Supplementary Material Instability at alkaline pH_{ex}

Figure S1 A, B show the results of experiments in which motor speed and V_m were measured in the same cell and pH_{ex} was increased to 8. In these experiments we measured the speed of 1 μ m diameter beads attached to motors by video analysis of movies taken at 2000 frames per second (10), and there were 10s delays between successive measurements of speed and V_m . When we changed pH_{ex} from 7 to 8, some motors speeded up stably and V_m measured in the same cell increased to around -165 mV, as predicted by equations 10 and 11 (Fig. S1 A, $[Na^+]_{ex} = 85$ mM, smf = -210 mV). However, as illustrated in Fig. S1 B, C, many motors were unstable at $pH_{ex} = 8$. The motor of Fig. S B had stopped rotating by the time of the first speed measurement, 5 minutes after the switch to $pH_{ex} = 8$, indicating collapse of the smf. The slow decay of V_m measurements reflects the slow response of the dye to a collapse of V_m which was probably complete within 5 minutes of the pH change. To investigate in more detail the behavior of cells at $pH_{ex} = 8$ we measured the speed of 0.5 µm diameter beads attached to the motor, using the bfp method (Fig. S1 C). V_m was not measured in these cells, due to technical limitations. The motor of Fig. S1 C speeded up as we changed pH_{ex} from 7 to 8, as in Fig. S1 A. Within 2 minutes, however, the speed had dropped to zero as in Fig. S1 B. After restoring $pH_{ex} = 7$ the motor recovered in a stepwise manner, similar to the resurrections observed by Sowa et al after transient de-energizations caused by removal of $[Na^+]_{ex}$ (10). Out of 51 cells observed after shifting from $pH_{ex} = 7$ to $pH_{ex} = 8$, 11 maintained rotation for at least 20 min (similar to Fig. S1 A), 40 stopped rotating within $\sim 5 \text{ min}$ (similar to Fig. S1 B). Thus it appears that many cells are unable to maintain rotation of chimeric flagellar motor at the high smf associated with $pH_{ex} = 8$, leading to a reversible collapse of both smf and V_{m} .

Transient responses to high pH_{ex} . (A, B). V_m and speed of 1 µm diameter beads attached to the motor, versus time, measured in the same cell. The bar indicates the flow of buffer with $pH_{ex} = 8$; initially $pH_{ex} = 7$. After the change to $pH_{ex} = 8$, the motor and cell in (A) maintained increased speed and V_m , wheras the motor in (B) stopped, indicating zero smf and V_m . The apparent slow decay of V_m in (B) is due to slow equilibration of the dye. (C). Speed of a 0.5 µm diameter bead attached to the motor. The change to $pH_{ex} = 8$ caused a transient increase in speed followed by a rapid collapse to zero. Return to $pH_{ex} = 7$ caused step-wise recovery to the original speed, typical of re-activation of stator units following transient de-energization.