce a particular function f/

Model problem for a 7 bit string, study all Boolean functions f.
There are 27 =128 different strings, and2!28= 038 different functions.

You might expect a 1038 chance of finding any function. y '
Instead, we find strong simplicity bias.
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G.Valle Perez, C. Camargo and A.A. Louis, arxiv:1805.08522 — ICLR 2019



Does simplicity bias help generalisation?
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DNN works well on simple functions,
but less well on complex functions



Problem; DNINs are not trained by randomly sampling parameters

DNNs are trained using Stochastic gradient
descent (SGD) on a loss function.

The most common view In the field:

SGD is the cause of the good generalisation.
A-priori P(f) may be irrelevant




Problem; DNINs are not trained by randomly sampling parameters

Chris
Mingard

Inturtion: Basin of attraction ~ Basin size (a-priori P(f)
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Problem; DNINs are not trained by randomly sampling parameters

Psep(f) = P(f)

Train/Test size: 10000/100
Layer number/size: 2/1024, Loss: MSE Mingard

Inturtion: Basin of attraction ~ Basin size (a-priori P(f) = 1004
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Problem; DNINs are not trained by randomly sampling parameters

P(f) versus generalisation error Peop(f) = P(f)
Training/Test Set: 10000/100 Train/Test size: 10000/100
Num layers: 2, Loss: C-E ize: : '
" y - __Layer number/size: 2/1024, qus MSE Mmgard
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Guillermo
Valle Perez

Observed: error ~ m™®
|) a decreases with data complexity (bad
news for machine learning)

PAC-Bayes bound fc mnist . .
Tast ervor fc malst 2) a appears independent of algorithm
PAC.Bayes bound fc EMNIST

Test error fc EMNIST 3) We can reproduce this scaling with PAC-

PAC-Bayes bound fc cifar
Test error fc cifar

generalization error

Bayes theory approach we have derived.

But, WHY this scaling?

Corollary 1. (Realizable PAC-Bayes theorem (for Bayesian classifier)) Under the same setting as
in Theorem 1, with the extra assumption that D is realizable, we have:

IH%U) +1In (QTm)

—In(1-¢€(Q%)) <

m—1

where Q*(c) = 2:561)3(6)’ U is the set of concepts in ‘H consistent with the sample S, and where
PU) =X cev P(0)



Conclusions

* Machine learning is already transforming physics, it is not just hype

* Deep learning may work because they have a natural bias towards
simple functions (Occam’s razon)

THANKYOU



