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An introduction to the physics of the bacterial flagellar motor: a nanoscale rotary electric motor

Matthew A.B. Baker and Richard M. Berry*

Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK

(Received 23 April 2009; final version received 3 June 2009)

Biological molecular motors show us how directed motion can be generated by nanometre-scale devices that work at
the energy scale of the thermal bath. Direct and indirect observations of functioning single molecule motors allow us
to see fundamental processes of statistical physics unfolding in microscopic detail at room temperature, something
that was unimaginable only a few decades ago. In this review, we introduce molecular motors and the physics
relevant to their mechanisms before focusing on our recent experiments on the bacterial flagellar motor, the rotary
device responsible for bacterial locomotion.

Keywords: biological molecular motors; nanometre-scale devices

1. Introduction

Directed movement is a signature of life, and essential to
movement is the ability to generate force. In biological
systems it is motor proteins that generate force. Motor
proteins are large molecules which use chemical energy
to do work and are responsible for motility across all
levels: for transport within a cell, for the motion of an
individual cell in its surroundings, and for movement in
multi-cellular aggregates, such as muscles. The bacterial
flagellar motor is an example of a meso-scale cluster of
proteins, including several motor proteins, that work
together to provide the locomotive force for bacteria.

1.1. Motor proteins

Proteins are the main functional elements in molecular
biology, but may be less familiar to physicists than
biologists. They are large fluctuating molecules that
perform a specific function based upon their structure,
which depends in turn on the way they are folded [1].
Little is known about the details of how folding is
controlled or directed and it is one of the central
questions of biology. One thing that is clear, however,
is that correctly folded proteins are only just stable.
This marginal stability allows proteins to make
transitions between several different meta-stable struc-
tures or conformations. These conformational changes
underlie the mechanisms of most proteins, of which
molecular motors are a particularly clear example.

Motor proteins couple conformational changes to
chemical reactions that release free energy, using these
mechanochemical transitions to generate force and make
thingsmove.At themolecular level linear-motorproteins

such as kinesins,myosins and dyneins are responsible for
hauling components directionally inside a cell alongfixed
tracks, carrying cargos attached to their tails. When
many motor proteins work in concert, macroscale
motion can be generated. For example, the linear motor
protein, myosin, is responsible for exerting a small force
on an actin filament [2]. Myosin is the driving force
behind muscle contraction. When you lift your arms,
billions ofmyosinmolecules are pulling arrays of parallel
actin filaments together, contracting your biceps [3,4].

At the cellular level, there are many cells that can
move around their environment. One example is the
sperm cell, which generates motion by a coordinated
oscillation of linear dynein motors that generates wave
propagation in the tail [5]. Another example is phago-
cytes, part of the immune system, which move by using
linear motors to distort their structure and ‘crawl’ along
surfaces [6]. There are also examples of multicellular
motion and cooperation in amoebic moulds such as
dictyostelium. Dictyostelium cells move as multicellular
aggregates, and when they receive a chemical signal can
form ‘fruiting bodies’ that move en masse to form
mushroom-like structures. This is an early demonstra-
tion of cooperativity where single cell organisms can
coordinate their motion to benefit the aggregate at the
expense of some individual cells [7]. Figure 1 shows these
different examples of motor motility.

1.2. The bacterial flagellar motor

The bacterial flagellar motor (BFM) is a self-assembled
protein complex *50 nm in diameter embedded in the
bacterial cell envelope, which is capable of rotating at
speeds up to 100,000 rpm, five times as fast as a
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Figure 1. Different types of motility. (a) Kinesin moving along a microtubule. The dimer is entwined and the two heads walk
along a microtubule in a hand-over-hand mechanism. Shown here is one state in the chemical cycle, where ATP is bound at the
head attached to the track and ADP is released from the trailing head [8]. Reprinted with permission from T.D. Pollard and W.C.
Earnshaw, Cell Biology, W.B. Saunders, Kidlington, 2002. Copyright (2002) by Elsevier. (b) Myosin II, one of the molecular
motors responsible for muscle contraction, pulls an actin filament. In muscles, tail sections of Myosin II bundle to form the thick
filament, and actin bundles to form the thin filament. The sliding of thick against thin filaments, driven by Myosin II, is what
causes muscle contraction [9]. Reprinted with permission from Nature, 408 (2000), pp. 764–766. Copyright (2000) by Nature
Publishing Group. (c) Flagellar beating in sperm due to coordinated oscillation of dyneins acting on microtubules in the tail of
sperm [5]. Reprinted with permission from HFSP J., 1 (2007), pp. 192–208. Copyright (2001) by HFSP Publishing. (d) A SEM
image of a phagocyte [10]. Reprinted with permission from Nat. Rev. Moll. Cell Biol., 4 (2003), pp. 385–396. Copyright (2003) by
Nature Publishing Group. (e) Left: SEM images of dictyostelium aggregates forming fruiting bodies and raising off a surface.
Right: blue shows prestalk cells and red prespore cells. To form a fruiting body these cells sort themselves and move into position
signalling to each other using chemotaxis [7]. Reprinted with permission from Microbiology, 146 (2000), pp. 1505–1512.
Copyright (2000) by the Society for General Microbiology.

modern Formula 1 engine [11]. BFMs from several
species have been studied, and all are broadly similar.
In this article we will refer to the motors of
Escherichia coli (E. coli) and Salmonella typhimurium
(S. typhimurium) unless otherwise stated, as these
are the most studied and best understood examples.
The motor is powered by ions crossing the cell
membrane, driven by electrical and chemical potential
differences, and uses this energy to rotate either
clockwise or counterclockwise, switching in response
to environmental signals. Motor rotation is coupled
to helical flagellar filaments through the hook, a

helical protein polymer which acts as a universal
joint. When filaments are rotated counterclockwise
(CCW, looking down the filament towards the cell)
they form bundles which propel the swimming cell.
When they are rotated in the opposite direction, one
or more filaments splay from the bundle initiating a
‘tumble’, which is a random re-orientation of the cell.
Tumbles are suppressed when a cell detects that the
concentration of attractant molecules in its environ-
ment is increasing, prolonging episodes when the cell
is swimming to where things are better. In this way
cells can execute a biased random walk that moves
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them towards regions of increased nutrient concen-
tration, a process known as chemotaxis. Much has
been learned about chemotaxis [12–14] but we will
not discuss it here.

The BFM contains *13 different proteins. Aggre-
gates of these proteins make up larger structures, such
as rods and rings, which are assembled in a specific
order using guided self-assembly. The basal body of the
motor assembles first. This consists of four rings and a
rod which acts as a driveshaft to the filament, and it is
the core of the motor. The basal body is assembled
across the cell wall, with one of its rings, the MS ring,
assembled first as the platform on which the rest of the
motor is mounted. The C ring of the basal body, made
from FliG, FliM, and FliN proteins, contains a ring of
*26 FliG molecules which are believed to be the site of
torque-generating rotor/stator interactions. Each mo-
tor contains several independent stators, membrane–
protein complexes each containing the proteins MotA
and MotB. Stators assemble after the basal body and
can bind into and dissociate away from the motor

while the motor is operating. This results in speed
jumps as the stators come and go, and there can be up
to at least 11 stators in a motor at any time [15]. We
confirmed this dynamic picture of a molecular machine
that is constantly being re-configured ‘on the fly’ by
single-molecule fluorescence microscopy of motors
with fluorescently labelled stator proteins [16]. The
average lifetime of a given stator in the motor was
found to be less than one minute. This surprising result
has posed the question: are all protein complexes
similarly dynamic, or are the BFM stators unusual in
this respect? The remaining proteins that constitute the
hook and the filament are exported via a Type III
pathway, which signifies that they are transported to the
tip using diffusion, through the hollow interior of a well-
defined structure. In the BFM they diffuse through a
channel that runs inside the hook and filament. The
structure of the BFM is shown in Figure 2; for a review
of structure and assembly see [17].

Bacteria propel themselves effectively at low Rey-
nold’s number, R, a measure of the relative magnitude

Figure 2. Left: schematic side-view of the BFM, with the proposed location and copy number of proteins involved in torque
generation. The basal body consisting of the C-ring, MS-ring, rod, P-ring and L-ring, assembles first, followed by the hook and
filament proteins. The stators are dynamic and each has the stoichiometry MotA2 MotB4. Right: detail of the proposed location
and orientation of the three C-ring proteins. X-ray crystal structures of truncated rotor proteins, FliG (Cyan), FliM (Magenta)
and FliN (Blue), are shown docked into the C-ring structure. N- and C-termini and unresolved amino acids are indicated. Figure
reproduced from Sowa and Berry [11]. Reprinted with permission from Q. Rev. Biophys., 41 (2008), pp. 103–132. Copyright
(2008) by Cambridge University Press.
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of viscous and inertial forces, which is *1074 for a
swimming bacterium. They do this by rotating the
helical filament in a non-reciprocal cyclical movement.
Non-reciprocal motion is necessary for propulsion at
low R, where the equations of fluid mechanics become
time-reversible and thus reciprocal motion generates no
propulsion [18]. Transport in this regime is measured
against diffusion. In order for bacteria to benefit from
swimming they must ‘outrun’ diffusion to a region of
higher nutrient concentration. Bacteria can swim in a
straight line for only a few seconds, before Brownian
motion re-orients them randomly. A typical nutrient
molecule has a diffusion coefficient of *400 mm2 s71

which means that diffusion will carry it *70 mm in 2 s.
Typical swimming speeds are in the range 40–60 mm s71

so swimming driven by the flagellar motor does indeed
help, but only just.

2. The physics of molecular motors

2.1. Biological free energy

Molecular motors, by their nature, are directional and
do work against a load. These directional processes
occur in an environment dominated by fluctuation, and
the small parts that make up these motors operate at
energies only marginally higher than the thermal bath.
This is the central difference between macroscopic and
molecular motors and these fluctuations are an essential
component of the motor mechanism.Macroscopic ideas
of atomic-scale components working as levers, cogs,
wheels and pistons are useful to some extent, but do not
convey the fact that these interactions are occurring in a
fluctuating viscous environment, driven by energetic
and entropic considerations. Motion occurs by biasing
this fluctuation in such a way that work is achieved.

This work is coupled to a free-energy source,
usually the hydrolysis of a molecule such as ATP, the
so-called energy currency of life. Kinesin and myosin
are both examples of ATP-driven molecular motors
which use the free energy released by hydrolysing ATP
to power their mechanochemical transitions. Most
biological processes occur at constant temperature and
pressure, so the relevant free energy which determines
whether a process will proceed or not is the Gibbs free
energy. The change in Gibbs free energy, DG, is defined
as the enthalpic change minus the temperature-
weighted entropic change:

DG ¼ DH� TDS;

and must be negative (transient fluctuations are not
subject to this law, as described by fluctuation theorems
[19], but the mechanochemical cycles of molecular
motors are). Molecular motors perform work by using
the free energy produced by an associated chemical

reaction to compensate for free energy consumed when
mechanical work is done.

The BFM is unusual amongmolecularmotors in that
it is powered by an electrochemical rather than a purely
chemical process, namely the transit of monovalent
cations across the cell membrane. The free energy per
unit charge crossing the membrane is called the ion
motive force (IMF), and has units of volts. The IMF
arises from active metabolic transport of ions (usually
protons,Hþ) across energisedbiologicalmembranes, and
is a key intermediate in bioenergetics [1]. The IMF has
electrical and chemical components, and is defined by:

IMF ¼ Vm þ
kT

q
ln

Ci

C0

� �
;

where Vm is the voltage difference across the mem-
brane (normally negative inside), k is Boltzmann’s
constant, T is the absolute temperature, q is the ionic
charge, and Ci and Co are the ion concentrations inside
and outside the cell, respectively. The two parts of the
IMF can be considered separately: as an enthalpic
component, Vm, and an entropic component, Dm/q ¼
(kT/q) ln (Ci/Co). The enthalpic component is the
electrostatic energy gain that arises when an ion moves
from outside the cell to inside the cell across the
voltage drop located at the membrane. The entropic
component is the chemical potential difference per unit
charge due to the concentration difference across the
membrane.

It is worth mentioning here that nearly all living
systems function only in aqueous solution at tempera-
tures near room temperature, and that the free-energy
changes associated with their function are comparable
to the thermal energy, kT. Thus, it is convenient to
introduce an appropriate energy scale based on units
of kT0, where T0 is room temperature. We will use
kT0 ¼ 4 6 10721 J. In terms of mechanical work, this
can also be written as 4 pN nm. Under typical
biological conditions, the hydrolysis of one molecule
of ATP produces *20kT0 of free energy, and a single
ion transit *6kT0.

2.2. Physical descriptions of molecular motors

To understand the relationship between the chemical
driving force and the mechanical force or torque that it
generates, we need to build a framework where we can
describe the mechanochemical transitions that couple
chemical reactions to the conformational changes that
make the motor move. Molecular motors are large
molecular complexes with many interacting parts.
Ideally our framework should accurately describe our
system, but not be prohibitively complex. The most
detailed method of modelling a macromolecular
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system is to use Molecular Dynamics (MD) to simulate
the trajectories of every atom in the system. If we have
N atoms, the full MD description of the system
includes 6N degrees of freedom: three for velocity
and three for position of each atom in the system and
surrounding solvent water molecules. At each time step
and for each atom, Newton’s equations of motion are
combined with empirical pair-wise force-fields and
used to calculate the net force on each atom. For the
next time step all the atoms are moved into their
predicted new positions, and so on. Due to the
computational intensity of MD, only picosecond to
nanosecond timescales can be simulated for large
protein complexes such as molecular motors. This
compares to millisecond and slower timescales for the
working cycles of a typical molecular motor. Some
progress is being made in coarse-grained MD, where
several atoms are grouped together into pseudo-atoms,
each a separate software object. However, the force-
fields for these pseudo-atoms are not so well tested as
those for all-atom MD, and the computational gains
are not yet enough to allow simulation of full cycles of
molecular motors.

At the opposite end of the scale from MD, the least
detailed description of a macromolecular system is
entirely kinetic. Kinetic models define discrete states of
the system that are separated by free-energy barriers,
and model transitions between these states as instan-
taneous thermally activated jumps over the energy
barriers, following the classical Eyring or Kramers
theories [20,21]. Figure 3 shows a simple four state
kinetic model, with the free-energy barrier shown for
the transition between state A and state B. In the case
of molecular motors, coupling between the chemical
driving force and mechanical output is ensured by
assuming that each state corresponds to a particular
mechanical as well as chemical configuration of the
system.

Kinetic models can be useful in analysing simple
features of molecular motors, as we describe in Section
3.3 below. However, they do not really explore the
physical mechanism of coupling, which is lost in the a
priori assumption of coupled mechanical and chemical
properties of each state. The most useful level of
description of molecular motors dates back to the
1950s [22,23] and consists of solving Langevin or
reaction-diffusion equations. This is known as Brown-
ian Dynamics. In the all-atom simulations of MD, most
degrees of freedom correspond to thermal fluctuations
which are not significant when modelling the mechan-
ical action of the motor. The essential motion of a
molecular motor may be described more simply by a
stochastic differential equation (a Langevin equation) in
which thermal fluctuations are modelled by an
uncorrelated random force representing the effect of

the solvent on the motor. Brownian Dynamics begins
by considering only those degrees of freedom which are
necessary to describe the chemical and mechanical
processes of the motor. We define an energy landscape,
a multi-dimensional state space in which each point
represents one configuration of the motor and an
associated free energy, the potential of mean force. The
landscape contains within it macrostates that are
collections of configurations which share important
properties, for example a major conformational
property such as the relative position of a pair of
rotor and stator proteins, or a major chemical property
such as whether and where an ATP molecule is bound.
For a simple ATP-driven motor such as a single
kinesin or myosin head, the chemical dimension or
variable would represent the binding and subsequent

Figure 3. A four-state kinetic model where distinct states of
the system are assumed to be connected by instantaneous
transits. Transitions from one state to another can be
characterised by a reaction coordinate, an abstraction of the
multiple pathways that the system can follow between any
two states. In each case an energy barrier must be overcome
to initiate the change in state, and the change from one state
to another is modelled as a Poisson process with a constant
probability kij of occurring per unit time. The constants kij
are called rate constants, and the principle of Detailed
Balance requires that kAB/kBA ¼ exp(7DG/kT) for any
transition A $ B. The equations shown in the figure obey
this condition and are usually used as a starting point for
describing rate constants in a kinetic model of a molecular
motor.
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hydrolysis of ATP, followed by release of the products
ADP and phosphate. For the BFM, it would represent
ion transit across the membrane. It is also possible to
have more than one chemical variable, for example the
rotary molecular motor F1-ATPase has three, one for
each of the three ATP binding sites located symme-
trically around the rotor [24,25].

The energy landscape of a molecular motor will
have local maxima and minima and pathways between
minima that couple chemical energy to mechanical
work. The landscape is typically periodic in both
reaction and position coordinates, which reflects the
cyclic nature of molecular motors. Figure 4 illustrates a
hypothetical landscape with one chemical and one
mechanical variable. The chemical energy decreases
from left to right, indicating the direction of the
driving reaction. The mechanical energy increases from
bottom to top, indicating work done against a
conservative force or torque. Diagonal valleys in the
landscape lead to coupling between chemical and
mechanical variables, the fundamental function of
the motor. Mechanochemical states correspond to
wells in the landscape, and are indicated by A, B, C in
Figure 4(a).

After the reduction in the number of degrees of
freedom of the system, the second major ingredient of
Brownian Dynamics is separation of timescales between
chemical and mechanical processes. Ion transits and
chemical reactions involve small, local motions, such as
the movement of a single ion or the breaking of a single
covalent bond in ATP hydrolysis. These chemical
processes occur on timescales of microseconds or faster.
By contrast, mechanical changes such as large-scale
conformational changes in a protein or relative motions
of different proteins or groups of proteins (for example
rotation of the BFM rotor relative to the stators) are
much slower, with millisecond timescales. Brownian
Dynamics takes advantage of this timescale separation
by treating the slow, mechanical variables as contin-
uous, and discretising the chemical variables into a set
of kinetic states. Each chemical state is represented by
an energy profile (versus mechanical variables), which
can be thought of as a section of the energy landscape at
a fixed value of the chemical variable in question.
Figure 4(b) shows two such energy profiles for the
chemical states A and B.

The landscape determines the kinetics of the
chemical reactions, and similarly the kinetics, if
measurable, can be used to reconstruct the landscape.
For molecular motors, chemical reaction rates depend
strongly on the spatial position of the motor. Certain
transitions are probable only at certain positions, and
the interdependence of chemical kinetics and mechan-
ical energy profiles determines many critical compo-
nents of the motor such as torque-speed curves,

maximum velocity, maximum torque, turnover, effi-
ciency and reversibility. The system of discrete
chemical states with energy profiles and rate constants
that depend on the continuous mechanical variable(s)
can be represented by reaction-diffusion or coupled

Figure 4. (a) Simplified two-dimensional energy landscape
with one chemical and one mechanical coordinate. The white
path shows the diffusing path of the motor as it fluctuates
within and between mechanochemical states, defined by wells
in the landscape and labelled A, B, and C. The periodic
nature of the landscape reflects the periodicity of the
chemical cycle, and as the chemical cycle is completed there
is also motion towards the top along the mechanical
coordinate. The white path in the lower right of the
landscape shows a motor making rapid chemical transitions
and slow diffusing mechanical relaxations moving between
states A, B, and C. (b) Sections of the landscape at fixed
values of the chemical coordinate represent energy profiles of
distinct chemical states, as used in Brownian Dynamics. Two
such energy profiles for sections through states A and B,
marked by the red and black lines in (a), are shown here. The
motor operates by making fast chemical transitions at fixed
mechanical postions followed by relaxation of the motor
along the new energy profile, as indicated by the blue arrows
shown in (b). Equivalent sections at fixed values of the
mechanical coordinate would represent the chemical kinetics
for any given mechanical state. Applying an external load on
the motor constitutes tilting the landscape along the
mechanical coordinate. For further equations and Langevin
descriptions of the landscape of a rotary motor, see [26].
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Langevin equations [26], which are usually solved
numerically to give either average probability densities
or simulated motor trajectories. Xing et al. have built a
Brownian Dynamics model to describe torque genera-
tion in the BFM [27], which we will discuss in further
detail in Section 3.3.

3. Measuring rotation of the bacterial flagellar motor

3.1. Experimental methods

To understand the mechanism of the BFM we need to
measure its motion. We want to use information about
the torque and speed of the motor to reconstruct
attributes such as energy profiles and state transitions so
that we may examine the underlying torque-generating
mechanism. To do this we need to be able to measure
with high precision the position of and torque applied to
the rotor. This is an example of single-molecule
biophysics. Although the BFM contains hundreds of
thousands of atoms, the label single-molecule is still
applied to experimental measurements of single BFMs;
partly because the experimental and theoretical techni-
ques are the same as those used on smaller molecular
motors, and partly because the atomic precision of
protein structures distinguishes even a large protein
complex like the BFM from objects made of bulk
materials, in which the exact position of individual
atoms is neither specified nor important.

How can we measure the rotation of a single BFM?
The main techniques for imaging objects on the
nanometre length-scale, electron microscopy and X-
ray crystallography, both require very dead samples, so
neither is appropriate for live recording of anymolecular
motor. Atomic force microscopy (AFM) is promising,
but molecular motor studies to date using AFM have
been limited to purified motors isolated on flat surfaces,
and it may be a long time, if ever, before AFM develops
to the point where it can be used to monitor the BFM in
live cells. This leaves light microscopy. The motor itself
is too small to observe in visible light, and so a visible
marker must be attached to a part of the motor that
rotates. The earliest demonstration of BFM rotation
was achieved using tethered cells by Silverman and
Simon in 1973 [28]. Flagellar filaments were fixed to the
glass surface of a microscope coverslip and the cells
rotated around these fixed tethers. This demonstrated
that the motion of the BFM was rotational, not
oscillatory. The marker attached to the rotor in this
case was the micron-sized cell body of E. coli itself,
easily observable with video microscopy.

In the standard modern version of this experiment,
known as a bead assay, we attach a polystyrene bead to a
truncated filament of a cell body fixed to the surface of a
coverslip. The bead can be varied in size and each size
has a well-defined viscous drag-coefficient. The rotation

of the marker can be detected by many methods. The
most straightforward is to image it using dark-field or
bright-field microscopy with a fast camera, and track its
rotation in recorded video. It is worth pointing out here
that the Rayleigh criterion (or other similar criteria) for
optical resolution is irrelevant here. What we need to do
is to determine the position of the image of a single
object, not to resolve the separation of two separate
objects. By fitting the image to a 2D Gaussian or other
empirical function, offsets in the centre of this function
can be determined with arbitrary accuracy, depending
only on the number of photons collected to form the
image (which in turn determines the precision of the fit).
The slower and brighter the object being tracked, the
greater the position sensitivity. For example, single
fluorescent molecules are typically tracked with frame
rates on the order of 1 s71 and corresponding spatial
precision of *1 nm. Brighter objects can be tracked
with more temporal and spatial resolution, and a trade-
off always exists between faster frame rates and better
spatial resolution in each frame. A less computationally
intensive method, and our standard method, is to detect
the rotation of the bead by using an optical trap,
invented by Ashkin et al. in 1986 [29]. An optical trap
uses light with a Gaussian intensity profile passing
through a bead of higher refractive index than its
surroundings to form a harmonic potential and exert
force on the bead. Rather than using a strong laser and
an optical trap to exert andmeasure force, we use a weak
laser focused on the bead for position detection. Any
small change in the position of the bead is measured by
an associated shift in the direction of the laser light
scattered by the bead. This is measured using a quadrant
photodiode (QPD, a set of four photodiodes each
covering a single quadrant) located in an optical plane
conjugate to the back focal plane of the condenser lens
that collects the laser light after it has interacted with the
bead. A schematic of our apparatus is shown in Figure 5.

The inventionof optical trapping allowed researchers
to exert pico-Newton forces and measure displace-
ments of nanometres with sub-millisecond time-
resolution. This made it possible to perform single
molecule measurements on molecular motors at their
natural length, time and energy scales. Spatial resolu-
tion of bead displacement is limited by the width of the
beam waist in the specimen plane which is related to
the wavelength of the laser light and, for an overfilled
objective, the numerical aperture (NA) of the objec-
tive. For small beads of diameter d, and for displace-
ments much smaller than the laser focus, the response
of the QPD was experimentally verified to be propor-
tional to (d/oo)

3 by Gittes and Schmidt [30]. In the case
of our experiments this allows us to measure beads
from as small as 200 nm up to as large as 2000 nm
using a 632 nm HeNe laser and a 1006 immersion-oil
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objective with NA 1.30. By altering the size of the
bead, the viscous drag coefficient can be varied and
thus the performance of the BFM under different
torque regimes can be explored.

Our observations of the motor are limited by the
need to use a comparatively large marker. For a motor
rotating a large bead there is a time-scale separation
between the positions of the motor and the bead. This
separation allows the motor to work with very high
Stokes efficiency, i.e. most of the electrochemical free
energy is used to drive the viscous load rather than
being dissipated directly as heat [31]. The elastic linker
of the hook is soft enough to allow the rotor to
fluctuate over several steps before the load moves
noticeably and similarly work done to stretch the
linker can be returned to the motor before it is
dissipated by moving the load. Thus, the hook
effectively smooths the discrete stepped motion of the
rotor. At high speed and low load, the tension between
the load and motor relaxes faster, and the motor works
against a smaller elastic load. The characteristic
smoothing time decreases along with the load, and so
small loads allow us to look more closely at the details
of the rotor’s motion. The change in response time for
different size beads is shown in Figure 6.

Recently we have been able to extend our experi-
ments to lower load regimes using a dark field
microscope and gold particles attached directly to the
hook. Dark field microscopy has been used to detect
rotation in F1-ATPase by Yasuda et al. [33]. They used
forward-scattered light from a 40 nm gold particle
attached to the rotating gamma subunit of F1-ATPase.
The scattered light from the gold particle was collected
on a high speed camera. In our experiments we use a
slightly different dark field microscope where the laser
passes through the objective and illuminates the gold
beads from below. The back-scattered light is then
collected at an even higher speed camera (109 kHz),
and positions can be determined with nanometre
precision at this frame rate. Gold beads are attached
directly onto the hook, so the additional drag of the
filament stub is also removed [34].

3.2. Energetics of the bacterial flagellar motor

The wild-type BFMs of E. coli and many other species
are powered by Hþ ions (protons). Several other

Figure 5. Schematic of a dual optical trap apparatus
showing the standard bead assay. The polystyrene bead is
attached to a filament stub of an E. coli cell fixed to the
surface of a coverslip (by flowing a solution of beads over a
surface decorated with cell bodies). The excess beads are
washed out and the slide is sealed and placed on a
microscope. The spinning beads can be seen on a video
camera, and their position can be resolved to high precision
by looking at the change in scattering of the laser light with a
quadrant photo-diode. This microscope has two optical traps
so that lasers of different wavelengths can be used to track
beads of different sizes.

Figure 6. This figure shows schematically the difference in
response time for different size loads. Four different loads are
shown; 80 nm gold beads attached directly onto the hook,
200, 350, and 500 nm polystyrene beads attached to
truncated filaments. The relative sizes of the markers to the
filament and the cell are shown to scale in diagrams adjacent
to each trace. The relaxation times are derived from known
hook stiffness and drag coefficients for each size bead. The
trace in black at the bottom of the figure is the stepping
motion of the rotor, and the traces above are the response
curves of the marker, each offset by 458 for clarity. The
response is ‘smoothed’ due to the soft linker of the hook and
depends on the size of the load. The rotor step is 13.88 as
observed by Sowa et al. [32] and the motor is spinning at
10 Hz.
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species, including the marine bacterium Vibrio algino-
lyticus, have BFMs powered by Naþ ions [35]. The
stator proteins in the Naþ-driven motor of V.
alginolyticus are called PomA and PomB, and are
structurally similar to MotA and MotB from E. coli.
Based on this similarity, a chimeric fusion protein
known as PotB, combining parts of PomB and MotB,
was made by Asai et al., and combined with PomA to
make a Naþ driven chimeric motor that works in
E. coli [36]. The sodium-motive force (SMF) of E. coli
can be changed without drastically affecting cell
function, unlike the proton-motive force (PMF) which
is closely regulated and linked to pH. (Extremes of pH
change the charge state of ionisable groups on the
surface of proteins, and therefore usually have severe
effects on protein folding and function.) Controlling
the SMF in cells with chimeric motors has allowed the
dependence of flagellar rotation on each component of
the IMF to be explored.

In order to control the SMF for experiments on the
chimeric motor, we developed fluorescence microscopy
methods to measure either the internal sodium
concentration or the membrane voltage in single, live,
E. coli cells [37]. We found the following dependence of
membrane voltage and the sodium chemical potential
in cells with chimeric motors:

Vm mV�1
� �

� 57� 28 pH;

Dm=qð Þ mV�1
� �

� 5þ 5 pH� 47 log10 Naþ½ �;

where pH and [Naþ] are the pH and sodium
concentration in mM of the medium surrounding the
cell. Thus, to a reasonable approximation the mem-
brane voltage depends on pH, but not [Naþ], and the
chemical potential depends on [Naþ] but not on pH.
This allows independent control of the two compo-
nents of SMF. The chimeric motor rotated stably for
all combinations of pH between 5 and 7 (correspond-
ing to Vm between *780 and 7140 mV) and [Naþ]
between 1 and 85 mM (corresponding to Dm/q between
*þ30 and 750 mV).

3.3. Torque versus speed

Finding the relationship between torque and speed is a
means to quantify the mechanochemical cycle of any
motor. In the case of the BFM the torque on the motor
can be adjusted by changing the size of the bead used as
the marker. Larger beads have larger drag coefficients
and result in the motor operating at higher torque. The
drag coefficient can also be changed by varying the
viscosity of the medium while observing the same bead
and motor [38]. This is important when small beads are
used, as it allows the viscous drag coefficient of the

truncated flagellar stub, similar to that of a 0.2 to
0.3 mm bead, to be quantified [39]. Torque-speed curves
obtained for wild-type and chimeric motors in E. coli
using these methods as well as electrorotation (see figure
legend) are summarised in Figure 7.

What can we tell by looking at this relationship?
First we can see the maximum speed of the motor,
which is the zero-torque speed. We can also see the
stall torque, which is the y-intercept in Figure 7.
The other key features of the torque–speed curve are the
plateau at low speed and the steeper linear regime at
high speed. Where these two regimes intersect is known
as the ‘knee’ of the torque–speed curve. The continuity
of the plateau regime on either side of stall shows that
there is no irreversible step in the mechanochemical
cycle. If such a step did exist, the torque would be
expected to increase sharply before the motor could be
forced backwards [41]. The ‘plateau’ is a region of
constant torque at high load where the motor is rate
limited by the mechanical relaxation of the bead, as
shown in Figure 6. After the ‘knee’, the torque
decreases linearly to zero as the motor moves faster.
At low loads the motor is rate limited by kinetic rate
constants in the mechanochemical cycle, for example
the arrival, binding or transit of ions. Evidence for this
is shown by the large effect of temperature and isotope
substitution on the speeds at low load, compared with
the small effect of these changes at high load [40,42]. At
high and low loads the speed varies linearly with the
PMF [43].

Any model that hopes to explain the torque
generating mechanism of the BFM has to be able to
reproduce the observed torque–speed relation. We
outline two models: a fully kinetic model from Berry
and Berg in 1999 [44], and a reaction-diffusion model
from Xing et al. in 2006 [27]. Berry and Berg used a
minimal three state kinetic model. Each step in the
cycle is assigned a chemical free energy change,
Ui, and also rotation of the rotor through some
angle ji. If j is the angle moved in one cycle and bi is
the fraction moved in step i, the motor performs work
Wi ¼ ji� ¼ bi�j in step i, where � is the torque. The
sum of all Ui must be equal to nq � PMF, where n is
the number of protons transiting the membrane per
cycle, q is the charge of a single proton, and PMF is
the proton-motive force. Similar to bi, a second set of
parameters, ai, are defined as the fractions of the free
energy from proton transit that are dissipated as heat,
or used to do work, in step i, so that Ui ¼ ainq �
PMF. A third parameter for each step, ki, determines
the absolute rate of each step, and rate constants are
given by

kfi ¼ ki exp
Ui �Wi

2kT

� �
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and

kbi ¼ ki exp
� Ui �Wið Þ

2kT

� �

for the forwards and reverse rates of step i, respec-
tively. These expressions assume for simplicity that Ui

and Wi each affect the forward and reverse rate
constants symmetrically. With torque and PMF
specified, solution of the coupled linear ordinary
differential equations for the occupancy probabilities
of each kinetic state, assuming steady state, gives the
flux around the mechanochemical cycle and thus also
the rotation speed. A brief exploration of the
parameter space of this model is shown in Figure 8.

Some of the assumptions in this model are no
longer valid. It assumes that either one or two protons
are translocated in each mechanochemical cycle, that
there are eight stators, and each stator completes 120
cycles per revolution. Current understanding is that the
up-to-11 stators [15] each probably complete 26 cycles
per revolution (see Section 3.4). Changing these values,
however, does not affect the model’s prediction of the

shape of the torque–speed relationship. We are work-
ing on a more general kinetic model which will be used
to fit newly measured torque–speed relationships of the
chimeric BFM at 25 different combinations of Vm and
Dm. The model is based on a four state model and has
more than 20 free parameters which allow it to span all
possible combinations of the rate constants and their
dependences upon torque and either component of the
SMF. The advantage of kinetic models such as these is
that they are simple and therefore fast to compute,
allowing automated searching of the multi-dimen-
sional parameter space to find good fits to the
experimental data. Despite their lack of mechanical
detail, kinetic models substantially constrain possible
models of the motor mechanism.

Xing et al. [27] proposed a reaction-diffusion model
which was designed to ensure that motor rotation and
ion transport are tightly coupled. Figure 9 shows energy
profiles (potentials of mean force versus rotor-stator
angle, equivalent to those shown in Figure 4(b)) for two
states of a single model stator. Transitions between state
1 (solid lines) and state 2 (dashed lines) are coupled to the
motor binding two ions from outside the cell, and are

Figure 7. Torque–speed curves for the proton powered wild-type E. coli and for Naþ-driven chimera at full induction
(maximum number of stators). (a)–(b) Methods of measuring torque–speed relations. (a) Beads attached to flagella. The size of
the bead or the viscosity can be changed to vary the load and thus the torque of the motor. Load lines for six different sizes of
beads in aqueous buffer are shown on the plot as dashed grey lines, for beads from 1.0 to 0.2 mm. (b) Electrorotation of tethered
cells [40] – microelectrodes generate a MHz rotating electric field at the cell which applies an external torque (black arrow) that
adds to the motor torque (grey arrow). In this way the torque speed relation can be explored for motors forced to rotate in
reverse, or forwards faster than the zero-torque speed. (c) Torque–speed relationships for flagellar motors using different
methods. The E. coli wild type torques are shown by circles, with the electrorotation torque–speed measurements shown using
grey circles, and the Naþ-driven chimera torques by black triangles. Figure adapted from Sowa and Berry [11]. Reprinted with
permission from Q. Rev. Biophys., 41 (2008), pp. 103–132. Copyright (2008) by Cambridge University Press.
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possible only at angles corresponding to the upper
shaded area. Ion transit is completed by release of the
two ions into the cell, which in turn is possible only at the
angles indicated by the middle shaded area. The lowest
shaded area shows the start of the next cycle of the
motor. The linear sections of the energy profiles are
chosen to produce constant torque in the plateau region.
The peaks in the profiles were found to be necessary to
prevent slipping, for example when the system moves

over the top of a ‘tooth’ in a single potential, leading to
rotation uncoupled from the chemical state transition.
The coupling to two ions at a time was introduced to
ensure that enough free energy is available in a single step
of 1/26 of a revolution to generate the measured torque
of the motor at low speeds – this point is discussed in
more detail in Section 3.4 below. Otherwise, the two-
state kinetic cycle and the potentials were chosen to be as
simple as possible, reflecting the limited structural and

Figure 8. The torque–speed relationship for the kinetic model described in the text from Berry and Berg [44]. The right-hand
panels are a graphical representation of the parameter sets, showing the degree to which each step of the cycle dissipates the
available free energy and results in motor rotation. (a) The torque speed relation when all three steps in the cycle are equivalent,
with parameters: a1 ¼ a2 ¼ a3 ¼ b1 ¼ b2 ¼ b3 ¼ 1/3, k1 ¼ k2 ¼ k3 ¼ 6 6 104 s71. (b) The dissipation of proton free energy,
and the rotation occur in nearly entirely separate steps, with parameters: a1 ¼ b2 ¼ 0.95, a2 ¼ a3 ¼ b1 ¼ b3 ¼ 0.025,
k1 ¼ k2 ¼ k3 ¼ 105 s71. (c) If the dissipation of the proton free energy and the rotation of the rotor happen in a single step the
torque–speed relation predicted by the model looks qualitatively similar to the experimentally observed torque–speed curve.
Parameters: a2 ¼ b2 ¼ 0.95, a1 ¼ a3 ¼ b1 ¼ b3 ¼ 0.025, k1 ¼ k2 ¼ k3 ¼ 105 s71 (closed circles); k1 ¼ k2 ¼ k3 ¼ 4.2 6 104 s71

(open circles). Taken from Berry and Berg [44]. Reprinted with permission from Biophys. J., 76 (1999), pp. 580–587. Copyright
(1999) by Elsevier.
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kinetic data available to constrain themodel. The angle y
of the rotor relative to a single stator obeys the Langevin
equation:

zM
dy
dt
¼ � @

@y
VM y; sð Þ � k y� yLð Þ þ 2kBTzMfM tð Þ½ �1=2;

where zM is the drag coefficient of the rotor, VM is the
energy potential of mean force along the minimum
energy path described as a function of y, s is a binary
variable describing the state of the stator, k is the
spring constant of the link to the bead and yL is the
angle of the bead. The last term is the stochastic
Brownian force acting on the stator, where fM(t) is
uncorrelated white noise. The slope of VM determines

the force profile the stator exerts on the rotor. Motors
with multiple stators are modelled by replacing Vm

with a potential which is the sum of the potentials from
all stators. A similar Langevin equation describes the
motion of the bead, but without the Vm term.

Numerical analysis and simulations of this model
confirmed that for a motor dragging a large load, there
is a time-scale separation between the motor and the
load dynamics, in addition to the a priori assumed
timescale separation between the motion of the rotor
and the chemical transition time. The soft linker allows
the motor to work against an approximately constant
conservative torque, similar to the situation illustrated
in Figure 4. For large loads, this torque slows the rotor
to the point where chemical transitions are almost
certain to occur before the rotor has moved beyond the
low-angle part of the allowed transition zone in Figure 9,
where the torque is constant. This produces the plateau
region of the torque–speed curve. By contrast, for small
loads the bead relaxes much faster and there is a
significant probability that the rotor will reach the
minimum of an energy profile before a chemical
transition takes the system to the next state. Since the
average torque at the minimum is zero, this produces a
steeply decreasing motor torque as the load is decreased
and the speed approaches the zero-load speed. The
success of this model consists of explaining the
experimentally observed sharp transition between these
two regimes at the ‘knee’, as shown in Figure 10.

The same authors revisited this model [45] in 2009.
They added compliant springs linking the stators to the
cell wall, to explain the most recent results from Yuan
and Berg [46]. The original model predicted that the
zero-load speed would actually decrease with increasing
number of stators, as coordinated transitions in all
stators were required for the rotor to rotate. Yuan and
Berg found a lack of dependence of zero-torque speed on
stator number, which implies that competing stators do
not impede each others’ interaction with the rotor.
Stator springs allow each stator to step independently,
storing energy in stretching its own spring, rather than
requiring the rotor-stator angles of all stators to change
in synchrony. The stator-spring model can also repro-
duce the experimentally observed stepping behaviour,
and was used to predict dwell time distributions between
steps as well as a variety of possible dependences of
stepping patterns upon the number and relative ancho-
rage points of separate stators. These predictions will be
tested by future experiments in our group, as discussed in
Section 3.4 below.

3.4. Stepping rotation

Molecular motors operate on periodic tracks and with
periodic chemical cycles. The consumption of a

Figure 9. The Brownian Dynamics model of Xing et al.
[27]. The energy potentials in each of two chemical states of a
single stator are modelled as identical periodic piecewise
linear functions offset by half a period. The 26-fold
periodicity reflects the structure of the FliG ring in the
rotor and the observation of 26 steps per revolution (Section
3.4). Each transition between the two potentials initiates a
power stroke, which is modelled as a constant torque. The
soft linker between the rotor and the load is indicated by the
spring, A. The sharp peaks in the potential labelled B prevent
thermal fluctuations from causing back-steps that are
uncoupled from the chemical transitions, thus ensuring
tight coupling between rotation and proton flux. Each
motor cycle transports two ions from periplasm to
cytoplasm, which decreases the free energy of the system by
2q 6 PMF and advances the rotor by 2p/26. The (shaded)
transition regions specify the positions where the transitions
between the potentials can take place. Figure taken from
Xing et al. [27]. Reprinted with permission from Proc. Natl.
Acad. Sci. USA, 103 (2006), pp. 1260–1265. Copyright (2006)
by the National Academy of Sciences.
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discrete number of fuel molecules per cycle, and the
repetition of a track unit implies that at some
fundamental level there are discrete mechanical steps
where torque or force generation occurs. Observing
this quantised movement we can look beyond torque–
speed curves to obtain a more detailed picture of the
motor mechanism. For example, kinesin was first
observed to step in 1993 by Svoboda et al. [47]. They
used an optical trap to monitor the position of a silica
particle attached to a kinesin molecule walking along a
surface-bound microtubule. This was the first observa-
tion of discretised molecular motion and they saw
8 nm steps corresponding to the 8 nm a-b-tubulin
structural repeat of the microtubule track. Further
experiments confirmed that each step uses one
molecule of ATP [48]. Rotational motion of F1-
ATPase was first observed in 1997 by Noji et al. [24].
They showed that F1-ATPase rotates in three distinct
1208 steps, each of which is linked to the binding,
hydrolysis and release of a single ATP molecule [49].
The three-fold symmetry of the track, with three pairs
of a and b subunits arranged in a hexagon, was reflected
by the presence of three steps per revolution. This was
followed in 2001 by Yasuda et al. [33] discovering
substeps within this rotation using a dark field micro-
scope and a high speed camera. They were able to see
two substeps of 808 and 408. From an analysis of these
substeps and adjusting the ATP concentration they were
able to determine which substeps corresponded to
which parts of the chemical cycle. In particular the 808
substep was driven by ATP binding and the 408 substep
by release of hydrolysis products.

For the BFM, the *26-fold periodicity of the FliG
ring in the rotor [50], implies a discrete torque
generating step at the heart of motor function. Indirect
evidence for a stepping mechanism was found by
Samuel and Berg [51]. They performed a fluctuation
analysis which observed a quadratic relationship
between the mean and variance of rotation speeds, a
predicted result for any mechanism involving a Poisson
stepper with exponentially distributed dwell times. In a

further analysis of variance and speed they predicted
50 steps per revolution per stator [52].

Due to the high speed rotation of the BFM under
standard biological conditions only recently has
sufficient experimental resolution been available to
observe stepping in the BFM. The smoothing of the
signal by the hook means that the intervals between
steps must be larger than the relaxation time of the
bead if steps are to be seen. The drag coefficient can be
reduced as discussed earlier by using smaller beads, but
this leads to faster rotation, and thus requires greater
time resolution. The spring constant of the hook has
been measured by Block et al. [53] to be *400 pN nm
rad72 and the subsequent damping of the bead motion
is equal to the viscous drag on the bead divided by the
spring constant of the hook. Effectively this means that
for 0.5 mm beads the rotation speed needs to be less
than 12 Hz for the steps to be observable.

In 2005 we first observed steps in the BFM [32].
Sodium driven chimeric motors in E. coli were kept at
low stator number by controlling the amount of stator
protein made in the cells, and the SMF was reduced so
that the speed of the motor was kept below 10 Hz,
enabling discrete steps to be observed as shown in
Figure 11. The steps were measured using two different
methods. The first method was using a laser focused on
a 500 nm polystyrene particle attached to a truncated
filament as in our standard bead assay. In this case, the
SMF was reduced by lowering the external Naþ

concentration to 0.1 mM, although at the time the
relationship between SMF and Naþ concentration was
not known. The second method was using high-speed
video of 200 nm fluorescent beads attached to rotating
truncated filaments. In this case, cells were illuminated
with a high-intensity mercury arc lamp at 475 nm
bandpass, which was thought to reduce the membrane
voltage, and thus the SMF, by unspecified mechanisms
of photodamage.

Both methods showed 26 steps per revolution, and
a corresponding step size of 13.88, in agreement with
the periodicity of the ring of FliG in the rotor. If steps

Figure 10. Comparison of model predictions from Xing et al. [27] (dots and lines) with experimental data [38] (squares), for
torque–speed curves at different temperatures. Figure taken from Xing et al. [27]. Reprinted with permission from Proc. Natl.
Acad. Sci. USA, 103 (2006), pp. 1260–1265. Copyright (2006) by the National Academy of Sciences.
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of 13.88 are the smallest unit of movement in the BFM
then using energy balance it should be possible to
calculate the number of ion transits that correspond to
a step. The stall torque for the chimera sets an upper
bound to the step size per single ion transit. Under
standard conditions ([Naþ]ex ¼ 85 mM and pH 7)
SMF is 7150 mV and the average torque per stator
unit is 150 pN nm to rotate a 1 mm bead [37]. From
this the upper bound to step size can be calculated to
be 108 per step, or 36 ions per revolution. This
corresponds to the 35-fold symmetry of the C ring,
but implies that each step at high load, if tightly
coupled, requires more than one ion transit, but less
than two. The problem of dividing 38 ions into 26

steps, while retaining tight coupling, requires new
models and further experiments. We can imagine two
simple solutions: either the motor is tight coupled and
the stall-torque estimation is incorrect, or rotation is
not tightly coupled to proton translocation and the
model of Xing et al., which uses two ions per step,
must be altered to allow slipping. A third, outside,
possibility is that the mechanochemical cycle and the
observed steps are not the same thing. This would
require an elastic link between the site of torque
generation (tight coupled, *36 ions per rev, presum-
ably the bottom of the C-ring) and, in series, another
site with a 26-fold interaction potential between the
rotor and stator that produces the observed steps

Figure 11. Steps in slow flagellar rotation. (a) Reducing SMF and motor speed of a chimeric Naþ-driven flagellar motor in
E. coli; upper: by lowering external Naþ concentration (5 to 0.1 mM and back, black arrows) and lower: by photodamage. The
speed doublings marked by red arrows indicate a change from one to two stators. (b) Stepping rotation of flagellar motors with a
range of average speeds depending on different SMF. Insets show the positions of beads attached to flagellar filaments, scales in
nanometres. Horizontal and radial lines indicate (1/26 rev). (c) Step size distribution (black) with multiple Gaussian fit (red). The
peak of forward steps is 13.78, indicating 26 steps per revolution. An example of steps identified by a step-finding algorithm is
shown (inset). (d) Plot of angle against time during three revolutions, a histogram of dwell angles for the same revolutions and the
power spectrum of that histogram. The peak at 26 per revolution corresponds to a step size of 13.88, and shows that the motor
stops at the same angles on successive revolutions. Speeds shown in black were measured using optical interferometry, those in
blue using high-speed fluorescence microscopy (insets in (a)). Figure reproduced from Sowa et al. [32]. Reprinted with permission
from Nature, 437 (2005), pp. 916–919. Copyright (2005) by Nature Publishing Group.
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(presumably the FliG ring at the top of the C-ring).
The rotor structure has a region of low density between
the two parts of the C-ring that would be a candidate
for the elastic link, but before taking such a model
seriously it will be necessary to rule out other simpler
explanations, and to find a signature for such a
mechanism in more detailed analysis of motor
stepping. We are currently trying to obtain the relevant
data using our dark-field microscope and gold beads
attached directly to hooks. The high time resolution of
this system allows us to resolve steps at motor speeds
in excess of 200 Hz. Combined with our new ability to
control both components of the SMF, we hope to be
able to make a detailed statistical examination of the
stepping of the BFM and investigate the details of the
mechanism, including the question of possible stepping
coordination of multiple stators acting on the rotor.

4. Conclusion

Biological molecular motors show us how directed
motion can be generated by nanometre-scale devices
working at the energy scale of the thermal bath. Direct
and indirect observations of functioning single motors
allow us to see fundamental processes of statistical
physics unfolding in microscopic detail at room
temperature, something that was unimaginable only a
few decades ago. The bacterial flagellar motor is the
largest of several molecular motors that have been
extensively studied, revealing their mechanisms in ever
greater detail. Understanding how these machines work
is fascinating to the modern, interdisciplinary physicist.
Perhaps more fascinating still will be the next challenge,
to try and build something for ourselves that works in
the same way. Evolution has given natural biological
motors a big head-start, but we have reached the stage
where we can contemplate beginning to catch up.
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