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The bacterial flagellar motor (BFM) is responsible for driving bacte-
rial locomotion and chemotaxis, fundamental processes in patho-
genesis and biofilm formation. In the BFM, torque is generated at
the interface between transmembrane proteins (stators) and a rotor.
It is well established that the passage of ions down a transmembrane
gradient through the stator complex provides the energy for torque
generation. However, the physics involved in this energy conversion
remain poorly understood. Here we propose a mechanically specific
model for torque generation in the BFM. In particular, we identify
roles for two fundamental forces involved in torque generation:
electrostatic and steric. We propose that electrostatic forces serve to
position the stator, whereas steric forces comprise the actual “power
stroke.” Specifically, we propose that ion-induced conformational
changes about a proline “hinge” residue in a stator α-helix are di-
rectly responsible for generating the power stroke. Our model pre-
dictions fit well with recent experiments on a single-stator motor.
The proposed model provides a mechanical explanation for several
fundamental properties of the flagellar motor, including torque–
speed and speed–ion motive force relationships, backstepping, var-
iation in step sizes, and the effects of key mutations in the stator.

bacterial flagellar motor | torque generation | mechanochemistry |
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The bacterial flagellar motor (BFM) is one of only two known
protein motors that uses the potential energy stored in the

transmembrane ion gradient (the ion motive force, or IMF) in-
stead of ATP, the near-universal cellular energy currency. The
other such motor is the FO motor of ATP synthase, responsible
for the synthesis of ATP. Understanding how these ion-driven
machines generate useful mechanical work is a fundamental
issue in cellular biology.
One of the principle diagnostics for a rotary motor is the re-

lationship between torque and rotational speed. Theoretical mod-
els attempt to reproduce these empirically measured relationships.
The torque–speed curve of the BFM appears to display two distinct
regimes: a constant-torque plateau at low speeds that sharply
transitions into a near-linear decrease in torque at high speeds (1).
Importantly, recent experiments show that the number of torque-
generating units (or stators) is likely not constant across this curve
(2). This is akin to a car in which the number of active cylinders
changes as the car goes uphill and downhill.
In an attempt to reproduce experimentally measured torque-

speed curves, most of the currently published models assume
that the number of working stators is constant. However, recent
measurements of single-stator torque–speed curves provides in-
sight into the physics of the rotor–stator interaction (3). Here, we
focus on the mechanism of torque generation in single-stator
motors. Understanding the physics of the torque–speed curve of
multiple-stator motors requires consideration of load-dependent
stator recruitment, which is beyond the scope of this work.
The recently reported single-stator torque–speed curves (3)

make a theoretical reexamination of the BFM’s torque generation
mechanism especially timely. Currently published models describe
torque generation phenomenologically as an energy surface without

committing to a specific physical mechanism. Here we combine the
currently available structural information with published bio-
physical and biochemical studies on the dynamical behavior of the
motor to propose a mechanically specific and experimentally test-
able model of torque generation in the BFM.
The BFM consists of a series of concentric rings embedded in the

cell envelope connected to an extracellular helical propeller by a
flexible hook (Fig. 1). The cytoplasmic C-ring acts as the rotor and
the membrane-embedded Mot (Motility protein) complexes act as
the stators. A working motor can have between 1 and 11 such stator
units. Each stator unit is composed of 4 MotA and 2 MotB helix
bundles (4, 5). A MotA bundle consists of four membrane-
embedded α-helices linked by two large cytoplasmic loops.
Interaction between the cytoplasmic loops and FliG proteins
located on the periphery of the rotor is implicated in torque
generation. We note that although there is some controversy on
the exact number of FliGs, this detail does not affect the main
points of our model. For ease of exposition, in the following, we
assume that there are 26 FliG “spokes” on the rotor.
The feat of coupling an ion gradient to the generation

of mechanical work is attributed to the MotB complexes. These
complexes each contain an ion-conducting channel with a nega-
tively charged aspartate residue (Asp32) that binds cations. This
residue is one of the most strongly conserved residues across
bacterial species (1, 5). The interaction between Asp32 and a
cation passing through the inner bacterial membrane (between
the periplasm and the cytoplasm) was previously suggested to
induce conformational changes in the stator complex, resulting
in the torque-generating power stroke (5).
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A crystal structure of the stator complex will be necessary for a
complete understanding of the power stroke. However, the avail-
able structural knowledge, combined with information about the
motor’s dynamical performance, is sufficient to propose a plausible
model that is experimentally testable. Using this information,
we present a mechanical model for torque generation involving
proline-induced conformational changes in MotA cytoplasmic
loops (5, 6). To the best of our knowledge, our model is the first to
incorporate known structural information about the BFM stator
and rotor complexes into a quantitative physical mechanism for the
generation of the power stroke. As part of this study, we aim to
address the following fundamental questions: (i) What are the ki-
nematics and dynamics of the BFM power stroke? (ii) What role do
charged residues on the stator and rotor play in torque generation,
and how does this role explain mutational experiments which show
only a partial reduction in motor efficiency? (iii) What is the physics
behind the shape of the torque-speed curve for single-stator mo-
tors? (iv) Why does the motor exhibit backsteps even in the absence
of an external ‘reversal’ signal (usually the small protein CheY-P)?
In addressing these issues, we primarily discuss the proton (H+)

powered motor of Escherichia coli. However, our model is suffi-
ciently general so as to apply to the sodium (Na+) powered motors
found in alkalophiles and marine Vibrio species.

Mechanochemical Model
An Electrosteric Power Stroke.Due to the modest magnitude of the
forces involved relative to thermal fluctuations, it has long been
assumed that nearly any form of interaction between rotor and
stator is sufficient to explain the rotation of the BFM (1). For this
reason, previous models have avoided committing to a particular
physical origin for these forces, instead treating the interaction
between the stators and the rotor phenomenologically as a free-
energy surface and the stator as an ad hoc stochastic stepper (7–9).

However, knowledge gained from recent structural (4, 10, 11)
and biophysical (3) studies has led us to conclude that the power
stroke of the BFM is electrosteric—that is, it is driven by both
electrostatic and steric forces. Hence, we propose a mechano-
chemical model consisting of two phases. (i) Before the power
stroke, electrostatic forces position the stator. (ii) Once posi-
tioned, the stator delivers a steric push (i.e., a contact force) on a
FliG protein located along the periphery of the rotor. A more
detailed description of the nature of contact forces is found in
SI Text and in ref. 12.
In the following, we lay out the assumptions involved in the

construction of our model, followed by a detailed description of
the mechanism. Details of the mathematical formulation are
provided in Materials and Methods and SI Text.

Electrostatic Forces Steer the Stator into Place. The first step in
constructing our model is the steering and positioning of the
stator by electrostatic forces. This hypothesis originates from the
results of the mutagenesis experiments performed by Zhou et al.
(13). These studies were aimed at elucidating the structure of the
MotA loops. They found that mutations of certain charged resi-
dues on the cytoplasmic portions of the loops degraded—but did
not eliminate—motor function. Notably, the deleterious effects of
mutations on the stator were often countered by corresponding
mutations (in particular, compensating charge reversals on the
FliGs). Certain mutations were also found to have very small ef-
fects, or even to cause slight improvements, on bacterial motility.
These results correspond to the idea that mutations of charged

residues may result in imperfect steering and consequently in a
less efficient—but still functioning—power stroke. Similarly,
certain mutations may position the cytoplasmic loops closer to
the adjacent FliG, resulting in a larger power stroke and corre-
sponding improved motility.
Because detailed structural information on the stator is not yet

available, we performed a simple example calculation to dem-
onstrate how electrostatic interactions can position the stator
ready for a power stroke. Explicit calculations, as well as a full ex-
planation of model assumptions, can be found in SI Text. For
computational convenience, we approximate the important charged
residues on the FliG (Flagellar motor switch protein G) proteins
(10) and stator loops (14) implicated in torque generation. The
assumption that FliG proteins can be modeled as dipoles is based
on previous studies (10, 15). Modeling the electrostatic forces be-
tween the stator and rotor by point charge interactions produces
results comparable to those obtained from a dipole approximation.
The distribution of observed rotor step-sizes has been shown

experimentally to be centered around 2π/26 radians (∼13.8°), the
average spacing between consecutive FliGs (16, 17). The posi-
tioned charges result in a weak electrostatic force that is suffi-
cient to position the MotA loop without significantly wasting
energy to free the stator at the end of the power stroke. Further-
more, the width of the well leads to somewhat imprecise posi-
tioning. Although this result is hardly unexpected, the wide spread
of this distribution—in particular, the tendency toward smaller step
sizes—has been somewhat puzzling.
Because a wide energy well may result in stators being posi-

tioned at nonoptimal locations, electrostatic positioning may
contribute to this variance. Because we propose that the stator’s
power stroke is imparted via a contact force on the rotor, im-
perfect electrostatic positioning will result in the stator being in
contact for only a portion of its trajectory. This results in the
stator delivering a stroke that is smaller than average. Of course,
imperfect steering is not likely to be the only factor determining
the variance in the observed step size distribution: The uneven
spacing of FliGs along the periphery of the rotor (18, 19), as well
as experimental errors, is also likely to contribute.
Note that, in the case of a reciprocal motion of the stator, at-

tractive electrostatic forces strong enough to comprise the entire

Fig. 1. Schematic showing the basic parts of the BFM. A bacterium has, on
average, four flagellae, each attached to the basal body of a motor via a
flexible hook. The M, S, and C rings of the basal body are together called the
rotor. FliG proteins (26 copies of which are assumed here) are placed around
the periphery of the C ring. These interact with theMotA loops of the stator to
generate torque and rotate the flagella. Stators are composed of MotA and
MotB subunits, the latter of which attaches the stators to the peptidoglycan
layer, allowing for torque generation via the MotA–FliG interaction. A motor
can have between 1 and 11 engaged stators, depending on the load (2, 31, 32).
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power stroke would require a nonnegligible energy to separate the
stator and the rotor at the end of the power stroke. This penalty
for letting go would likely obviate the rotor torque, resulting in a
motor with a far lower Stokes efficiency (20) than has been cal-
culated for the BFM (∼95%) (1). In contrast, the mechanism we
propose here efficiently generates mechanical work from the ion
motive force.
We note that the above calculation is speculative: Changes in

parameter choices will vary the resulting energy landscape. How-
ever, our mechanism presupposes that the energy well produced
by the electrostatic interactions will be shallow and wide (Fig. 2).
We have performed an example calculation to show that such a
mechanism is feasible given our limited structural information.
A more precise calculation can be performed only when more
detailed structures are available.

Motion About a Proline Hinge Provides a Steric Push. As proposed
previously (5), we assume that the steric portion of the power stroke
is the result of a conformational change in the cytoplasmic MotA
loop. Evidence of such conformational changes has also been
shown experimentally (21). In our model, this motion consists of
hinged movements of the MotA helices that result in a “kink and
swivel” motion, as shown in Fig. 3 (6). The steric mechanism pro-
posed below remains valid regardless of which residue, or group
of residues, on the MotA/MotB helices acts as the inducer.
However, we have chosen to focus on MotA’s Pro173 residue
because (i) along with Asp32 on MotB, this amino acid is
strongly conserved across bacterial species (22) and (ii) previous
molecular dynamics simulations have found that proline resi-
dues induce hinges in transmembrane helices (6), resulting in a
movement analogous to the one proposed in the model. The
specific mechanism we propose is as follows.
When a cation binds to the negatively charged Asp32 residue

on MotB, the hydrogen bonds (including those of water) in the
vicinity of Asp32 and Pro173 on the A3 helix of MotA collec-
tively rearrange. This rearrangement induces an elastic strain in
the MotA–MotB complex centered around the proline residue
in the A3 loop of MotA. Fig. 3A shows a candidate scenario,
where the carbonyl group of residue 169 on MotA forms a hy-
drogen bond with Asp32 on MotB after proton binding, as proposed

in ref. 5. This elastic strain induces the kink and swivel move-
ment around the proline residue and drives the proposed mo-
tion of the lower part of the A3 helix, constituting the power
stroke (see Fig. 3B). The binding of the ion and the rear-
rangement of the hydrogen bonds (10−12 s to 10−9 s) are near-
instantaneous processes compared with the much slower
motion of the kink and swivel conformational change (10−5 s to
10−3 s). Thus, the chemical steps can be treated as transitions
between states in a Markov chain.
The above proposal is supported by a few simple calculations.

The maximum torque of the BFM in E. coli is ∼2,000 pN·nm
(23). Given that up to 11 torque-generating units may be acting,
this corresponds to a maximum motor torque of ∼200 pN·nm
per stator (24). As the radius of the motor is ∼20 nm, the force
generated by a single stator during a power stroke is ∼10 pN.
Direct observation of stepping behavior has shown that the
motor takes 26 elementary steps per revolution, corresponding
to a displacement of ∼5 nm per step. As explained below, our
model supposes that each elementary step is actually composed
of two half-steps, each imparted by the power stroke of a MotA
helix. This results in a displacement of ∼2.5 nm per power
stroke. Molecular dynamics studies show the angles subtended
by proline hinge motifs from various transmembrane helices to
be between 18° and 25° (6). From this, we can estimate the
length of the cytoplasmic loop measured from the proline hinge
to its tip to be ∼ 7 nm, a reasonable estimate as the majority of
the stator residues have been shown to extend into the cytoplasm
(13). Such a lever arm would result in ∼25 pN·nm (∼ 6–8 kBT) of
work per half-step, corresponding to the rearrangement of one to
two hydrogen bonds (and the free energy released by the passage
of one proton). This energy barrier is sufficient to ensure an ef-
ficient directional process, as suggested in ref. 25.

An In-Phase Two-Cylinder Engine. There are four MotA subunits in
each stator complex; see Fig. 4 for a schematic of the stator
structure. Our model supposes that two of these subunits are
inactive during torque generation while the motor is moving
predominantly in a single direction. We base this presumption on
the idea that switches between counterclockwise (CCW) and
clockwise (CW) rotation result from changes in FliG orientation

A

B

Fig. 2. The predicted energy landscape during electrostatic steering. (A) Schematic of rotor and stator configurations; ϕS and θR are the angular coordinates
of the stator and the rotor with respect to the horizontal; αR is the positive angle of the individual FliGs with respect to the radius. Blue arrows denote the
direction of the dipole (10, 15). (B) Predicted surface and contour plots of the electrostatic energy vs. the stator and rotor angles. The predicted surface shows
the existence of a wide and gently sloping energy well. Note that ϕS and θR are periodic variables with periods π=2 and π=13, respectively; the above plots
show one period of each. Our calculations consider a single stator centered at (21,−2,1) with the rotor centered at the origin (all distances in nanometers).
Computations using this dipole approximation suggest a well of depth ∼1 kBT for this configuration (see SI Text for details).
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(15). Given this, we propose that two MotA loops are re-
sponsible for the power stroke in one direction, whereas the
other two interact with the alternately oriented FliG to drive
rotation in the other direction. We suppose that loops 1 and 3
are responsible for CCW motion and loops 2 and 4 are re-
sponsible for CW motion, but note that this designation is ar-
bitrary. This mechanism predicts that the intrinsic mechanics for
power strokes in both directions are equivalent; this has been
observed experimentally (17).
We propose that an elementary step is composed of a pair of

power strokes, analogous to the mechanism of a two-cylinder
engine. Experiments on motors driven at extremely low speeds
may allow the direct observation of these substeps, in support of
our model. This can be done using chimeric sodium-driven fla-
gellar motors. As extremes in sodium concentration are tolerated
far more easily than extremes in pH, these chimeric motors can
be driven at very low sodium motive forces (SMFs). Thus far,
speeds as low as 10 Hz have been obtained (16).
A two-ion mechanism can either be in phase, in which the

energetic profiles of the two stator loops are identical, or out-of-
phase, in which their dynamics are offset by a half-cycle. In an
experiment using a slowly driven chimeric motor, measuring the
rate-limiting step between mechanical substeps can differentiate
between these two scenarios. For example, if slower ion binding
(e.g., by lowering IMF) extends the dwell time between half-
steps, the out-of-phase engine model is supported.
The mechanics of these two scenarios are equivalent within the

framework of our model. For this reason, we discuss only one of
these mechanisms in detail: the one in which the two stator loops
act in phase with each other (as shown in Fig. 5B). We choose this
alternative because the passage of two protons across a membrane

provides more energy, which contributes (along with the work
done by the MotA loops) to a more reliably directional process in
the presence of thermal noise. Interestingly, a single proton pas-
sage under standard conditions generates ∼ 6 kBT, slightly less
than the calculated length of “time’s arrow” (the energy barrier
required for a such a reliably directional process) (25).

Full Revolution Requires the Passing of at Least 52 Protons
Our model for torque generation assumes that the rotation of
the BFM is tightly coupled to the transmembrane ion gradient.
This means that each elementary power stroke is tied directly to
the passage of protons across the membrane. Given our prior
assumption of 26 elementary steps per revolution, our model
thus requires 52 protons for a full revolution. Previously, a lower
bound for the number of ions per full revolution was determined
by calculating the work done as hτi× 2π and equating it to the
free-energy n× IMF, where n is the number of ions per revo-
lution and IMF is the ion motive force, as before (3). The above
calculation resulted in an estimate of n= 37, lower than the 52
ions per revolution supposed by our model.
This discrepancy can be explained as follows. Although the

above is indeed a lower bound, a tighter bound can be computed.
The calculation of work as stated above suggests that the power
output per revolution is ~P= hτihωi. However, power is formally
calculated as P= hτ ·ωi, which differs from ~P by a covariance
term, covðτ,ωÞ. This follows from the fact that, for any two
stochastic processes X and Y, hXY i= hXihY i+ covðX ,Y Þ.
Note that the number of protons per revolution assumed by

our model is also a lower bound; that is, we have assumed that 52
working ions are required per revolution. Many factors can result
in the passing of more ions than predicted, including leakiness of

A

B C

Fig. 3. Ion binding onto Asp32 induces a kink and swivel conformational change (6). (A) Binding of a proton to Asp32 of MotB drives a rapid local re-
organization of hydrogen bonds (including those of water). In particular, we focus on the creation of a hydrogen bond between the side chain of MotB’s
Asp32 and the carbonyl group of MotA’s residue 169. Ion binding thus creates a local elastic strain in the MotA helix. The release of this strain leads to the
proposed conformational change in MotA about the Pro173 residue. Adapted from Kim et al. (5). (B) Upon ion binding, MotA undergoes a rapid confor-
mational change consisting of three motions: (i) a bending about Pro173 ϕ, (ii) a downward motion, zðϕÞ, and (iii) a rotation about its central axis. Inspired by
the work of Cordes et al. (6), we propose that this kink and swivel motion generates the power stroke. Importantly, we note that this figure is a 2D depiction
of a 3D process, with the motion of the loop extending out of the plane of the page. (C) Our envisioned motion of the contact point between a FliG and a
stator loop during the power stroke. The kink and swivel motion induces the contact point to follow a helical path on a cylinder of radius approximately equal
to the radius of the stator. For simplicity, we assume that the vertical motion is a function of the angle ϕ subtended by the stator loop. Therefore, we explicitly
model only the rotational motion ϕ of the stator loop.
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the ion channels, loose coupling between the rotational and
vertical movements of the stator, irregular arrangement of
FliGs around the rotor, or imperfect placement of stators by

electrostatic steering forces. This can be quite easily extended
within our mathematical framework by replacing the step
function associated with ion binding with a sigmoidal function.

A B

Fig. 4. Stator structure and coordinated motion between stator subunits. (A) Proposed arrangement of stator components as viewed from the periplasm. A
stator has four MotA helix bundles, each consisting of four α-helices. The four MotA subunits surround a pair of MotB helices. The ion channels associated
with the MotBs (shown in green) contain the Asp32 residues essential for proton binding. The stator is attached to the peptidoglycan via a linker region on
MotB. The power stroke is delivered to the rotor FliGs by the cytoplasmic loops between helices A2 and A3 in each MotA bundle (shown as solid bars). Loops 1
and 3 (highlighted in blue and red, respectively) are associated with the ion channels. Adapted from Braun et al. and Kim et al. (4, 5). (B) Due to the helical
structure of the MotA loops, we can make an analogy between their motion and that of a bundle of four gears. Our model proposes that loops 1 and 3
(shown in blue and red, respectively) drive CCW rotation via contact with FliG, whereas loops 2 and 4 drive CW rotation.

A B

Fig. 5. Dynamics of the rotor–stator interaction. (A) Mechanics of the power stroke. (Top) After the initial electrostatic steering, two protons bind to the
charged Asp32 residues on the MotBs. The consequent rearrangement of hydrogen bonds induces an elastic strain in the straight MotA loops. Release of this
strain results in synchronous kink and swivel motions about the proline hinge in both MotAs. As a result, a steric push is imposed on FliG, and the first half of
the power stroke is performed by loop 1. Importantly, this motion also has a vertical component—the loops lower themselves out of the membrane. (Bottom)
The lowering of the MotA loops exposes the protons in MotB to the cytoplasm, whereupon they are released. This results in a reset of the MotA loops, during
which loop 3 carries out the second half of the power stroke. We note that this image depicts a 2D projection of a 3D motion: The motion of the stators is not
constrained to the plane of the page. An observer sitting on the rotor axis sees the stator inchworm walking along the rotor using the FliGs as steppingstones.
(B) Energetics of the power stroke. Because the two loops move in phase with each other, their energetic pictures are identical. We describe the free-energy
landscapes using double-well Landau potentials. These landscapes are shown in blue for loop 1 and red for loop 3 with respect to the angles of the stator ϕ
and rotor θ. We model the stator and rotor interaction using a steric force. This ensures that their motion and the values of the corresponding angles are very
tightly tied to one another. The initial entrance of the proton into the ion channel (kon) places the system within kBT of the energy barrier. Thermal motions
then result in the first half of the power stroke (Top and Middle). Exit of the protons into the cytoplasm (koff) drives the reset, and the second half of the
power stroke (Middle and Bottom).
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The Mechanical Escapement. Fig. 5A depicts the mechanics asso-
ciated with the power stroke. We choose the angle subtended by a
stator loop ϕi

S with respect to the bilayer normal (where i corre-
sponds to the loop number) as the order parameter. That is, we
consider the energy landscape along the arc length of the me-
chanical trajectory of the stator loop. A stator loop has two stable
configurations: straight (ϕi

S = 0°) and bent (ϕi
S ∼ 20°). Both of

these configurations correspond to energy minima in different
chemical environments: When the negative Asp32 is not neutral-
ized by a proton, the loops prefer to maintain a straight posture
(ϕi

S = 0°). The presence of bound protons induces a free-energy
change sufficient such that a thermal fluctuation can induce the
conformational change to the bent state (ϕi

S ∼ 20°).
During a power stroke, the entire stator complex undergoes a

collective gear-like motion as shown in Fig. 4B. The conforma-
tional change due to the hopping on of the ion produces the first
half of the power stroke: Here, loop 1 pushes the FliG, while
loop 3 is put in place to carry out the second half of the power
stroke during the reset (Fig. 5A). This reset corresponds to the
hopping off of the proton, resulting once again in the stator loops
surmounting the energy barrier between configurations and
reverting to the straight position (ϕi

S = 0°). Note that the numbering
of the loops is arbitrary; the mechanism proposed here is equivalent
to one in which loop 1 performs the first half of the power stroke
and loop 3 performs the second.
In summary, a torque generation cycle by a single stator of the

BFM proceeds as follows:

i) Electrostatic interactions between charged residues on MotA
and FliG steer a stator tip close to a rotor FliG.

ii) In the presence of a membrane potential, the two MotB
aqueous ion channels open and two protons bind to the
negatively charged Asp32 residues on the MotBs. This trig-
gers a reorganization of the hydrogen bonds in the vicinity
of the Pro173 on MotA (see Fig. 3A).

iii) The hydrogen bond rearrangements induce elastic strain in
the straight MotA loops. This strain drives a kink and swivel
motion of the MotA loop, increasing the bend angle (from
ϕi
S = 0° to 20°, as shown in Fig. 3B).

iv) One MotA loop (loop 1, shown in blue in Fig. 5A) applies a
steric push to the nearest FliG, resulting in one half of
a power stroke.

v) At the same time, the movement of the stator ion-binding
pocket moves downward so that the pocket is exposed to the
cytoplasm. The ion channel is now closed to the periplasm.
The protons hop off MotB into the cytoplasm, now inverting
the strain in the bent MotA loops.

vi) The inverse strain drives the movement of the loops in the
reverse direction, straightening the bent MotAs (i.e., from
ϕi
S ∼ 20° to 0°).

vii) The other MotA loop (loop 3, shown in red in Fig. 5A) now
applies a steric push to the same FliG, completing the second
half of the power stroke.

Consequently, to the rotor, the stator appears to be an
“inchworm” stepper with FliGs as the stepping stones.

Results and Predictions
Using the mathematical model described in Materials and Methods,
we performed both analytic calculations and numeric stochastic
simulations. Statistics from simulated trajectories—an example
of which is shown in Fig. 6A—were used to calculate various
experimental quantities including average motor torque and
angular speed.
In the sample trajectory for the rotor motion, the duration of a

power stroke (Tm) and the waiting time between consecutive
power strokes (Tw) are highlighted in orange and purple, re-
spectively. The highlighted power stroke shows two half-steps,
corresponding to the two sequential steric pushes by the two
MotA loops involved. As in experimental trajectories, occasional
reverse steps are also observed in our simulations, one of which

A B

C D

Fig. 6. Summary of recent experiments and comparisons with model simulations. Results are derived from numerical simulations. In all plots, model cal-
culations are shown by solid lines, and experimental data are shown as open colored circles. (A) Sample trajectory generated by the model. Moving (TM) and
waiting (TW) times are shown with orange and purple backgrounds, respectively. Two half-steps separated by a very short pause can be seen in the high-
lighted forward step (orange). Occasionally, reversals (shown with green background) appear when MotA loops 2 and 4 are engaged due to conformational
changes in FliG. (B) Single-stator torque–speed curves measured in a chimeric sodium motor for various sodium concentrations at pH 7.0. Curves show a
concave-down shape, with the length of their plateaus being SMF dependent [data from Lo et al. (3)]. (C) Motor speed vs. SMF in a chimeric sodium motor
shows a nearly linear relationship across various loads [data from Lo et al. (3)]. (D) Effect of stator viscosity on the shape of BFM torque–speed curves. The
reduction in the plateau region is mainly due to the nature of the steric forces during the power stroke.
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is shown in the sample path in Fig. 6A. An explanation for back-
steps that is compatible with our model is provided below.
The results shown in Fig. 6 were obtained via simulation.

Analytic calculations on an approximate deterministic model (ex-
plicitly provided in SI Text) were also performed for illustrating
different aspects of the model. These calculations were also used to
obtain suitable ranges for the parameters (e.g., stator and rotor
drags) used in Langevin simulations.

Single-Stator Motors Exhibit Concave-Down Torque–Speed Curves.
Until recently, BFM experiments were performed on motors
with multiple stators, with no direct accounting for the number
of engaged stators at a given load. Therefore, the existence of the
torque–speed plateau and “knee” have been assumed to be in-
nate characteristics of the rotor–stator interaction, largely be-
cause there was no evidence to the contrary. However, Lo et al.
(3) performed experiments using a chimeric single-stator motor
showing smoother torque-speed curves without a dramatic pla-
teau as observed for wild-type motors. Although these curves are
still concave-down in shape, the extents of the plateau regions
are quite variable and depend on the IMF.
The physics behind the two regimes of the torque–speed curve

have been interpreted by previous models as a competition be-
tween waiting and moving timescales (7, 8). Thus, the general
concave-down shape is largely independent of the exact struc-
tural and mechanistic details of the model. It requires only that
the model is tightly coupled and the moving time exceeds the
waiting time at high loads. Our model for single-stator motors
fulfills both of these properties.
Our simulations show torque-speed relationships consistent

with these single-stator experiments (Fig. 6B). The behavior of
the torque–speed curves results from a competition between the
time taken for a mechanical half-step (TM) and the waiting time
between ion-binding events (TW). For example, our simulations
show that the average time in moving a half-step hTMi can be
∼20 ms at high loads and ∼0.01 ms at low loads. The average
waiting time under standard conditions hTW i is ∼0.2 ms (8).
Therefore, at low loads, the motor is in a kinetically limited re-
gime, where the waiting time between steps is generally higher
than the time required to complete a step. Conversely, the motor
is mechanically limited at high loads when hTMi> hTW i, resulting
in the observed plateau. Consequently, as shown in Fig. 6B, this
plateau region grows smaller as the IMF decreases (i.e., as
hTW i increases).
This competition is also manifested in the relationship be-

tween speed and IMF: Speed depends linearly on IMF at high
loads, but in a slightly nonlinear fashion at low loads (Fig. 6C).

Given that the rotor moves 2π=26 radians per step, the speed of
the rotor (ωR) can be approximated as

ωR ≈
2π
26

×
1

hTMi+ hTW i.

At high loads, hTMi � hTW i. Because the time to complete a
power stroke is inversely proportional to the ion motive force,
hωRi∝ IMF at high loads. In contrast, the waiting time eclipses
the time for a mechanical step at low loads, and therefore
ωR ∝ 1=hTW i∝ expðq× IMF=kBTÞ. Further details to this end
are provided in SI Text.

Backstepping in the Absence of CheY-P Is Due to Thermal Flipping of
FliG. The BFM plays a central role in bacterial chemotaxis: The
direction of rotation of the motor determines whether a bacte-
rium will move in a straight line (CCW) or “tumble” (CW) to
move in a random new direction. This switching is typically ini-
tiated via a signal transduction pathway, in which a response
regulator protein, CheY, is phosphorylated into an activated
form, CheY-P, to induce tumbling. For more information on this
pathway and bacterial chemotaxis, we refer the reader to several
excellent reviews (26, 27).
However, occasional backsteps (e.g., CW motion during pri-

marily CCW rotation) are observed even in the absence of
CheY-P. This has been attributed to microscopic reversibility, of
which three possible models are discussed in SI Text. For
example, Mora et al. ascribed switching in the BFM to the dif-
fusive motion of the rotor through a “bumpy” 26-fold periodic
potential (28). However, recent structural studies have found
that there exist two main configurations for the FliGs (15, 17),
lending support to the idea that a flipping between these states is
the molecular basis for backstepping. We note that despite a
general agreement on the existence of two distinct FliG config-
urations, the exact nature of the conformational change to the
CCW direction remains controversial.
In our model, the probability of observing a backward step is

equivalent to the probability of finding a FliG oriented in the CW
state (assuming a primarily CCW-rotating motor). Within the
framework of our model, whenever a FliG changes its state and is
close to a stator, then the stator uses loops 2 and 4 to apply a
contact force and pushes the FliG in the CW direction. To model
the flipping between CW and CCW states for the FliGs, we use a
nearest-neighbor periodic Ising model with the 26 FliGs arranged
on a one-dimensional ring. Such models have been used success-
fully to explain rotational switching (see, e.g., refs. 29 and 30).
In our model, when the FliGs are oriented at an angle of

roughly 10–20° with respect to the radial direction, as shown in

Table 1. List of parameters with units, values, and reference

Parameter Definition Units Values Reference

R radius of the rotor nm 20 (1)
rS radius of the stator nm 2 —

ℓP length of the proline hinge arm nm 7 (13)
ζS drag coefficient of the stator pN·nm·s·rad−1 0.0002 —

ζR drag coefficient of the rotor pN·nm·s·rad−1 0.017 —

ζL drag coefficient of the load pN·nm·s·rad−1 0.0–10 (33)
ϕS angular position of the stator rad — —

θR angular position of the rotor rad — —

θL angular position of the load rad — —

κ hook spring constant pN·nm·rad−1 1,000 (34)
N number of stators — 1–11 (33)
τ rotor torque from stator pN·nm — —

fn white noise — — —

Ψ electrostatic potential — 1.5–2 kBT —
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Fig. 2A, the motor moves in the CW direction by virtue of
contact forces from loops 2 and 4. Conversely, when the FliGs
are pointed either orthogonal or at an angle of 180° with respect
to the CW orientation, the motor steps in the CCW direction
using loops 1 and 3. The numerical values for the above pa-
rameters will likely change with the resolution of a structure.
However, the above calculation is meant to demonstrate the
general framework of our predicted mechanism, which is in-
dependent of these choices. Using an Ising model for the flipping
of FliGs, we calculate the probability of a backstep to be ∼8%.
This probability was calculated to be ∼7.3% from stepping sta-
tistics collected by Sowa et al. (16), demonstrating that a back-
step might indeed be simply due to fluctuations in FliG
orientation. Further details on these calculations are provided in
SI Text.

High Stator Drag Reduces the Torque–Speed Plateau Region. Be-
cause our mechanism crucially depends on steric forces, we ex-
pect the drag coefficient of the stator to have a significant effect
on motor behavior. Because we explicitly model the motion of
the stator, we are able to study directly the effect of this pa-
rameter on the BFM’s torque–speed curve. Our model predicts
that increasing the stator drag truncates the torque–speed pla-
teau, thus reducing the concave-down shape of the BFM torque–
speed curve (Fig. 6D).
This is a direct consequence of the steric forces: Some portion

of the stator-generated force must go toward moving the stator
itself. As the drag of the stator increases, so does the amount of
its generated force allocated to this task. Then, for a given load,
the torque transferred to the rotor is relatively low for large
stator drag coefficients. This reduces the constant-torque pla-
teau, as well as the overall concave-down shape of the torque–
speed curve. This simple prediction may be experimentally tested
by increasing the viscosity of the stator’s membrane environment.
We note that this prediction is not compatible with a linear
potential for the rotor–stator interaction (for a detailed discus-
sion, we refer the reader to SI Text).

Discussion
The ability to convert a transmembrane ion gradient into rotary
torque is rare, observed so far in only two protein motors: the FO
motor of ATP synthase and the BFM. The mechanism behind
the torque generation in the latter has been a longstanding
mystery, driven by the fundamental role of this machine in
bacterial locomotion and chemotaxis.
Here we have combined known structural information on the

BFM (5, 15), as well as the experimental measurements on single-
stator motors by Lo et al. (3), to construct and test, to our knowl-
edge, the first mechanically specific model of torque generation.
Using this information, we are able to present an explicit model
of the dynamics of the stator during a torque generation cycle.
Our model implicates a steric interaction between the cytoplas-
mic MotA stator loops and the FliG proteins of the rotor. We
have tested the feasibility that this interaction is driven by con-
formational changes in the MotA loops due to the binding of
cations to essential aspartate residues on the two MotBs, as was
proposed by Blair and coworkers (5). Results from our model
simulations reproduce recently measured torque–speed and
speed–IMF curves from single-stator motors. A directly testable
prediction of our mechanism is that increasing the stator drag
coefficient (e.g., via increasing the membrane viscosity) will reduce
the constant-torque plateau, as well as the overall concave-down
shape of the torque speed curve.
The mechanism we have proposed is akin to a two-cylinder

engine, where two of the four MotA loops act when the motor is
moving in the CCW direction and the other two loops act in the
CW direction. We have proposed that the two loops act in phase
with each other, moving in synchrony as two protons bind to the

MotBs and are subsequently released into the cytoplasm. In this
manner, the first loop executes its half of the power stroke when
the protons bind to the MotBs, and the second loop drives the
second half of the power stroke once the protons have hopped
off into the cytoplasm.
Experiments performed at low IMF can be used to differen-

tiate between a stator acting as an engine that is in phase or out
of phase. Because ion binding is rate limiting under these con-
ditions, trajectories would show clear half-steps only if the BFM
acts as an out-of-phase engine. However, given that the me-
chanics of the power stroke for both scenarios are equivalent, the
corresponding out-of-phase mechanism would lead to a calcu-
lation analogous to the one presented in this work.
Recently measured torque–speed curves revealed that the

number of torque-generating units in the flagellar motor in-
creases with load (2). This opens several fundamental questions
regarding the physics of this molecular machine. A fuller treat-
ment of motors with multiple stators requires a model of stator
recruitment—a compelling topic for future work.
Finally, viewing our model in a larger context, if it turns out

that the proline hinge motif is not the stator structure driving
rotation, but another structural motif, then essentially the same
equations would have to be solved, albeit using a different set of
collective coordinates.

Materials and Methods
The mechanochemistry of the torque generation cycle of a flagellar motor
with a single stator unit can bemodeled by the following Langevin equations.
The dynamics of the angular positions of the stator loops ϕi

SðtÞ, i∈ f1,3g are
given as

ζS
dϕi

S

dt
= −

∂G
∂ϕi

S

ℓp
|fflfflfflffl{zfflfflfflffl}

Torque  from

Proline  hinge

−
∂VRS

∂ϕi
S|ffl{zffl}

Reaction

from  rotor

−
∂ψ
∂ϕi

S

ℓp
|fflffl{zfflffl}

Electrostatic

attraction

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζS

p
fnðtÞ.|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[1]

Here, as in the following equations, the last term is the stochastic Brownian
force, where NðtÞ is uncorrelated white noise; ζS is the effective drag co-
efficient of the stator. G=Gðϕi

S, jÞ denotes the free energy of stator loop i,
modeled in Fig. 5B as a Landau potential. However, because of thermal
fluctuations, the exact shape of the potentials is immaterial. Accordingly, we
approximate this potential by piecewise quadric functions for ease of com-
putation. The parameter j∈ f0,2g corresponds to the chemical state of the
system: j= 2 if two protons are bound to the MotB helices and j= 0 if not.
The switching between the two chemical states corresponds to a jump be-
tween potential curves, as shown in Fig. 5B.

As the stator moves between the two configurations, it induces a contact
force, and subsequent torque, on the rotor. Unlike previous models, we do
not assume that this torque is constant across loads but rather depends on
the ζL (see SI Text for more information). To this end, we do not allow a
linear interaction potential between the stator and the FliG; this would re-
sult in a constant applied force, which is not true for contact forces. We
model the steric interaction potential VRS as

VRS
�
ϕi
S, θR

�
=

8><
>:

−FRS

�
RθR − ℓPϕi

S

�2
XRS

if  0≤ x ≤XRS

0 otherwise,

where x =XRS +RθR − ℓpϕi
S denotes the distance between the position of the

stator loop and the nearest FliG. For a graphical depiction, see SI Text. From
this, the torque imposed on the rotor is calculated as τcontact =−∂VRS=∂θR,
whereas the corresponding reaction torque on a stator loop is given by
τreaction =−∂VRS=∂ϕi

S.
The charges on the FliG and the stator loop exert weak attractive forces on

each other. These forces prevent the drifting of the rotor with respect to the
stator during the chemical transition events. We refer the reader to SI Text for
more on the effects of attractive electrostatic forces on the torque–speed
curves. With the contact torque and the weak electrostatic forces, the total
instantaneous torque on the rotor is given by τ= τcontact −Rð∂ψ=∂θRÞ. The
average torque on the rotor is a time (or ensemble) average of the in-
stantaneous torque. Finally, the rotor and load are connected by a linear
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spring with elastic constant κ; the elastic coupling terms in the equations for
the rotor and the load thus appear with opposite signs.

Given this, the rotor dynamics are described by a corresponding Langevin
equation,

ζR
dθR
dt

= −
∂VRS

∂θR|fflfflffl{zfflfflffl}
Torque

from  stator

−
∂ψ
∂θR

R
|fflffl{zfflffl}

Electrostatic

attraction

− κðθR − θLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Connection

to  load

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζR

p
fnðtÞ,|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[2]

where ζR is the effective rotor drag coefficient. Finally, the dynamics of the
load are then driven by the motion of the rotor,

ζL
dθL
dt

= κðθR − θLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Spring  connection

to  rotor

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζL

p
fnðtÞ.|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[3]

As above, ζL is the effective drag coefficient of the load. All parameter values
are provided in Table 1.

The above model can be collapsed to explicitly include only the dynamics
of a stator with a single loop that generates torque both during its bending
(ϕi

S increasing) and unbending (ϕi
S decreasing). This description is isomorphic

to the mechanism described previously (see Fig. 5) because the mechanics of
the two halves of the power stroke are equivalent as described above. The
equations corresponding to this reduced model are provided in SI Text.

As previously (7), we ensure that chemical transitions are localized near
potential minima. We choose rate constants for these transitions such that
detail balance is maintained. Further details on our modeling of the chem-
ical kinetics, including explicit forms of the rate constants, is provided in
SI Text.
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Model Equations
In Materials and Methods, we presented Langevin equations describing the dynamics of the two stator loops, the rotor, and the load. As
described previously, the mechanics of the two stator loops are equivalent. Here, we provide a reduced model describing the
dynamics of a stator with a single loop that generates torque both during bending (ϕS increasing) and unbending (ϕS decreasing). This
model is isomorphic to the one described in the main text.
As described in Mechanochemical Model (and in ref. 5), the motion of the stator has two components: vertical and rotational. The

vertical motion is necessary to describe partial power strokes and loose chemical coupling. The stator’s ion-binding residue (Asp32) is
very close to the cytoplasmic side of the membrane, and so the reaction coordinate for ion binding and release likely depends on both
the stator’s vertical z and rotational position ϕS.
Moreover, thermal fluctuations allow rapid movements of the Asp32 residue into the membrane and the cytoplasm, leading to an

increased probability for the unbinding of ions before the power stroke is completed. This coupled reaction coordinate may also account
for a reduction in the overall efficiency of the stator due to ion leakage. Furthermore, inclusion of the vertical motion of the stator allows
consideration of the stator springs that connect MotB residues to the peptidoglycan layer of the bacterial cell wall (35, 36).

Stator ðrotationÞ: ζS
dϕS

dt
= Kðz− f ðϕSÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Internal  flexibility

of   stator

−
∂GðϕS, jÞ

∂ϕS
ℓp

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Torque  from

Proline  hinge

−
∂VRS

∂ϕS|ffl{zffl}
Reaction

from  rotor

−
∂ψ
∂ϕS

ℓp
|fflffl{zfflffl}

Electrostatic

attraction

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζS

p
fnðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[S1]

StatorðverticalÞ: ~ζS
dzS
dt

=− Kðz− f ðϕSÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Internal  flexibility

of   stator

− ks
�
z− z0

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Reaction

from  rotor

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT~ζS

q
fnðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[S2]

Rotor : ζR
dθR
dt

=− κðθR − θLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Spring  connection

to  load

−
∂VRS

∂θR|ffl{zffl}
Torque

from  stator

−
∂ψ
∂θR

R
|fflffl{zfflffl}

Electrostatic

attraction

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζR

p
fnðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[S3]

Load : ζL
dθL
dt

= κðθR − θLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Spring  connection

to  rotor

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζL

p
fnðtÞ.|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[S4]

Here, as before, ζS, ζR, and ζL are the effective rotational drag coefficients of the stator, rotor, and load; eζS is the linear drag co-
efficient of the stator. The last term in each equation is the stochastic Brownian force, where fnðtÞ is uncorrelated white noise. All other
symbols are as described in Table 1. In writing the equations of motion, we assume that the stator rotates about the proline hinge.
Similarly, the rotor rotates about the axis normal to the plane of the rotor and passing through its center.
In Eq. S1, the internal force driving the stator due to the rearrangement of hydrogen bonds caused by a proton-binding event is

denoted by Fp =−∂G
∂ϕS

. Here,GðϕS, jÞ denotes the free energy of the stator. Due to the fact that thermal fluctuations are of a comparable
magnitude to the free energies considered, the exact shape of the potentials is relatively unimportant. For ease of computation, we
approximate the potential using a piecewise linear function. The exact mathematical formulation of these potentials is given
in Interaction Potentials. In this setup, for a given proton motive force, the force applied on the rotor by the stator loop is constant and
positive during each mechanical power stroke. At other times, there is little elastic strain on the MotA loops, and accordingly, the
applied force is near zero.
Eq. S2 governs the vertical motion of the MotB helix. The proposed kink-and-swivel motion of the MotA α-helices (see Fig. 3) may

also shift the vertical position of the associated MotB helix. This collective motion would bring Asp32 residue into the cytoplasm
during a power stroke. Here, K denotes the internal flexibility of the rotor and couples the motion of the proline-induced kink and
swivel motion of MotA and the vertical motion of MotB helices. This coefficient is dependent on the hydrogen bonds between the
MotA and MotB helices. For a perfect stator, the motion of the MotA and MotB helices are tightly coupled. The vertical motion of the
stator complex is also determined by the stiffness coefficient kS of the springs connecting the MotB helix to the peptidoglycan layer.
The torque generated by the stator is dependent on the applied load ζL as a natural consequence of steric forces. A general discussion

on contact forces and the explicit formulation of the repulsive interaction potential VRS, are provided in Overview of Steric Forces and
Rotor–stator interaction potential, respectively. The contact torque applied to the rotor (in Eq. S3), and consequent reaction torque
applied to the stator (in Eq. S1), are given by τcontact =−∂VRS

∂θR and τreaction =−∂VRS
∂ϕS

.
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Additionally, the charges on the FliG and the stator loop also exert weak attractive forces on each other. These forces prevent the
drifting of the rotor with respect to the stator during the chemical transition events. Further discussion of these forces is included later in
Electrostatic Steering. In the above equations, we denote this term via the term −∂ψ

∂θR R; it detracts from the repulsive torque imposed by
the steric force of the stator.
The rotor and load are connected by a linear spring with constant κ; the elastic coupling terms in the equations for the rotor and the

load thus appear with opposite signs (in Eqs. S3 and S4, respectively). The elastic constant in the experiments can vary depending on
the length of the hook when attaching the bead. In some cases, the hook is very short or is stiffened by an antibody linker. This
corresponds to a large spring coefficient (34). An analysis of this model in the corresponding limit κ→∞ is provided in Approximation:
Model Without Spring.
For the computations in this manuscript, we have assumed that the stator is internally rigid—that is, the internal spring coefficient K is

very large. This leads to a tightly coupled motion between the rotation and the vertical motion of the stator (i.e., z= f ðϕSÞ), and allows
us to ignore the thermal fluctuations and the effect of the peptidoglycan springs. A soft connection between the stator and the
peptidoglycan layer was originally assumed to explain resurrection experiments showing that the zero-torque speed was independent of
stator number (36). However, recent reports that these low-load experiments were likely performed on motors with a single stator (2)
remove the need for the assumption of soft stator springs. Given this, we obtain the following reduced set of equations for the motion
of the stator, rotor, and load:

Stator : ζS
dϕS

dt
=−

∂GðϕS, jÞ
∂ϕS

ℓp
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Torque  from

Proline  hinge

−
∂VRS

∂ϕS|ffl{zffl}
Reaction

from  rotor

−
∂ψ
∂ϕS

ℓp
|fflffl{zfflffl}

Electrostatic

attraction

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζS

p
fnðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[S5]

Rotor : ζR
dθR
dt

=−
∂VRS

∂θR|ffl{zffl}
Torque

from  stator

−
∂ψ
∂θR

R
|fflffl{zfflffl}

Electrostatic

attraction

− κðθR − θLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Spring  connection

to  load

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζR

p
fnðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[S6]

Load : ζL
dθL
dt

= κðθR − θLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Spring  connection

to  rotor

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTζL

p
fnðtÞ.|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Thermal  fluctuations

[S7]

We use Eqs. S5–S7 to obtain the majority of the results presented in the main text.

Simplified Deterministic Model
By taking an average over many trajectories, it is possible to generate a deterministic analog of the model presented above. Although
numerical simulations on the full stochastic model were used for the results in this manuscript, the below formulation is convenient
primarily for expository purposes. In particular, it admits explicit analytic solutions for many experimental situations. Before we
provide the numerical implementation of the full Langevin equations (Eqs. S5–S7), we use the following model to introduce several
important concepts.
The deterministic equations of motion can be obtained by time averaging Eqs. S5–S7 as

ζS
dϕS

dt
=Fpℓp −

hτi
R

ℓp [S8]

ζR
dθR
dt

= hτi− κðθR − θLÞ [S9]

ζL
dθL
dt

= κðθR − θLÞ. [S10]

Note that in addition to time averaging, we have neglected the electrostatic term for computational convenience, as it tends to be quite small
in value. Here, the average torque on the rotor hτi results from averaging the torque on the rotor as τcontact =−∂VRS=∂θR over many
trajectories. The return force then can be calculated by hτi=R, which is then multiplied by ℓp to calculate the return torque. The internal
torque of the proline hinge for a given IMF is Fpℓp =−∂G

∂ϕS
∝ IMF. The averaged equations do not contain a noise term because the terms

fnðtÞ are Gaussian with mean zero. In the following, we compute expressions for the average torque and speed during a single power stroke
of the motor from the above deterministic model.
Under the assumption that all active stators act in synchrony, Eq. S8 can be generalized to a motor with N stators as follows. An

analog of Eq. S8 now corresponds to the motion of the ith stator (i∈ 1,2, . . .N),

ζS
dϕi

S

dt
=Fpℓp −

hτii
R

ℓp, i∈ 1,2, . . . ,N. [S11]
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We then can sum the equations of all stators, which results in

NζS
dϕi

S

dt
=NFpℓp −

hτi
R

ℓp. [S12]

Note that we have used the fact that Nhτii= hτi. Similarly, an equation for the rotor in a motor with multiple stators can be written as

ζR
dθR
dt

=
XN
i=1

�
τi
�
− κðθR − θLÞ= hτi− κðθR − θLÞ, [S13]

which is the same form as Eq. S9. Note that only the terms corresponding to the stators are summed (i.e., the connection term between
the rotor and the load is not multiplied by N). Eq. S10 also remains as for the single-stator case because the spring connection term is
unaffected by the addition of torque-generating units.
The three equations of motion, Eqs. S8–S10, for a single stator contain four unknowns fθR, θL,ϕS, hτig. This results in an in-

determinate system, and requires the addition of an equation to generate a unique solution. This additional equation can be obtained
from a fundamental property of contact forces. Because the stator loop is in contact with the rotor during the power stroke, the
velocities of the stator loop and the rotor must be equal. This leads to a contact condition for the tangential velocities of the stator loop
and the rotor,

ℓp
dϕS

dt
=R

dθR
dt

. [S14]

Analysis. Multiplying Eq. S12 by R=ℓp and summing with Eq. S9 gives

NRζS
ℓp

dϕS

dt
+ ζR

dθR
dt

=NFpR− κðθR − θLÞ. [S15]

Rearranging Eq. S14, we get

dϕS

dt
=
R
ℓp

dθR
dt

. [S16]

Substituting into Eq. S15,

NR2ζS
ℓ2p

dθR
dt

+ ζR
dθR
dt

=NFpR− κðθR − θLÞ

ζR
dθR
dt

 
NR2ζS
ℓ2pζR

+ 1

!
=NFpR− κðθR − θLÞ

ζR
dθR
dt
ðNM + 1Þ=NFpR− κðθR − θLÞ,

[S17]

where M = ðR2ζSÞ=ðℓ2pζRÞ. Rewriting Eq. S17 gives us

dθR
dt

=
NFpR

ζRðNM + 1Þ−
κ

ζRðNM + 1Þ ðθR − θLÞ. [S18]

Dividing Eq. S10 by ζL and subtracting Eq. S18 leads to

dðθR − θLÞ
dt

=
FpR

ζRðNM + 1Þ− κ

�
1

ζRðNM + 1Þ+
1
ζL

	
ðθR − θLÞ. [S19]

This differential equation has the solution

ðθR − θLÞðtÞ=
A*
�
1− e−α*t

�
α*

, [S20]

where A*dFpR=½ζRðNM + 1Þ� and α*dκð½1=ζRðNM + 1Þ�+ ð1=ζLÞÞ.
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Substituting expressions for dϕS=dt and dθR=dt from Eqs. S12 and S9, respectively, into the equation for contact condition (Eq. S14)
leads to

ℓ2p
NζS

�
NFpR− τ

�
=
R2

ζR
½τ− κðθR − θLÞ�. [S21]

Note that, because we are interested in the full time course, we consider τ= τðtÞ rather than the average torque hτi. Rearranging and
solving for τ,

τ=
NζRR

h
Fpℓ2p − ζSRκðθR − θLÞ

i

ζRℓ
2
p +NζSR2

. [S22]

Plugging in the derived expression for ðθR − θLÞ from Eq. S20,

τ=

Fpℓ2pNRζRζS

"
1
ζS

+

 
1− exp

"
κt

 
1
ζL

+
1

ζR +NR2ζS


ℓ2p

!#!
NR2ζS

ζR
�
ℓ2pðζL + ζRÞ+NR2ζS

�

#

ℓ2pζR +NR2ζS
. [S23]

From this value, we can calculate the average torque in a single step hτi by

hτi= 1
Tm

ZTm

0

τðtÞdt=
Fpℓ2pNR

  
−1+ exp

"
κTm

 
−
1
ζL

−
1

ζR +NR2ζS


ℓ2p

!#!
NR2ζ2LζS + κTmðζL + ζRÞ

�
ℓ2pðζL + ζRÞ+NR2ζS

�!

κTm

�
ℓ2pðζL + ζRÞ+NR2ζS

�2 [S24]

where Tm is the time spent moving during a step. Likewise, we can also calculate the speed of the load dθL=dt from Eqs. S10 and S20,

dθL
dt

=
1
ζL

κðθR − θLÞ=

 
1− exp

"
−κt

 
1
ζL

+
1

ζR +NR2ζS


ℓ2p

!#!
Fpℓ

2
pNR

ℓ2pðζL + ζRÞ+NR2ζS
. [S25]

As with torque, we integrate over a time step to find the average speed hdθL=dti,


dθL
dt

�
=

Fpℓ2pNR

" 
−1+ exp

"
κTm

 
−
1
ζL

−
1

ζR +NR2ζS


ℓ2p

!#!
ζL
�
ℓ2pζR +NR2ζS

�
+ κTm

�
L2ðζL + ζRÞ+NR2ζS

�#

κTm

�
ℓ2pðζL + ζRÞ+NR2ζS

�2 . [S26]

Using Eqs. S24 and S26, we can calculate a family of parametric torque−speed curves (parametrized by the load ζL), where each curve
corresponds to a motor with a constant number of synchronously stepping stators. Computed curves for motors with 1,2, . . . , 7 stators
are shown in Fig. S4.

Approximation: Model Without Spring. In most experimental setups, the filament is removed and a bead is attached to a shortened hook
connection. Additionally, the hook is sometimes stiffened with an antibody linker. These setups have a rigid connection between the
rotor and the load, corresponding to a large spring constant. In this section, we perform a similar analysis to that in Analysis for the limit
κ→∞. The calculations performed in this section provide analytic formulas for a clear physical understanding of several important
properties of the model.
The rotation rates of the rotor and load become equal after an initial wind-up period. That is, the rotor and load move at the same

angular speed (i.e., dθR=dt= dθL=dt) after the system reaches a steady state. Note, however, that the angular positions θR and θL still
maintain a (constant) offset. This can be seen explicitly by subtracting Eqs. S9 and S10,

dθR
dt

−
dθL
dt

=
hτi
ζR

− κ

�
1
ζR

+
1
ζL

	
ðθR − θLÞ

dðθR − θLÞ
dt

=
hτi
ζR

− κ

�
1
ζR

+
1
ζL

	
ðθR − θLÞ.

[S27]

To simplify some notation, we define xdðθR − θLÞ, αdκ½ð1=ζRÞ+ ð1=ζLÞ� and Adhτi=ζR, and rewrite Eq. S27,

dx
dt

=A− αx. [S28]
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As in Analysis, we can solve for the time course xðtÞ= ðθR − θLÞðtÞ,

xðtÞ= ðθR − θLÞðtÞ=Að1− e−αtÞ
α

. [S29]

By definition, α> 0, and so it is clear that xðtÞwill reach a constant value after an initial startup. As κ→∞, the wind-up time goes to zero
and dθR=dt= dθL=dt in this limit.
Summing Eqs. S9 and S10 gives us

ζR
dθR
dt

+ ζL
dθL
dt

= hτi. [S30]

We approximate dθR
dt =

dθL
dt when κ is large, and Eq. S30 reduces to

ðζR + ζLÞ
dθR
dt

= hτi. [S31]

We multiply Eqs. S12 and S31 by ℓp and R, respectively. After some algebra,

ℓp
dϕS

dt
=

ℓ2p
NζS

�
NFp −

hτi
R

	
[S32]

R
dθR
dt

=
Rhτi
ðζL + ζRÞ

. [S33]

Given the relationship S14, we equate the two right-hand sides of Eqs. S32 and S33,

ℓ2p
NζS

�
NFp −

hτi
R

	
=

Rhτi
ðζL + ζRÞ

ℓ2pR

ζS

�
NFpR− hτi�= NR2hτi

ðζL + ζRÞ
.

[S34]

Here, the second line is obtained simply by multiplying through by N and R. Solving for hτi,

hτi= NFpR 
1+

NR2ζS
ðζL + ζRÞℓ2p

!.
[S35]

We can use this expression to attempt some intuition for the result of Sowa et al. (16) regarding torque and stator number at high and low
loads. Consider the following two limits of Eq. S35: (i) high load, when ζL � ζR, and (ii) low load, where ζL � ζR.
In the first case, we have

hτihigh =
NFpR 

1+
NR2ζS
ðζL + ζRÞℓ2p

!≈
NFpR 

1+
NR2ζS
ζLℓ

2
p

!≈NFpR. [S36]

The third line follows from the fact that ζS < ζR � ζL. For very high loads, the observed torque is 180 pN·nm, and therefore the force
Fp ≈ 9.5 pN. Eq. S36 suggests that the torque increases linearly with stator number under extremely large loads as observed in the
experiments. However, for a given ζL, it can be seen that nonlinearities can arise in the torque versus number of stators even in the high
load limit. This property is primarily due to the nature of contact forces, and is not applicable to previous models that assume constant
torque between stator and rotor.
Conversely, at low loads (ζL=ζR � 1),

hτilow =
NFpR 

1+
NR2ζS
ðζL + ζRÞℓ2p

!≈
NFpR 

1+
NR2ζS
ζRℓ

2
p

!. [S37]

The torque measured at high speeds is ∼20 pN·nm (3). Then, from Eq. S37, the nondimensional number NR2ζS=ζRℓ
2
p ≈ 10. Also, Eq.

S37 shows that the torque and speed are not linearly dependent on the number of stators at low loads. This is consistent with previous
experimental observations (35).
The above approximations to the full model are primarily laid out for expository purposes, to introduce general properties of the

model. As such, there are several limitations due to the assumptions made, which we outline below.
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Firstly, the observations from Sowa et al. are under question given that motors with more than one (or a few) stator may not have been
considered in low-load measurements. To determine whether the stators do indeed act independently or in synchrony, experiments that
directly account for the number of active stators must be performed. The extension of our model to N stators is dependent on the
assumption that all stators step in synchrony, and the above results will not hold if stators are independent stochastic steppers. Because
of the recent measurements made on single-stator motors, we have chosen to largely focus on the explicit modeling of the intrinsic
mechanism of torque generation in the BFM rather than on the potential interaction between stators. Although a thorough exploration
of the dynamics of multiple-stator motors is extremely worthwhile, it is out of the scope of the current paper.
There are also some inconsistencies in the approximation of an infinitely stiff spring at intermediate and low loads when the motor is

not in the mechanically limited regime. We have that ℓp ≈ 7 nm, R≈ 20 nm, and the nondimensional number NR2ζS=ζRℓ
2
p ≈ 10 at low

loads. Then, from Eq. S37, the ratio of the stator and rotor drags ζS=ζR ≈ 1. Using this, we can estimate the viscosities of the stator and
rotor. The drag of the rotor is given by

ζR =
32
3
ηRR

3, [S38]

where ηR is the viscosity of the rotor. An estimate for the drag coefficient of the stator can be obtained by using Eq. S31 and the
maximum observed speed of the wild-type motor (200 Hz), yielding ζS = 0.017 pN·nm·s·rad−1. Because the drag ratio of the stator and
rotor is approximately unity, ζR ≈ 0.017 pN·nm·s·rad−1. Using Eq. S38, the viscosity of the rotor is ∼2 poise. This is consistent with the
fact that the cytoplasm is a mixture of water and proteins (1).
Likewise, the drag coefficient of the stator loop with a lever arm of length ℓp is given by

ζS =
π

3
ηSℓ

3
p

log
�
ℓp
Rp

	
− 0.66

, [S39]

where ηS is the viscosity of the stator and Rp is the radius of the stator loop. Then, using Eq. S39 and a length to width ratio ℓp=Rp ≈ 10,
we estimate the viscosity of the stator to be 800 poise. This value is three orders of magnitude higher than the viscosity of a regular lipid
membrane and two orders of magnitude higher than the viscosity of a biological membrane. As this calculation of stator drag arises
from estimates of limiting speed, it ignores the contribution of the kinetics of ion movement, particularly the diffusion-limited arrival at
the channel (TW). The discrepancy between this estimated drag coefficient and biologically reasonable values highlights the importance
of the inclusion of chemical kinetics in the model, which are detailed in Addition of Chemical Kinetics.
Moreover, the torque−speed curves produced by the stiff-spring approximation are linear, in contrast to the concave-down torque

speed curves observed in single-stator motors (3). Because the IMF enters only through the dependence of the torque, the speed−IMF
curves are also linear at all loads, again in contrast to the recent 100-nm bead experiments on a single stator (3).

Addition of Chemical Kinetics. The linear torque−speed curves of a mechanically rate-limiting model elucidate the importance of the
inclusion of ion-binding kinetics. In this case, these are events related to the binding of a cation from the periplasm to Asp32 and the
unbinding of the cation from Asp32 into the cytoplasm. In this section, we recompute model torque−speed curves explicitly including
the dwell times corresponding to the ion-binding and unbinding events between the power strokes.
As done by Meacci and Tu (8), a torque generation cycle is divided into two parts: (i) moving time Tm and (ii) waiting time Tw.

Assuming that the ions bind only when the stators are around the minimum of the respective free-energy potentials, we may use the
above model during Tm and sample Tw from an exponential distribution at the end of each moving step.
In a motor with a single stator (N = 1), the instantaneous torque is obtained from Eq. S35 as

τ=
FpR 

1+
R2ζS

ðζL + ζRÞℓ2p

!. [S40]

The force applied by the proline hinge is given as Fp =−ðΔG=ΔϕÞ=−ð2q  IMF=ΔϕÞ, where q is the charge of the ion. The time required
to move an angular distance of 2π/26 in step i can be calculated from Eq. S40 through the relationship ω= τ=ðζR + ζLÞ.

Ti
m =Tm =

2π
26
ðζR + ζLÞ

�
1+

R2ζS
ðζL + ζRÞℓ2p

	
1

FpR
. [S41]

Let Ti
w be the waiting time that follows step i. During the waiting time, the instantaneous torque is zero. When the system reaches the

steady state, the average torque hτi can be obtained via a time average

hτi= lim
T→∞

1
T

ZT

0

τ
�
t′
�
t′, [S42]

where T is large. If there are N steps in time T, then there are N waiting times. Therefore, Eq. S42 can be approximated as

hτi= lim
T→∞

1
T

ZT

0

τ
�
t′
�
t′≈
PN

i=1τTm

T
=

PN
i=1τTmPN

i=1Ti
m +

PN
i=1Ti

w

=
τTm

Tm +
1
N

XN

i=1
Ti
w

. [S43]
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The average dwell time ð1=NÞPN
i=1T

i
w can be approximated as hTwi= ½k0expðIMF=kBTÞ�−1, where k0 is a proportionality constant

related to the rate of hopping of the ions. Using this, Eq. S43 reduces to

hτi= τTm

Tm + hTwi. [S44]

Likewise, the speed of the rotor (or the bead in the large spring constant limit) can be written as a time average


dθR
dt

�
≈ lim

T→∞

1
T

ZT

0

θR
�
t′
�

t′
t′=

2π
26Tm

Tm

Tm +
1
N

XN

i=1
Ti
w

=

2π
26Tm

Tm

Tm + hTwi [S45]

where the instantaneous speed is ð2π=26Þ× ð1=TmÞ during the power stroke and zero during the dwell time.
The torque during a power stroke τ, the time taken by a single step Tm, and the dwell time Tw all depend on the IMF. Thus, Eqs. S43

and S45 point to the existence of nonlinearity in the torque−speed and speed−proton motive force (PMF) curves. These curves are
presented and explained in Results and Predictions.

Overview of Steric Forces
In this section, we describe our modeling of the steric forces between the stator and the rotor, as well as a general discussion on the nature
of contact/steric forces in a low Reynolds number environment. The behavior of objects moving at low Reynolds number is coun-
terintuitive. When the Reynolds number is small, viscous forces dominate over inertial forces and inertia can be ignored (32). In the
following, we illustrate some of these properties using a simple linear momentum balance. We can then extend this analysis to angular
momentum balances, which are directly relevant to the BFM.
Consider a force F pushing an object A that is in contact with a larger object, B, as shown in Fig. S3. We denote the drag coefficients

on objects A and B as ζA and ζB, respectively. Let us consider the following two situations.

Case 1. For Case 1, if F is applied to A, how much force is transferred to B when they are in contact, as shown in Fig. S3A? The
corresponding free-body diagrams for A and B are shown in Fig. S3B; in the steady state, the force balances can be written as

F −Fc − ζAvA = 0
Fc − ζAvA = 0. [S46]

In Eq. S46, vA and vB are the velocities of objects A and B, respectively, and Fc is the contact force between objects A and B. When the
two objects are in contact and are moving together, the following contact condition ensures that the velocity of the objects are equal:

vA = vB. [S47]

In this case, the force transferred by A to B (the contact force, Fc) is obtained by solving Eq. S46,

Fc =
F

1+ ζA=ζB
. [S48]

When the drag on B is large, i.e., ζA=ζB � 1, almost all of force F is transferred to object B. Conversely, when ζA=ζB � 1, then most of
the force is consumed to drag object A with little force transferred to object B.

Case 2. Case 2 is when there are N objects of type A in contact with B, each with a force F applied to them. This case is shown in Fig.
S3C. As in the first case, we are concerned with how much of F is transferred to B. Again, using free-body diagrams (shown in Fig.
S3D), we can write the equations of motion for the objects as

F −Fi
c − ζAviA = 0 i∈ f1, . . . ,Ng,
XN
i=1

Fi
c − ζBvB = 0,

[S49]

where Fi
c is the contact force between the ith object of type A and object B. As before, when the objects are in contact, the contact

condition ensures that viA = vB for all i. Therefore, the force transferred to B by N objects of type A can be derived from Eq. S49 as

Fc =
XB
i=1

Fi
c =

NF
1+NζA=ζB

. [S50]

When ζA=ζB � 1, Fc ≈NF. Therefore, the force transferred is multiplied by the number of objects pushing B. However, when
ζA=ζB � 1, then the force transferred is Fc ≈F=ðζA=ζBÞ≈ 0. Finally, when ζA=ζB ≈ 1, then the force transferred is Fc ≈F (i.e., the
force transferred in this system is approximately the same as a single object A pushing B).
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The above properties of contact forces can be applied to the BFM by identifying object A as the stator and B as the rotor–load
system (i.e., the rotor and the bead), and F as the internal force generated by the proline hinge pushing the stator from its straight to
bent state.
For large loads (e.g., large beads), almost all of the force generated by the stator is transferred to the rotor; i.e., the torque is close to

stall. Moreover, as more stators are recruited, the force transferred increases linearly with the number of active stators, in accordance
with the observed linear speed dependence on the number of stators near stall torque. By contrast, at zero load, if there exists a situation
where the stator and rotor drags are comparable, then the above analysis suggests that the force transferred during a single step is
equivalent to a single stator pushing the rotor. This suggests that, if the assumption that stators step in synchrony holds, torque and speed
at low loads may be independent of the number of active stators.
In addition to the above, contact forces also have the following important implications for the BFM: (i) Because it operates at low

Reynolds number, the rotor moves only as long as it is pushed by the stator. This assures that the rotor never moves faster than the
stator. (ii) Experiments based on torque−speed curves alone may never be able to detect the number of operating stators at different
loads (e.g., if both torque and speed are independent of the number of stators at low load). Rather, one likely needs chemical markers
such as GFP tags as used in ref. 31 to identify the number of docked and engaged stators for a given load. (iii) The torque generated by
the BFM depends on the bead size and is not constant across applied loads, as it was considered to be by previous models (7–9).
Interestingly, the speed of the BFM has been shown to be slightly nonlinearly dependent on the number of stators at high loads

(Fig. S4). A linear relationship between speed and stator number would imply (i) that the applied force of the stator is independent of
the load and (ii) that all stators act independently. Our results suggest that this nonlinearity may arise as a natural consequence of the
steric force in (at least partially) coupled stators. Further experiments will be needed to further explore this hypothesis.

Numerical Implementation
In Model Equations, Simplified Deterministic Model, Approximation: Model without Spring, and Addition of Chemical Kinetics, we have
provided the equations of our model, as well as analytic solutions for reduced deterministic approximations. In this section, we provide
details on numerical implementation of the full stochastic model, using several arguments from our discussion on steric forces.

Interaction Potentials. In this section, we provide explicit forms of the free-energy potentials in terms of the order parameters we choose to
describe the motion of the stator and the rotor.
Stator potentials.The order parameter describing the motion of the stator is the angle subtended by the stator loops ϕ1,3

S with respect to the
vertical MotB ion channels. When two ions bind to the Asp32 residues, the two loops undergo a conformational change from their
straight (ϕ1,3

S = 0°) to bent state (ϕ1,3
S = 20°). In this work, we have assumed that the stator loops move in phase. Therefore, as pre-

viously, we model the two-stator loop configurations using a single collective parameter ϕS.
Before the ions bind to the Asp32 residues, the motion of the stators is governed by the potential G1ðϕSÞ, where the minimum is

around ϕS = 0°, as shown in Fig. S5. When two ions bind to two Asp32s, the stator potential switches from G1 to G2. This compels the
stator angle to move from ϕS = 0° to ϕS = 20°.
During this transformation, the loop pushes the rotor via a steric force. At the end of the conformational change, when the loops are at

the minimum of the potential G2, the two ions bound to two Asp32s exit into the cytoplasm. The potential then switches back from to
G1, and the loops traverse back to ϕS = 0°. During this time, the loops apply a contact force on the same FliG as in the previous substep.
As noted previously, thermal fluctuations are of the same order of magnitude as the free energies considered, and the precise form of

the potentials is not important. In our simulations, we choose

G1ðϕÞ=
8<
:

βϕ2 if   ϕ≤ 0
Fpϕ if   0≤ϕ≤ϕmax

Fpϕmax + βðϕ−ϕmaxÞ2 if   ϕ≥ϕmax

and

G2ðϕÞ=
8<
:

βϕ2 if   ϕ≤ 0
−FpðϕÞ if   0≤ϕ≤ϕmax

−Fpϕmax + βðϕ−ϕmaxÞ2 if   ϕ≥ϕmax.
Rotor–stator interaction potential.The steric force between the stator and the rotor can be simulated using a soft linear repulsive force with a
cutoff distance XRS.

VRS
�
ϕi
S, θR

�
=

8><
>:

−FRS
ðRθR − ℓPϕSÞ2

XRS
if   0≤ x≤XRS

0 otherwise.

The torque on the rotor can be obtained as τcontact =−∂VRS=∂θR,

τcontactðxÞ=

8><
>:

−FRSR
RθR − ℓPϕS

XRS
=FRSR

�
1−

xRS
XRS

	
if   0≤ xRS ≤XRS

0 otherwise.

Likewise, the reaction torque on the stator is −ð∂VRS=∂ϕSÞ. FRS is the maximum force that can be applied by the proline hinge, and
xRS =XRS +RθR − ℓpϕS denotes the distance between the position of the stator loop and the nearest FliG (see Fig. S6). All other
parameters are defined as described previously.
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Note that we assume that weak electrostatic forces place the stator at most 0.5 nm from the nearest FliG on the rotor (XRS ≈ 0.5 nm)
before the start of the power stroke, as shown in Fig. S6. During the half-step, the stator moves from ϕS = 0° to ϕS = 20°. In this process,
a contact force is applied on the rotor when 0≤ xRS ≤XRS. The contact force is zero when xRS ≥XRS.
All previous theoretical studies of the BFM have chosen to model the interactions between the stator and the rotor as a load-in-

dependent force. In Simplified Deterministic Model, we have shown that the dependence of steric forces on the load reproduces many of
the mechanical characteristic features of the motor found in experiments (e.g., the nonlinearities in the relationship between speed and
stator number at high loads).
Although the exact form of the potential used to model the rotor−stator interaction is not very important, we note that linear

potentials cannot be used. Such potentials result in a constant torque, independent of ζL, and thus do not reproduce several properties
of steric forces.

Kinetics of Ion Binding. In this section, we will describe how to model ion-binding events as part of the Langevin equation framework. In
many problems related to motors, the ion-binding events may occur only in a certain window of a continuous coordinate describing the
mechanical motion of the system. In the BFM, there are two main ion-binding events involved in the torque generation cycle.

i) Two cations (here, protons) from the periplasm bind to the Asp32 residue on two MotBs or unbind into the cytoplasm when the
cytoplasmic loops are straight.

Asp32− +H+
periplasm

����! ����k12

k21
Asp32�H. [S51]

ii) Once the protons are bound, the cytoplasmic loops undergo conformational change from the straight state into the bent state. At the
end of the conformational process, the two channels close with respect to the periplasm and instead open toward the cytoplasm. Once
this occurs, the two protons unbind from Asp32 residues into the cytoplasm (or, in the reverse reaction, bind from cytoplasm to Asp32).

Asp32�H⇄
~k12

~k21
Asp32− +H+

cytoplasm. [S52]

First, we will describe the case for the kinetics at equilibrium (i.e., at zero IMF), followed by the procedure to model the kinetics under a
nonzero IMF.
Equilibrium kinetics under zero IMF. In the following, we consider the proton-driven motor of E. coli, and so the IMF concerned is the PMF.
When there is no PMF, the forward and backward reaction rates for the reaction in Eq. S51 must satisfy

k12
k21

=
½Asp32�H�
½Asp32� . [S53]

Let the equilibrium dissociation constant of reaction S51 be defined as

Kp
a =
½Asp32��H+

periplasm

�
½Asp32�H� . [S54]

If pKp
a =−log10K

p
a, then the forward and backward rates should satisfy

k12
k21

= 10ðpKp
a−pHperiplasmÞ. [S55]

Note that the acid dissociation constant value of pKp
a should be determined from experiments. A similar relation to the above can be

derived for the reaction in Eq. S52.
Kinetics under nonzero IMF. To satisfy detailed balance when the PMF is nonzero, the kinetic coefficients for the reaction should satisfy

k12
k21

= 10ðpKp
a−pHperiplasmÞexp

�
eψp +G1 −G2

kBT

	
. [S56]

There exist multiple choices for the expressions k12 and k21. For convenience and symmetry, we choose the following for the rate
constants:

k12 = 10−pHperiplasmexp
�
α

�
eψp +G1 −G2

kBT

		
, [S57]

k21 = 10−pK
p
a exp

�
−ð1− αÞ

�
eψp +G1 −G2

kBT

		
. [S58]

For symmetry, we have chosen α= 0.5.
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Electrostatic Steering
In this section, we provide more detailed calculations for our electrostatic steering hypothesis, as shown in the main text. We also provide
support for the dipole approximation via comparison with an analogous calculation with point charges.
We note that, because no structure of the stator is yet available, the purpose of these calculations is quite qualitative. Our goal is to

simply to predict what the electrostatic energy landscape should look like to support our steering hypothesis.

Dipole Approximation. As a first-order approximation, we consider the relevant charges on the FliG helix and the stator loops to be
dipoles. We denote the rotor dipole moment as ~pkR, where k∈ f1 . . . 26g enumerates the number of FliGs on the rotor periphery.
Likewise, the stator dipole moment is denoted as~pi,NS , where N enumerates the number of stator units, and i is the number of loops on
a single stator. Here, for ease of exposition, we show electrostatic calculations for a single stator with a single loop (i= 1 and N = 1), but
note that this calculation can be easily extended to the full stator model.
We calculate the electric field felt by the stator loop as

E=
X26
k=1

Ek, [S59]

where

Ek =
1

4πejrkj3
�
3
�
~pkR · r̂k

�
r̂k −~pkR

�
. [S60]

Here e is relative permittivity of cytoplasm and~rk is a vector quantity that denotes the distance between the stator loop and the kth
FliG.
From Ek, we calculate the interaction energy between the dipole on the stator loop ~pS and the kth FliG ~pkR as

Uk =−~pS ·Ek =
1

4πejrkj3
��

~pkR ·~pS
�
− 3
�
~pkR · r̂k

��
~pS · r̂k

��
. [S61]

Similar to the calculation for total electric field, we have

Ustator =
X26
k=1

Uk. [S62]

Note that, as the distance from the stator loop increases, the terms in the total electric field sum drop off as 1=jr3j, and so the contribution
by FliGs located far from the stator loop is not appreciable.
To calculate the total energy in the system, we also add in the interaction energies between pairs of FliG molecules. However, we note

that their relative positions do not change as the stator rotates, and so this consideration results simply in a translation of the entire
landscape and has no effect on the topology.

Utotal =Ustator +
X26
i=1

X26
j=1, j≠i

1

4πejri,jj3
��

~piR ·~p
j
R

�
− 3
�
~piR · r̂i,j

��
~pjR · r̂i,j

��
, [S63]

where ri,j is the displacement vector between the ith and jth FliG.

Comparisonwith Calculation Using Point Charges.We also performed the above calculations using point charges for the relevant residues on
FliG andMotA loops. Because of the uncertainty in the position of the charges, we are interested primarily in a qualitative affirmation of
our approximation—that is, the existence of a gently sloping, relatively wide energy well.
As in our dipole calculations, we consider the charged residues on the FliG to be positioned at π/4 to the horizontal (i.e., the charges

are positioned along the dipole as shown in Fig. 2). Similarly, we position the charges on the stator loop along the dipole, positioned
radially outward from the stator center. Given this configuration, we calculate the electrostatic energy as

Upc =
X8
i=1

X8
j=1, j≠ i

qiqj
4πejri,jje

−jri,j j=λD

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interaction  between  stator  charges

+
X52
i=1

X52
j=1, j≠ i

qiqj
4πejri,jje

−jri,j j=λD

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interaction  between  stator  charges

+
X
i=1

8 X
j=1

8 qiqj
4πejri,jje

−jri,jj=λD

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interaction  between  charges  on  stator  and  FliGs

. [S64]

We screen charges using a Debye length of λD = 0.5 nm. As before, ri,j denotes the displacement vector between charge i and charge j.
Note that, similar to our dipole calculations, the first two terms of the energy are invariant to rotation of the stator. Therefore, they
only serve to translate the entire energy landscape and do not affect the topology.
As shown in Fig. S7, the topology generated is indeed similar to that using the dipole approximation in the main text. The removal of

certain charges may modify the energy landscape via a flattening or widening of the energy well. In conjugation with our electrostatic
steering hypothesis, this may point to a possible explanation for experimental studies that show that mutation of charged residues
reduces, but does not eliminate, motor function. Our methods can easily be extended using positional information from solved
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structures to more quantitatively analyze the effects of these charges. Although such an investigation is certainly warranted, it is out of
the scope of the current paper.

Centering the Stator.There is little structural information for the stator of the BFM. Therefore, in our calculations, we choose a possible
position of the stator that is consistent with our model and experimental results. Firstly, we center the stator so that all four stator loops
are able to access the FliGmolecules. The occasionally observed backsteps imply that both pairs of loops must be able to execute a power
stroke during motor function.
Preliminary calculations strongly suggest that the loop charges cannot be in plane with the charges on the FliG. The close proximity of

the charges results in an electrostatic interaction far too strong to be feasible given the known efficiency of the BFM (i.e., far too much
energy would be wasted in letting go). In-plane configurations that do not present both extremely steep and deep wells must place the
stator out of reach of the FliGs.
Given these considerations, and noting that the stator and rotor have radii of respective lengths ∼ 20 nm and ∼ 2 nm, we center the

stator at ðxS, yS, zSÞ= ð21,−2,1Þ using a coordinate system with the rotor centered at the origin.

Ising Model to Describe Conformational Changes in FliG
The existence of motor backsteps in the absence of CheY-P has been largely attributed to microscopic reversibility. Given this constraint,
there are three possibilities in explaining the backstep: (i) a backward transit of an ion from the cytoplasm to the periplasm; (ii) a
sufficiently strained hook relaxes by moving the rotor backward; and (iii) a fluctuation that changes the orientation of FliG from its
CCW to CW orientation.
The first two possibilities contradict our proposedmodel. For example, if the first case were correct, then a backstep would correspond

to a reversal of the entire conformational change process. In this case, an ion bound to the Asp32 from the cytoplasm should restore the
MotA helix from its bent state to the straight state in the presence of the ion. This is in direct contradiction to one of our model
assumptions that MotA relaxes to the bent state due to the rearrangement in the hydrogen bonds caused by the binding of the ion to the
Asp32 residue.
The second possibility (that the relaxation of an elastically strained hook due to several sequential forward steps leads to an

occasional backstep) is also not feasible within the context of our model: A contact force guarantees that the rotor always follows
the stator.
In this work, we attribute the molecular basis for the backstep to the third possible scenario: a conformational change in one (or more)

individual FliGs on the periphery of the rotor. A FliG can exist in two states; in our model, these states correspond to two orientations of
the FliG dipole vector. Our electrosteric model, in conjunction with an Ising model corresponding to the states of FliG, explains the
existence of occasional backsteps in a self-consistent manner.
Briefly, a backstep results from a fluctuation of FliG from the CCW to the CW position. In this case, when the motor is predominantly

moving in the CCWdirection and whenever a FliG changes its state fromCCW state to CW state and is close to a stator, then the stator—
using MotA loops 2 and 4—applies the contact force and pushes the FliG in the backward direction.
Although the configuration of the FliGs in the CW orientation is fairly well agreed upon, the exact CCW configuration is still

under debate. At least three possible orientations have been suggested, including directions orthogonal or 180° with respect to
the CW orientation. Despite this uncertainty, it is generally believed that there are two significantly different orientations for each
FliG.
As in other models, we describe the transitions between the two FliG orientations by a one-dimensional periodic Ising model

consisting of 26 spins (corresponding to 26 FliGs). Each individual spin si can exist in two possible states corresponding to the two
orientations of FliGs: si =+1 (CCW) and si =−1 (CW). The Hamiltonian is

H =−J
XN
i, j=1

sisj − h
XN
i=1

si [S65]

where J denotes the nearest-neighbor pairwise interaction energy and h denotes the field biasing the FliGs to preferentially orient in a
certain direction. Let fsig= ðs1, s2, s3, . . . , s26Þ denote a possible state of the rotor. The probability of such a state is given by the
Boltzmann distribution e−βHðfsigÞ=ZðJ,H, βÞ, where ZðJ,H, βÞ is the partition function. The partition function for a one-dimensional
Ising model (Eq. S65) is obtained exactly using the transfer matrix approach and is given by

ZðJ, h, βÞ= λN+ + λN− [S66]

where

λ± = eβJ coshðβhÞ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2βJ sinh2ðβhÞ+ e−2βJ

q
. [S67]

To understand the backsteps while the motor is running predominantly in CCW direction, we calculate the probability that any FliG (or
any spin) points in the CW direction. This is given by

pðsi =−1Þ=
X

ðs1, ..., si−1,−1, si+1, ..., s26Þ

e−βHððs1, ..., si−1,−1, si+1, ..., s26ÞÞ

Z
[S68]

where the summation is over all possible states fixing si =−1. In the following, we derive an analytical expression for the probability
pðsi =−1Þ.
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Let us denote the probability for the spin si =+1 as pðsi =+1Þ. Given the probabilities pðsi =+1Þ and pðsi =−1Þ, the average value hsii
of the spin si can be calculated as

hsii= ð1Þpðsi =+1Þ+ ð−1Þpðsi =−1Þ= 1− 2pðsi =−1Þ. [S69]

Moreover, the derivative of the partition function Z with respect to the field h yields

1
NβZ

∂Z
∂h

=
1
N

X
fsig

X
i

si
e−βHðfsigÞ

Z
= hsii. [S70]

Therefore, using Eqs. S69 and S70, the probability that spin si =−1 can be obtained as

pðsi =−1Þ=
1−

1
NβZ

∂Z
∂h

2
. [S71]

The derivative of the partition function with respect to the field h can be evaluated using the derivatives of the λ± functions, which are
given by

∂λ±
∂h

= β sinhðβhÞ
 
eβJ ±

e2βJ coshðβhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2βJ sinh2ðβhÞ+ e−2βJ

q
!
. [S72]

Within the context of ourmodel, the likelihood of a flip in FliG conformation corresponds directly to the likelihood of a backstep. That
is, the probability that a FliG is in the CW state is given by Eq. S71. This is because the fundamental mechanics of a backstep is the same
as that of a forward step; the difference between these two scenarios is wholly described by the difference in FliG configuration.
Suppose that the motor is moving primarily in the CCW direction. This means that the FliGs in close proximity to the stator loops are

oriented to favor CCW rotation (that is, to favor interaction withMotA loops 1 and 3). However, if a FliG close to the stator is oriented to
favor CW rotation, then the FliG interacts withMotA loops 2 and 4, resulting in a step in the CW direction (a backstep when the motor is
moving primarily CCW). This probability is given by Eq. S71.
For the choice of the energy scale βJ = 2 at room temperature and a biasing field of βh= 0.05, the probability that any FliG is in the

CW state is pðsi =−1Þ= 0.08. That is, on average, 8 out of every 100 torque-generating cycles will result in a backstep. Areas under the
curve corresponding to forward and backward steps from data collected by Sowa et al. (16) indicate that pðsi =−1Þ≈ 0.073 (Fig. S8).
The above analysis provides an explanation for how backsteps in the absence of CheY-P can arise from fluctuations in FliG con-

figurations. However, it does not take into account how the above probabilities are affected by load or PMF. For example, the timescale
of a single step depends on the load. If one assumes that this step is a backstep, then this particular FliG is pinned in the backwards
orientation for the duration of that step. This CW defect in the FliG ring can affect the switching probabilities of the neighboring FliGs,
resulting in further defects along the ring. Therefore, at higher loads, the probability of two (or more) subsequent backsteps may not be
negligible. However, a complete understanding of the above requires a far more detailed analysis of an Ising model in conjunction with
the proposed electrosteric model than is within the scope of this work.

Fig. S1. (A) Rotor speed and (B) torque as a function of the load drag. ζL. Plotted from Eqs. S26 and S24, respectively.
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Fig. S2. Angular difference between rotor and load. (A) The change in ðθR − θLÞ with time decreases steadily until a fixed point is reached (marked in red).
(B) Accordingly, ðθR − θLÞ increases and asymptotically reaches a steady state. The steady state is denoted by a red line, corresponding to the zero of ½dðθR − θLÞ�=dt,
shown as the red dot in A.

Fig. S3. Contact forces. (A) Case 1. A force F is applied to object A, which is in contact with object B. (B) Free-body diagrams for objects A and B arranged as in
case 1. (C) Case 2. N objects of type A are in contact with object B, each with a force F applied to it. (D) Free-body diagrams for each object of type A as well as
type B for case 2.

Fig. S4. Resurrection experiments at high and low load both show a nonlinear relationship between motor speed and stator number. Our model suggests that
nonlinearities at high loadmay result from the nature of steric forces. Markers denote data from ref. 35; lines are model fits assuming synchronously stepping stators.
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Fig. S5. A schematic of the stator potentials.

Fig. S6. A schematic of the geometry of rotor−stator contact during a half-step. The distance between the nearest FliG and the stator is then given by
xRS =XRS +RθR − ℓpϕS. The contact force is zero whenever xRS ≥XRS. Moreover, the stator never is ahead of the rotor. This is ensured by choosing a time step such
that the fluctuations from the random noise terms are small.

Fig. S7. Energy landscape during electrostatic steering calculated using point charges rather than dipoles. All parameters are defined as in the main text; the
stator is centered at (21,-2,1), and the rotor is centered at the origin (all distances in nanometers).
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Fig. S8. Probabilities of backward steps relative to forward steps can be estimated using statistics from stepping experiments (data shown from ref. 16). The
area under the curve for steps below and above 0° corresponds to forward and backward step probabilities, respectively. The areas on either side are calculated
as highlighted in gray. Curves are truncated where each shows a second peak, corresponding to two steps being blurred together due to limitations in ex-
perimental resolution. The relative areas calculated for the data above suggest that the probability of a backward step is 7.3%.
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