
Reading for lecture 2

- 1. Structure of DNA and RNA
- 2. Information storage by DNA
- 3. The "Central Dogma"
- Voet and Voet, Chapters 28 (29,30)
- Alberts et al, Chapters 5 (3)

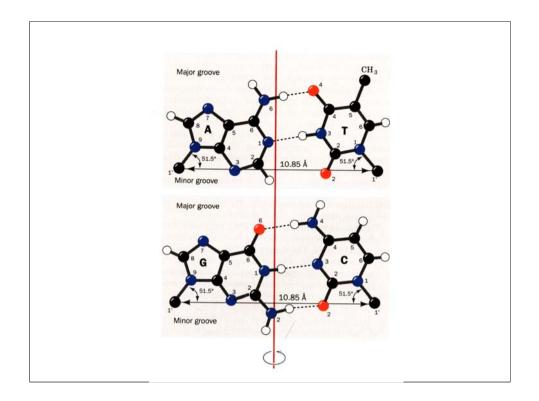
Structure of DNA and RNA

[Polynucleotides] (2)

5' and 3' ends named for numbered carbon atoms in ribose.

De-oxy ribose in DNA, normal ribose in RNA

DNA is more stable as the 2' OH is a target for reactions that break the chain.

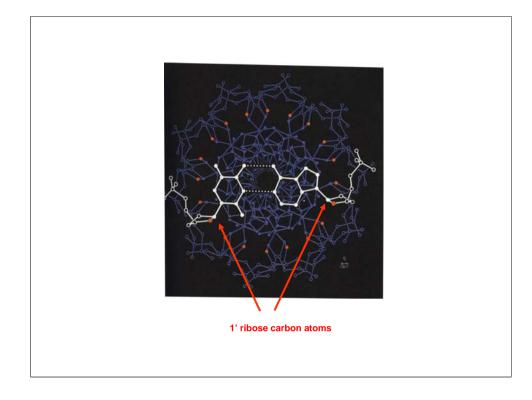

RNA has Uracil (U), DNA has Thymine (T)

3-D Structure of DNA? -early evidence

1940s: Equal amounts of G&C and A&T (G&C range from 25%-75%)

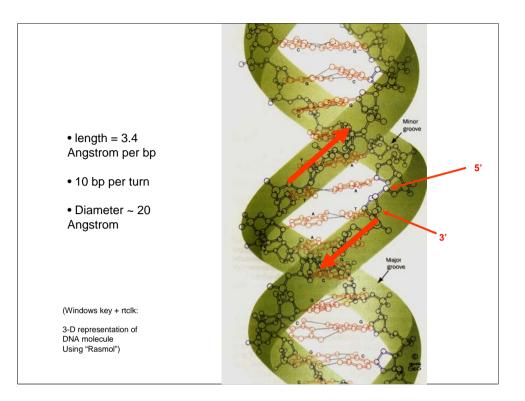
1950s: X-ray diffraction; Helical structure, bases stack with plane normal to long axis.

1953: Crick and Watson Double Helix (B-DNA)


[Base pairs](3)

AT and GC base pairs by hydrogen bonding. Either pair has same span between 1' carbons.

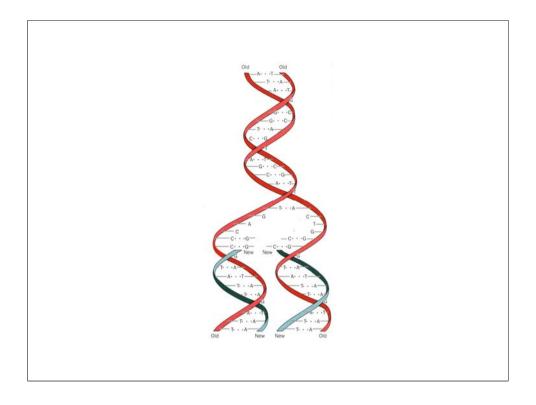
GC pairs are stronger than AT, 3 vs 2 hydrogen bonds.


Bases planar

Backbone link is slightly longer than base-pair thickness – twist to stack, generates helix

[DNA, end-on] (4)

Double helix, strands "glued" to gether by base pairs Close packed atoms


[DNA, side on] (5)

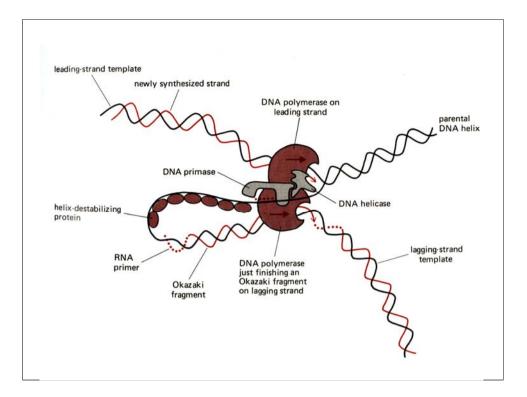
Strands run in opposite directions - 2-fold rotational symmetry

Major and minior grooves because backbones do not span a diameter (see (4)).

[demo: ideal B-DNA in "Rasmol"]

•NB: RNA B-helices are less stable than DNA B-helices because the 2' OH gets in the way. "steric hindrance"

Information storage by DNA

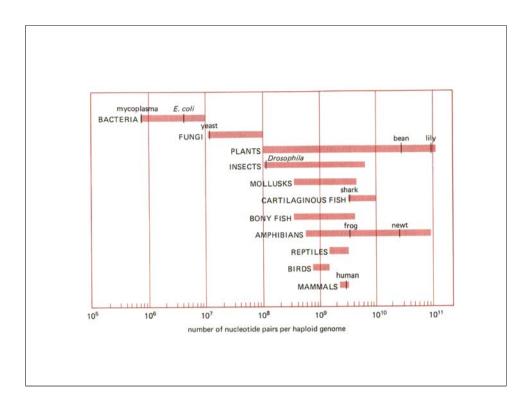

Molecule has a "sequence". ie) it is a very long word in a 4-letter alphabet.

Sequences are "read" in the 5' > 3' direction to reflect the order of polymerisation.

Base-pairing offers a mechanism for **self-directed replication**

[DNA replication] (6)

Replication (like most processes) is controlled by molecular machines



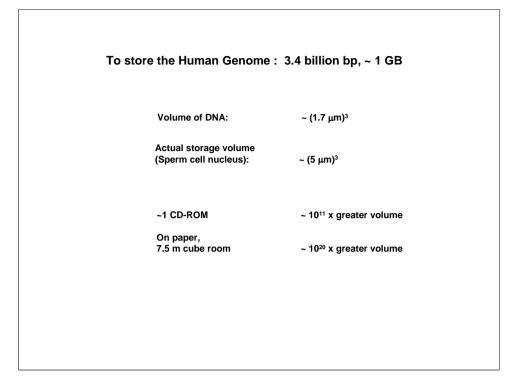
[Replication Fork] (7)

DNA polymerase works 5' > 3' on both strands. This introduces asymmetry. Complicated mechanism. Won't go into more detail although more is known.

How much DNA is in an organism ? [Picture of DNA] (8)

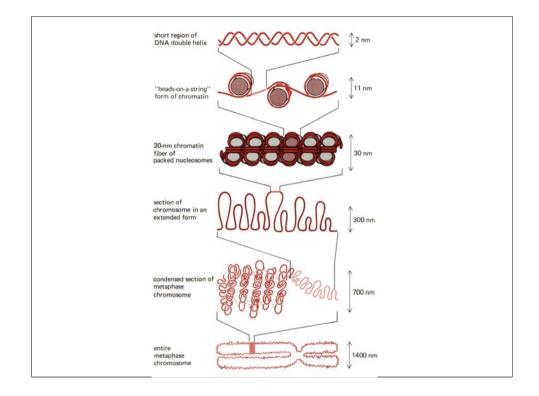
[genome sizes](9)

"Genome"

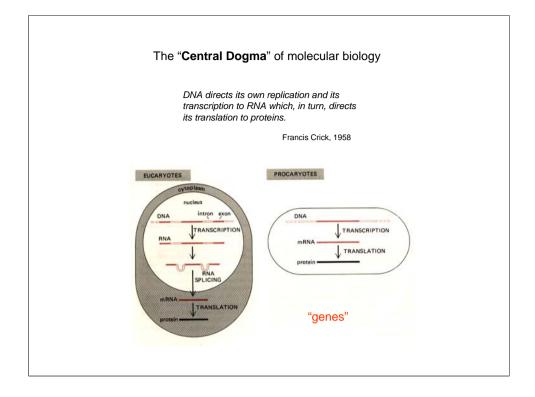

Diploid vs haploid (two copies allows genetic shuffling to generate variety – "recombination")

Eukaryotes have several linear "Chromosomes" – 23 in humans, each 2 copies.

Prokaryotes usually have one circular DNA molecule


Storage medium	Data element	Element volume	<u>1 GB</u>		
			# elements	volume	
CD	Reflect or not 2 options = 1 bit	~ (5 x 10 ⁻⁷ m) ² x 10 ⁻³ m = 25 x 10 ⁻¹⁷ m ³	8 x 10 ⁹	~ 2 x 10 ⁻⁶ m ³ (1.25 cm) ³	
DNA	Base-pair (bp) 4 options = 2 bits	~ 3.4 x 10 ^{.10} m x (20 x 10 ^{.10} m) ² = 1360 x 10 ^{.30} m ³	4 x 10 ⁹	~ 5.4 x 10 ⁻¹⁸ m ³ (1.7 μm) ³	
print	Letter 26 options = 4.7 bits	$\sim (5 \times 10^3 \text{ m})^2 \times 10^4 \text{ m}$ = 2.5 x 10 ⁻⁷ m ³	1.7 x 10 ⁹	~ 4.25 x 10 ² m ³ (7.5 m) ³	

[storage capacity] (10) DNA is extrememly compact – molecular storage


[example: physical storage of the human genome] (11)

However, DNA is very fragile. A single linear chromosome is like a 6km long strand of uncooked spaghetti but 0.5 million times smaller. Breaks very easily. Also problems with knots!

[DNA packaging into chromosomes] (12)

Management of DNA is extensive: Hundreds or thousands of different machines and structural proteins that manipulate it.

The "Central Dogma"

DNA = blueprint. How is it read /converted into a living, working organism?

[The central dogma] (13)

A Gene is a piece of DNA with a particular function

Usually encodes a protein

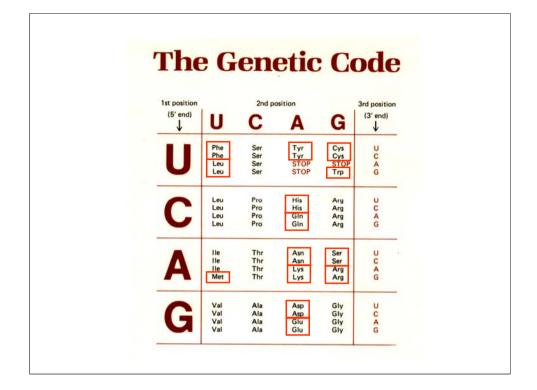
~30,000-60,000 genes in a human, ~2,000 in E. coli

DNA - storage of information

Messenger RNA (mRNA) - "working copy"

Protein - molecular machines and structures

The key fact is that all of these are extended 1-D polymers made of similar subunits.


mRNA code is same as DNA except U for T

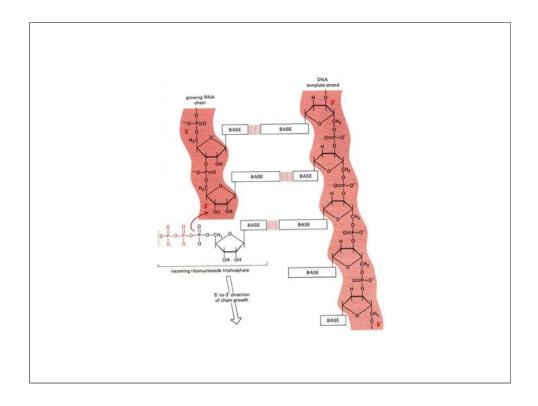
Proteins are different -

20 amino acids (not 4 bases) so 3-base "codon" is needed (42 = 16 < 20)

		Acids and Symbols	Coo	lons				
A	Ala	Alanine	GCA	GCC	GCG	GCU		
с	Cys	Cysteine	UGC	UGU				
D	Asp	Aspartic acid	GAC	GAU				
E	Glu	Glutamic acid	GAA	GAG				
F	Phe	Phenylalanine	UUC	UUU				
G	Gly	Glycine	GGA	GGC	GGG	GGU		
н	His	Histidine	CAC	CAU				
1	lle	Isoleucine	AUA	AUC	AUU			
к	Lys	Lysine	AAA	AAG				
L	Leu	Leucine	UUA	UUG	CUA	CUC	CUG	CUL
м	Met	Methionine	AUG					
N	Asn	Asparagine	AAC	AAU				
P	Pro	Proline	CCA	CCC	CCG	CCU		
۵	GIn	Glutamine	CAA	CAG		-		
R	Arg	Arginine	AGA	AGG	CGA	CGC	CGG	CGL
s	Ser	Serine	AGC	AGU	UCA	UCC	UCG	UCL
т	Thr	Threonine	ACA	ACC	ACG	ACU		
v	Val	Valine	GUA	GUC	GUG	GUU		
w	Trp	Tryptophan	UGG					
Y	Tyr	Tyrosine	UAC	UAU				

[The genetic code 1] (14)

[The genetic code 2] (15)


redundancy - 20 amino acids plus stop, .43 = 64

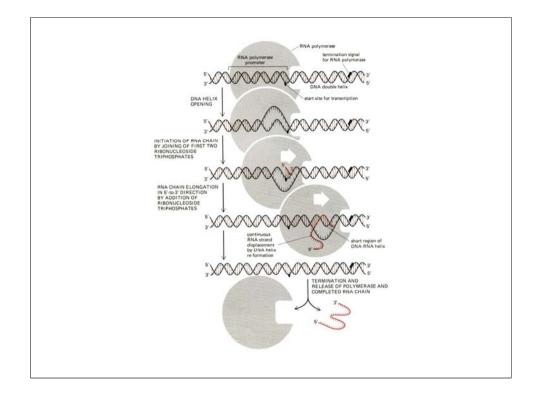
All redundancy is in the third codon

nb: often AG / UC in third codon. NOT to do with base pairing.

NB. P(stop) = 3/64 (bases random). But coding mRNAs are much longer. "Open reading frames" – frame is set by the "promoter"

out-of-frame transcripts will be short.

Transcription


[RNA polymerisation] (16)

Essentially the same as DNA polymerisation

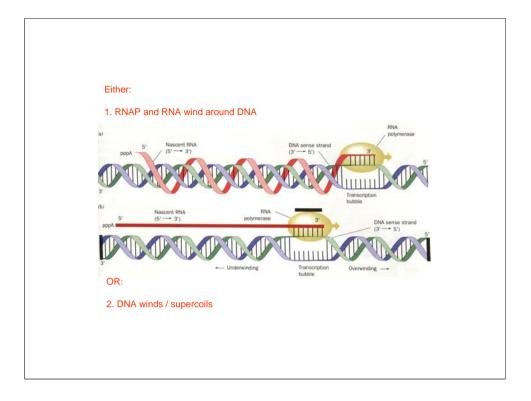
Growing RNA molecule grows from 5' to 3'

NTP is a high-energy molecule – prevents reverse reaction from happening (both hydrolysis of NTP and subsequently of pyrophosphate are energetically "downhill".

As always, catalysed by a molecular machine "Enzyme"

[RNA-polymerase](17)

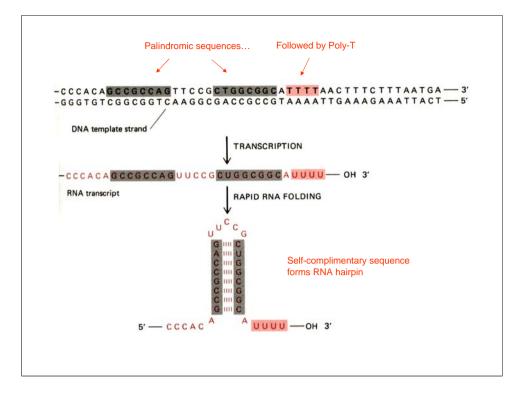
3 versions in eukaryotes - make different types of RNA


one version in prokaryotes

Large multi-subunit complex. Not fully understood

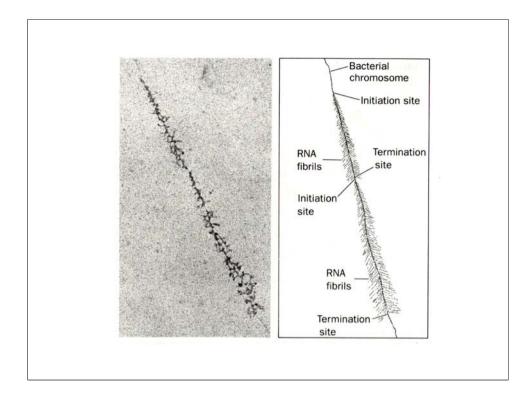
Simple version in "T7 bacteriophage", single molecule experiments beginning

Promoter: region of DNA with a sequence that binds RNAP more strongly than usual. Also determines which strand/direction to copy.


Elongation: RNAP follows the helix...

[winding or supercoiling] (18)

This will happen in any process that separates the strands of DNA


There are families of machines that deal with it by removing supercoils.

[termination](19)

GC-rich "palindrome" forms strong RNA hairpin – RNA self-hybridisation is important.

Poly A/U region form weak DNA/RNA helix, detaches easily

[picture of transcription] (20) (next: Translation ...)