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The Limiting Speed of the Bacterial Flagellar Motor
Jasmine A. Nirody,1,* Richard M. Berry,3 and George Oster2
1Biophysics Graduate Group and 2Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California; and
3Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom
ABSTRACT Recent experiments on the bacterial flagellar motor have shown that the structure of this nanomachine, which
drives locomotion in a wide range of bacterial species, is more dynamic than previously believed. Specifically, the number of
active torque-generating complexes (stators) was shown to vary across applied loads. This finding brings under scrutiny the
experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. In this study,
we propose that, contrary to previous assumptions, the maximum speed of the motor increases as additional stators are re-
cruited. This result arises from our assumption that stators disengage from the motor for a significant portion of their mechano-
chemical cycles at low loads. We show that this assumption is consistent with current experimental evidence in chimeric motors,
as well as with the requirement that a processive motor driving a large load via an elastic linkage must have a high duty ratio.
INTRODUCTION
The bacterial flagellar motor (BFM) drives swimming in a
wide variety of bacterial species, making it crucial for
several fundamental biological processes, including chemo-
taxis and community formation (1–4). Accordingly, gaining
a mechanistic understanding of this motor’s function has
been a fundamental challenge in biophysics.

Because of its complexity and localization to the mem-
brane, atomic structures of the entire motor are not yet avail-
able. Still, relatively detailed models have been developed
using a combination of partial crystal structures (5–7),
cross-linking and mutagenesis (8–10), and electron micro-
scopic and cryoelectron tomography images (11,12)
(Fig. 1). Additionally, the relative ease with which the
output of a single motor can be measured in real time, by
observing rotation of a large bead attached to the motor
with light microscopy, has made it one of the best studied
of all large biological molecular machines.

Arguably the most important physical probe into the dy-
namics of a molecular motor is its torque-speed relationship.
For the BFM, this curve was shown to have two distinct
regimes, separated by a ‘‘knee’’ (Fig. 2). This characteristic
feature of the BFM was long held as the first ‘‘checkpoint’’
for any theoretical model of the motor. However, recent ex-
periments showed that the number of torque-generating
complexes (stators) in the motor is load-dependent—that
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is, published torque-speed curves most likely contain mea-
surements from motors with different numbers of docked
stators (13,14). Specifically, at high loads (low speeds) a
motor can have up to 11 docked stators, whereas at low
loads (high speeds) motors typically operate with only one
stator (though we note that the experiments in (13) reported
that ~25% of motors likely had two stators).

Before continuing, we first clarify some of our terminol-
ogy. We consider the ‘‘low load’’ regime (also referred to
as ‘‘high speed,’’ ‘‘maximum speed,’’ or ‘‘zero torque’’
throughout) to be when the drag coefficient of the load is
on the same order of magnitude or lower than the internal
friction (i.e., the drag of the rotor). Importantly, we point
out that due to experimental constraints, several results orig-
inally considered to be ‘‘low load’’ measurements were con-
ducted using loads outside of this regime; these will be
noted as they appear in our text.

The recent experimental findings (13,14) shed doubt on
several fundamental results about the dynamics of the
BFM, including, importantly, its behavior at low loads.
A seminal set of experiments, termed ‘‘resurrection’’ experi-
ments, studied the dependence of motor speed on the number
of stators at various external loads (15–17). In these experi-
ments, paralyzed cells were allowed to begin rotating slowly,
and discrete increases in speed were interpreted as the addi-
tion of torque-generating complexes. Surprisingly, whereas
up to 11 increases of near-equal size were observed at high
loads, only a single such ‘‘jump’’ was observed at low loads.

These results quickly led to a series of reworked theoret-
ical models, all of which required that the limiting speed of
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FIGURE 1 The bacterial flagellar motor consists of a series of large

concentric rings that attach to a flagellar filament via a flexible hook. An

active motor can have between 1 and 11 torque-generating stator com-

plexes. Stators interact with protein ‘‘spokes’’ (FliG) along the rotor’s

edge to drive motor rotation. To see this figure in color, go online.
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the motor be independent of the number of stators (18–20).
However, it is likely that low-load measurements were never
performed on motors with more than one stator, leaving
open the question of how the BFM behaves in the zero-tor-
que (high-speed) limit.

We recently presented a model of flagellar motors with a
single stator, in which a steric interaction driven by a confor-
mational change in the stator is implicated as the motor’s
torque-generating mechanism (21). In this study, we extend
this model to motors with multiple-docked stators and pre-
FIGURE 2 Recent experiments have shown that the number of torque-

generating complexes (stators) is not constant across applied loads. There-

fore, it is likely that most measured torque-speed curves were generated

using motors with varying numbers of stators: points in the high-load

regime correspond to motors with up to 11 stators and points at low loads

(within the kinetically limited regime) to motors with only one. Red dashed

line separates the mechanically limited and kinetically limited regimes; we

focus on the latter. Data shown is from (46); however, we note that another

experiment in this same article presents data that seems to be collected from

a motor with a constant number of stators. To see this figure in color, go

online.

558 Biophysical Journal 111, 557–564, August 9, 2016
dict that the limiting speed of the BFM increases with the
number of active stators.

This result arises from the fact that the stator is not in con-
tact with the rotor in between steps, or ‘‘power strokes’’ (i.e.,
the duty ratio of the motor is less than 1). We note that
although models with high duty ratios also can reproduce
current experiments, evidence of a conformational change
in stator structure has been reported (see, e.g., (22)). Generic
models involving such a conformation will share this prop-
erty, because such mechanisms likely require stators to
‘‘reset’’ between steps.

In the following, we first give an overview of our model
for single-stator motors and then discuss its extension to mo-
tors with multiple-docked stators. We then discuss the impli-
cation of such a model for motors operating at low load: in
particular, challenging the widely held belief that the motor
speed near the zero-torque limit is independent of the num-
ber of docked stators.

We argue that these mechanisms affect the motor’s duty
ratio only at low loads. In this way, our model, and others
in this category, are compatible with evidence that the
BFM must have a high duty ratio to be processive at high
loads. Experiments testing this hypothesis, if successful,
would be the first, to our knowledge, to explicitly quantify
this relationship in the low-load regime.
MATERIALS AND METHODS

Our model implicates a steric interaction between the stator and rotor in

torque generation (21). Briefly, stators drive motor rotation by stepping

along protein ‘‘spokes’’ around the periphery of the rotor, a large ring

that connects to the flagellar filament via a flexible hook. This interaction

is analogous to parents pushing on the handles of a merry-go-round on

the playground for their children’s amusement. An overview of our pro-

posed mechanism is given in Fig. 3.

Individual steps are initiated by proton arrivals at ion-binding sites within

the stator complex. The gate-controlled diffusion of protons through the

BFM’s stator, and its link to motor rotation, was recently explored (23).

During the power stroke, conformational changes in the stator apply a steric

force onto the spokes of the rotor wheel, rotating it a discrete step length d.

Details of the stator potential curves are provided in the Supporting Mate-

rial and in reference (21).

The motion of the stator and rotor are described by the following Lan-

gevin equations:

zS
dfS

dt
¼ Fp‘p|ffl{zffl}

Torque from

Proline hinge

� treaction|fflfflffl{zfflfflffl}
Reaction

from rotor

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTzS

p
fnðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Thermal fluctuations

dqR ffiffiffiffiffiffiffiffiffiffiffiffiffiffip

zR

dt
¼ tcontact|fflffl{zfflffl}

Torque

from stator

� kðqR � qLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Spring connection

to load

þ 2kBTzR fnðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Thermal fluctuations

;

where the final term in each equation is the stochastic Brownian force, with

kBT being the Boltzmann constant multiplying temperature and fnðtÞ denot-
ing uncorrelated white noise.



FIGURE 3 Overview of our proposed torque-

generating mechanism. Cation binding induces a

strain in the stator, which causes the loops to bend.

This results in the first half of the power stroke

(here, by Loop 1), and sets up the second loop

(here, Loop 3) to perform its half of the power

stroke. Subsequently, the cations are released into

the cytoplasm. This occurs because our proposed

motion also has a vertical component—the loops

lower themselves out of the membrane. This release

then reverses the strain and causes the loops to re-

straighten. This results in the second half of the

power stroke. We note that this image depicts a

two-dimensional projection of a three-dimensional

motion: stator motion is not constrained to the plane

of the page. To see this figure in color, go online.

Limiting Speed of the Flagellar Motor
Stators apply no force (Fp ¼ 0) to the rotor between power strokes. This

results in negligible applied ðtcontactÞ and reaction torque ðtreactionÞwhen the
stator and rotor are not in contact with each other. The values of these

torques are calculated as the gradients of the interaction potential between

the stator and the rotor; details on these calculations are provided in the

Supporting Material. All other model parameters are described in Table 1.

Because the BFM lives at low Reynolds number, the rotor also exhibits no

productive movement when the stator is disengaged between steps.

We assumed that there are 26 spokes along the edge of the rotor ((24),

although see, e.g., (7,25)). A ‘‘perfect’’ power stroke is defined as a step

of length d ¼ ð2p=26Þ rad, leaving the stator in contact with the neigh-

boring spoke. These steps are observed through the rotation of a small

bead (the load) attached to the flagellar hook. The dynamics of the load

are described by a third Langevin equation:

zL
dqL
dt

¼ kðqR � qLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Spring connection

to rotor

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTzL

p
fnðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Thermal fluctuations

:

When the connection between the rotor and the bead is soft (k is small),

discrete motor steps ‘‘blur’’ into a seemingly continuous trajectory. Exper-

imentally, steps have been directly observed by slowing the motor down to a

speed of ~10 Hz (24).

In a motor with multiple stators, the mechanics of each stator follows the

equations corresponding to that of a single stator. At any given time, docked
TABLE 1 Model Parameters with Units, Values, and Reference

Parameter Definition Units Values References

Fp Proline hinge force pN 20 (1)

‘P Length of proline

hinge

nm 7 (44)

zS Stator drag coefficient pN-nm-s-rad�1 0.002 fit

zR Rotor drag coefficient pN-nm-s-rad�1 0.02 (1)

zL Load drag coefficient pN-nm-s-rad�1 0.005–10 (45)

k Hook spring constant pN-nm-rad�1 150 (40)

N Number of stators - 1–11 (45)

tcontact Contact torque

on rotor

pN-nm – –

treaction Reaction torque

on stator

pN-nm – –

fS Stator angular

position

rad – –

qR Rotor angular position rad – –

qL Load angular position rad – –
stators can be ‘‘engaged’’ (i.e., actively performing a power stroke) or

‘‘disengaged’’ (in between power strokes). The total contact torque on the

rotor is given by the following:

tcontact ¼
XN

i¼ 1

ticontact;

where N is the total number of docked stators, and each stator i applies

a contact torque ticontact on the rotor. Recall that a disengaged stator (i.e.,

one in the waiting state between successive power strokes) is not applying

directional torque to the rotor, and so ticontact ¼ 0.

We have assumed that each stator is independently ‘‘activated’’ with rates

corresponding to cation ‘‘hopping on’’ and ‘‘hopping off’’ events. Because

cation arrivals are Poisson processes (i.e., waiting times between arrivals

are distributed exponentially) (26,27), the ‘‘next arrival’’ in a motor

with N stators occurs at a rate N � kon, where kon is the rate of arrival for

a single stator.

Simulations of Langevin dynamics were written in Python 2.7. Further

details on the implementation and interaction potentials used in simulations

are provided in the Supporting Material. Simulation trajectories showing

steps for motors with one and seven engaged stators operating at low

load are shown in Fig. 4, a and b. (All code is available at http://ocf.

berkeley.edu/~jnirody)
RESULTS

Motor speed at low loads increases with number
of stators

From simulations, we predict that the maximum speed of the
motor is dependent on the number of engaged torque gener-
ating complexes (Fig. 4 c, open red markers). In their recent
paper, Lo et al. computed torque-speed curves for a chimeric
sodium-driven motor (28). Low-load measurements on
these motors were performed using a 100 nm-diameter
gold bead (Fig. 4 c, inset).

This data was collected from motors with 1–5 active sta-
tors (Fig. 4 c, blue markers). The authors focused on single-
stator motor dynamics, leaving open the implications of
their data for how the zero-torque speed depends on stator
number. The existence of multiple discrete peaks at low
load strongly supports the idea that the maximum speed is
dependent on the number of stators, at least in chimeric mo-
tors. We note that such peaks have not been observed in
Biophysical Journal 111, 557–564, August 9, 2016 559
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a b c

FIGURE 4 Simulated trajectories are shown for motors with (a) one and (b) seven engaged stators, with zL ¼ 0:005 pN-nm-s-rad�1. Horizontal black lines

denote the distance between ‘‘perfect’’ steps (‘ ¼ ð2p=26Þ rad). Colored bars at the bottom of the plots mark the duration of individual stator steps (in the

shown trace, steps for three out of the seven engaged stators are shown). In the multistator motor trajectory (b), steps for each stator are differently colored. In

accordance with published temporal resolutions (47,48), we consider two steps distinguishable if the end of the first step and the start of the second step are

separated by 10 ms. These are shaded in blue; for multistator motors, steps may overlap or be too close together to be observed. (c) Motor speed at low loads

increases with the number of stators. An experimentally measured speed distribution at low loads is shown in the inset (data from (28)). Gaussian fits to the

major peaks give mean speeds (blue squares) in good agreement with simulation predictions (open red circles). To see this figure in color, go online.

a b

FIGURE 5 Comparison of motor dynamics at low (zL ¼ 0:005 pN-nm-s-

rad�1, shown as blue squares) and high (zL ¼ 0:5 pN-nm-s-rad�1, shown as

red circles) loads. (a) Decrease in the average time between steps with

increasing stator number results in an increase in duty ratio in the low-

load regime. In contrast, at high loads, each stator step takes a considerable

amount of time (Tm is high), and the duty ratio is high even for single-stator

motors. (b) As stators are recruited to fast-rotating motors (i.e., at low load),

the number of independent stator steps per motor revolution ðnstepsÞ in-

creases sublinearly from 26 steps/revolution for single-stator motors. At

high loads, as predicted in (37), the steps per revolution is proportional to

the number of stators. Note that nsteps is the number of independent stepping

events, and does not depend on experimental resolution. To see this figure in

color, go online.
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wild-type motors (17), which may be due to different
recruitment in proton-driven and chimeric motors (e.g.,
wild-type motors fail to recruit multiple stator units at
very low loads). Further experiments designed with all the
current knowledge in mind will be needed to resolve the
exciting questions that arise from these conflicts.

Ryu and coauthors reported a set of general conditions
that must be met for the limiting speed to be independent
of stator number (29). First, the rate at which steps are initi-
ated must be independent of the relative position of the rotor
and the stator. This position is dependent on both the
external load and the actions of any other engaged stators.
Therefore, the ‘‘decision’’ of a stator to step should be igno-
rant of both these factors. Second, stators must engage the
rotor for the majority of their cycle (i.e., the BFM’s duty
ratio DR z 1). Resurrection experiments reporting that
the speed at low loads was independent of stator number
soon followed (17), which seemed to lend strong support
to both of the proposed requirements. We note that, although
the experiments in (17) were performed in what we have
considered to be near-zero load, the measurements per-
formed in (29) that were referred to as ‘‘low load’’ were
actually made at significantly higher loads.

Because we assume that stators are disengaged with (i.e.,
not applying any directional torque to) the rotor between
successive power strokes, our model contains a violation
of the second condition. In particular, unlike most proposed
mechanisms (but see (30)), we assume motor rotation and
ion flow can be loosely coupled: an ion passage may not al-
ways result in appreciable rotation of the rotor. The stator’s
motion, however, is tightly coupled to ion flow—that is, an
ion passage is both necessary and sufficient for the initiation
of a stator’s power stroke. Therefore, loose coupling in
our model does not arise from some form of ion leakage
(30–34), but because stator steps are rarely ‘‘perfect’’ in
multiple-stator motors. If steps overlap, a portion of the sec-
ond stroke is ‘‘wasted’’ because the rotor is pushed out of the
later-firing stator’s reach.
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These properties seem contrary to current assumptions
that stators in the BFM must have a high duty ratio. How-
ever, we show that our prediction that DR < 1 at low loads
arises from fundamental differences in motor dynamics be-
tween the high- and low-load regimes. In this way, we argue
that our proposed mechanism is compatible with experi-
mental evidence for a high duty ratio at high loads (Fig. 5 a).
Kinetically limited stators have low duty ratios

A stator initiates a step when protons arrive at a specified
binding site within the complex. The mechanochemical cy-
cle of the stator has two phases: moving and waiting, char-
acterized by timescales Tm and Tw, respectively (18). If
TS is the time that a stator engages the rotor during a com-
plete cycle ðTm þ TwÞ, a single-stator motor has duty ratio
DR ¼ TS=ðTm þ TwÞ.



Limiting Speed of the Flagellar Motor
The waiting time between strokes Tw depends on the
rate of proton arrivals at a binding site. These arrivals are
Poissonian with rate kon ¼ k0 exp ½lDGij=kBT�. Here, DGij

is the thermodynamic contribution of the ion motive force
and kBT is Boltzmann’s constant multiplied by temperature
(19,35). For simplicity, we choose l ¼ 0:5 as done in previ-
ous studies (35). The parameter k0 is a function of the pH of
the external periplasm; lower pH corresponds to higher
proton concentration and thus a speedier arrival at the site.
At room temperature and pH 7.0, hTwi ¼ 1=kon ¼ 0:2 ms
for single-stator motors (18,20).

The average moving time is estimated through the rela-
tion uz‘=ðhTmi þ hTwiÞ (18). The average motor speed
u is also related to the load drag coefficient zL by zLuzt,
where t is the motor torque (1,36). In our simulations, the
motor is limited by proton arrivals at very low loads
(hTmiz0:01 ms), whereas at high loads, hTmiz10 ms sur-
passes hTwi. These values are consistent with previous
studies (18,20).

Because we predict that motor rotation is driven by steric
forces, a stator must be in contact with the rotor for a large
part of a productive power stroke ðTS=Tmz1Þ. Previous
models of torque-generation have similarly considered the
mechanochemical cycle of the BFM to consist of moving
and waiting phases (18,20). However, our model is unique
in assuming that stators disengage from the rotor between
subsequent power strokes. This results in DR < 1 for sin-
gle-stator motors at low loads, as the waiting time is no
longer negligible compared with the moving time in this
regime (Fig. 5 a, blue squares). The waiting time may
even surpass hTmi, as shown in Fig. 4, a and b.

The waiting time until a proton binds to any one of N
independently stepping stators is exponentially distributed
with rate N � kon. Therefore, hTwi is shortened as additional
stators are recruited. The subsequent increase in duty ratio
(Fig. 5 a, blue squares) results in an increase in limiting
speed with the number of stators.
High duty ratios at high loads

Here, we address the assertion that the duty ratio of the BFM
must be very high. Two common arguments in the literature
are based on 1) the observation that the number of steps per
revolution nsteps increases as additional torque-generating
complexes were recruited (37,38), and 2) a calculation
determining that a motor with a low duty ratio cannot be
processive due to ‘‘unwinding’’ of the tether connection be-
tween the rotor and load (1). The application of these argu-
ments, based on high-load measurements, to the low-load
regime has been possible because of the lack of a proposed
physical mechanism for BFM rotation. Such a mechanism is
now provided in our model (21). To this end, we show these
arguments can be consolidated with our proposed mecha-
nism, as well as with the prediction that DR < 1 at low
loads.
Samuel and Berg used fluctuation analysis to determine
that the number of steps per revolution was proportional
to stator number (37,38). In the absence of a specific phys-
ical mechanism, this result was interpreted to mean that a
motor decreases its elementary step size as it recruits stators.
This in turn implied a motor with a high duty ratio, in
which each stator acts with the N – 1 others to rotate a fixed
distance d (29).

In our model, this holds in the high-load regime, where
these measurements were made. Though stators disengage
between strokes, the duty ratio of the motor is very high
because the time spent within a power stroke is far greater
than the pauses between subsequent strokes ðDR ¼
Ts=ðTm þ TwÞzTs=Tmz1Þ (Fig. 5 b, red circles). Further-
more, the rotor is likely always in contact with at least
one stator as the steps of individual stators almost certainly
overlap. This accounts for the observed proportional in-
crease in nsteps with the number of active stators (Fig. 5 b,
red circles).

Note that stator steps still may overlap at low loads (high
speeds), though they are less likely to do so because Tm is
shorter than at high loads. Our simulations predict
that similar analyses in this regime will detect a sublinear
increase in nsteps with stator number (Fig. 5 b, blue
squares).

The second argument was posed by Berg, who posited
that if the BFM did not have a duty ratio of close to unity,
it could not be processive (1). The reasoning behind this is
as follows. Consider an experiment where a cell is tethered
to a surface by the hook of its flagella and is spun about by
the rotation of the motor at its base. The cell body is large in
comparison with the flagellar motor, and accordingly the
viscous drag on it is much larger than that on the BFM’s
rotor. Therefore, if there are no stators to prevent it, the
wound tether between the surface and the cell will unwind
exponentially: q ¼ q0expð�atÞ, where q0 is the initial twist
and a is the torsional spring constant divided by the rota-
tional drag coefficient of the rotor. A simple calculation
showed that unless a motor had a duty ratio of very close
to unity, this tether would unwind too quickly for the stator
units to keep up.

We note that concrete evidence is still lacking that slowly
rotating tethered motors do not ‘‘lose’’ steps to the tether
connection unwinding. Support for tightly coupled mecha-
nisms came from reports that the number of ions per revolu-
tion was directly proportional to motor speed (39). However,
it was later shown that a loosely coupled mechanism also
produced a linear relationship with the same slope, but
nonzero intercept (34). Regardless, our model construction
and parameter choice is such that the unwinding of the
tether does not overwhelm the stator in our simulations
(see Supporting Material) (21). A final resolution may be
reached using experiments that measure how the ion flux
at stall (zero speed) differs between single- and multistator
motors.
Biophysical Journal 111, 557–564, August 9, 2016 561
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At low loads, however, the relative drags of the bead and
the rotor are comparable. As we approach the zero-torque
limit, the rotor drag may surpass that of the load (18,20).
For example, we estimated the drag coefficient for the
low-load measurement in (28) to be zLz0:005 pN-nm-s-
rad�1, which is lower than zRz0:02 pN-nm-s-rad�1 (1).
In this case, the bead will move forward as the tether
connection unwinds.

More generally, the characteristic timescale of the load’s
motion is given by its frictional drag coefficient divided by
the spring constant: tL ¼ zL=k. A single-stator motor should
have a comparably long power stroke. Note that this is not
necessary for a multistator motor: steps from different sta-
tors may overlap, extending the period during which at least
one complex is present.

To illustrate, we consider the second-smallest bead used
by Lo et al. (28). Estimating zL ¼ 0:04 pN-nm-s-rad�1

and choosing a spring constant k ¼ 150 pN-nm-rad�1 at
the lower edge of the measured range (40), the characteristic
timescale of the load is tL ¼ zL=kz0:27 ms. A single-stator
motor with this load rotated at z110 Hz (28). Recall
that motor speed uz‘=ðhTmi þ hTwiÞ, where the step
size ‘ ¼ ð1=26Þ revolution and hTwiz0:2 ms. Then
hTmizð1=26Þ=110� 2 e-4 z0:15 ms, and the load is
able to (at least partially) catch up to the rotor.
DISCUSSION

The dynamics of the BFM across applied loads have been of
great interest since a two-regime torque-speed curve was
proposed several decades ago. Recent experiments reporting
that the number of stators in a motor varies across loads have
opened some interesting questions, and reopened several
more.

For instance, the zero-torque speed has been assumed to
be independent of the number of docked stators based on
the results of early resurrection experiments (15–17). Theo-
retical models after these results were reported have all been
constructed to reproduce this behavior at low loads. How-
ever, recent experiments strongly suggest that these experi-
ments were never performed on motors with more than a
single stator (13), making revisiting this long-held assump-
tion timely.

We note that ~25% of the zero-load motors measured in
(13) were interpreted to have two, instead of one, stators.
However, it was noted by the authors that motors that
were interpreted to have two stators likely had flagella
that were incompletely sheared, which may have resulted
in an increased load for these motors. Furthermore, this
result was reached using a relatively small number of data
points, making a statistically significant conclusion difficult
to reach. The idea that the stator number varies with load is
quite new, and further experiments on the low-load behavior
of this motor performed with this knowledge are needed for
conclusive evidence in any direction.
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In opposition to current assumptions, our simulations pre-
dict that the zero-torque speed of the BFM increases with
stator number. We note that there was an earlier model
that predicted that the motor’s speed at low load was not uni-
versal (35). However, the mechanism suggested in (35) was
a tightly coupled one that predicted that this speed would
decrease with an increasing number of stators. Experiments
by Lo et al. (28) (shown in Fig. 4 c) seem to support the
opposite trend in chimeric motors, as predicted by our
model. However, as such peaks have not been observed in
wild-type motors, further experiments at low load are
required to make any definitive conclusions. As we
mentioned previously, tightly coupled mechanisms can be
differentiated from ours by an experiment testing the inter-
cept of the relationship between the number of ions per rev-
olution and motor speed (34).

Our prediction arises from our assumption that stators
detach from the motor when they pause between steps.
This assumption is common to most models in which a
conformational change in the stator drives motor rotation.
This results in a low duty ratio for motors at low load, where
the waiting time between steps is at least on the order of the
time spent in a power stroke. Because the power stroke dura-
tion is much longer at high loads, the duty ratio in this
regime is not affected by this unbound state. In this way,
our mechanism is consistent with evidence that processive
motors at high load must have a high duty ratio.

It is important to note that we do not propose that there
exists no top speed to the motor at low loads: the moving
time Tm at zero-torque still takes some, albeit not much,
time. The limiting speed of the motor at low loads will occur
when the duty ratio of the motor approaches 1 (i.e., when the
waiting time between subsequent power strokes Tw no
longer significantly decreases with the recruitment of addi-
tional stators). Our simulations suggest, however, that this
top speed might not be reached by motors with close
to the maximum number of observed stators (Fig. 4 c),
let alone by single-stator motors.

Recently, Lo et al. presented evidence of increasing zero-
torque speed with stator number in chimeric, sodium-driven
motors (28). However, this result was not fully explored as
the authors focused on understanding single-stator motor
dynamics. Further experiments, especially on wild-type mo-
tors, would directly test the hypothesis presented here.
Although previous experiments have clarified other aspects
of low-load motor behavior (41–43), the explicit character-
ization of the dependence of the limiting speed on the num-
ber of stator units deserves a more-focused study.

The discovery that stator recruitment in the flagellar mo-
tor is dynamic and load-dependent forces us to go back and
reconsider many things that were considered common
knowledge in the field. We certainly do not claim that the
current published data on the wild-type Hþ motor support
or validate our model (though there is support in the so-
dium-driven motor). However, in light of the evidence found



Limiting Speed of the Flagellar Motor
in this study, we do claim that further experiments are
required to reach any definitive conclusions.

We hope this work has emphasized that even questions
long believed to be closed must be periodically critically
examined when new information arises. We strongly hope
that our proposal of this model will reinvigorate the question
of how the flagellar motor’s low-load speed depends on sta-
tor number, and, in particular, will provide the momentum
for experiments conducted with all the current knowledge
taken into account.
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1 Model for torque generation in the BFM

In this section, we provide Langevin equations describing the dynamics of the stator, the rotor, and the load.
A more detailed description of the model can be found in [1]. We also detail how the single-stator model
can be extended to deal with motors with multiple stators. All simulation code will be made available at
http://www.ocf.berkeley.edu/∼jnirody.

Stators have four “loops” which dip into the cytoplasm and can generate torque by pushing on the
“spokes” of the rotor. In our model, two loops are involved in torque-generation in the counterclockwise
direction, while the other two generate clockwise movement. The numbering of these loops is arbitrary. Prior
to the start of the cycle, we assume that electrostatic interactions between charged residues on the stator
and rotor place them within close proximity of each other.

1.1 Single-stator equations

This model was originally presented and described in detail for single-stator motors in our previous work [1].
We review some important details in this section. The dynamics of the stator, rotor, and load are described
by the following Langevin equations:

Stator : ζS
dφS
dt

= Fp`p︸︷︷︸
Torque from
Proline hinge

− τreaction︸ ︷︷ ︸
Reaction

from rotor

+
√

2kBTζSfn(t)︸ ︷︷ ︸
Thermal fluctuations

(1)

Rotor : ζR
dθR
dt

= τcontact︸ ︷︷ ︸
Torque

from stator

− κ(θR − θL)︸ ︷︷ ︸
Spring connection

to load

+
√

2kBTζRfn(t)︸ ︷︷ ︸
Thermal fluctuations

(2)

Load : ζL
dθL
dt

= κ(θR − θL)︸ ︷︷ ︸
Spring connection

to rotor

+
√

2kBTζLfn(t).︸ ︷︷ ︸
Thermal fluctuations

(3)

Here ζS , ζR, and ζL are the effective drag coefficients of the stator, rotor, and load. The last term in each
equation is the stochastic Brownian force, where fn(t) is uncorrelated white noise.

In Equation (1), the internal torque driving the stator due to the rearrangement of hydrogen bonds
caused by a proton binding event is denoted by Fp`p. Because the motion of the two halves of the power
stroke are mechanically equivalent, we collapse the dynamics of the two loops into a single equation.

The stator free energy potential G = G(φS , j) is shown in the right panel of Figure S1. Before the
cations bind to the stator, the motion of the stators is governed by the potential G1(φS) where the minimum
is around φS = 0◦ as shown in the right panel of Figure S1. After the cations bind, the stator potential
switches from G1 to G2. This compels the stator angle to move from φS = 0◦ to φS = 20◦. During this
transformation, the loop pushes the rotor via a steric force. At the end of the conformational change, when
the loops are at the minimum of the potential G2, the cations exit into the cytoplasm. The potential then
switches back to G1 and the loops traverse back to φS = 0◦. During this time, the loops apply a contact
force on the same rotor spoke as in the previous substep.

For ease of computation, we approximate the potential using a piecewise function:

G1(φ) =


β`pφ

2 if φ ≤ 0

Fp`pφ if 0 ≤ φ ≤ φmax
Fp`pφmax + β`p(φ− φmax)2 if φ ≥ φmax

and

G2(φ) =


β`pφ

2 if φ ≤ 0

−Fp`pφ if 0 ≤ φ ≤ φmax
−Fp`pφmax + β`p(φ− φmax)2 if φ ≥ φmax.
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Figure S1: Dynamics of the rotor-stator interaction. (a) A generalized version of the mechanism from [1].
The stator can be considered a gear with two spokes. Each stator spoke is in contact with a spoke on the
rotor for a small portion of a “revolution” of the stator gear. The spacing of the stator spokes depends on
the relative values of kon and koff. The figure shows an example where the on and off rates are equal, and so
the spokes are evenly spaced around the periphery of the gear. In this context, the dependence of the zero-
torque speed on the number of stators can be explained easily as follows: since each stator applies force for a
short duration of time. Because the impulses from different stators rarely overlap, their effects are additive.
(b) Mechanics of the power stroke. Top panel: Cation binding induces a strain in the stator, which
causes the loops to bend. This results in the first half of the power stroke (here, by Loop 1), and sets up the
second loop (here, Loop 3) to perform its half of the power stroke. Subsequently, the cations are released into
the cytoplasm. This occurs because our proposed motion also has a vertical component—the loops lower
themselves out of the membrane. This release then reverses the strain and causes the loops to restraighten.
This results in the second half of the power stroke. We note that this image depicts a two-dimensional
projection of a three-dimensional motion: the motion of the stators is not constrained to the plane of the
page. (c) Energetics of the power stroke. Because the two loops move in-phase with each other in
our model, their energetic pictures are identical. We describe the free energy landscapes using double-well
Landau potentials (G1 for the first half of the power stroke, and G2 for the second half). These landscapes
are shown in blue for Loop 1 and red for Loop 3 with respect to the angles of the stator φ and rotor θ. The
initial entrance of the proton into the ion channel (kon) places the system within kBT of the energy barrier.
Thermal motions then result in the first half of the power stroke. The exit of the protons into the cytoplasm
(koff) results in the “reset”, and the second half of the power stroke. Figure modified from [1].
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The transition rates between the two potentials are given by the rates of protons “hopping on” and
“hopping off” of the stator binding sites. To satisfy detailed balance when the ion-motive force (IMF) is
non-zero, the kinetic coefficients for the reaction are chosen so that

kon

koff
= 10(pKp

a−pHperiplasm) exp

(
∆Gij
kBT

)
, (4)

where ∆Gij is the thermodynamic contribution of the IMF (see Figure S1) and kBT is Boltzmann’s constant
multiplying temperature. Since G1 and G2 are simply horizontal reflections of one another, ∆G12 = ∆G21.
For convenience, we choose the following with λ = 0.5 :

kon = 10−pHperiplasm exp

(
λ
(∆Gij
kBT

))
, (5)

koff = 10−pKp
a exp

(
− (1− λ)

(∆Gij
kBT

))
. (6)

The contact torque applied to the rotor (in Equation (2)), and consequent reaction torque applied to
the stator (in Equation (1)), are given by τcontact and τreaction respectively. The values for these torques are
calculated by taking the gradient of the interaction potential between the rotor and stator; in particular:
the torque on the rotor can be obtained as τcontact = −∂VRS

∂θR
and the reaction torque on the stator is

τreaction = −∂VRS

∂φS
.

The steric interaction potential is simulated using a soft linear repulsive force with a cutoff distance XRS :

VRS(φiS , θR) =

{
−FRS (RθR−`PφS)2

XRS
if 0 ≤ x ≤ XRS

0 otherwise,

Therefore, τcontact = −∂VRS

∂θR
is given by:

τcontact(x) =

{
−2FRSR

RθR−`PφS

XRS
= 2FRSR

(
1− xRS

XRS

)
if 0 ≤ xRS ≤ XRS

0 otherwise,

and τreaction by:

τreaction(x) =

{
2FRS`P

RθR−`PφS

XRS
= −2FRS`P

(
1− xRS

XRS

)
if 0 ≤ xRS ≤ XRS

0 otherwise,

Here, FRS is the maximum force that can be applied by the proline hinge and xRS = XRS + RθR − `pφS
denotes the distance between the position of the stator loop and the nearest FliG. We choose FRS = Fp. All
other parameters are defined as described in the main text.

The rotor and load are connected by a linear spring with constant κ; the elastic coupling terms in the
equations for the rotor and the load thus appear with opposite signs (in Equations (2) and (3), respectively).
The elastic constant in the experiments can vary depending on the length of the hook when attaching the
bead. In some cases, the hook is cut very short or is stiffened by an antibody linker, which would correspond
to a large spring coefficient [2].

Single-stator trajectories at varying loads are shown in Figure S2. It is apparent from these that increasing
the load increases the time stators spend within a power stroke (Tm), and thus reduces the proportion of
the time the stator is disengaged from the rotor (i.e., higher loads increase the duty ratio).

Another logical consideration for experimentally testing this model with respect to the duty ratio is to
target the parameters which are affected by the IMF. Raising the IMF will increase the rate of proton arrivals
at the stator, lowering Tw; however the IMF may also have an effect on the energy available to the stator
during a power stroke, thus increasing the force it can apply to the rotor. This, in turn, may speed up the
power stroke, lowering Tm as well, making it difficult to predict within the context of our current model how
these two factors would balance our and effect the duty ratio of the motor.
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(a) (b) (c)

Figure S2: Simulation output (0.5 ms) for a single-stator motor at (a) ζL = 0.005 pN-nm-s-rad−1, (b)
ζL = 0.05 pN-nm-s-rad−1, and (c) ζL = 0.5 pN-nm-s-rad−1. The duration of stator steps (bottom panel)
increases with load, decreasing the relative amount of a mechanochemical cycle taken up by the waiting time
between subsequent steps.

1.2 Extension to multiple-stator motors

In a motor with multiple stators, the mechanics of each stator are as described above. The mechanics of
each unit follows the equations presented for a single stator. In particular, each stator is independently
“activated” at rates given by Equations (5) and (6). Because cation arrivals are Poisson processes (i.e.,
waiting times between arrivals are distributed exponentially) [3, 4], the “next arrival” in a motor with N
stators occurs at a rate N × kon, where kon is the rate of arrival for a single stator.

This is seen in Figure S3, where the space between individual stator stepping events is much smaller in a
motor with seven stators (right) than in a single-stator motor (left). The decrease in waiting time between
steps in multi-stator motors is also seen in the rotor and bead trajectories, which are far smoother when
steps follow each other more closely.

In a multi-stator motor, the total contact torque τcontact that the rotor feels is given by a sum of the
contributing contact torques of each stator at a given time:

τcontact =

N∑
i=1

τ icontact, (7)

where τ icontact corresponds to the contribution of the ith stator and N is the total number of docked stators
in the motor. The reaction torque, τreaction is computed accordingly. As is evident from the form of the
stator-rotor interaction potential VRS , a stator not in a power stroke (i.e., during Tw) applies no torque to
the rotor (i.e., τ icontact = τ ireaction = 0).

Let us consider duty ratio as the proportion of time that the torque on the rotor from the stator is
nonnegligible. Then, from the above, it is clear that, by the construction of our model, more docked stators
increase a motor’s duty ratio: a multi-stator motor, with many possibly contributing terms to the sum would
naturally have a higher duty ratio than a single stator motor.

An important consideration in simulations with multiple, independently-stepping stators is the following.
While each stator pushes on its own “spoke” on the rotor’s edge, these spokes are rigidly connected. This
means that if one stator begins its power stroke shortly after another stator has done so, it likely will apply
no torque to the rotor for some portion of its cycle. This is because the positions of the rotor spokes are
dependent on each other, and the power stroke of the first stator will have pushed the second stator’s spoke
slightly out of reach (at least for the initial part of its cycle).
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(a) (b)

Figure S3: Simulation output (5 ms) at ζL = 0.005 pN-nm-s-rad−1 for motors with (a) one and (b) seven
stators. Top and middle panels show load and rotor trajectories, respectively. Bottom panels show stator
stepping events. In (b), events for each stator are colored uniquely.

2 Numerical implementation

In this section, we discuss briefly some technical details regarding the implementation of the above systems
of equations. Simulations of Langevin dynamics were written in Python 2.7. Example low-load simulation
output can be seen for motors with one and seven stators in Figure S3.

Discrete transitions are modeled using Gillespie’s method, as follows. For motors with N stators, N ‘first
arrival times’ are initially chosen from an exponential distribution at t = 0. Each subsequent waiting time
is drawn from an exponential distribution when the stator loop reached a small range around the potential
minima. For example, the time required to “hop off” is chosen when the angle of the stator loop is within a
small range (20− ε◦, 20 + ε◦) for some prescribed ε. Likewise, the time for the next cation arrival is chosen
when the angle retracts to within ε of 0◦. This is done to imitate the alternating access of the cation-binding
site to the periplasm and cytoplasm.

The rate for protons hopping off into the cytoplasm (koff) are chosen as 1000 times the value for proton
arrivals kon [5]. This is in line with the fact that half-steps have yet to be directly observed experimentally.

Continuous-time portions of each cycle (corresponding to the mechanical movements) for the stator,
rotor, and load are simulated using a forward finite difference scheme with a time step of 10−8 s. Checks
are put in place to assure that the stator position does not surpass the position of the rotor due to the time
step being too large.

Rotor spokes (FliG proteins) are rigidly connected to each other. Therefore, if a stator s1 initiates its
power stroke at time t1 and a second stator s2 initiates its power stroke at time t2 > t1, then the FliG
adjacent to s2 will have moved the same distance as the FliG that s1 pushed in the interval [t1, t2). This
means that the portion of the power stroke up until s2 can “catch up” to the FliG in front of it will be
‘wasted’ (i.e., no torque will be applied on the rotor by s2). For simplicity, we do not consider backsteps in
our simulations: each stator sees only the FliG in front of it. In time intervals where no stators are pushing
on the rotor, stators are repositioned such that each is directly adjacent to a FliG.

All data points were computed as averages from 10 simulation runs, each of length 1 s. Because simula-
tions were performed at low load, this run length was sufficient to include many steps. Standard errors of
the mean were smaller than the size of markers.
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3 Tether-wind calculation

In his 2003 review article, Howard Berg posed an argument for why torque-generating units in the flagellar
motor must have a very high duty ratio [6]. This “tether-wind” argument is summarized in the main text.
Here, we redo this calculation with the values Berg originally used, and then revise it using our model
construction and chosen parameters (given in Table 1 in the main text). Though high-load simulations were
not used in the conclusions for this manuscript, this section provides an explanation as to how high-load
simulations were run in our previous paper [1].

Consider a cell tethered to a surface by its flagellar filament. The cell is spun around by the rotation of
the motor at the base of the filament. In the first step of a resurrection experiment, a motor has a single
torque-generating unit.

Berg estimated the torque generated by a wild-type motor (with 8 torque-generating units) to be 4000
pN-nm, so that each unit generates about 500 pN-nm of torque. Likewise, he estimated the torsional spring
constant of the tether to be 500 pN-nm-rad−1, leading to a twist in the tether of about 1 rad (57◦). Since the
cell body has a significantly higher drag than the rotor, the tether will unwind exponentially once the stator
disengages: θ = θ0 exp(−αt), where θ0 is the initial twist and α is the torsional spring constant divided by
the drag coefficient of the rotor. Estimating the drag of the rotor as 0.02 pN-nm-s-rad−1, α = 2.5×10−4 s−1.
Then, if the stator is disengaged for 1.6× 10−5 s (corresponding to a duty ratio of 0.999 in his calculation),
the twist in the tether decreases to 57 exp(−2.5 × 104 × 1.6 × 10−5) = 38◦, or by 19◦. At the time of
the publication, it was assumed that a single unit steps 50 times per revolution, so that a single step was
approximately 7.2◦, or less than half of the unwinding. This led to the conclusion that a single torque
generator would not be able to keep up if it detached for a time even on the order of 10−5 s.

Most estimates have calculated the maximum torque in the BFM to be approximately 2000 pN-nm.
Assuming a motor at stall has 11 stators, each stator generates approximately 180 pN-nm of torque. This
is also consistent with single-stator measurements in chimeric motors [7]. We estimate the torsional spring
constant very conservatively, at the lower end of the experimentally measured range, as 150 pN-nm-rad−1 [2].
Then, the tether is twisted by 1.2 rad, or 69◦.

The “waiting time” between subsequent steps corresponds to the time required for an ion from the
periplasm to bind to an exposed binding site on the stator. In our model simulations, this site is exposed
when the angle of the stator φS < 0 + ε. Recall that 〈Tw〉 = 0.2 ms. A stator disengages from the rotor
from the time it completes its power stroke (φS ≤ 0) until an ion binds to it. In our simulations, when φS
is in the interval (0, 0 + ε), it is able to bind a periplasmic cation while still being bound to the rotor. We
take ε to be very small, π

1500 rad = 0.12◦. For the vast majority of the loads considered, the time spent in
this interval is negligible compared to 〈Tw〉, and the stator detaches from the rotor for 0.2 ms at a time, on
average. However, in very slowly-rotating motors, the time when φS ∈ (0, 0 + ε) may be large enough to
significantly lower the average time that the stator detaches from the rotor.

Tethered cells rotated at 1.2 Hz, which corresponds to each step taking 32 ms (assuming there are 26
steps per revolution). Since the experiment is at very high load 〈Tm〉 ≈ 32 ms, since 〈Tm〉 � 〈Tw〉. Because
the BFM lives at low Reynolds number, we assume that the stator moves at a constant speed throughout
its power stroke. Then φS ∈ (0, 0 + ε) for 0.12◦/20◦ = 0.006 of 〈Tm〉, or 0.192 ms. Then, the average time
that the stator is actually detached from the rotor between consecutive strokes at the load considered in our
simulations is 0.008 ms. During this time, the tether unwinds to 69 exp(−150/0.02 × 8 × 10−6) ≈ 65◦, or
by 4◦. This is less than our assumed elementary step length, 2π/26 ≈ 14◦.

However, we note here once again, as in the main text, that there is not yet concrete evidence that a
single-stator motor at very high load does not, in fact, “lose” several steps to the unwinding of the tether
connection. This uncertainty will likely be resolved only by experiments which can quantify how the ion flux
varies between single- and multi-stator motors (i.e., motors with different duty ratios) at high loads.
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