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ABSTRACT We report statistical time-series analysis tools providing improvements in the rapid, precision extraction of
discrete state dynamics from time traces of experimental observations of molecular machines. By building physical knowledge
and statistical innovations into analysis tools, we provide techniques for estimating discrete state transitions buried in highly
correlated molecular noise. We demonstrate the effectiveness of our approach on simulated and real examples of steplike rota-
tion of the bacterial flagellar motor and the F1-ATPase enzyme. We show that our method can clearly identify molecular steps,
periodicities and cascaded processes that are too weak for existing algorithms to detect, and can do so much faster than existing
algorithms. Our techniques represent a step in the direction toward automated analysis of high-sample-rate, molecular-machine
dynamics. Modular, open-source software that implements these techniques is provided.
INTRODUCTION
Nature has evolved many molecular machines such as
pumps, copiers, and motors. Biophysical theory proposes
that these machines, converting electrochemical energy to
linear or rotary motion, do so in a series of thermally driven
steplike motions because this maximizes use of available
free energy (1). Even in genetically identical cells, each
cell shows fundamental variability partly traced to thermal
randomness in discrete molecular mechanochemistry (2).
Machines such as kinesin moving on microtubules (3),
myosin sliding between actin filaments (4), and rotations
of protein complexes in the flagellar motor (5), all show
hallmarks of discreteness with superimposed thermal
fluctuations.

Motion is often highly repetitive and quasiperiodic—
composed of several different, superimposed periodic-
ities—as these machines are built of many identical copies
of sets of molecular components coupled in interlocking
linear, circular, or helical patterns. Of interest are temporal
sequences of discrete states observed using advanced
experimental techniques such as Förster resonance energy
transfer, back focal-plane interferometry, or atomic force
microscopy (6). Due to discreteness of steplike transitions,
the distribution of states (this is just the distribution of
each time point in series, treating the time series as a
stationary independent random process) is often multimodal
(i.e., bumplike). A common view of molecular machines is
that they execute randomly forced motion in a potential
energy well around each discrete state (described as gener-
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alized Langevin dynamics), leading to temporally correlated
noise (1).

The dominant approach to extracting discrete states of
molecular machines is to first smooth away (i.e., filter) as
much of the random motion as possible, leaving the under-
lying states (under the Langevin model, these states actually
correspond to the minima of each potential well) (4,5,7,8).
Classical running-mean filtering is fast and simple, but
fundamentally inadequate because: 1), it must smooth
away jumps in the data to remove noise; 2), it is the
maximum likelihood filter for each window if the noise is
Gaussian and uncorrelated (9), but the observed transitions
between states is often smooth rather than steplike, due to
elastic coupling or friction effects (10), and therefore the
observed signal has correlated noise; and 3), it operates on
a fixed-length sliding time-window of the series that favors
certain dwell times. Adaptations have been proposed
(11–13), but none addresses all the above issues simulta-
neously. Sophisticated alternatives (e.g., Markov chain
Monte Carlo, particle filtering, or variational Bayesian tech-
niques) might tackle several of these problems. However,
such algorithms are too computationally demanding to
rapidly process large numbers of time series, and both in
principle and in practice, become intractable as the data
size increases (14). After filtering, finding the arrangement
of discrete states is a bump-hunting problem—that of
finding peaks in a distribution. Histograms of smoothed
time-series are easily constructed and popular (5,8), but
choosing bin edges and widths is an open-ended problem
not solvable without making extra assumptions that may
not be appropriate. Furthermore, the resulting histogram
distribution estimate is discontinuous (15)—an unrealistic
doi: 10.1016/j.bpj.2011.05.070
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representation of the underlying potential well(s) (1). Many
more sophisticated algorithms exist (e.g., mixture modeling
(16)), but for the multiple states in typical molecular
machines, these algorithms can be computationally
demanding. Kernel methods are continuous and more trac-
table, but, like histogram parameters, selecting kernel band-
width and shape is an open problem.

In this article, we propose algorithms handling correlated
noise and smooth transitions between states by incorpo-
rating a simple physical model directly into the filter struc-
ture, in such a way that does not require the stipulation of an
artificial window size, and that guarantees discovery of the
solution without unnecessary computation. We then use
contemporary statistical methods permitting us to find
quasiperiodic arrangements of bumps in the distribution
of molecular states by simple Fourier coefficient selection,
circumventing the need to estimate the distribution directly.
Finally, we estimate the discrete states by classification of
the smoothed time trace to the nearest peak of each bump
in the distribution. There are two critical free parameters
in our approach and we are able to provide theoretical guid-
ance for how to set them. Fig. 1 gives an overview of the
entire process.
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Note that, if we know the state transition sizes between
discrete states, all our techniques are applicable to linear
as well as rotary machines. To ensure that sufficient samples
of the dwell states are represented, it is, however, sensible
to restrict linear motion to a bounded interval. This is
a very common physical situation—many linear molecular
machines undergo repetitive sequences of state transitions.
If they do not, then the motion can be wrapped onto
a bounded interval whose length is a multiple of any funda-
mental state transition size before application of these
techniques, and the process is fundamentally the same.
Similarly, these techniques work equally well for back- as
for forward-stepping. Finally, if we do not know the state
transition sizes, then the step-smoothing methods presented
here, which we believe to be novel, are still useful.

We demonstrate by simulation that our algorithms are an
improvement in accuracy, precision, and speed over other
algorithms in the literature. Moving to real data, we then
process a large number of bacterial flagellar motor experi-
mental angle-time traces, unambiguously identifying peri-
odicities in the discrete state locations. We also find a very
large number of dwell times to provide clear evidence for
non-Poisson stepping in the flagellar motor, and resolve
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FIGURE 1 Overall step finding and bump

hunting process. Experimental recording of noisy

molecular machine position-time traces qt are

obtained, by, for example, bacterial flagellar motor

angle captured by quadrant photodiode, a charge-

coupled device video of flagellar-attached bead,

an F1-ATPase angle using laser dark-field or

Forster resonance energy transfer, or a blocking

current of DNA translocation through a hemolysin

nanopore. (Dotted box) Analysis process applied

to an example of F1-ATPase (1). Step-driven

Langevin model fitted to series (algorithm

L1-PWC-AR1, see text), and estimated time traces

of machine positions mt quickly obtained (2). Peri-

odicities (symmetries) in distribution of m esti-

mated (using ECF-Bump algorithm, see text),

and (3) most important symmetries retained and

used to reconstruct distribution of m (4). Classi-

fying estimated mt trace to nearest large distribu-

tion peaks (algorithm ML-peaks, see text), an

estimate of the true machine time-position trace

mt is recovered, from which secondary properties

such as dwell times and dwell-time distributions

can be quantified.
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rate-limiting reactions in F1-ATPase stepping. We detect
that these reactions are cascaded by revealing unambiguous
substeps.

We have released open source code freely available for
download, implementing the described algorithms.
MATERIALS AND METHODS

The discussions in the Introduction highlight some of the challenges for

current step-smoothing and bump-hunting approaches. Our main observa-

tion is that these techniques have been developed to solve different prob-

lems than the one with which we are actually concerned. In detecting

molecular dynamics, we have a lot of additional information that can serve

as constraints on the algorithms to produce results that are more efficient. In

particular, the time series can be highly correlated. Thus, general bump-

hunting, which throws away time to estimate the distribution of states,

will not be as effective as a more specific method that takes time into

account. The steps may also have some known geometric relationship to

each other. For instance, the steps may have several dominant periodicities

that are naturally represented on a Fourier basis.

A plausible model for the typical experimental setup involving damping

and potential energy storage is Brownian motion in a potential well dq ¼
r(m – q)dt þ sdW, where m is the coordinate representing the current center

of the well (this might undergo discrete steps), q is the experimentally

observed position, W is a Wiener process, s is the diffusion coefficient,

and r is the drift coefficient. This model can be simulated with the

discrete-time equivalent qtþ1¼ aqtþ (1 – a)mtþ 3t, for the constant awhich

can be found from the autocorrelation at one sample lag of the time-angle

trace (see Supporting Material). The goal is to find the best approximation

mt of the center of the well where the machine is located, at time t: mt (mt is

thus a piecewise constant signal) observing only qt. This problem can be

solved by finding the mt for the full time range t that minimizes, for

example, the sum of square errors
P

t 3
2
t . In general, this global optimiza-

tion problem cannot be solved without imposing some additional conditions

on mt. Therefore, step-smoothness constraints have been introduced,

requiring that mt is constant in time except at the points where the motor

changes state (17). (Note that it is not necessary to consider mt as a stochastic

process here, although it can be treated as such when finding dwell-time

distributions.)

On the surface, this appears to be an intractable optimization problem

because there is an unknown number of step-time instants that can occur

anywhere in the full range of times t, so that finding these instants requires

brute-force testing of every possible combination of time instants for the

presence of steps. However, use can be made of recent theoretical innova-

tions. This applies to the particular step-smoothness constraint penalizing

the sum of absolute differences between successive instants of mt. This theo-

retical result shows that if there exist only a finite number of steps, solving

the resulting optimization problem nearly always (with very high proba-

bility) finds the correct positions of all the steps (18). The resulting optimi-

zation problem is convex (in this case, the sum of the model fit error with

the step constraint has only one minimum with respect to variation in the

unknown m0
t):

mt ¼ arg min
m0
t

XT
t¼Pþ1

 
qt �

XP
i¼ 1

aiqt�i � m0
t

!2

þ g
XT
t¼ 2

jm0
t � m0

t�1j:
(1)

(We call this algorithm L1-PWC-ARP, and with all ai zero, we call it algo-

rithm L1-PWC; see Supporting Material and Kim et al. (17) for derivations

of similar approaches.) Here, T is the length of the time trace, and the ai
values are determined from a biophysical model when this is known, or
from analysis of the time trace otherwise. In particular, when P ¼ 1, a1
can be chosen as the first autocorrelation coefficient of the trace. In this

article, we demonstrate the case P ¼ 1 arising from the integration of

a first-order, continuous-time stochastic model with backward Euler inte-

grator, but in general P can be >1 (see Supporting Material for more

details). As the constraint constant g increases, larger weight is placed on

the step-smoothing, so that the resulting mt is increasingly smooth, at the

expense of increasing the sum of square errors.

There is a maximum useful value of the parameter g, which can be calcu-

lated based on the length of the data; above this value, mt is a constant (see

Supporting Material for more details). Also, for a step of height h and width

w, setting g> hw/2 flattens this step. This fact can also be used to argue that

if the noise about each known dwell in the trace is Gaussian with standard

deviation s, then the minimum useful value of g, should be at least 2s. This

follows from the above, when we consider the random fluctuations due to

the noise as unit-width steps. Putting these together, a practical bound for

g is 2s < g < hw/2 (see Supporting Material for details of these calcula-

tions, and the resulting values of this parameter used in this study). The

quadratic programming problem defined by Eq. 1 has the desirable property

that a guaranteed optimal solution can be obtained using standard optimi-

zation techniques with computing time and resources that increase very

slowly with increasing data size (19).

The variablem0
t is a dummy signal that is varied in minimizing Eq. 1; the

optimization algorithm that minimizes Eq. 1 constructs this signal. The

principle limitation of this algorithm is that the above bounds on g could

become too restrictive if either the noise spread increases, or the product

of step height and width are too small. In addition, we need to take into

consideration the effect of uncertainty in the model parameters ai. For

example, for the L1-PWC-AR1 algorithm, a few percent uncertainty in

a1 leads to a small shift in the timing of the jumps detected by the algorithm,

and this is tolerable. However, as the uncertainty in a1 gets larger, small,

spurious jumps begin to be introduced near the edges due to residual corre-

lation in the random motion.

As an example of choosing a1, we explore simulations in the Results and

Discussion of the rotary bacterial flagellar motor with typical experimental

parameters based on calculated bead load particle of diameter 0.15 mm, x¼
0.01 kBT s, and measured bacterial flagellar properties (20) k¼ 100 kBT/rad.

This gives a smooth step time constant of t ¼ 10�4 s. At 5t after an instan-

taneous transition in the equilibrium angle, the bead will have settled to

within 1% of the steady-state m. With a sampling rate of Dt ¼
1/104,448 s (chosen to match one of our high-resolution experimental

recording setups, although values that match any particular experiment

can be used here), the discrete-time first-order AR1 coefficient is a1 ¼
1–0.096 ¼ 0.904, and the standard deviation of the noise term 3t isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt=0:01

p ¼ 0:044.

Given the smoothed time trace, mt, we need to identify the most likely

locations of the discrete molecular states and their periodicities and this

requires an estimate of the distribution of states. Our alternative to peak-

finding with histograms or kernel density approaches is to estimate the

distribution directly in the Fourier domain, using the Fourier transform of

the probability density function p(m), estimated from the finite number of

samples mt:

P
�
fj
� ¼

Z N

�N

exp
�
ifjm
�
pðmÞd m

z

Z N

�N

exp
�
ifjm
�1
T

XT
t¼ 1

dðm� mtÞd m

¼ 1

T

XT
t¼ 1

exp
�
ifjmt

�
:

(2)

Here, d is the Dirac delta function. This is also known as the empirical char-

acteristic function (ECF). This is calculated for the K periodicities of

interest f1, f2 . fK. In this domain, periodicity is naturally represented

by only a few dominant nonzero coefficients in the power spectrum
Biophysical Journal 101(2) 477–485
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(the ECF is a sparse representation for periodic distributions (18)) and we

avoid problematic histogram (or other (15)) distribution estimates alto-

gether. Because we only have a finite amount of data and there are experi-

mental confounds, the power spectrum will be the sum of sampling effects

and experimental noise and the actual periodicities of the molecular

machine. Then the problem is to detect which periodicities are genuine,

and which are due to sampling noise and other artifacts. The most important

limitation of this approach is the requirement to have sufficient number of

dwells at different locations to detect the periodicity.

In this case, the statistical theory of nonlinear threshold estimation

provides us with the guarantee that (assuming physically reasonable

smoothnesslike constraints on the distribution), on nearly all occasions

(with very high probability), this detection problem is solved by simply

setting the coefficients for all periodicities with power below a certain

threshold to zero, or, which is equivalent, retaining only a fraction 4 of

the largest power periodicities (18) (see Supporting Material for more

in-depth discussion of these claims). Setting coefficients above an upper

frequency limit to zero is similar to kernel density estimation of the distri-

bution that smooths away finite sampling effects (15) (see the algorithm

ECF-Bump in the Supporting Material,). Thus, we can accomplish both

periodicity detection and finite sample effect-smoothing by Fourier coeffi-

cient selection. Here, we choose the smoothing frequency parameter to be

sufficiently large that we can always capture periodicities of interest. The

nonlinear threshold fraction 4 is set according to minimax optimality

principles.

By choosing l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log K

p
2 where 2 is an estimate of the spread of the

absolute value of the (nonzero frequency) components (21), the fraction

of components retained after thresholding with jP(fj)j > l varies over the

range 4 ¼ 0.1–0.2. The smaller fraction value occurs when the distribution

of jP(fj)j is approximately Gaussian so that choosing the standard deviation

for 2 is appropriate (in our experiments, the F1-ATPase frequency compo-

nents are approximately Gaussian in this way). Similarly, the larger fraction

occurs when the distribution of jP(fj)j has prominent outliers, so that a more

statistically robust estimate of the spread is appropriate (here this is the case

for the bacterial flagellar motor time traces; in this case, we use the robust

prescription 2 ¼ 1.482MAD(jP(fj)j), where MAD is the median of absolute

deviations from the median (21)).

The noise-reduced distribution of states p(m) is then approximated by

applying the inverse Fourier transform to the ECF coefficients:

pðmÞz
XK
j¼�K

exp
��ifjm

�
P
�
fj
�
: (3)

Having obtained the distribution, the peaks represent the discrete states,

from which, for example, an estimate of the steplike time traces of states

mt can be recovered. Knowing the dominant periodicity, N, of the distribu-

tion, we can expect N peaks. At each time step t, we wish to determine the

state of the machine mt. This is a statistical classification problem: we wish

to find the optimum peak to assign to each time step. A statistically consis-

tent solution to this problem is the maximum likelihood approach obtained

by assigning the step-smoothed time series mt to the nearest peak. This is

the solution to the optimization problem,bm t ¼ arg min
mn:n¼ 1;2.N

jmt � mnj; (4)

where mn values are the locations of the N largest peaks in p(m), and bmt is

our estimate of the state of the machine at each time instant (note that Eq. 4

arises when we assume that mt is Laplace-distributed, which it will approx-

imately be as a result of minimization of Eq. 1). Finally, the time traces of

states can be used to estimate the time spent in each state (the dwell times),

and models for the distribution of these dwell times can be found and

compared.

Bacterial flagellar motor time-angle traces were obtained by video

microscopy of 200-nm fluorescent beads attached to the truncated flagellar

filaments of surface-immobilized Escherichia coli chimaeras. Please see
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Sowa et al. (5) for further details. ATPase time-angle traces were obtained

by dark-field microscopy of a 60-nm gold bead attached to the g-subunit of

His6-tagged Saccharomyces cerevisiae F1-ATPase via a streptavidin-biotin

linker. The molecule was immobilized onto a Ni2þNTA surface, at an ATP

concentration of 30 mM. Images were captured with a high-speed video

camera (model No. PCI1024; Photron USA, San Diego, CA) at a frame

and shutter rate of 30 kHz, and the bead position was calculated using

the Gaussian mask algorithm described in Thompson et al. (22).
RESULTS AND DISCUSSION

Simulated data performance comparisons

Fig. 2 details an example of the step-smoothing and bump-
hunting methods. Validation of our techniques is carried out
on simulated bacterial flagellar motor rotation (i.e., Lange-
vin dynamics; see Supporting Material) with known discrete
states and state dynamics, over nine test cases that explore
the variability of real biological recordings (see Fig. 3 and
legend for description of the test case parameters). We
compare the step-smoothers in this article (for algorithms
L1-PWC and L1-PWC-AR1, see Supporting Material)
against the classical median filter (9), the Chung-Kennedy
filter (11), and the Kalafut-Visscher step-finder (23) in terms
of both the absolute state location recovery error (mean
absolute error, MAE) and relative absolute roughness
(RAR) of the estimated time series (see Fig. 3). The param-
eters for these step-smoothers are optimized for the best
performance on these simulations (see Supporting Material
for further details). The average execution time for the algo-
rithms was, in order of decreasing speed: median filter, 5 s;
L1-PWC and L1-PWC-AR1, 7 s; Chung-Kennedy filter,
41 s; and Kalafut-Visscher algorithm, 1020 s (17 min).

The step-smoothers proposed clearly outperform existing
methods. By design, median and Chung-Kennedy filters
cannot guarantee that the recovered time trace of states
will be constant when the machine is actually stationary,
so both the recovery error and relative absolute roughness
are worse than the L1-PWC filters. Similarly, the Kalafut-
Visscher step-finder is confounded by the correlation in
the noise, and so finds excessive detail, thus, the relative
absolute roughness and the recovery error are large. We
note that simulations allowing motor back-stepping lead to
similar results.

We tested how well the thresholded empirical character-
istic function (algorithm ECF-Bump, see Supporting Mate-
rial) can recover the known, dominant periodicity of
a simulated bacterial flagellar motor, when compared to
existing techniques (see Table S1 and Table S2 in the
Supporting Material). This proposed algorithm outperforms
the alternative methods that are based upon first estimating
the distribution of discrete states. This comparison high-
lights some of the shortcomings of other plausible bump-
hunting techniques. For histogram-based methods (5),
the histogram bin width sets a fundamental limit on the
maximum periodicity that can be identified: increasing
the bin-width decreases this frequency. However, reducing



FIGURE 3 (Top panel)Mean absolute error,MAE (in revolutions, smaller

is better) and (bottom panel) logarithm of relative absolute roughness,

RAR (closer to zero is better), for five step-smoothing methods and nine

test cases of simulated bacterial flagellar motor rotation (see Supporting

Material). RAR is the mean absolute difference between adjacent samples

in the filter output mt divided by that in the true (simulated) motor position

mt. Values are averaged over five replications. Case a, default test case, has

26 equally spaced state locations, exponentially distributed dwell times,

rotation 10 revolutions/s, a flagellar hook spring stiffness k ¼ 100 kBT/rad,

and coefficient of friction x ¼ 0.01 kBT values. The other test cases differ

from default case in one parameter. Case b has 20% dwell state aperiodicity,

(c) gammadistribution dwell timeswith shape k¼ 2, (d) gamma-dwell-times

k ¼ 10, (e) 30 dwell states, (f) 40 dwell states, (g) 50 revs/s, (h) 100 revs/s,

and (i) flagellar hook stiffness k ¼ 50 kBT/rad. Step-smoothing algorithm

parameters (see Supporting Material) are L1-PWC, g ¼ 50; L1-PWC-

AR1, g ¼ 1, P ¼ 1, a1 ¼ 1�kDt/x, and 4 ¼ 0.2; median filter window size

is average dwell time in samples. Chung-Kennedy filter: filter length is

half the dwell time in samples, analysis windowM¼ 16 samples, weighting

parameter p ¼ 0. Note that for many test cases, the L1-PWC methods have

indistinguishable RAR from the other step-smoothing methods, so that their

curves lie almost on top of one another.

FIGURE 2 Illustration of state location extraction process for synthetic

angle-time trace with 26 periodic state locations. (a) A small segment of

a noisy time trace showing rotation angles qt (light-shaded), step-driven

Langevin model estimates of motor positions mt (dark-shaded), and state

locations (horizontal dotted lines). (Inset) Longer segment of mt. (b) Esti-

mated periodicities (steps per revolution) in distribution of m (light-

shaded), largest amplitude periodicities kept (dark-shaded) and used to

reconstruct distribution of m (note that the label ‘‘power’’ is chosen in

analogy to power spectrum for clarity of presentation, but formally this is

not a power spectrum). (c) Reconstructed distribution of m with all period-

icities (light shaded), and with only the largest magnitude periodicities

retained (dark shaded). (d) The estimated true motor angle time trace mt
(dark-shaded) is obtained by classifying the estimatedmt trace to the largest

distribution peaks, the dark crosses in panel c. (Inset) Longer segment

of mt. (e) Secondary properties such as dwell-time distributions can be

reliably quantified, here demonstrating a good fit to the true gamma-

dwell-time distribution model (as the points lie close to the dashed line).

The horizontal axis shows the ranked logarithm of the estimated dwell

times, and the vertical axis shows the ranked logarithm of synthesized dwell

times drawn from a gamma distribution with the parameters used in the

simulation.
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the bin sizes increases the error of the bin counts due to
finite sample size effects.

This bin-count error is particularly problematic for high
numbers of discrete states or significant aperiodicities in
state locations where this method returns a wide spread of
values. Similarly, for peak-finding in kernel density esti-
mates, the choice of kernel width is a limiting factor: too
large, and a small bump in the distribution will be merged
into nearby bumps; too small, and spurious bumps will
Biophysical Journal 101(2) 477–485
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appear. As with the histograms, there is no way to retain
small bumps representing real discrete states, and at the
same time remove spurious bumps that are due to experi-
mental confounds or finite sample size effects. This is
because these methods lack global information about the
periodicities in the distribution, making them uncompetitive
with the ECF-based algorithm. These sorts of issues with
existing techniques confound straightforward bump-hunting
in the distribution.
Experimental data

Fig. 4 illustrates the process of applying the step-smoothing
and bump-hunting techniques to a 4.2 s long, single exper-
imental time-angle trace of a rotating E. coli flagellar motor
with attached 200-nm bead; the same data were originally
FIGURE 4 Example of processing a single experimental E. coli flagellar

motor time-angle trace (4.2 s at 2.4 kHz sampling rate) to extract discrete

state locations. (a) Estimated periodicities in the distribution of the full,

smoothed, 4.2 s time series mt (light-shaded), largest magnitude periodic-

ities retained (dark-shaded), showing the dominant 26-fold periodicity

of this molecular machine. (b) The retained periodicities are used to

reconstruct the distribution of m (dark-shaded line). The 26 largest

peaks in this distribution (dark-shaded crosses) represent the best estimate

of the discrete state locations of the motor, and can be used to estimate

the true time series of discrete state transitions. (c) A small segment of

the recorded time trace showing rotation angles qt (light-shaded) with

classified estimates of motor positions mt after L1-PWC smoothing (dark-

shaded, see text for algorithm descriptions). Algorithm parameters are

g ¼ 1 (estimated from the data, see Supporting Material for discussion),

and 4 ¼ 0.2.
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published as Fig. 1 in Sowa et al. (5). We were able to
process the entire trace consisting of 10,000 samples at
2.4 kHz sampling rate, in <0.5 s on a standard PC (note
that this is faster than real-time: in principle, the analysis
could be performed while the experiment is running). Given
the flagellar hook stiffness (20) and bead size (200 nm),
this sample rate is too slow; this means that all stepping
appears instantaneous. Insignificant autocorrelation at posi-
tive time-lags confirms this, implying that state transitions
are effectively instantaneous and this suggests the L1-
PWC algorithm, which does not consider correlated noise
(see Supporting Material). The results of the analysis con-
firm previous findings of 26 discrete states (5). This single
trace also shows some evidence for 2-, 11-, and 17-fold
periodicity.

Our methods are robust and fast enough that they can
extract discrete states from every time-angle trace in the
database, without the need for prior hand-editing. We
applied the same process as in Fig. 4 separately to all six
traces obtained from the same motor. Fig. 5 a shows period-
icity analysis averaged over these six traces. This provides
clear evidence that the 26- and 11-fold periodicities are
properties of the motor, whereas the other periodicities in
Fig. 4 b are most likely artifacts due to finite sample size
effects in this one trace. The increased precision of these
techniques has therefore allowed us to show that the weak
evidence for 11-fold periodicity in the original study
(Fig. 4b in Sowa et al. (5)) is, most likely, a real feature of
the motor.

Our methods allow us to capture ~6000 dwell times over
these six traces, making it possible to characterize, with high
statistical power, the distribution of dwell times. In Fig. 5,
b–e, we fit four different distributions to the dwell times,
including an exponential model. There is sufficient data to
resolve the extremes of the distribution, clearly indicating
that the simple exponential is not a good fit and that the
extremes of the distribution have much higher probability
than either exponential or gamma distributions would imply.
Our model fitting thus reveals new, to our knowledge,
features of bacterial flagellar motor stepping.

Fig. 6 shows the process applied to an experimental time-
angle trace of a single rotating, surface-immobilized yeast
F1-ATPase molecule with a 60-nm gold bead attached at
30 mM [ATP] (approximately equal to the Michaelis
constant ~Km). The 0.27 s trace, recorded at 30 kHz, has
significant autocorrelation and is able to resolve smooth
transitions between states. Therefore, we used the L1-
PWC-AR1 algorithm with parameter a1 set equal to the
autocorrelation at a time lag of one sample (i.e., 0.8; see
Supporting Material for more details). This implies a relax-
ation to within a fraction e�1 of the stationary dwell state
of ~0.15 ms. This algorithm was effective at resolving the
instantaneous steps buried in the smooth transitions with
correlated noise. The pattern of dominant periodicities
(Fig. 5, a and b) is consistent with the existence of six-step



FIGURE 5 Processing of all six traces recorded from the same motor of Fig. 3 (total time 25.2 s). (a) Periodicity analysis showing 26 states with super-

imposed 11-fold periodicity. The power spectrum is the median over all six power spectra obtained, including that shown in Fig. 3 b. (b–e) Four different

distribution models for dwell times. Each plot shows the ranked estimated dwell times (horizontal) versus the ranked synthesized dwell times drawn from

the particular distribution model with the parameters fitted to the dwell times by a maximum likelihood procedure (vertical). Best fitting model is closest

to diagonal (dashed line). Also shown are the (negative) Bayesian information criterion (BIC) values of the model fit (larger is better). (b) Exponential distri-

bution (Poisson stepping), (c) gamma distribution, (d) Log-normal distribution, and (e) generalized Pareto distribution (here with parameters that define

a heavy-tailed power-law distribution).
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rotation in the pattern 120� � n, 120� � n þ 30�, where n ¼
1, 2, 3—closely confirming the findings of previous studies
on the slower thermophilic F1 at similar [ATP] (24).

Given that the molecule is expected to have almost
perfect threefold periodicity, it is most likely that the aperi-
odicity of the distribution of in Fig. 6 b is due to experi-
mental confounds such as the loose linkage of the bead to
the molecule. This aperiodicity manifests as some ampli-
tude in the one-, two-, and fourfold ECF components.
This aperiodicity would make it difficult to fit a single
model to all of the 120� domains. However, after the discrete
state extraction process, a total of 502 dwell times and
a median of 83.5 dwell times per state were obtained. This
was sufficient data to fit separate distribution models to
the dwell times for each of the six states.

Analysis of the quality of fit of various distributionmodels
for each of the six states revealed that different models are
appropriate for each of the six states. The best model we
could find (in terms of Bayesian information criterion
(BIC) over all states, see Supporting Material) was the
gamma distribution with scale k ¼ 2 for the three states
located at 120� � n, and the exponential model for each of
the three states at 120� � n þ 30�. This model fitted better
than a gammamodel for every state (negative BIC difference
3.9), and markedly better than an exponential model for
every state (negative BIC difference 49.8). We assumed
that the dwell time is a random variable distributed as the
sumof two exponentials (see SupportingMaterial), andwhen
fitting this model to the 120� � n states, we found that the
exponentials had equal rate parameters, so that a gamma
model with scale k ¼ 2 obtained an indistinguishable rate
parameter. These findings are consistent with an interpreta-
tion that has two cascaded rate-limiting processes at the
120� � n state, and one process at the 120� � n þ 30� state.

We find that if the autocorrelation and smooth transitions
are ignored by using the L1-PWC algorithm that assumes
steplike time-angle traces, at low values of the regulariza-
tion parameter g, the algorithm is confounded by the relax-
ation effect and it returns many small, spurious steps that
interpolate the smooth transitions. At the other extreme of
Biophysical Journal 101(2) 477–485



FIGURE 6 Example of processing a single

experimental F1-ATPase enzyme time-angle trace

(0.27 s at 30 kHz) to extract discrete state loca-

tions. (a) Estimated periodicities in the distribution

of the full, smoothed, 0.27 s time series mt (light-

shaded), largest amplitude periodicities retained

(dark-shaded), showing a combination of domi-

nant three, nine and twelve-fold periodicities,

which is consistent with six dwell locations. (b)

Reconstructed distribution of states (dark-shaded

line) estimated using the six periodicities retained

(between 1 and 20 steps per revolution) after

thresholding in panel b. The six largest peaks in

this distribution (dark-shaded crosses) represent

the best estimate of the discrete state locations of

the motor, used to estimate the true time series of

discrete state transitions (c, dark-shaded). (c) A

small segment of the trace showing rotation angles

qt (light-shaded) with classified estimates of

motor positions mt after L1-PWC-AR1 smoothing

(dark-shaded, see text for algorithm descriptions).

Algorithm parameters are g ¼ 1.5 and a1 ¼ 0.8

(estimated from the data), and 4 ¼ 0.1.
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large regularization, smaller steps are missed altogether. We
therefore cannot find one single, optimal value of the regu-
larization parameter g. This is because of the fundamental
mismatch between the assumption of independence in the
model and the temporal dependence in the signal.
CONCLUSION

Our step-smoothing algorithms address the problem of
analyzing and recovering discrete state transitions obscured
by correlated noise from time series generated by Langevin
molecular motion. We show how to process bacterial
flagellar motor bead assay time-angle traces faster than
real-time. Subsequent application of our distribution
bump-hunting algorithm uncovers periodicities in bacterial
flagellar motor traces that have hitherto been hinted at, but
largely hidden due to the theoretical and practical shortcom-
ings of existing algorithms. By using our discrete state
distribution estimation algorithm, we are able to recover
the time series of discrete state transitions, from which anal-
ysis of the distribution of dwell times shows significant
departures from classical Poisson stepping (revealed by
the divergence from exponential behavior for extreme dwell
times).

A recent cryo-electron microscopy structure of the
flagellar rotor indicates that there is a periodicity mismatch
between different parts of the rotor, which varies from one
motor to the next (25). Non-Poisson stepping might be
explained by static heterogeneity: mixed periodicities imply
that steps need not be equivalent at all angles, but suffi-
Biophysical Journal 101(2) 477–485
ciently large data-sets may reveal simple Poisson stepping
at each angle. Alternatively, heterogeneity may be dynamic,
with the state of the motor changing in time due to exchange
of stator complexes (26) or other regulatory processes.
Analysis using our methods of stepping traces from many
motors will be an important tool in the task of understanding
heterogeneity in flagellar rotation and finding a model of the
flagellar mechanism that explains the periodicities observed
in both structural and rotation data.

The F1-ATPase bead assay shows clear evidence of
smooth state transitions, with the relaxation time of the
system ~5 times slower than the sampling duration. There-
fore, by using Langevin dynamics in the L1-PWC-AR1
algorithm, we could extract periodicities that clearly re-
vealed six states in one revolution of the enzyme in a charac-
teristic angular pattern. We were able to extract a sufficient
number of dwell times to detect differences in the number of
rate-limiting processes responsible for each dwell. Current
models of this rotary enzyme propose that each 120� step
comprises an ADP release with ATP binding phase,
followed by 80–90� rotation, an ATP cleave with Pi release
phase, then a final 30–40� rotation; our findings are consis-
tent with this interpretation (24). To our knowledge,
previous studies have not addressed the issue of which
distribution best fits these dwell times; therefore, the large
amount of high-precision dwell-time data revealed by our
techniques provides evidence supporting this model.

Although these analysis tools are quite simple, we have
shown that they extend the limits of precision and applica-
bility in the characterization of discreteness and noise in
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molecular dynamics. The algorithms we describe here
require minimal manual intervention, and (assuming that
the autocorrelation properties of the trace or the physical
characteristics of the Langevin model are known), have
only two critical parameters whose choice of values can
be guided by associated theory. These tools therefore repre-
sent a step toward the automated characterization of the
discrete behavior of molecular machines. This is required
to exploit fully the promise of high-quality experiments on
single and multiple molecules. Furthermore, by speeding
up the complete experiment-analysis cycle, we can facilitate
the screening of multiple phenotypes or ranges of experi-
mental conditions, so that novel structures and parameter
values for mathematical models can be rapidly tested.
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