Reading for lecture 5

1. Thermal Energy
2. Diffusion
3. Reaction Rates
4. Catalysis

- Howard, Chapters 4,5
- Voet and Voet, Chapter (3), 13
- Berg, H.C., "Random Walks in Biology" 152pp Princeton University Press, ISBN 0-691-00064-6

$$
\begin{gathered}
p_{i}=\frac{1}{Z} e^{-\frac{u_{i}}{k T}} \\
z=\sum_{i} e^{-\frac{u_{i}}{k T}} \\
\mathbf{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \text { (sometimes " } \mathrm{k}_{\mathrm{B}} \text { ") } \\
\mathbf{k T}=4.1 \times 10^{-21} \mathrm{~J} \sim 4 \mathrm{pN} \mathrm{~nm} \mathrm{(at} 25^{\circ} \mathrm{C} \text {) } \\
\text { Covalent bond: } \sim 600 \mathrm{pN} \mathrm{~nm}=150 \mathrm{kT} \\
\text { Hydrogen bond: } \sim 30 \mathrm{pN} \mathrm{~nm}=7.5 \mathrm{kT}
\end{gathered} \text { Photon (green, } \lambda=500 \mathrm{~nm} \text {): } 397 \mathrm{pN} \mathrm{~nm} \sim 100 \mathrm{kT} \text {. }
$$

Thermal Energy

Boltzmann's Law

[Boltzmann's Equation] (2)
Several ways to derive/justify this (Statistical Mechanics)
Based on the postulate that all micro-states are equally probable
Boltzmann distribution maximises W with the constraints $\mathrm{S}(\mathrm{Ni})=\mathrm{N}$ and $\mathrm{S}(\mathrm{NiEi})=\mathrm{E}$
Combining two systems into a larger system: probabilities multiply, energies add.
Z ("partition function") is a normalizing factor

kT is a natural unit of energy

Covalent bonds are unlikely to break ($\exp (150)=1064.5$)
Hydrogen bonds (and protein folds) are thermally labile ($\exp (7.5)=1800$)

Principle of Equipartition of Energy:
$1 / 2 \mathrm{kT}$ per degree of freedom

$$
\left(\begin{array}{rl}
u(x) & =\frac{1}{2} k x^{2} \\
\langle u\rangle & =\int_{-\infty}^{\infty} u(x) p(x) d x \\
& =\frac{1}{2} k \int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{z} e^{-\frac{k x^{2}}{2 k \pi}} d x
\end{array}\right)
$$

[Equipartition of Energy] (3)
Familiar from molecular velocity distributions in a gas for Kinetic Theory
Factor of half only if energy is quadratic function of degree of freedom (eg $\sim \mathrm{kx} 2$ or $m v x 2$). But always $<\mathrm{U}>\sim \mathrm{kT}$.
Proteins are constantly in motion
For proteins or other particles in water, this energy is due to constant collisions with water molecules...

[Brownian Motion] (4)
Tethered Brownian motion (optical tweezers in lecture 10)
Free Brownian Motion >> Diffusion...

Diffusion

[Diffusion as Random Walk] (5)
Assumption is that in some characteristic time Dt, each particle will move either way at random into the next "bin" of width Dx.
Particles flow from where there are many to where there are few.
Dx (~mean free path?) and Dt (~m.f.p. / mean velocity?) are not well defined, but D can be measured by comparing observed concentration and flux to solutions of the Diffusion Equation.
(NB: the constant D is proportional to Dx 2 / Dt. Different from "normal" translational motion where $\mathbf{v}=\mathrm{Dx} / \mathrm{Dt}$ is constant.)
How far and how fast do molecules diffuse?

$$
\begin{aligned}
& \frac{\partial C}{\partial t}=1 \frac{\partial^{2} C}{\partial x^{2}} \quad \text { Diffusion Equation } \\
& \text { One solution: } C(x, t)=\frac{c_{0}}{\sqrt{4 \pi D t}} \exp \left\{\frac{-x^{2}}{4 D t}\right\}: t>0 \quad \text { (Test it by substitution) } \\
& \text { At timet: } C \propto \exp \left\{\frac{-x^{2}}{2 \sigma^{2}}\right\}, \quad \sigma^{2}=2 D t=\left\langle x^{2}\right\rangle \\
& \text { Gaussian Distribution } \\
& \text { Time (} t \text {) }
\end{aligned}
$$

How far and how fast do molecules diffuse?
[Free diffusion] (6)
$(<x 2>)^{1 / 2}=x r m s=(2 D t) 1 / 2$ is a measure of how far the particles get, on avarage, in time t.
For short times and distances, diffusion is very fast
$\mathrm{K}+$ ion in water goes 1 micron in $0.25 \mathrm{~ms}, 0.1 \mathrm{~mm}$ in 2.5 s
For long times and distances, diffusion is very slow.
$\mathrm{K}+$ ion goes 1 m in 8 years
Lord Kelvin's demonstration in Glasgow is still going after more than a Century

Diffusion coefficient can be related to viscous drag coefficient using the Einsten Relation

[Einstein Relation] (7)

D is constant, so the expression applies even out of equilibrium (when $\mathrm{J} \neq 0$ and concentration does not obey Boltzmann distribution).
Can calculate D from size or vice versa. Shape doesn't matter much for small particles.
Small particles diffuse faster - less averaging of molecular collisions.
(nb. Effective size for ions includes "solvation shell" of water molecules)

Reaction Rates

So far we've talked about particles (which could be molecules) and how they are constantly in motion due to thermal agitation.
Thermal energy can also make them change into something else - "uni-molecular" reaction.
Or make them collide and react with each other - "bi-molecular" reaction.
What can we say about these reactions?
[Reaction diagram] (8)
"Rection co-ordinate"
Treating it as instantaneous transition between states works if transitions are fast compared to typical lifetimes in each state.
Law of Mass action: Number of molecules that make a transition is proportional to the number that are available. (Sort of obvious).

Rate constants in units of $s-1$ so that $k d t$ is the fraction of molecules in a given state that make a transition in a given time.

Notation: $[A]$ is the concentration of A in units "Molar" = moles per litre
1 mole is Avogadros number of molecules
Avogadro's number is HUGE and is chosen so that one mole weighs the same number of grams as the sum of atomic numbers for the molecule ("formula weight")
As before, ratio of rate constants is always $\exp (D U / k T)$, even out of equilibrium.

$$
\begin{aligned}
& \text { G = U - TS "Free energy" } \\
& \text { Free energy includes } \\
& \text { statistical weights } \\
& \text { Free energy indicates } \\
& \text { the spontaneous direction } \\
& \text { of a reaction } \\
& \text { but: } \quad \Delta U_{\text {systemn }}=\Delta Q=-T \Delta S_{\text {surcouedings }} \\
& \text { so: } \Delta G_{\text {syltem }}=-T\left(\Delta S_{\text {syltem }}+\Delta S_{\text {swrounding }}\right) \\
& =-T \Delta S_{\text {universe }} \\
& <0
\end{aligned}
$$

Free Energy

Each state is really an ensemble of microstates

eg. Quantum mechanical energy levels
eg. Brownian motion - various positions of a protein domain within one "state"

If a "state" has a molecule free to diffuse, it will have many more microstates than if that molecule is stuck down.
For proteins the state boundaries are "drawn on" to the energy landscape The more microstates, the more probably the macro-state - Entropy Increases
[Free Energy] (9)
"free" in the sense of being available to do work without violating the 2nd law of thermodynamics.
Use G instead of U for all rate calculations where each state is really an ensemble of states.

[Transition Rates] (10)
Transition state has high energy and low probability => transitions can be treated as instantaneous.
Arrhenius equation immediately satisfies the requirement k12/k21 $=\exp (D G /$ $k T$),
Predicted temperature dependence is verified experimentally
Arrhenius Plot: In(rate) vs 1/T
-What is the frequency factor?
Eyring Theory: Quantum mechanical oscillations

$$
A \approx \frac{k T}{h}=6 \times 10^{12} \mathrm{~s}^{-1}
$$

Appropriate for single-bond transitions, electronic transitions, light absorption

Kramers Theory: Diffusion out of energy well

- Solve Diffusion Equation for this potential, particle starting at $\mathrm{x}=0$.
$t_{0}=$ mean time to the top $\varepsilon=$ probability to go over rather than come back

$$
A=\frac{\varepsilon}{2 t_{0}} \quad: \quad t_{0}=\frac{\gamma}{k}\left(\frac{\pi k T}{4 \Delta G_{1}}\right)
$$

Appropriate for protein shape changes - except that potentials are not really quadratic.

[Frequency Factor] (11)

Eyring and Kramers theories are both approximate
Protein rate constants are typically $\sim 10^{-3} \mathrm{~s}^{-1}$, which gives DG $\sim 22 \mathrm{kT}$. $(\sim 4 \mathrm{H}-$ bonds)
In practice, rate constants are measured empirically rather than calculated

At equilibrium:

Dissociation Constant (units, M)
[Bi-molecular Reactions] (12)
(kon has units of $\mathrm{s}^{-1} \mathrm{M}^{-1}$: "Bi-molecular" rate constant)
Km the probability of dissociation.
Diffusion-limited collision rates can be calculated (see Berg Ch 3)
Actual reaction rates are 100-1000x slower, as molecules still have to surmount the activation barrier after they find each other.
$100-1000 x$ gives $\sim 5 \mathrm{kT}$, but activation barriers may be higher than this since once molecules are close they will have many encounters before diffusing (far) apart.

Water acid-base equilibrium:

In fact, water dissocitates very little (low K_{m}), and:
$\left[\mathrm{H}^{+}\right][\mathrm{OH}]=10^{-14} \mathrm{M}^{2}$

$$
\left[\mathrm{H}_{2} \mathrm{O}\right]=55.5 \mathrm{M}
$$

Define: $\quad \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$
(In neutral (pure) water, $\mathrm{pH}=7$ as there are equal concentrations of $\mathrm{H}+$ and $\mathrm{OH}-$)
[pH] (13)
Very low concentrations of $\mathrm{H}+$ and $\mathrm{OH}-$
However, pH is very important as it dictates whether "charged" molecules really are charged...

general acid-base equilibrium:

Take log of both sides:

$$
\begin{aligned}
\log _{10}\left(\frac{\left[A^{-}\right]}{[A H]}\right) & =-\log _{10}\left[H^{+}\right]+\log _{10} K_{m} \quad \text { Define: } p K=-\log _{10}\left[K_{m}\right] \\
& =p H-p K
\end{aligned}
$$

[acid/base equilibrium] (14)
pK is the pH at which a site has equal probability of being charged or neutral.
High $\mathrm{pH}=$ low $[\mathrm{H}+]=$ sites tend to lack protons unless they have high pK
High pK sites are more likely to be protonated - eg $\mathrm{NH}_{3}{ }^{+}$not NH_{2}
Low pK sites are more likely to be de-protonated - eg COO^{-}not COOH
"Strong acids" like HCl have low pK - nearly all H bcome $\mathrm{H}+$, so pH goes low.
"Strong alkalis" (Na)OH have high pK (~ 13 for the "base" OH-, compare slide 13) - nearly all OH - mop up a proton, so pH goes high.
"Weak acids" like acetic acid (pK close to 7) act as "buffers" at pH values close to their pK.

Small amounts of extra H+ added (as "strong acid" eg HCl) are "mopped up" by small shifts in the fraction of dissociated weak acid.
Buffering is extremely important in biology: keeps pH steady (usually close to 7) and therefore charged groups on proteins etc in their correct state.

Exothermic reaction:

Catalysed reaction:

$E+P$

Catalysed reaction: $\quad S+E \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} E S \stackrel{k_{2}}{\rightleftarrows} P+E$

Assuming negligible rate for reverse reaction :
$S+E \rightleftharpoons E S \longrightarrow P+E$
$J_{s}=k_{2}$ [ES]

Catalysis

[Catalysis] (15)
Nearly all reactions in biology are catalysed
Usually extremely specific - only the right enzyme catalyses the right reaction.
Protein machines have complicated mechanisms - can be thought of as a series of catalysed reactions.

Hichoalis - Menter
$[E S]=-k_{0 H}[E S]+k_{0 m}[s][E]$
tobl enzyue
$[E]_{T}=[E S]+[E]$
$[s s]=-k_{y H}[s]+k_{0 n}[s]([E]-[E])$
$=-\left(k_{0 . f}+k_{\text {mo }}[s]\right)[8 s]+k_{\text {on }}[s]\left[\varepsilon_{1}\right]$

$k_{f}=k_{2}+k_{1}$
3. $k=k_{1}$

shbe food milue of
$[B]$ for staly-clanging $[S]$

[Catalysis rates - Michaelis Menten Kinetics] (16)
(Derivation in problem set)
This is a typical saturation curve
Same relation for bound fraction in simple binding/unbinding reactions
As $S \rightarrow \infty, J \rightarrow C$, proportional to Et : saturating substrate concentration, all enzyme has substrate.
As $S \rightarrow 0, J \rightarrow(V m a x / K m) S$: proprotional to S
When $\mathrm{S}=\mathrm{Km}$, rate is half-maximal, and half of enzyme has substrate.
Much more complex steady-state kinetics can be done.
Many reactants and products
Sequences of reactions
These calculations give overall reaction rates, but DO NOT say anything about details of the mechanism

HOWEVER, they do allow possible mechanisms to be tested by cmparing predicted rates to measured rates. - Lectures 9 and 10.

Transient kinetics:

$$
A \xrightarrow{k} B
$$

Probability of particle still being in state A at time t :

$$
\begin{aligned}
\frac{d P_{A}}{d t}=-k P_{A} \Rightarrow & P_{A}=A e^{-k t} \\
& \text { (b.c.: } P(0)=\text {, so } A=1)
\end{aligned}
$$

Probability of particle Making a transition between
time t and $\mathrm{t}+\mathrm{dt}$:

$$
P_{t}(t)=k P_{A}(t)
$$

$$
\left(\text { mean lifetime }=\int t \cdot P_{\mathrm{t}} \mathrm{dt}=1 / \mathrm{k}\right)
$$

Sequential steps:

[Interval length distributions - double-step] (18)
Transient kinetics gives more information
Can either think of it as non-steady-state reaction rate
OR as the probability that a certain molecule reacts at a given time.
More on this in problem sets and in lecture 10.

