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A novel and computationally efficient, non-linear signal processing technique for reducing background noise to reveal small 
biological signals is described. The signal estimate is formed by weighting the outputs of a set of causal (forward) and anti-causal 
(backward) predictors. The weights used to combine the predictors are adapti,~ely determined at each data point to reflect the 
performance of the respective predictor within a short analysis window. The method is specifically designed for revealing fast 
transient signals dominated by noise, such as single-channel or post-synaptic currents. Markovian and exponentially decaying 
signals embedded in the amplifier noise were extracted using this method and compared with the original signals. The results of 
such simulations demonstrate the advantage of this non-linear method over low-pass filtering. Brief pulses imbedded in a 
broad-band amplifier noise can be reliably recovered using our non-linear filtering technique. Moreover, the kinetics of a single 
channel and the time constant of exponentially decaying signals can be measured with acceptable accuracy even when the signals 
are dominated by noise. 

Introduction 

Extracting a real signal from a limited set of 
imperfect measurements is a problem that com- 
monly occurs in science. When a desired signal is 
small relative to the background noise, the signal- 
to-noise ratio can be improved by low-pass filter- 
ing, of which a moving average and a low-pass 
Butterworth filter are examples. However, this 
type of linear processing tends to obscure and 
distort fast transients of the signal. For example, 
even in the absence of noise a moving average 
processing of a signal consisting of a step change 
shows the characteristic distorted ramp output - 
a phenomenon commonly labelled edge blurring. 

Alternative signal processing methods have 
been developed in an attempt to improve the 

noise suppression without the signal distortion, 
e.g., (i) Kalman filtering (Anderson and Moore, 
1979), (ii) Hidden Markov Model techniques 
(Rabiner, 1989; Chung et al., 1990), and (iii) 
maximum likelihood sequence estimation using 
the Viterbi algorithm (Forney, 1973). However, 
these techniques have shortcomings in that they 
tend to be computationally expensive and they 
rely on an explicit model of the hidden signal. 
Indeed, the effectiveness of such procedures can 
hinge critically on an accurate specification of the 
characteristics of the signal which in reality may 
be poorly understood. For example, Kalman fil- 
tering and its optimality is based on knowledge of 
an accurate linear model describing the dynamics 
of the desired signal. For the biological signals 
that we wish to consider determining the underly- 
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ing signal generation mechanism is the ultimate 
objective, so an accurate model is not known a 
priori. Furthermore, the measurements we are 
processing reveal that a linear dynamical model 
would be a poor representation of the mechanism 
behind the signal because of the jump transients 
observed. 

We introduce here a novel non-linear digital 
filtering technique, that is computationally inex- 
pensive, assumes no explicit single idealised model 
describing the signal and is designed to give the 
minimum distortion of fast transients. The results 
of the method display comparable performance 
to classical Hidden Markov Model techniques but 
with a reduction of up to two orders of magni- 
tude in computation and memory requirements. 
To obtain an estimate of the signal, our tech- 
nique utilizes several causal predictors, running 
forward in time, with a number of mirror-image 
anti-causal predictors, running backward in time. 
The final smoothed estimate is obtained as a 
data-dependent weighted combination of the out- 
puts of all the backward and forward predictors 
and is designed to avoid the introduction of the 
artefacts which distort the estimation of original 
signal.We emphasize that the weights which com- 
bine the predictors' outputs are a function of the 
data and therefore are time varying or adaptive. 
The technique has been developed specifically 
for, but its application is not limited to, analyses 
of single-channel currents recorded from mem- 
brane patches and post-synaptic potentials or cur- 
rents recorded intracellularly. 

In the first section of the paper, we briefly 
describe the theoretical basis of the non-linear 
noise rejection scheme. A fuller and more rigor- 
ous account of the theory is given in the Ap- 
pendix. To validate the technique, we have ap- 
plied our technique to reveal small, computer- 
generated signals embedded in noise generated 
by a resistor/patch-clamp amplifier/fil ter sys- 
tem. The results of these simulations, detailed in 
the second section, show the superiority of our 
technique compared to low-pass filtering or other 
noise filtering operations. These results indicate 
that the technique can be particularly useful for 
extracting brief channel openings, which are 
obliterated when a conventional analogue low- 

pass filter is used before sampling during mea- 
surement. Moreover, the single channel kinetics 
or the amplitude and time constants of post-syn- 
aptic currents can be deduced with an acceptable 
degree of accuracy even when signat amplitudes 
are relatively small compared to the background 
noise. 

Theoretical background 

1. Non-linear filtering 
The technique that we develop, which we shall 

refer to as non-linear filtering, is suitable for 
removing noise from an underlying signal having 
jump or abrupt changes. Such a noisy signal might 
arise from instrument noise contaminating a lab- 
oratory measurement of some jumpy process for 
example. In this section we give an overview of 
the theoretical underpinnings of our filtering 
scheme and provide some insights into its ratio- 
nale. We also compare at an intuitive level non- 
linear filtering with the standard technique of 
linear filtering. 

2. Motivation 
Suppose our desired signal is represented by 

the sequence of values 

x(O), x(1) ,  x(2) . . . .  

which we write as x(k), with k denoting time. 
Now let 

y ( k )  = x ( k )  + n ( k ) ;  k = 0 ,  1, 2 . . . .  

represent our sequence of measurements y(k) of 
our desired signal x(k), where n(k) is some 
unknown, unwanted, additive noise. The standard 
means for suppressing this noise and thereby 
estimating the unknown desired signal x(k) is to 
filter the measurements y(k). That is, we com- 
bine a group of measurements of y(k)  and (usu, 
ally) perform some averaging computation, e.g., 
let 

= l y  _ ½ y ( k  1), 2(k) ½Y(k-3)+~ (k  2 ) +  - 

k = 0 , 1 , 2 ,  . . .  (1) 

be one such estimation procedure for x(k), We 
refer to the time interval (k - 3, k - 2, k - 1) as 



the window of the estimator 2(k)  above. (This 
type of "moving average" estimator is easily gen- 
eralized to other window lengths.) What we now 
argue is that such a linear estimation procedure is 
ineffective for the sort of low-level jump signals 
that we wish to estimate. 

We begin by understanding when the above 
linear estimator (Eqn. 1) gives a satisfactory esti- 
mate of x(k )  - this will be important in recognis- 
ing why our non-linear filtering can give im- 
proved noise rejection with less signal distortion. 
For acceptable performance of the above estima- 
tion scheme (Eqn. 1) we need the signal x(k )  to 
be reasonably constant over the window of the 
filter. That is, we require x(k  - 3) = x(k  - 2) ~- 
x(k  - 1). This condition ensures that under filter- 
ing the signal values combine constructively. Con- 
trast this with the situation where the underlying 
signal has a jump within the window of the esti- 
mator e.g., x ( k - 3 ) = x ( k - 2 )  but x ( k - l ) =  
- x ( k -  2). Now the signals under averaging will 
tend to combine destructively, thereby on average 
reducing the performance of the filter relative to 
the level of noise suppression. In short, linear 
filtering is only effective if the underlying signal is 
slowly or smoothly changing or the mechanism 
behind the signal variations is known to be accu- 
rately modelled by a set of linear difference equa- 
tions. However, the technique generally is not 
very suitable for signals having jump changes - 
the major reason being one cannot get an accu- 
rate "smooth" linear model for such a process 
which is fixed over any extended time interval. 

3. Forward-backward processing 
The means to avoid the edge blurring mecha- 

nism is conceptually quite simple and forms the 
basis of the heuristic justification of our tech- 
nique. The principle that we employ is to avoid at 
all costs filtering or averaging across jump 
changes. 

In our scheme (see Appendix) we combine 
predictors based on different non-overlapping 
windows of data. As an illustration of the princi- 
ple suppose we have an unbiased forward predic- 
tor given by 

2 f ( k )  ~= ½ ( Y ( k - 3 )  + y ( k - 2 )  + y ( k -  1)) 
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and an unbiased backward (anti-causal) predictor 
given by 

~b(k)  ~= ~ ( y ( k  + 1) + y ( k  + 2) + y ( k  + 3)) 

each estimating the desired signal x(k)  but based 
on different non-intersecting windows of noisy 
data. Our filtering scheme combines these two 
individual estimates, to produce a final non-linear 
filtering estimate, by weighting them as follows: 

~ ( k )  = f ( k ) 2 q k )  + b (k ) .~ b (k )  (2) 

where 0 < f ( k )  < l, and 0_< b(k)_< l are the for- 
ward and backward weights respectively that sat- 
isfy 

f(k) +b(k) = 1 ( 3 )  

to ensure that there is no bias in the final esti- 
mate. Note that the weights which are yet to be 
explicitly defined are not constants but functions 
of the data and thus time making the scheme 
non-linear and time varying. If the weights were 
indeed constant then the overall scheme in (Eqn. 
2) would be linear and edge blurring would gen- 
erally occur. 

The idea behind the selection of the weights 
f ( k )  and b(k)  is to select automatically the for- 
ward predictor, f ( k ) =  1, if the jump changes 
occurs in the data set {y(k), y(k  + 1), y(k + 2), 
y(k + 3)}, or automatically select the backward 
predictor, b(k) ~ 1, if the jump changes occurs in 
the data set {y(k - 3), y(k - 2), y(k - 1), y(k)}. 
Note that with no jump change occurring in ei- 
ther data interval then both predictors will pre- 
sent acceptable signal estimates, and therefore 
the relative weightings of predictors is not crucial. 
Now we move on to give the formulation for our 
general estimation scheme which uses banks of 
predictors. 

4. Processing using banks of predictors 
It is easy to incorporate, rather than a single 

forward moving estimator, a bank of K forward 
moving unbiased predictors, under a common 
weighting rule. The idea of using a bank of pre- 
dictors is that predictors with short window 
lengths work well on fine structure of signals 
whilst predictors with long windows do better on 
broad signal features. So we can expand on the 
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simple scheme (Eqn. 2) as follows. Our estimate 
at time k takes the form (see Appendix) 

K 

= E + 
i=l 

where 

M-1 ) -P 
f , ( k )  c~Tr i Y'~ [ y ( k - ] )  - 2 / ( k - j ) ]  2 (4) 

]=0 

b i ( k ) (x 'fl" i [ y ( k -~ j ) -- x bi ( k ~ j ) ] 2 (5) 
] 

are the weights which are normalized by 

K K 
E L ( k )  + F_,bi(k) = 1, 
i=l i=l 

and M is a parameter  which determines the size 
of the window of data over which the predictors 
are to be compared (the analysis window), typi- 
cally 4 _< M _< 20 depending on the data. The con- 
stants ~-~ denote a priori probabilities reflecting 
any prior knowledge as to which predictor in- 
dexed by  i should be preferred on average in 
processing the noisy signals. These constants rep- 
resent additional degrees of freedom to cus- 
tomize the set of predictors which in the most 
conservative setting can be made equi-probable 
(i.e., ~r i = (2K)  -1 for all i). Indeed, for many of 
the simulations presented in this paper these 
prior probabilities were chosen to be equal (and 
sum to unity), e.g., if there are 4 forward and 4 
backward predictors then 7r~ = 0.125 for all i. The 
parameter  p (which may be chosen independently 
from M)  is a weighting factor whose effect is 
described in the next section. In our simulations 
later we display the effect of values between 
p = 1 and p = 100, with typically higher values 
giving better  results. 

T h e  proportionalities expressed in Eqns. 4 and 
5 would need special treatment in any practical 
implementation when any predictor gave the 
measured signal as its prediction for all samples 
within the analysis window. (Such a case may 
arise when there is no measurement noise which 
we consider next.) This would imply that the right 
hand side of Eqn. 4 would represent a division by 

zero. However, as the fi(k) and the bi(k) are 
merely probabilities (see Appendix) there is no 
actual explosion of these coefficients (under the 
normalization). In a programme one would sim- 
ply check for a zero before dividing in the calcu- 
lation of fi(k), say, and in this event make 2(k)  
= 2[(k) (similarly if there was a potential division 
by for a backward coefficient calculation). (If 
more than one coefficient lead to a division by 
zero this is not a problem because the predicted 
value of x(k)would be identical.) 

Implicit in Eqns. 4 and 5 is that a noise-free 
stepped signal processed with at least one for- 
ward predictor of the form of a moving average 
(as in Eqn. 1) of length less than the duration of 
the shortest feature of the signal, along with its 
mirror image backward version, will leave the 
signal undistorted. Also as with many other fil- 
ters, the estimation error of the non-linear filter, 
measured as the sum of differences between esti- 
mated and original signals, will decrease progres- 
sively as the signal-to-noise ratio increases, Fi- 
nally, as a guide to the limitations of the non-lin- 
ear filter, the shortest pulse that would be reli- 
ably be recovered though not without some dis- 
tortion would be not less than 4 samples. 

Simulations 

1. Experimental set-up 
The reliability and the limitation of our non- 

linear filter was assessed by an extensive simula- 
tion study using known signals buried in noise. 
Unless stated otherwise, the background noise 
was simulated by recording the output of a 
patch-clamp amplifier (Axopatch IC, Axon In- 
struments) with a 10 G O  resistor across the in- 
put. The output was either filtered at 2 kHz and 
sampled at 5 kHz or filtered at 20 kHz and 
sampled at 40 kHz. The noise, when filtered at 2 
kHz and 20 kHz ( - 3  dB, Bessel), was Gaussian 
with standard deviation 0.10 pA and 0.39 pA, 
respectively. To this noise was added either: (i) 
rectangular pulses of various durations and am- 
plitudes, or (ii) step responses that decayed expo- 
nentially with various time constants. The noisy 
traces containing the signals were then processed 



with the non-linear filter to evaluate the increase 
in signal-to-noise ratio. Although short segments 
of the results are illustrated in the following 
figures, typically we processed traces containing 
20000 to 50000 points, using a workstation com- 
puter (Sun IV). 

75 

2. Characteristics of  the non-linear filter 
We processed a 20000-point segment of the 

computer-generated noise containing no signal 
with the non-linear filter using 3 forward and 3 
backward predictors. The predictors were moving 
averagers of window lengths 4, 8, and 16. The 
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Fig. 1. Characteristics of original and filtered noise. A 20000-point random noise was generated by a computer, with the mean and 
the standard deviation of 0 and 0.1 pA. The digitizing interval was assumed to be 200 ~s. A sample segment of this noise, shown in 
(a), is similar to the noise recorded from a patch-clamp amplifier, passed through a low-pass filter with the cutoff frequency of 2 
kHz. The noise was then processed with the non-linear filter with 3 pairs (+_ 4, _+ 8 and + 16) of predictors. (In this and subsequent 
figures, the forward and backward predictors of, for example, 16-points in window length are abbreviated as _+ 16.) A segment of 
the processed trace is shown in (b). The amplitude distributions of both original (open circles) and processed data (bars) could be 
fitted with a Gaussian, as shown in (c). The power spectra, shown in (d), of the original (dotted line) and processed data 

(continuous line) were obtained by the Maximum Entropy Method, using 64 autoregressive coefficients. 
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prior probabi l i t ies  were selected in propor t ion  of 
the window lengths,  i.e., 1 : 2 : 4 .  A compar ison  of 
the sample trace of the original  record with a 
cor responding  trace of the processed record, 

shown in Fig. la ,  reveals the effectiveness of the 
method  in reducing  r andom noise. The ampl i tude  
probabi l i ty  densi ty curves of the original  noise 

and  the processed noise are super imposed  in Fig. 
lb .  The  s tandard  deviat ion of the processed noise 
was reduced to 28% of the original  value, from 
98.8 fA to 27.8 fA. The  3rd (skew) and  4th 
(kurtosis) m o m e n t s  of the dis t r ibut ion,  however, 
r emained  unchanged .  The  power spectra of the 
original noise and  non- l inea r  filter output ,  ob- 
ta ined  by the Max imum Ent ropy  Method  (Chil- 
ders, 1987), reveals that  our  non- l i nea r  filter has 

noise suppress ion per formance  comparable  to a 
low-pass filter in the frequency domain  (see Fig. 
lc). However,  we caut ion that our  signal process- 
ing s t ructure  is a non- l inea r  device (because the 
weights are data  dependent ) .  Tha t  is, the com- 
mon  frequency domain  in tu i t ion  is based on lin- 
ear fil tering experience,  so the time domain  re- 
sponse of our  non- l inea r  s t ructure  need not 
closely resemble  the comparable  bandwidth  lin- 
ear filter part icularly nea r  signal jump changes. 

3. Parameters of the non-linear filter 

In using the non- l inea r  filter, there are three 
ma in  sets of parameters  which can be adjusted to 

(a) (f) (k) 

_ _  0 5  p A  

J 

8 0  m s  

Fig. 2. Adjustment of non-linear filter parameters. Three different ways of using the non-linear filter are illustrated. To the noise 
obtained from a patch-clamp amplifier (filtered at 2 kHz, sampled at 5 kHz), the signal sequences shown in the bottom row (e, j 
and o) are added. The noise containing the signals (top row: a, f and k) are processed with the non-linear filter adjusting different 
filter parameters. The segments exhibited in the left-hand column (b, c and d) were processing by adjusting the relative weights 
assigned to each forward and backward predictor, namely, the term p in Eqns, 4 and 5. The numerical values of p used for b, c 
and d were 100, 5 and 1, respectively, while keeping the lengths of 5 pairs of predictors constant ( + 4, + 8, + 16, + 32 and 4- 64). In 
the middle column, the filtered output (g) was processed again (h) and this procedure was repeated once again (i). Repeated 
iteration of noisy data suppressed the noise progressively but also distorted the sigrml cb~a~teristics. Three pairs of predictors 
( ± 4, + 8 and 4-16) with the relative weight of p = 100 were used. In the right-hand column, the progressive redtw..tion in the noise 
was achieved by adding longer lengths of forward and backward predictors, while keeping the relative weight at 10. The predictors 

used were ± 4 and 4- 8 for (1), 4- 4, _+ 8, 5:16 for (m) and _+ 4, ± 8, 4- 16, +_ 32 for (n). 
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reject noise but introduce minimal distortion to 
the signal: 

(i) The relative weights assigned to each for- 
ward and backward predictor can be adjusted by 
varying the negative exponent p in Eqn. 4 and 
Eqn. 5. When a large value of p is selected, the 
relative weight given to each predictor is accentu- 
ated. With the exponent of 100, for example, one 
forward or backward predictor of a given length 
will predominate at a given instant, and the weight 
given to the others will tend to be zero or near 
zero. Conversely, with a small p the difference in 
the weight assigned to each predictor will be less 
pronounced. Fig. 2 (a -e )  illustrates the effects of 
varying the weighting factor on performance. As 
the weighting factor was decreased, the reduction 
in the noise became more drastic (Figs. 2b, c and 
d), but the amplitude and the edges of the signals 
(Fig. 2e) became distorted with the lowest weight- 
ing factor used (Fig. 2d). 

(ii) The processing can be applied repeatedly, 
i.e., in a multi-pass fashion, to achieve a desired 
reduction in the background noise. Using 3 pairs 
of forward and backward predictors, a noise-con- 
taminated record (Fig. 2f) was processed once 
(Fig. 2g), twice (Fig. 2h) and three times (Fig. 2i). 
The gain in the signal-to-noise ratio achieved by 
the repeated iteration was accompanied by the 
distortion of the original signal (Fig. 2j). 

(iii) The number of predictors and their lengths 
can be varied. Three short pairs of the predictors 
used to extract exponentially decaying signals 
imbedded in the noise (Fig. 2k) preserved the 
original features of the signal, but the back- 
ground noise was not effectively suppressed (Fig. 
21). As the predictors of longer lengths were 
added (Figs. 2m and 2n), a further reduction in 
the noise was achieved at the expense of distort- 
ing the original signal. 

Although there are a large number of possible 
predictor combinations that can be used for pro- 
cessing a segment of data, the choice of the bank 
of predictors in practice is straightforward. Vari- 
ous choices of lengths of predictors should be 
based on the expected durations of signal fea- 
tures. If, for example, we anticipate signals of 
width 10 samples to be present in the data, then 
there should be at least one predictor whose 

length is less than 10 points.  Naturally, if longer 
signal features are present, then correspondingly 
longer window predictors should be included in 
the bank. The weights automatically adjust when 
one or another of the predictors in the bank 
should make a greater or lesser contribution to 
the final estimate. Thus, for a faithful preserva- 
tion of fast signal transient details, such as the 
abrupt changes observed during a single channel 
conductance, a large value of the weighting factor 
p in Eqn. 4 and Eqn. 5 is effective, whereas slow 
signal variations, e.g., during exponential decay 
b.ack to the baseline, can best be extracted with a 
smaller p value. 

Similarly, if the record contains long openings 
with many flickers, the bank of predictors should 
contain long as well as short ones, and a large 
value of p should be used to accentuate the 
jump. Reduction in the length of analysis win- 
dow, which has been kept to 20 digital points 
throughout (except in Fig. 4i), has the further 
effect in faithfully preserving short pulses. For a 
slowly changing signal, such as the falling phase 
of excitatory post-synaptic currents, a low p (see 
Fig. 4n) ensures that the time constant of the 
decay is minimally distorted. 

4. Comparison with low-pass filter 
Noise rejection can also be achieved by linear 

low-pass filtering but it is usually accompanied by 
unacceptable signal distortion. Using binary rec- 
tangular pulse sequenees, we have made exten- 
sive comparisons between our non-linear filter 
and a conventional linear moving averager. 

The results of one such comparison are illus- 
trated in Fig. 3. To the broad-band amplifier 
noise (filtered at 20 kHz and sampled at 40 kHz), 
two brief pulses of 0.63 and 0.88 ms duration and 
1 pA in amplitude were added (Figs. 3a, b). Us- 
ing 3 pairs of predictors, the segment containing 
the noise and signals was processed repeatedly. 
The traces illustrated in Figs. 3c, e, g and i were 
obtained, respectively, after 1, 2, 4 and 5 itera- 
tions. The same set of data was digitally filtered 
using a discrete low-pass, second-order recursive 
Butterworth filter (obtained by a conventional 
bilinear z-transformation). The cutoff frequency 
of the low-pass filter was adjusted so as to achieve 
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approximately the same reduct ion in the rms 
noise as with the output  of  the successive itera- 
tions using our  technique.  The  cutoff  f requencies  
used for the traces shown in Figs. 3d, f, h and j 
are, respectively, 4 kHz,  2 kHz,  1 kHz and 500 
Hz. As expected,  the ampli tudes  and the shape of  
the imbedded  signal became  progressively dis- 
tor ted  as the cutoff  f requency of  the low-pass 
filter was lowered. The  output  of  heavily filtered 
traces conta ined mainly filter artefacts, their 
shapes bearing little, if any, resemblance  to the 
original signals. In  contrast ,  the signals es t imated 
with the non- l inear  filter faithfully retained the 
characterist ics of  the original signals. 

The  results of  simulations shown in Fig. 4 
fur ther  demons t ra te  that  certain features of  the 
signal which are severely dis tor ted by low-pass 
filtering are preserved when the data  are pro- 
cessed with the non-l inear  filter. The  original 

records,  shown in the first row, were assumed to 
have been  filtered at 20 kHz and correctly sam- 
pled at the Nyquist frequency. The  data  were 
digitally filtered, again with a second-order  recur- 
sive But terworth  filter, at 2 kHz (second row) and 
1 kHz (third row). The  records processed with the 
non-l inear  filter, displayed in the four th  row, may 
be compared  with the original signal sequence,  
shown in the last row, as well as those processed 
with a low-pass filter. The  reduct ion in the rms 
noise achieved by the non-l inear  filter was equiv- 
alent to that  with a low-pass filter with the cutoff  
f requency of  1 kHz. The  opening  of  a ficticious 
channel  (Fig. 4e) was ins tantaneous but the tran- 
sit to the closed state was achieved in 2 steps, 
pausing briefly at an in termediate  conductance  
state. F rom Figs. 4b and c, it would have been 
difficult to deduce  that  there was a brief  sojourn 
to an in termediate  state. In the middle column, 

(j) ~ z pA 

2 m s  

Fig. 3. Comparison between the non-linear filter and low-pass filter. A series of 1 pA pulses, with the durations of 0.63 ms and 0~88 
ms, shown in (a), was added to a broad-band noise obtained from a patch-clamp amplifier (filtered at 20 kHz and sampled at 40 
kHz). The signal imbedded in the noise (b) was then processod with the non-linear filter, using 3 pairs of predictors (+ 2, ± 4, + 8) 
and the weighting factor of 100. Sample segments of the processed data after the first (c), second (e), fourth (g) and fifth (i) 
iterations are shown in the left-hand column. For comparison, the same segments of the data were filtered digitally with a low-pass 
filter, using a bilinear z-transformation method based on a recursive second-order Butterworth filter model (cutoff rate = - 12 dB). 
The filtered records with the cutoff frequencies of 4 kHz (d), 2 kHz (f), 1 kHz (h) and 500 Hz (j) are shown in the right-hand 

column. 
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an open ing  of  a channe l  was s e p a r a t e d  by t h r e e  
b r i e f  i n t e r rup t ions  (Fig.  4j). Inverse  f i l ter ing of  
Fig. 4h would  not  have given an u n a m b i g u o u s  
ind ica t ion  tha t  two of  the  closings r e p r e s e n t e d  
so journs  in a conduc t ance  sublevel  r a the r  than  a 
par t i a l ly  resolved  closing. A f ict icious pos t synap-  
tic cu r r en t  shown in Fig. 4o rose  ins tan taneous ly  
and decayed  exponent ia l ly  the rea f t e r .  T h e  esti-  
m a t e d  r i se- t ime cons tan t  f rom the  l inear ly  fil- 
t e r e d  r ecords  (Figs.  41 and  m) would  have been  
e r roneous ,  unless  the  sampl ing  f requency  was 
kep t  strictly at the  Nyquis t  f requency.  If, on the  
o t h e r  hand ,  the  sampl ing  f requency  was so low- 
ered ,  the  d e t e r m i n a t i o n  of  the  decay  cons tan t  
would  have been  subject  to a cons ide rab le  er ror .  
In  contras t ,  some of  the  sa l ien t  f ea tu res  of  the  
signals  a re  r e t a i n e d  in the  records  p roces sed  with 
the  non- l inea r  fi l ter.  

5. Amplitude histograms 
A f i rs t -order ,  t h ree - s t a t e ,  Markov ian  signal  se- 

quence  of  length  50000 poin ts  was g e n e r a t e d  
f rom a t rans i t ion  mat r ix  with e l emen t s  aii = 0.97 
and ai j  = 0.015 for  i e: j ,  and  a d d e d  to the  noise.  
The  m e a n  d u r a t i o n  of  the  signal g e n e r a t e d  by the 
matr ix  is 6.6 ms. The  t races  con ta in ing  the signal 
s equence  in the  c o m p u t e r - g e n e r a t e d  noise were  
p rocessed  and then  the a m p l i t u d e  p robab i l i ty  
dens i ty  curves cons t ruc ted .  F r o m  the n u m b e r  of  
these  s imula t ions ,  using var ious  signal ampl i -  
tudes ,  we have a sce r t a ined  tha t  levels of  signals 
b.uried in noise  can accura te ly  be iden t i f i ed  pro-  
v ided  the i r  a m p l i t u d e  s epa ra t i ons  are  g rea t e r  than  
0.7 of  a s t a n d a r d  dev ia t ion  of  the  noise. 

Fig. 5 shows shor t  s ample  segments  of  da t a  
con ta in ing  a 3-level (one level be ing  the  base l ine )  
M a r k o v  signal.  The  a mp l i t ude s  of  the  i m b e d d e d  

(a) 

(b) 

(f) (k) 

/o) 
_____j 1 l pA ] pA 

Fig. 4. Further comparison between the non-linear filter and low-pass filter. Each noisy record shown in the first row (a, f, k) was 
obtained by adding a signal sequence shown in the last low (e, j, o) to a computer-generated noise. The standard deviation of the 
noise was 0.4 pA, corresponding to a patch-clamp amplifier noise filtered 20 kHz. The records filtered with a low-pass Butterworth 
filter with the cutoff frequency of 2 kHz and 1 kHz are shown in the second (b, g, 1) and third row (c, h, m). In the fourth row 
(d, i, n), the same records processed with the non-linear filter are displayed. For (d), the records were procegsed three times using 
three pairs of predictors (+ 4, + 8, ± 16), with M = 15 and /9 = 100. The record (i)was similarly processed, except that the value of 
p was lowered to 5. For (n), the predictors used were ±4, ±8, _+16 and ±32, with M= 20 and p = 10. The time calibration bar 

represents 2 ms for the sampling frequency of 40 kHz or 0.8 ms for 100 kHz. 



80 

signals (in addition to the baseline) in Figs. 5a, b, 
c and d are, respectively, 0.115 pA and 0.23 pA, 
0.10 pA and 0.20 pA, 0.085 and 0.17 pA, and 0,07 
and 0.14 pA, whereas the standard deviation of 
the noise, before the signals were added, was 0.1 
pA. The amplitude probability density distribu- 

(a) 

tions of the original data points appear as skewed 
Gaussians, shown as broken lines in Fig. 5. The 
amplitude histograms constructed from the non- 
linear filter, in contrast, reveal 3 distinct peaks, 
corresponding to the baseline and 2 signal levels 
(solid lines in Fig. 5). Each amplitude histogram 

(b) 
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Fig. 5. Determination of signal amplitudes. A 3-state, first-order, Markovian signal sequence, 50000 points long, was generated 
according to the transition probability matrix of tlii  = 0.97, and a i j  = 0.015 for i ~ j .  The signal sequence was then added to the 
computer-generated random noise with the standard deviation of 0.1 pA. The amplitudes of the imbedded signals were 0, -0.115, 
-0.23 pA (a), 0, -0.1,  -0 .2  pA (b), 0, -0.085, -0 .17 pA (c), and 0, -0.07, -0 .14 pA (d). The noisy signal sequences were then 
processed with the non-linear filtering technique, using 4 pairs of predictors ( + 4, + 8, ± 16 and ± 32) and the weighting factor of 
10. The amplitude probability density curves of the original data (dotted traces) appeared as skewed Gaussian with no obvious 
peaks. The curves obtained from the processed data, in contrast, showed distinct peaks, corresponding to the amplitudes of the 
underlying signals (solid lines). Each curve obtained from tile processed data was then deconvolved using a maximum likelihood 
criterion. The errors in the amplitude estimation increased systematically as the amplitudes of the original signals decreased. 

ranging from 1% in (a) to 5% in (d). 



obtained from the filtered data was deconvolved 
to the 3-Gaussian distributions (shown as contin- 
uous curves in Fig. 5) using a maximum likelihood 
criterion. From the deconvolved curves, the amp- 
litudes of the imbedded signals could be deduced. 
Also, it could be correctly inferred from the curves 
that the probability of being in any one of the 3 
states was about equal. As the separation be- 
tween the signal amplitude was further reduced, 
the peaks in the amplitude histogram became 
progressively indistinct, and when the signal am- 
plitudes were less than 0.5 standard deviation, 
the peaks in the histogram could not longer be 
resolved. From the results of these simulations, 
we concluded that the limit of resolution in de- 
tecting signal levels unambiguously with our tech- 
nique is about 0.5 of a standard deviation of the 
noise. 

6. Preservation of  brief channel events 
The duration of channel currents fluctuating in 

a random manner between the open and closed 
state can be extremely brief, but it is a general 
practice that the records containing these chan- 
nel events are preprocessed before sampling by 
an analogue Bessel filter with a cutoff frequency 
of 1 kHz to 3 kHz to reduce the background 
noise. For channel events that are a fraction of 1 
ms such an analogue low-pass filtering will 
severely distort and potentially remove brief sig- 
nal states. We claim our discrete non-linear filter 
can effectively suppress the noise digitally thereby 
obviating the need for any distorting low-pass 
analogue preprocessing. By performing all our 
processing digitally on raw data samples we are 
able to reveal brief channel events. 

Amplifier noise, filtered at 20 kHz and sam- 
pled at 40 kHz, was added to a digitally gener- 
ated, first-order Markovian signal sequence. The 
mean and the shortest duration of the signals of 
0.5 pA in amplitude were, respectively, 1.25 and 
0.125 ms. The record containing the Markovian 
signal sequence in a broadband noise was pro- 
cessed using 3 pairs of predictors. Fig. 6 shows a 
sample trace of the signal sequence (a) and the 
noise-contaminated data (b). The filtered output, 
a segment of which is displayed in Fig. 6c, was 
quantized into one of two states by defining the 

(a) 
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(b) 

(o) 

/ 
5 r n s  

Fig. 6. Extraction of brief pulses buried in the background 
noise. A binary state, first-order, Markovian signal sequence 
of 50000 points was generated according to the transition 
probability matrix, all = a22 = 0.98 and at2 = a 2 1  = 0.02, and 
then added to the same length of the broadband noise ob- 
tained from a patch-clamp amplifier (filtered at 20 kHz, 
sampled at 40 kHz). The amplitude and the expected mean 
duration of the signal was 0.5 pA and 1.25 ms, respectively (a). 
The noisy trace containing the signal sequence (b) was then 
processed once with the non-linear filter using 3 pairs of short 
predictors (_+ 4, + 8, + 16) and the weighting factor of 10. The 
output of the non-linear filtering (c) was quantized into a 

binary signal sequence (d). 

appropriate midpoint threshold (the so-called 
nearest neighbour rule) in Fig. 6d. Brief sojourns 
to the open state from the closed state or vice 
versa, normally obliterated by analogue low-pass 
filtering before sampling, are clearly retained in 
the data processed with our technique. 

To make a quantitative assessment in the effi- 
cacy of our processing technique, we have con- 
structed open-time and closed-time histograms of 
the records containing short pulses of various 
amplitudes and compared them with the true 
histograms. The processing technique used for 
these simulations was identical to those described 
for Fig. 6. The results of one such simulation are 
shown in Fig. 7, in which a 2-state signal se- 
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quence (0.3 pA) was added to the broad-band 
noise. The histograms obtained from 50 000 points 
of the processed record are close to those ob- 
tained from the original signal sequence. Both 
sets of the histograms could be fitted with single 
exponential curves. The estimated mean open- 
time and closed-time were, respectively, 1.70 and 
1.89 ms, compared  to the true values of  1.44 and 
1.40 ms. The estimated durations of the mean 
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Fig. 7. Est imates of  channel  kinetics. Using the same proce- 
dures as in Fig, 6, the open-t ime and closed-time histograms 
of the original signal (b and  c) and extracted signal ( f  and g) 
were constructed, and fitted with single exponential curves 
(solid lines). Short segments  of  the signal sequence,  signal 
imbedded in the noise and signal and est imated signal se- 
quence are displayed, respectively, in (a), (d) and (e), The 
amplitude of the binary signal used was 0.3 pA. The i / e  
values of  the open-t ime and closed-time histograms were 1.44 
and 1.40 ms for the original signal sequence (b and c), 
whereas those for the est imated signal sequence were 1.70 
and 1.89 ms. When  the ampli tude of the signal was relatively 
small, the non-l inear filter frequently failed to detect brief 

sojourns from the closed to the open states and vice versa. 

(b) 
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Fig. 8. Errors in estimating durations of brief pulses. A series 
of  pulses lasting 0.25, 0.50, 0.75 and L0 ms, shown in (a), was 
added to the broadband noise, and from the noise-con- 
taminated trace (b) the signal sequence was recovered (c), 
using the same procedures  as in Fig. 6. The ampli tude of the 
signal was 0.5 pA. The durat ions of the est imated signals were 

tabulated and plotted in the form of histograms (d). 

open- and closed-time tended to be larger than 
the true values, mainly because brief events tast- 
ing less than 0.1 ms were frequently missed, espe- 
cially when the signal-to-noise ratio was low. The 
magnitude of the errors decreased systematically 
as the amplitude of the signal was increased. 

The durations of brief signals buried in the 
noise also could be estimated with an acceptable 
degree of accuracy. A series of pulses, lasting 
0.25, 0.5, 0.75 and 1.0 ms, was first added to the 
noise and then processed using our non-linear 
filter. After quantizing to 2 levels, as before, we 
tabulated the mean duration of tim estimated 
pulses. Fig. 8 displays: (a) short segments of the 
original signal sequence, (b) the unprocessed data 
containing the signal sequence, and (c) the esti- 
mated signal sequence. The distribution of esti- 



mated intervals are tabulated in Fig. 8d. The 
estimated signal durations, when the signal amp- 
litude was 0.5 pA, were 0.16 +_ 0.03 ms, 0.44 _+ 0.07 
ms, 0.75 + 0.06 ms and 0.99 +_ 0.06 ms. The corre- 
sponding estimates, when the amplitude of the 
signal was 1.0 pA, were 0.21 _+ 0.09 ms, 0.48 + 0.12 
ms, 0.76 +_ 0.12 ms and 1.00 _+ 0.14 ms. 

Discussion 

We have described and tested a novel non-lin- 
ear digital signal processing method for extracting 
accurate information about channel currents or 
postsynaptic potentials (or currents) from noisy 
measurements. The method combines the out- 
puts of a forward and backward bank of predic- 
tors by weighting them in a data-dependent,  
time-varying manner. Unlike other commonly 
used signal processing techniques, such as Kalman 
filtering (Anderson and Moore, 1979), Hidden 
Markov Models technique (Chung et al., 1990) 
and maximum likelihood sequence estimation 
(Forney, 1973), the method we present here is 
computationally inexpensive and simple to imple- 
ment, requiring the same order of magnitude of 
computations as running a small bank of simple 
moving average filters in parallel. For example, 
with a large weighting factor, the number of 
computational steps involved in processing a seg- 
ment of data of the length T with N predictors is 
about 3 NT. Thus, even without optimizing the 
code, the processing of a 50 000-point record with 
10 predictors on a 7 MIP Sun IV workstation 
could perform the calculation in less than a 
minute. The computational steps involved in our 
non-linear filter can readily be programmed on a 
modern microprocessor, thereby enabling the data 
to be processed on-line. 

We have demonstrated the power of the non- 
linear technique for extracting known signals 
buried in noise that was generated by a model 
"patch"  attached to the input of the patch-clamp 
amplifier. After processing the noise variance is 
reduced by an order of magnitude (Fig. 1), while 
the signal remains relatively undistorted (Fig. 2). 
The superiority of this method over a low-pass 
filtering becomes apparent when the the 2 meth- 
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ods are compared (Figs. 3 and 4). Using our 
method, we have further demonstrated that the 
amplitudes of small signals (Fig. 6) and open-time 
and closed-time histograms of a Markovian signal 
sequence (Fig. 7) can be accurately estimated 
even when the signal is dominated by the back- 
ground noise. Similarly, the amplitudes and the 
decay constants of small exponentially decaying 
signals contaminated by the noise, mimicking 
post-synaptic currents recorded from neurones, 
could reliably be estimated when processed with 
the non-linear filter. 

One of the fruitful ways we envisage of using 
the novel non-linear filter is for examining 
single-channel patch-clamp recordings. When the 
output of the amplifier containing channel cur- 
rents are processed with a low-pass filter brief 
sojourns from the closed to open states or from 
the open to closed states will not be detected, 
thereby distorting the true distribution of the 
dwell times in the open and closed states. There 
does exist, however, a theoretical framework to 
model brief events which are missed due to the 
resolution limitations of the measurement pro- 
cess. In this way one can model what is actually 
observed, by assuming that there exists a thresh- 
old length of time under which short events are 
overlooked. Previously, only approximations to 
this mechanism were available (Colquhoun and 
Sigworth, 1983) but recently an exact formulation, 
or closed form solution, has been presented by 
Hawkes et al., (1990), using the theory of semi- 
Markov processes. This theory remains appropri- 
ate to model the resolution limitations of any set 
of measurements (see, also Fredkin and Rice, 
1987; Ball and Sampson, 1988). The non-linear 
filter that we have introduced here is an alterna- 
tive method of preserving fast transients of the 
signals or measuring brief channel events directly, 
even when their amplitudes are small. The practi- 
cal limitation for detecting short interval pulses 
rests largely on the frequency response of the 
amplifier (see Sigworth, 1983). 

As the molecular events underlying the open- 
ing and closing of a receptor-channel complex are 
being explored in increasing detail, it is becoming 
necessary to characterize single-channel currents 
more precisely than before. The use of our 
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method, in conjunction with Hidden Markov 
Model techniques. (Chung et al., 1990), should 
enable us to characterize the single-channel ki- 
netics more precisely and provide information 
about details of channel currents which are buried 
in noise and have hitherto been largely inaccessi- 
ble. 

Appendix 

Derivation of smoothing equations 
1. Bayesian framework. We develop an opti- 

mal predictor structure in a Bayesian framework. 
The following development will be directed to- 
wards finding the optimal signal estimate at time 
k. The resulting formulae can be then applied for 
every time instant to obtain a sequence of signal 
estimate outputs. 

In our notation we let p( . )  denote posterior 
probabilites (or densities where appropriate), and 
zr(- ) denote prior probabilities (or densities). Also 
let E{. } denote expectations and let n ~ N mean 
the random variable n is distributed according to 
distribution N. 

We implicitly define our signal model through 
a set of K forward and K backward mutually 
exclusive hypotheses indexed by i ~ {1, 2 , . . . ,  K} 
along with superscripts f or b (denoting the 
direction) as appropriate, i.e., 

(a:  y ( j )  = 2 f ( j )  + n ( j ) ,  
/ 

I ' q j ~ { k - M + l  .... , k - l , k }  
J ~ / f ( k ) : / b :  n( j) ~ N(O, p), p ~ rr(p) 

/ c :  {y ( i ) ,  i >  k} independent of 

( {y(i),i<k} 
(A.1) 

and 

V i e  {k, k +  1 . . . . .  k + M -  1} 

J/C~/b(k): n( j )  ~N(O, p), p ~rr(p)  

{y( i ) ,  i < k} independent of 

{ y ( i ) , i > k }  

(A.2) 

where condition b means the noise is an indepen- 
dent and identically distributed zero mean Gauss- 
ian random variable but has unknown variance p 
distributed according to some prior probability 
7r(p). In (A.1), 2[(') is the ith forward one step 
ahead predictor and is assumed measurable or 
known in the sense 

2[(k)  =g i (y (k  - 1), y(k  - 2) . . . . .  y (k  - L,)) ,  

/ ~ { 1 , 2  . . . . .  K} 

where g i ( , . . . , '  ) is the function describing= the 
ith unbiased estimator, and L i is the window 
length. Similarly, x~(.) is the ith mirror image 
anti-causal predictor whose outputs are measur- 
able in the following sense 

2bi (k )=gi (y (k  + l),  y ( k + 2 )  . . . . .  y ( k  +Li)  ), 

i ~ { 1 , 2  . . . . .  K}. 

Each of these hypotheses has a prior probabil- 
ity 

~'i ___arr (o~1 ( k )) = rr (gC~,P ( k ) )  (A.3) 

which is assumed independent of time k and 
satisfies 2Y'.~= t~-i = 1. Throughout this paper, un- 
less otherwise stated, we make the selection % cx 
L i . 

We now derive the optimal fixed interval 
smoother under this general signal model hy- 
potheses. Let the fixed interval of data be cen- 
tered at time k and of width 2M-1 (the analysis 
window), i.e., 

°.$ZM( k ) & { y( k - M  + a ) , . . . , y ( k )  . . . .  , 

y (k  + M - 1 ) } .  

Also define 

~/~(k) ~ = { y ( k - M +  l ) , . . . , y ( k ) }  

and 

 A(k) {y(k) ..... y(k + M -  1)} 

which will be used later. Note these two latter 
data sets appear in the hypotheses (A.1) and 
(A.2). We regard the desired signal x(k) and its 
noisy version y(k)  as being phenomena either 
consistent with ~/~(k) or consistent with ~,%b(k). 
Note that with at most one jump signal change 



occurring somewhere in the analysis window 
~/M(k) then at least one of the consistency condi- 
tions will be true. 

Then the condition mean estimate of the sig- 
nal x(k) based on the window of data ~/M(k) 
implements the optimal Bayesian estimate for a 
wide range of criteria and by Bayes' rule is given 
by, 

2( k ) ~= E{x( k ) l~JZM( k )} 
K 

= E [ f , ( k ) E { x ( k ) l Y / M ( k ) ,  o ~ / ( k ) }  
i ~ l  

+ b , ( k ) E { x ( k )  I ~?/~t(k), ~ ib (k )} ]  

where 

fi( k ) ~- p( J~if( k ) l ~/M( k ) ) and 

b,(k) ~ p ( ~ b ( k ) l ~ M ( k ) )  (A.4) 

are maximum a posteriori weights. A conse- 
quence of the conditions in hypothesis d~/(k) 
(A.1) is the following identity 

E { . r ( k ) l ~ , ( k ) ,  9 ~ / ( k ) }  =2f i (k ) .  

Similiarly by hypothesis c~ib(k) in (A.2) 

E{x(k)  ] ?O~M(k ), d~ib(k)} =2b(k) .  

Now we compute the maximum a posteriori 
weights (A.4) for our fixed interval smoother 
(Nied~viecki and Kennedy, 1990). From (A.3) 
and (A.4) we can write using Bayes' rule 

fi( k ) (x p( ~M( k ) l ~ i f  ( k ) )vr( d~if ( k ) ) 

= rr, p(~2/M(k)lo~if(k)) (A.5) 

and an analogous equation holds for bi(k). (In 
the following we will just concentrate on the 
forward equations noting the backward equations 
are entirely analogous.) Continuing we get 

p ( ~?/M ( k ) l ~,rE~/ ( k ) ) cc P ( ~Mf ( k ) l ~g~/ ( k ) ) . 
(A.6) 

which follows from the independence assump- 
tion: condition c in (A.1). 

2. Explicit expression for the weights. We need 
to give an explicit form for the maximum a poste- 
riori weights in terms of measurable quantities. 
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The .first barrier is the removal of the uncertainty 
implicit in our additive zero mean Gaussian noise 
model which has randomly distributed noise vari- 
ance p. Write 

P( ?/Mf( k ) l ~ f (  k ) ) 

= fo~p(~/ f (k ) lo~i f (k ) ,  p) 'rr(plJ~if(k))dp.  

(A.7) 

Now we evaluate (A.7). Firstly, we assume a 
family of improper prior distributions (parame- 
trized by the weighting factor p) for the noise 
variance p which we take as being independent 
of the particular hypothesis, i.e., 

7r(plo'~/(k))  ~=~rp(p) O{p M/2-p I (A.8) 

The remaining term in (A.7) is given by the 
standard chain rule 

p( ~/tM( k ) [ ~ if( k ), P) 
M - 1  

= YI p ( n ( t , - ] )  
j=0 

1 

(27"cO) M/2 

1 M-1 } 
- E × exp ~P  j=0 

(A.9) 

where y ( k - j ) - 2 f ( k - j )  is the one step ahead 
prediction error. Note (A.9) follows from the 
Gaussian noise assumption, although any distri- 
bution for the noise can be assumed here. Also 
crucial here is that x[(')  is a predictor in the 
sense that it is not a function of {y(i), i > k}. 

Combining (A.5)-(A.9) and noting 

o¢ 

fo XP-le-"Xdx= F( p)a -p 

where F( . )  is the Gamma function (and letting 
x = p - - 1 ) ,  gives the desired Eqn. 4; showing that 
the maximum a posteriori weights take a simple 
form. Similarly the backward weights are given by 
Eqn. 5. 
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