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Many swimming bacteria are propelled by flagellar filaments
driven by a rotary motor. Each of these tiny motors can generate
an impressive torque. The motor torque vs. speed relationship is
considered one of the most important measurable characteristics
of the motor and therefore is a major criterion for judging models
proposed for the working mechanism. Here we give an explicit
explanation for this torque–speed curve. The same physics also can
explain certain puzzling properties of other motors.

energy conversion � mathematical model � molecular motor � proton
motive force � mechanochemistry

The bacterial f lagellar motor (BFM) consists of a rotary motor
embedded in the cell envelope connected to an extracellular

helical propeller (see Fig. 1) (1–4). The motor is powered by the
flow of ions down an electrochemical gradient across the cyto-
plasmic membrane into the cell. The ions are typically H�

(protons) in Escherichia coli and Na� in alkalophiles and marine
Vibrio species. For convenience of discussion, we will focus on
the proton motor, although most of the discussion applies to the
sodium motor as well. The electrochemical gradient, ��̃ (‘‘pro-
ton-motive force’’ or ‘‘sodium-motive force’’), consists of a
transmembrane voltage and a concentration difference across
the membrane, both of which are maintained by various meta-
bolic processes. The proton-motive force is defined as

��̃ � pmf � ��
Ç

membrane
potential

� 2.303
kBT

e
�pH

Ç

Transmembrane ion
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. [1]

Here �� is the membrane potential, and �pH � log([HPeriplasm
� ]�

[HCytoplasm
� ]) is the entropic contribution due to the ion concen-

tration difference across the cytoplasmic membrane, kB is Bolt-
zmann’s constant, T is the absolute temperature, and e is the
electronic charge. The fundamental question we address here is
how the flagellar motor converts ��̃ into a mechanical torque.

To understand the mechanism of the flagellar motor, we need
to understand the mechanochemical cycle of torque generation
and how it couples ion flux to motor rotation. The torque–speed
relation is the best biophysical probe we have so far to explore
the mechanism. It gives a full picture of the power output of the
motor under external loads and gives an indication of the energy
conversion efficiency. Moreover, the torque–speed curves mea-
sured with increasing numbers of stators provide information
about individual torque-generating units and their mechanical
coupling.

Experimentally, two different methods have been used to
measure the torque–speed relationship of the BFM. The first
method is electrorotation, in which a cell is tethered to a glass
coverslip by a single flagellar filament, external torque, �ext, is
applied to the cell body with a high-frequency rotating electric
field, and the rotation rate of the cell body, �, is monitored
optically (2, 5). A force balance on the motor gives �� � �M �
�ext, where �M is the torque generated by the motor. The
frictional drag coefficient is � � �M � �L, where �M is the drag

coefficient due to internal friction in the motor and �L is the
external drag coefficient of the load, in this case, the cell body.
The motor torque vs. speed curve is derived from the usual
external load torque vs. speed curve as follows. The motor is
broken by applying a large external torque to force rotation in
the reverse direction. Next, the external torque, �ext, is applied to
the broken motor, for which the force balance relation is (�M �
�ext)�� � ��ext. Therefore, the motor torque is given by sub-
tracting the broken motor speed from the motor speed: �M �
(�M � �L)(� � ��).

The second method is to tether a polystyrene bead to a
flagellar stub with the cell fixed to the surface of a glass coverslip.
The rotation speed of the bead is monitored in a weak optical
trap while the viscosity of the external medium is rapidly changed
by adding Ficoll (6, 7) or while the drag coefficient of the bead
is changed by varying the bead size (7). In this case, the motor
torque is calculated from �M � (�M � �L)� � �L�, where the bead
drag coefficient �L can be calculated from the Stokes formula,
�L � 6�	R, where R is the bead radius and 	 the viscosity of the
fluid media.

Fig. 2 Left (redrawn from ref. 8) shows idealized plots of the
motor torque (normalized to the maximum torque) vs. speed and
proton motive force (pmf) (normalized to the maximum pmf).
At fixed pmf, the motor–torque curve is swept out by varying the
viscous drag on the load, �. Fig. 2 Right shows the linear
dependence of the speed on pmf. The results of these two
approaches are consistent: the torque generated by the motor
remains approximately constant up to �170 Hz at 23°C and then
drops rapidly beyond a ‘‘knee’’ velocity to zero at a velocity of
�300 Hz. The sodium-driven flagellar motor exhibits a similar
motor torque–speed relation (7). The proton-driven motor
torque depends strongly on the temperature and on the hydro-
gen�deuterium isotope ratio in the high-speed region beyond the
knee, but not in the low-speed region (9). The motor rotation
rates depend linearly on the pmf at both low and high rotation
rates (8, 10). The unusual motor torque–speed relation, isotope
effect, and pmf dependence are thought to reveal properties
underlying working mechanism of the flagellar motor. Here we
will show that those observations arise from some very general
characteristics of the motor.

The lack of detailed information about the motor structure
and the mechanochemical cycle leaves much room for specula-
tive modeling, and indeed various models have been proposed
for the working mechanism of the flagellar motor (see reviews
in refs. 2 and 11). However, the three features of the motor
torque vs. velocity curve discussed above remain unexplained.
Here, we will demonstrate that the mechanochemical behavior
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of the BFM can be reproduced by any model that incorporates
the following physical ingredients.

Assumption A. The rotation of the motor is observed through a soft
elastic linkage between the motor and the viscous load.

The soft linkage arises from the elasticity of the ‘‘hook’’ region
connecting the rotor and the flagellum and the linkage between
MotB and the peptidoglycan (see Fig. 1b) (12). The consequence
of this compliant linkage is to allow the motor and the load to
move on different characteristic time scales. When coupled to a
large viscous load, the soft linkage produces the plateau region
of the motor torque–speed curve.

Assumption B. Motor rotation and ion transport are tightly coupled.
First suggested by Meister et al. (13), this assumption is

necessary to explain the linear pmf dependence at low speed, and
the addition of equal increments of motor torque with each
additional stator in resurrection experiments (14, 15).

Assumption C. The power stroke is driven by a conformational
transition in the stator that is triggered by the protons hopping onto
and off the stator, probably via the MotB residue, D32.

The proton motions are much faster than the mechanical
motion of the stator, so the stator conformational movement is
the rate-limiting step for the motor. This assumption also was
suggested by Gabel and Berg to explain the nearly linear pmf
dependence at high speed (8).

Assumption D. The ion channel through the stator is gated by the
motion of the rotor.

That is, access of the periplasmic protons to the stator-binding
site is triggered by a rotor–stator interaction. Consequently, the
ion conductance through the stator varies with the motor speed.
This assumption is necessary to explain the concave shape of the
torque–speed curve, especially the sharp transition at the knee
between the flat and decreasing regions.

Below, we will incorporate these requirements into a simpli-
fied model for the BFM and show that it fits the data (see Fig.
3); mathematical details of the model and corresponding struc-
tural details of BFM are given in Supporting Text, which is
published as supporting information on the PNAS web site.
Then, we discuss the correspondence between the model and
known BFM structural information. We will see that the physics
of the BFM motor torque–speed curve is not sensitive to the
details and parameters of the model. Thus, the model should be
viewed as a framework for studying the BFM, which can be
further elaborated as new experimental inputs become available.

Consider first the situation with only one stator. The motor
proteins constitute a system with many degrees of freedom
(DoF). Most of the DoF are high-frequency modes compared
with rotation, e.g., chemical bond vibrations. The effects of these
DoF can be averaged out. However, some DoF have time scales
comparable with rotation, for example, the diffusive motion of
the stator about its equilibrium position due to elastic linkage
between MotB and the peptidoglycan, and the internal confor-
mational changes of the stator discussed below. The dynamics of
the motor can be described by a set of multidimensional poten-
tials of mean force as functions of these low-frequency DoF (16).

Current biochemical and structural studies imply that the
motor torque is generated by conformational changes in the
stator upon ion binding�unbinding to the negatively charged
D32 residue on the MotB helices (see Fig. 4; see also Fig. 5, which
is published as supporting information on the PNAS web site).

Fig. 1. The BFM. (a) The overall structure of the BFM. Figure is courtesy of David DeRosier. (b) A cartoon of the key structural components involved in torque
generation.

Fig. 2. Idealized motor behavior. (Left) The motor torque–speed curve is
nearly constant up to a knee speed, whereupon it decreases nearly linearly.
Here, torque is normalized to the maximum torque at stall (� � 0). The curve
is self-similar for increasing pmf. For a given viscous load (characterized by its
frictional drag coefficient, �ii � 1, 2, 3), the speed of the motor is determined
by the intersection of the ‘‘load line’’ with the motor torque curve. (Right) The
motor speed is nearly constant with pmf for different viscous drag loads. The
experimental data supporting these idealized curves are given in Fig. 3.
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This motion is transmitted to the rotor by means of interactions
at the rotor–stator interfaces (see refs. 2 and 3 and references
therein). The details of these interactions will remain vague until
the atomic structure of the stator has been determined; currently
the structures of but a few portions of the rotor are available
(17–19). We will base our calculations on the rotor–stator
interaction model proposed by Blair and coworkers (20, 21);
however, we emphasize that our general conclusions depend
only on the four assumptions listed above, not on the exact
details of the stator model. For example, the mechanical es-
capement proposed by Schmitt and coworkers (22, 23) will work
as well.

To generate sufficient torque, we assume that one power
stroke cycle of the stator is driven by the binding free energy of
two protons to the two negatively charged D32 residues on the
two MotB helices in the stator (see Movie 1, which is published
as supporting information on the PNAS web site). In Blair’s
model, the cycle is accomplished in two ‘‘half’’ strokes as shown
by the cartoon motor in Fig. 4a where two MotA loops alternate
in contacting successive FliGs on rotor. Each downward stroke
is followed by a recovery stroke, so that the two ‘‘pistons’’
alternate, and the stator is almost always engaged with the rotor;
i.e., the duty ratio is 1. The binding energy of the protons to
MotB is converted into a ‘‘f lashing’’ electric field in the stator
that triggers a pair of conformational transitions. The stator can
be modeled as an asymmetric bistable system, alternating be-
tween two free-energy potential minima as shown in Fig. 4a. The
power stroke is generated when the system passes the transition
state separating the two potential minima and slides down to the
other side. The torque thus generated is transmitted to the rotor
when the MotA loops are in contact with the FliGs. The detailed
dynamics of the motor can be described by the stochastic motion
along the slow DoF driven by the multidimensional potentials of
mean force. However, we will focus on the main physics revealed
by the motor torque–speed relations without distracting details
of the motor function, leaving more detailed descriptions for the
future. This mechanism is only one of the possible schemes
consistent with the mathematical model (see Supporting Text for
discussion).

First, transitions between the two stator conformations re-
quire a thermally activated step that triggers the electrostatically
driven power stroke. Fig. 4a shows the stator in the left or right
potential minimum or, equivalently, the left or right MotA loops

down in contact with FliG. Each transition is composed of two
consecutive steps: ions hop onto and off the stator generating the
flashing electric field that trigger the thermally activated barrier
crossing over the transition state of the double well. This process
is represented schematically in Fig. 4a Upper by switching
between the double-well potentials. We shall assume that these
transitions are well characterized by a set of rotor angular
position (
)-dependent composite rate constants kon and koff.

Second, we assume that most of the motor dynamics can be
described by focusing on a set of one-dimensional ‘‘minimum
energy paths’’ in the multidimensional space subtended by the
relevant DoF at a given stator conformation [this assumption is
related to the so-called reaction path Hamiltonian approxima-
tion (26)]. It should be pointed out that the minimum energy
path is a reduced DoF, which includes the relative rotation
between the rotor and the stator, the MotA loop motion, and the
extension of the elastic connection of the stator to its periplasmic
anchor (but see Supporting Text and see also Fig. 6, which is
published as supporting information on the PNAS web site).

Results
Low-Speed Plateau. Analysis and simulations of the model equa-
tions show that, for a motor dragging a large load with a compliant
elastic linkage, there exists a time-scale separation between the
motor and the load dynamics: tM �� tL (see Supporting Text). In
rotation experiments, viscous loads are attached to the flagellar
motor via the hook, which is soft enough to allow the rotor to
fluctuate over several step lengths before the load moves appre-
ciably (12). Distending the soft elastic linkage effectively converts
the viscous load into a conservative load on the motor. That is, the
work done to stretch the linkage can be returned to the motor
before it is dissipated by the viscous load (see Fig. 7b, which is
published as supporting information on the PNAS web site). The
Stokes and thermodynamic efficiencies are defined as the ratios of
the power dissipated by a viscous load (Stokes) or the rate of work
done against a conservative load (thermodynamic), respectively, to
the power consumed by the motor (27). The separation of time
scales between the flagellar motor and the load renders the Stokes
efficiency nearly equivalent to a thermodynamic efficiency. Ther-
modynamics dictates that 100% thermodynamic efficiency is ap-
proached as the system evolves ‘‘infinitesimally’’ slowly (i.e., revers-
ibly). This requirement is satisfied with a large bead and a soft
linkage even at rotation speeds of several hundred Hz, because the

Fig. 3. Comparison of model calculations and experimental data. (Upper) Experimental torque-speed curves at different temperatures (squares) (data from
refs. 6 and 8). The filled dots are calculated from the model. (Lower) The linear dependence of the motor rotation speed with pmf at three different high loads.
The experimental data (squares) are taken from Fung and Berg (10). The calculated results are shown as filled dots.
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bead motion is still much slower than the motor internal dynamics.
Furthermore, the soft hook and time-scale separation ensure that
the load does not see the details of the free-energy potentials shown
in Fig. 3b, but a nearly smooth effective potential. Thus, the
measured Stokes efficiency also will be �100%, implying that the
torque appears nearly constant (27). This region is the operating
regime in the plateau of the flagellar motor torque–speed curve, in
which the following approximation holds:

�L�L � �G�� � ��H � T�S	�� , [2]

where �L is the angular velocity of the load, � � 2��26 is the
angular step length (i.e., distance between FliGs), and �G is the
free-energy drop per motor cycle.

Why Does the Motor Torque–Speed Curve Drop Sharply at High Speed?
As the viscous load (e.g., a bead or the cell body) decreases, the
tension between the load and the motor relaxes faster, and so the
motor works against a smaller elastic load. An elastic load ‘‘shears’’
the potentials toward the left in Fig. 4b, and this shear decreases
along with the load. Reduced load shifts the probability density
distributions right toward the potential minimum, where the stator
contributes zero, or even negative, torque. The average torque
between the motor and the load (i.e., the motor torque) is deter-
mined by the potential gradients weighted by the probability
density; therefore, the apparent motor torque decreases as the load
decreases. However, this dependence does not guarantee a con-
cave-down torque–speed curve, because both the motor torque and
the rotation speed are affected simultaneously in a complicated way
that depends on the potential shape as well as the chemical

transition rates. The experimentally observed concave shape of the
torque–speed curve in the transition region sets a loose constraint
on the relation between the potential shapes and the chemical rates
k(
). The model system presented in this work is only one of the
many possible realizations.

In the model we choose k(
) to be localized around the
potential minima of each potential curve (see Fig. 4b and
Supporting Text). This localization arises because the ion chan-
nels open only at certain relative positions between the rotor and
the stator. [Kojima and Blair (21) attribute this localization to
charge interactions between the rotor and stator.] The sharp
transition in the load–speed curve arises because of a positive
feedback mechanism that can be understood as follows (see also
Supporting Text and Fig. 6 a and b). At high load, the density
function (
, 
L) is distributed in the regions with negative
potential gradient; thus, the effective chemical transition rate
given by Eq. 6 is large. If the torque between the load and the
motor decreases, the distribution shifts toward the potential
minimum, which further reduces the effective chemical rate.
Then, the diffusion of the load has more time to relax the elastic
coupling between the load and the motor. This positive feedback
mechanism contributes to the observed sharp transition from the
regime where the dynamics is limited by the diffusion of the load
to a regime where the motor is limited by the thermally excited
triggering of the stator power stroke.

Nonlinear pmf Dependence at High Speed. The current model uses
thermally excited transitions to describe both ion hopping onto
and off the stator, and the corresponding thermally excited
triggering of the stator conformational changes (power stroke)

Fig. 4. The rotor–stator interaction according to the model of Blair et al. (21). The stator assembly MotA4�MotB2 is a bistable system: two conformations are
separated by an energy barrier. (a) Schematic illustration of one motor cycle. Step 1: at the end of previous cycle, D32 residues on the stator are unprotonated,
and the stable conformation is as shown on the left; the cytoplasmic loop of one MotA (the right one in the figure) is down, engaging the rotor. Binding of two
protons to the MotB D32 residues neutralizes them, allowing a thermally activated transition to the alternate conformational equilibrium to perform the first
power stroke with the other MotA loop engaging the rotor. This process is characterized by the transition rate kon

� , which is a composite of ion hopping on rates
and the thermally activated conformational transition rate. Step 2: At the end of the first power stroke, the two binding protons are released to the cytoplasm.
This transition triggers another conformational change of the stator so the (right) MotA loop engages to the rotor to perform the second power stroke. This
process is characterized by the transition rate koff

� , which is a composite of ion-hopping off rates and the thermally activated conformational transition rate. At
the end of the cycle, the stator has returned to its conformation at the beginning of the cycle, with the rotor advancing one step to the right. On finishing one
cycle, the cytoplasmic loop should traverse a closed cycle with nonzero area, as discussed previously on studying the F1 motor (24). During the entire two-step
cycle, the rotor is almost always engaged, so that the duty ratio is close to 1. The stator loops interact sterically with 26 copies of FliG arrayed circumferentially
around the rotor. The asymmetry in the steric interaction determines the direction of rotation [reversals are triggered by reversing this asymmetry in response
to CheY binding to the rotor (25); see Supporting Text]. The motion of the rotor is tracked by means of a large load (with drag coefficient �L) attached to the
motor via a compliant elastic linkage. This mechanism is only one of the possible schemes consistent with the mathematical model (see Supporting Text). (b) The
driving potentials (free energies) of the stator corresponding to a are approximated by identical piecewise linear functions offset by half a wavelength 2��26.
Each transition between the two potentials initiates a power stroke, which, for simplicity, we model as a constant force. The soft elastic coupling between the
rotor and the load is indicated by the spring, A. The sharp peaks in the potential labeled B may be due to steric interactions between FliGs and the MotA
cytoplasmic loops that prevent thermal fluctuations from taking the system down the backside of the potential. The peaks ensure tight coupling between
rotation and proton flux. Each motor cycle transports two ions from periplasm to cytoplasm, which decreases the free energy of the system by 2e 
 pmf and
advances the rotor by 2��26. The (shaded) transition regions specify the positions where the transitions between the potentials can take place. Labels A–C
correspond to Assumptions A–C in the text.
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as a single step (see Fig. 8, which is published as supporting
information on the PNAS web site). Because of this approxi-
mation, the model does not reproduce the linear dependence of
speed on pmf at low load and high speed (see Fig. 9 a and b,
which is published as supporting information on the PNAS web
site). Separate treatments are necessary to explain the linear pmf
dependence of rotation rate at high speeds (8). In Supporting
Text, we use a simple theoretical analysis to show that nearly
linear dependence is expected when the stator conformational
change is the rate-limiting step (Fig. 9c). However, a definitive
explanation awaits knowledge of the stator structure. Various
experimental studies suggest the existence of two disconnected
half channels open to the cytoplasm and periplasm, respectively
(28). Therefore, we suggest that the slow step could be the
transition of the MotA4�MotB2 complex from a conformation
open to the periplasm to a conformation open to the cytoplasm
(see Supporting Text).

Torque Speed vs. Stator Number. At high load the motor rotates
slowly, and the elastic linkage is fully extended. Under these
conditions, the motor is essentially working against a conserva-
tive load, and the motor torque is determined by the overall
free-energy drop per motor cycle. Provided that the motor is
tightly coupled, the motor is then operating close to thermody-
namic equilibrium. Thus, the torque generated by several stators
will be additive. Indeed, resurrection experiments show that each
additional stator adds the same amount of torque, reinforcing
the conclusion that ion transport and rotation within the flagel-
lar motor are tightly coupled (15).

At higher rotation rates, the stator dynamics begins to affect
the motor torque. While one stator finishes its power stroke, and
before it can commence another power stroke, the rotor is being
driven forward by other stators so that this stator impedes rotor
rotation (the negative slope region in Fig. 4b). Consequently,
stators may interfere with one another (as do myosins in a muscle
fiber), and the rotation rate at which the motor torque drops zero
may decrease as the number of stators increases (see Supporting
Text and also Fig. 10, which is published as supporting informa-
tion on the PNAS web site).

Discussion
In this work, we have demonstrated that the motor speed of the
BFM as a function of motor torque and pmf does not depend on
the details of the energy-transduction mechanism. We have con-
structed a mathematical model of the BFM based on the qualitative
proposal by Blair and coworkers (21) that incorporates these
requirements. Thus, our model is consistent with a large body of
experimental observations on the BFM. However, any model that
conforms to the listed requirements would do as well as ours.

A central aspect of the mechanochemical measurements sum-
marized in Fig. 3 is that they are performed by observing the
motor through the prism of an elastic compliance coupled to a
viscous load. Elston et al. (29, 30) have given a detailed math-
ematical analysis of the role of a soft elastic linkage and
time-scale separation on motor performance. The role of elas-
ticity has been discussed by several other researchers in various
contexts (31–33). A similar situation holds for other mechano-
chemical systems. For example, the F1 motor of the F1Fo ATPase
achieves �100% Stokes efficiency when loaded with a long
elastic actin filament and exposed to high ATP concentrations.
In this situation, the motor dynamics is not rate limiting.
However, when the ATP concentration drops, slowing the motor
dynamics, the Stokes efficiency drops as well (34, 35). Another
example is the motor that drives the gliding motility of the
mollicute Mycoplasma mobile. This bacterium can move forward
at an amazing speed of several cell-body lengths per second. By
attaching to the bacterium a large polyethene bead, Miyata et al.
(36) observed that the velocity increased linearly with temper-

ature, exactly what one would expect when the motor is observed
through the lens of an elastic compliance (the cell body) attached
to a large viscous load.

Another notable feature of our model is the explanation it
offers for the sharp transition between the two regimes of the
torque–speed curve in terms of positive feedback between the
external load and the angle-dependent transition rates between
the stator kinetic states. The model makes the experimentally
verifiable prediction that increasing stator number will actually
decrease motor speed at zero loads.

Methods
The assumptions given above can be cast in form of a mathe-
matical model. The dynamics of a single stator motor pulling a
viscous load by means of an elastic linkage can be described by
the following Langevin equation:

Motor: �M

d


dt
Ç

effective viscous
drag torque

� �
�

�

VM�
 , s	

Ç

Potential of mean force
between rotor and stator

� ��
 � 
L	
Ç

Elastic coupling force
between rotor and load

� �2kBT�M fM� t	
Ç

Brownian torque

, [3]

where �M is the effective drag coefficient of the rotor. The
viscous load (e.g., the bead in Fig. 4a) is coupled to the rotor via
an elastic linkage, which is modeled by a harmonic potential,
VRL � 1⁄2�(
 � 
L)2, where 
L is the angular position of the load
with respect to the rotor (compare Fig. 7a). The last term is the
stochastic Brownian force acting on the stator, where fM(t) is
uncorrelated white noise (37, 38). VM is the potential of mean
force along the minimum energy path reexpressed as a function
of the rotation angle 
, and s is a binary variable referring to the
stator conformational state: right or left piston down. The slope
of VM determines the force profile the stator exerts on the rotor.
This potential has not yet been measured, and so for simplicity
we choose the two potentials VM as identical periodic free-
energy profiles, each offset by a half-period, as shown in Fig. 4b.
The features of the potentials implement the requirements
labeled A, B, and C in the cartoon. The high peak at the top of
each potential ensures tight coupling between the rotor and
stator by preventing a thermal fluctuation from carrying the
system to the left and ‘‘wasting’’ a translocated proton. Struc-
turally, this type of interaction is likely due to steric or electro-
static repulsion between an engaged (half) stator and the FliG
proteins of the rotor (3). The switching between the two stator
chemical states corresponds to switching between the two po-
tential curves shown in Fig. 4b, which can be described by a
Kramers jump process between the two stator potential minima.

Simultaneously, the motion of the load is described by the
Langevin equation

Load: �L

d
L

dt
Ç

Viscous drag
force on the Load

� ��
 � 
L	
Ç

Elastic coupling
force

� �2kBT�L fL� t	
Ç

Brownian force
on the load

.

[4]

Here the elastic coupling term appears with sign opposite that
in Eq. 3, and �L is the drag coefficient of the load. The last term
is the Brownian force on the load. The characteristic time scale
for the motion of the load is tL � �L��.

The model Eqs. 3 and 4 can be replaced by the equivalent
coupled Markov–Fokker–Planck equations describing the prob-
ability density, j(
L, 
, t) of the rotor and load being at position
(
, 
L) at time t in chemical state j when driven by a single stator
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(see Fig. 11, which is published as supporting information on the
PNAS web site).

�j

�t
�

1
DM

�

�

� 1

kBT � ��
L � 
M	 �
�

�

Vj�  j�

�
1

DL

�

�

� 1

kBT
��
M � 
L	 j�

Ç

Motion due to the potential
and the load force

� DM

�2 j

�
M
2 � DL

�2 j

�
L
2

Ç

Brownian motion

� �
i

k ji�
	 i

Ç

Chemical
transitions

, i , j � 1, 2. [5]

Here DM and DL are the diffusion constants of the rotor and the
bead, respectively, related to the drag coefficients by the Einstein
relation, � � kBT�D.

Property D is implemented by the potentials in Fig. 4b by
ensuring that chemical transitions between chemical states are
localized to a band near the potential minima (shaded in Fig. 4b).
Localizing the stator transitions implies that there is a timing
mechanism that depends on a rotor–stator interaction so that the
power strokes are delivered to the rotor near the optimal angular
rotor position (see Fig. 12, which is published as supporting
information on the PNAS web site). Blair et al. (3, 21) ascribe this
property to a charge–charge pairing between the MotA cyto-
plasmic loop and the �-helix of FliG. Within this band, the most
probable location where transitions take place varies with the
rotor speed. This variation is because the effective transition rate
is given by weighting the transition rate at each angle, 
, by the
probability of being at that position

�k� 	
 k�
	�
, 
L	d
Ld
 . [6]

Because of the elastic coupling to the load, the potentials in Fig.
4b will be sheared, skewing the probability density, , and thus
the most probable transition locus (see Fig. 6).

To ensure that the transitions obey detailed balance, the rate
constants are modeled by

kij � k0e��Vij�kBT, kji � k0e ���1	�Vij�kBT, i , j � 1, 2,

[7]

where � apportions the free-energy difference between forward
and reverse rates; in our computations we set � � 0.5. Note that in
diagrams like Fig. 4b, the derivatives of the driving potentials specify
the instantaneous torque generated at the rotor–stator interface:
�(
) � ��V��
, and the vertical distances between the potentials in
the transition region is the thermodynamic contribution from the
proton-motive force, e��̃ (Eq. 1). Thus, the relative vertical dis-
tance between a pair of potentials in Fig. 4b gives �Vij(
), the
free-energy change of each transition Vi 3 Vj in Eq. 7.

For N stators acting in parallel, the total number of chemical
states S � 2N. The stators are placed at an angular distance
2�i�N � �
i round the periphery of the rotor, where �
i is a
uniformly distributed random number between [�2��(26 

2N), 2��(26 
 2N)] to minimize the vernier effect (39). [Recent
experiments show that, in E. coli, there can be up to 12 stators,
and they need not be equally spaced (S. Reid, M. C. Leake, J. H.
Chandler, C.-J. Lo, J. P. Armitage, and R.B., unpublished data);
however, the stator number and distribution does not greatly
influence the ability of our model to fit the data.] Then, for a
given stator state configuration (s1, . . . , sN), the composite
motor potential is

Vs�
	 � �
i�1

N

Vsi
�
 � 2�i�N � �
i	, si � 1, 2, s � 1, . . . , 2N.

[8]

Unless stated otherwise, all of the results shown in this work
are computed with N � 8.

Results shown in Fig. 3 are obtained by least-square fitting the
experimental data. Numerical calculations show that data fitting
is not sensitive to the model parameters (see Table 1, which is
published as supporting information on the PNAS web site) as
long as the four requirements described above are satisfied.
Computational details are given in Supporting Text. Uncertainty
of the exact values of the rotor and stator diffusion constants
does not affect our ability to fit the motor torque–speed rela-
tions, which are mainly determined by the much slower load
diffusion constant and effective chemical transition rates.
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