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Background: smoothing of correlated and step-like data: Step-smoothing algorithms remove noise from 
step-like signals – that is, signals for which the underlying, noise-free time trace to be recovered consists of 
constant segments with step changes between segments. The literature on step-smoothing is large (1-11) but 
approaches can be roughly grouped according to how they process the data. Sliding window methods (such as 
the running mean or running median filter) consider a small set of contiguous samples and replace the central 
sample in that window with the output of an algorithm applied to the samples only in the window. The window 
is moved along the time series by one sample at a time so that each sample in the series is replaced. Recursive 
methods operate by successive subdivision or merging of constant regions. For example the top-down algorithm 
described in Kalafut et al. (7) starts by finding the location of the best single step for the whole signal. If a 
stopping criterion is not met, a best step location is found within each constant region either side of this step. 
This successive subdivision is repeated until the stopping criterion is reached. Conversely, bottom-up 
algorithms start with every sample as a putative constant region, and merge regions successively until a 
stopping criterion is reached. Finally, global methods consider all the samples simultaneously, either fitting a 
model to the time series or applying some kind of transformation. The range of algorithms is very diverse. For 
example, Haar-wavelet de-noising (9) decomposes the signal into a sum of step-like waveforms and the noisy 
details that fall below a given amplitude are removed from the sum. Hidden Markov models (HMMs) treat the 
underlying constant regions as unobserved states, obscured by noise, following each other in an unknown 
sequence, and attempt to find the state transition probabilities, observation noise probabilities, and most likely 
sequence of states from the signal (6). 

All step-smoothing methods have advantages and disadvantages relative to each other, mostly consequences of 
the mathematical assumptions embodied in the algorithm. Most have algorithm parameters that must be set and 
the results will depend on the choice of those parameters. Without any guiding theoretical principles, there is 
always some unavoidable level of subjectivity in choosing parameter values. The goal should always be to 
minimize the number of parameters, subject to the necessary degree of flexibility determined by the natural 
variability of the phenomenon under study – too few parameters can be as much as a problem as too many. 

Issues due to algorithmic structure: Sliding window methods cannot generally find constant regions larger than 
the window size; the window size therefore becomes a critical parameter. Recursive methods can find long 
constant regions, but require specification of the stopping criterion, and this may or may not be appropriate for 
the underlying trace which is of course unobservable in principle. For example, the top-down method described 
above (17) produces different results on different-length signals, an unintended side-effect of the mathematical 
formulation of the stopping criterion. Global methods do not suffer from such problems but, for example, 
wavelet de-noising requires the selection of noise amplitude which is critical. HMMs are an alternative, but 
require a-priori choice of the number of states, and the number of free parameters increases with square of the 
number of states. This can cause considerable uncertainty in the reproducibility of the results for experimental 
data not used to train the HMM. 

Issues due to free parameters: The majority of step-smoothing algorithms make the (explicit or implicit) 
assumption that the observed noise is independent or specifically, uncorrelated. However, general molecular 
motion occurs in potential wells centred on each discrete state with correlated, random noise, and this type of 
motion is often modelled by Langevin dynamics which incorporates general time lag in the motion caused by 
elastic and friction forces (12) (for example, drag caused by a bead attached to the elastic flagellar hook (13)); 
the transitions between states are then smooth. Step-smoothing under these circumstances is quite different from 
the step-smoothing problem as investigated in the existing literature. 



Issues due to computational burden: Additionally, many step-smoothing techniques are computationally 
onerous in practice, either because the number of intensive calculations scales poorly with the length of the 
signal, or because there is no way of knowing whether a solution constitutes the optimal set of steps other than 
by exhaustive (brute-force) computation. For example, most recursive methods require an exhaustive search for 
the optimal step location at each iteration (2, 7), and, although there are some incidental computational 
efficiencies that can be exploited, for this reason such algorithms are intrinsically slow. For the HMM, there are 
no known algorithms that can evaluate the probabilities in their entirety without infeasible exhaustive 
computation so the best one can achieve is a solution that may be sub-optimal. 

Given these considerations, we did not find any existing step-smoothing methods to be entirely satisfactory, and 
indeed our experiments on simulated data bear this out (see tables in the main text and Supporting Material). 

Background: finding modes (bumps) in distributions: Mode-finding (also known as bump-hunting) is the 
activity of finding peak values of a distribution of a random variable. Typically the random variable represents 
time series of discrete states of a molecular complex or machine. If the states are distinct, then, in theory, the 
distribution will exhibit a clear set of “spikes” located at each unique state (see Figures 2c, 4b, 6b in main text). 
These separate states can then be identified from the distribution, and this requires an estimate of the 
distribution of the time series. Perhaps the simplest and most immediately accessible estimate is the histogram: 
divide the full range of the random variable into equal-sized bins and count the number of time series values 
that fall in each bin (14). Assuming each bin is sufficiently small that there are at least two bins per discrete 
state, the maxima of the histogram can locate estimates of the discrete states of the molecular machine. 

However, there are problems with histograms because the separation between states is usually not known in 
advance, molecular motion is generally obscured by observational noise, and we only have a finite number of 
samples. As the precision of the peak location estimates is increased by decreasing the bin size, the bins become 
more sensitive to these confounding factors and spurious peaks start to emerge. Similarly, increasing the bin 
size to make the peaks less spurious decreases the precision of the peak location estimates and may cause two or 
more states to become inseparable. Also, location estimates will tend to be sensitive to the choice of bin edges, 
and non-equal bin sizes appear mainly to introduce complications with no special advantages (14). 

Averaging over different bin edges has been proposed (average shifted histograms), but it can be shown that this 
is a special case of kernel density estimation, where a smooth function (usually with one mode – unimodal) of 
fixed width is centred on each time series sample, and the distribution at every location is estimated as the 
equally weighted sum of all these functions (14). Kernel density estimates are an improvement over histograms 
because smooth distribution estimates stabilise peak-finding in the presence of noise. The choice of kernel 
width is however crucial, because, if the width is too small, spurious peaks will emerge, and if too large, distinct 
states may become merged erroneously. 

Incorporating additional information about the discrete states may lead to improvements. If the number of states 
is known in advance, mixture modelling may be used to find the best combination of a weighted sum of 
component distributions with arbitrary locations and widths (15). With unimodal component distributions, one 
distribution will be, ideally, located at each individual state. The main difficulty with mixture modelling is that 
the simultaneous estimation of the component locations and widths is not a convex problem, so that we cannot 
guarantee that any solution we find is the best one, and the computations quickly become onerous as the number 
of components grows. Similar issues apply to k-means clustering which attempts to cluster the time series 
samples into a given number of states. An algorithm for solving the problem exists (15), and although the 
problem is simpler than mixture modelling because only the state locations need to be estimated, the results can 
often depend quite sensitively on the initial choice of assignments required to start the search for a solution. 

In estimating discrete states therefore, as with step-smoothing, existing bump-hunting approaches described 
above are problematic (see Tables S1 and S2). 

Physically-based step-smoothing, quasi-periodic bump-hunting and distribution estimation. We seek 
algorithms for step-smoothing, bump-hunting and distribution estimation that incorporate elementary physical 
knowledge of molecular conformational dynamics. In the following, we have a time-position trace t , t = 1, 2 



… T obtained from experimental measurements of molecular dynamics. The series t  is the unknown series of 

positions corresponding to conformations of the molecular machine to be determined (and is assumed to be 
piecewise constant), and the series mt is an estimate of t  given the time-position trace t . We require that any 

algorithm results can be obtained with reasonable computational cost, and that they are guaranteed to converge 
on the globally optimal solution. 

Algorithm L1-PWC: L1-regularized global step-smoothing with independent noise. The smoothed estimate is 
constructed by minimizing the negative log posterior (NLP) cost function with respect to a possible series of 
positions tm : 

    






T

t
tt

T

t
tt

tm
t

tm
t mmmmNLPm

2
1

1

2minargminarg        (S1) 

The implicit physical model is in the form ttt   , where t is a time series consisting of constant segments 

with abrupt jumps (steps), and t  is a time series of independent Gaussian noise. The problem is to find the 

series mt which consists of the piecewise constant steps buried in the noise, but that is simultaneously a good 
approximation to the recorded time series θt. The first term in the NLP represents the error (negative log-
likelihood) of the approximation. The second term represents the total absolute difference between consecutive 
approximation samples (in the Bayesian interpretation this is the negative log prior). When the penalty 
(regularization) term 0 , the solution becomes ttm   and no smoothing occurs. Thus, the useful behaviour 

of this algorithm occurs when 0 , so that increasing weight is placed on minimizing the second term at the 

expense of the first. There is a maximum useful value for this regularization parameter, 1  (see below), and if 

1   then the solution becomes  


T

t tTtm
1

1  , i.e. all approximation samples take on the mean of the 

recorded time series. Assuming that there are only a small number of steps in t amounts to imposing a sparsity 

condition on ∑t |mt – mt – 1|, that is, only a few terms in this expression are non-zero. Under this condition it is 
(with very high probability) possible to recover an approximation to μt that finds the true locations of the steps 
(16). Increasing γ forces most of the differences between consecutive samples of mt to zero. This NLP cost 
function Eq. (S1) is convex and quadratic so that the optimal approximation can be obtained by minimizing 
NLP with respect to mt using standard quadratic programming techniques (17). This algorithm is similar to 
optimal piecewise linear smoothing (8). In the main text, we demonstrate the use of this algorithm to 
approximate step-like motion in experimental bacterial flagellar motor time-angle traces where the sampling 
rate is sufficiently low that the stepping is effectively instantaneous. 

Algorithm L1-PWC-ARP: L1-regularized global step-smoothing with known correlated noise. This algorithm is 
an adaptation of the L1-PWC algorithm that incorporates a general, discrete-time Langevin model within the 
filter structure. It minimizes the following cost function: 
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Here the implicit model is tt

P

i itit a     1
which captures general Gaussian, linear, discrete-time 

stochastic dynamics. The real-valued coefficients ai represent the discrete-time feedback of past values of the 
recorded time series on the current value. This model incorporates the special case of discrete-time Langevin 
dynamics with linear drift and diffusion terms, in widespread use as models for general molecular dynamics 
(12). The forcing term μt consists of piecewise constant segments with jumps. Again, minimizing this cost 
function is convex and quadratic and can be solved for mt using a standard quadratic programming algorithm. 
The underlying constant step approximation is then recovered as   


P

i it am
1

1  (note that it is not the 

unmodified tm  because any constant signal input to an AR model is amplified by the feedback effect of the 

model). In particular, in the main text we demonstrate use of the special case with P = 1 (L1-PWC-AR1) to 
capture Langevin motion in experimental F1-ATPase angle-time trace: 
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The useful range of regularization parameter   can be determined by reference to general principles of convex 

optimization (8). If 1  where: 
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then, upon optimizing Eq. (S1), tm  will be constant; here the notation


 indicates the elementwise maximum, 

and the matrix D is the TT  first difference matrix with ones on the main diagonal, and –1 on the next diagonal 
above the main one and zeros elsewhere. Thus, Eq. (S4) sets the maximum useful value of the regularization 
parameter. Furthermore, using knowledge that a unit time step of height h is flattened away when 2h  (16), 
allows us to suggest an estimate for the minimum useful value: if the noise t  has standard deviation σ then 

setting  2 will flatten away 99% of the noise. Thus, the meaningful range of the regularization parameter is 

12   , and setting the parameter just above the lower bound retains those steps that are just large enough 
to be detectable above the noise. In practice, we need to know σ in order to determine this range: this can be 
estimated from known constant dwells in t  if the noise is uncorrelated. Where the noise is correlated, the 

correlation can first be removed and then the uncorrelated signal would be used to estimate σ. In the case of 
simulations, we of course know σ a-priori. 

Algorithm ECF-Bump: Nonparametric bump-hunting. The characteristic function is an alternative 
representation of the distribution p(m) of the step-smoothed time series of molecular states: 
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In this context, p(m) is unknown. However, P(f) can be estimated from the time series mt, using the empirical 
characteristic function (ECF): 
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Here, the ECF is evaluated over a set of chosen frequencies fj,  j = 1, 2 … K. The distribution function p(m) can 
be reconstructed from the coefficients P(fj), and covers the range [0, 2π]: 
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where the overbar denotes complex conjugation (and f–j = –fj  to ensure that p(m) is a real probability). Each 
frequency fj corresponds to a potential symmetry (periodicity) of the molecular machine. In the special case of a 
rotary machine it corresponds to the number of steps per complete revolution. This characteristic function is 
closely related to the Fourier transform of the distribution of the time series. Thus, the P(fj) can be interpreted as 
Fourier coefficients of the distribution function, and are calculated over a range of experimentally relevant 
symmetries fj. 

The advantage of this representation of the distribution is that it is usually the case for a molecular machine that 
is has repeating molecular structures and so undergoes motion in a series of repeating steps. This implies that 
the distribution of states is both bounded and periodic, so the reconstruction converges on the exact distribution 
extremely rapidly as more frequency components are introduced (K increases). This is because the Fourier 
transform is a sparse representation (18) for smooth, bounded, periodic functions. Sparse representations have 
the desirable property that only a few of the coefficients are large, and these are the ones that contribute most to 
the shape of the distribution. The rest of the coefficients will fluctuate due to experimental noise and contribute 
little, if anything. Thus, considering the coefficients as the sum of true molecular machine symmetries and 
experimental artefacts and distortions, we can apply nonlinear thresholding by ranking coefficients by their 



power |P(fj)|
2 and retaining a small fraction φ of the largest coefficients (we retain around 10-20% in this paper, 

and this represents a good compromise between retaining the main shape of the distribution yet summarising it 
only by the most important periodicities). It has been more recently shown that this simple procedure for 
recovering the noisy distribution is statistically optimal (in the minimax sense) if the distribution is bounded, 
smooth and periodic (18), for an appropriate choice of φ related to the amount of experimental noise. This 
nonlinear thresholding procedure contrasts with linear thresholding where only a certain number of the lowest 
frequency components are retained (in this context, kernel density smoothing is effectively a linear thresholding 
operation, and it therefore gives us no opportunity to retain high frequency components if they are actually 
important). Because we only have a small number of samples of mt, the higher frequency coefficients fluctuate 
due to statistical finite sample effects. Therefore, we can also apply linear thresholding by retaining only those 
coefficients below a threshold. In practice however, nonlinear thresholding tends to remove most irrelevant high 
frequency components anyway, and the linear thresholding has negligible or no effect. 

Analysis of the characteristic frequency domain reveals important information about the symmetries of the 
molecular machine, since probability calculations with combinations of random variables become very simple 
in this domain. If we change the scale of a random variable X by multiplying it by a scaling factor and adding 
a constant  , the new random variable   XY has the following characteristic function: 
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Hence, shifting the location of the peak of a distribution corresponds simply to multiplying the characteristic 
function by exp(ifμ). Similarly, increasing the spread of the peak corresponds to decreasing the width of the 
characteristic function. In the case when the distribution is composed of superposed bumps of width scaled by σ 
and with period N, we have that: 
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For the purposes of analysis, the power of the characteristic function is usually more convenient to work with 
than the characteristic function, and we are interested in whole integer symmetries f only: 
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where k = 1, 2, … is the multiple and σ is the spread due to noise of the bump at each molecular state. This 
shows that the power of the characteristic function for a periodic distribution consists of a series of non-zero 
coefficients at integer multiples of the period N, the rest are zero. The absolute square magnitude of these non-
zero coefficients is proportional to the absolute square magnitude of the characteristic function of the bump 
distributions, so that the spikes are attenuated in magnitude as the multiple increases. The characteristic function 
of many well-known distributions can be found exactly. For example, if the bump distributions are Laplacian, 
since Pbump(f) = 1/(1 + σ2f2), we obtain, at the peaks: 
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Similarly, for Gaussian bumps |P(f = kN)|2 = exp(–σ2 [kN]2). Qualitatively, as the noise spread increases, the 
non-zero coefficients in the characteristic function diminish in magnitude. Therefore, the sharper the bumps in 
the distribution, the easier it will be to identify the period above the background of finite sample variability and 
experimental artefacts. 

In some cases, there will be an arrangement of molecular states that has more than one superimposed period, in 
general, a set of Q different periods Nq for q = 1, 2 … Q which are not multiples of each other. In this case, the 
characteristic function power will be: 
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and |P(f)|2 = 0 otherwise. Thus the power of the characteristic function has a series of non-zero coefficients at 
every integer multiple of each of the Q constituent periods. The non-zero coefficients for period qN  will have 

absolute square magnitude proportional to   2

1

2


Q

r rq NN , so that larger periods have larger absolute square 

magnitude. Again, the non-zero coefficients will be attenuated in magnitude by the characteristic function of the 
bump distribution, and this will typically decrease faster with increasing noise spread. Therefore, superimposed 
symmetries in the molecular machine can be readily detected from analysis of the largest peaks in the power 
spectrum. 

Algorithm ML-Peaks: maximum likelihood reconstruction of discrete state time trace from distribution peaks. 
Using algorithm ECF-Bump and applying the inverse Fourier transform to the coefficients P(fj), we can 
reconstruct the distribution p(m) of molecular states. This distribution may have some small peaks that are due 
to finite sampling effects or inaccuracies in the reconstruction of the molecular state time trace m. However, the 
largest peaks are associated with the most dominant, and also most likely, positions of the molecular states. 
Thus, if the known dominant symmetry is M steps per revolution, this information can be used to select the M 
largest peaks in the distribution as the dominant discrete molecular state dwell locations. Having located these 
peaks, the step-smoothed time trace mt can be used to find an estimate of the true step-like conformational state 
signal t̂  by classification of each of the mt to the nearest retained peak in the distribution. This classification is 

the maximum likelihood reconstruction of μt (see main text) if the noise around the dwells is Laplace distributed, 
since we are minimizing the absolute difference between the nearest peak and the state estimate. In fact, this 
Laplace distribution arises as a consequence of solving Eq. (S1-S2) which has the absolute difference penalty 
term (17). 

Simulations of molecular machines. Here we describe a model of Brownian motion in a potential well for 
periodic stepping motion of a molecular machine with frictional drag and elastic energy storage.  We set up a 
simple linear stochastic differential equation (SDE) for a typical experiment. We measure the machine 
conformation through a small load attached to the machine whose observed position is θ. The spring potential of 
the structure attaching the machine to the load is: 
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where κ is the spring stiffness constant. The load causes drag on the machine, represented using the linear 
friction model: 

    F              (S14) 

where ξ is the friction coefficient. Assuming that the machine executes random motion about the equilibrium 
position θ = 0, a Langevin equation of motion for the experiment can be written as: 
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where kB is Boltzmann’s constant, T is temperature, M is the machine mass, and ε is an independent, Gaussian 
random driving force with mean zero and unit standard deviation. Because the ratio M/ξ is very small, the 
inertial term   is negligible and we obtain the equations of motion: 
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Including the average machine position  t we obtain the following stochastic differential equation: 
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This is an Ornstein-Uhlenbeck process with mean μ, drift   , diffusion  Tk B2  and Wiener process 

W(t). Focusing on the motion of one step to the position μ, we assume that the machine starts at time t = 0 at 
position θ = 0, then the resulting motion is the sum of a deterministic exponential and correlated random 
fluctuation terms. The load eventually settles into correlated random motion of standard deviation 

 2 around the machine dwell conformation μ. The effect of the load drag and stiffness is to delay the 

transitions by “rounding off” the instantaneous step transition in μ(t) with step time constant 1 s. Therefore, to 
be effective, a step-smoothing algorithm must take into account this smooth transition. 

This is a continuous-time stochastic process, but the experimental angular measurements are available at the 
sampling interval t . Therefore, we need to find a discrete-time version of the model. The simple Euler method 
obtains: 

  t
B

tt
B

ttt

tTktttTk
t 




























 





2
1

2
1      (S18) 

where  ttt    for the time index t = 0, 1 … T  with   00   (we note that although there are a range of 

generally more accurate methods for discretising such SDEs, most are no more accurate for this particular 
model and so in this context there is no particular advantage to using a higher order integration scheme). This is 
also a discrete-time, first order autoregressive (AR) model in the form: 

  tttt aa   111 1            (S19) 

where t   is an independent, zero-mean, constant variance Gaussian process. Therefore, this model is a special 

case of the implicit model in algorithm L1-PWC-ARP with (P = 1) described above, and we can estimate the 
quantity  ta  11  directly from experimental time series using the autocorrelation at one time lag Δt of 

measured bead time traces θt. 

Step-smoothing and bump-hunting algorithm performance comparisons. Figure 3 (main text) describes 
nine simulated test cases produced by varying: the symmetry of the discrete state locations (that is, by randomly 
displacing the state locations from equal spacing), the distribution of dwell times (by changing the gamma 
shape parameter k), the dominant symmetry (e.g. the number of discrete states), the average speed of rotation 
(that is, the number of revolutions per second, controlled by scaling the dwell times), and the stiffness parameter 
κ. 

Figure 2 (main text) shows the typical output from the discrete-time model, and Figure 3 (main text) shows the 
performance of a range of step-smoothing algorithms applied to this test data. We test L1-PWC, L1-PWC-AR1, 
median filtering (19), the Chung-Kennedy filter (3), and the Kalafut-Visscher step-finding methods (7). We 
compare the performance of these methods in terms of the accuracy of their ability to extract the simulated, but 
unobserved motor position  t using the mean absolute error: 
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and smaller is better. Also, the relative absolute roughness: 
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identifies over- and under-smoothing relative to the known, motor position time series, the closer to unity the 
better. Note that if the MAE = 0, then the RAR = 1 (although RAR = 1 does not necessarily give MAE = 0, thus, 
it is important to interpret the performance with respect to both quantities). 



Step-smoothing algorithm parameters are optimized on this test data to achieve the best MAE and RAR values. 
For the L1-PWC algorithm the optimal parameter values were γ = 50, and for L1-PWC-AR1, γ = 1, P = 1 and a1 
= 1 – κΔt / ξ (see above for a description of how we choose these values). 

For the median filter, the only parameter is the window size, and as expected the optimum size was found to be 
the average dwell time. For the Chung-Kennedy filter, the maximum size of all forward/backward moving 
average predictors plays a similar role to the window size in the median filter. In our implementation, we 
included predictors of all window sizes up to this maximum window size, and extensive experimentation found 
that setting this to half the average dwell time optimized performance. Because of the non-instantaneous 
stepping of the Langevin dynamics, for the nonlinearity p > 0, we found that this algorithm introduced 
numerous spurious steps and non-smoothness that degraded the performance considerably. Therefore, we found 
that having no nonlinearity (i.e setting p = 0) led to the best performance overall, because it was the smoothest 
possible filter and so was able to perform well for the longer dwell times. The Kalafut-Visscher filter has no 
explicitly tunable parameters, although we have found that the results depend heavily on the length of the time 
series. 

Bump-hunting algorithm comparisons were made in terms of the median and interquartile range (25% – 75% 
range) of the recovered number of discrete states (see Supplementary Tables 1 and 2). Algorithm parameters 
were optimized to achieve the best recovery performance. For the ECF-Bump algorithm, the analysis 
symmetries (frequencies) ranged from zero to 120 steps per revolution, and the nonlinear threshold was set to 
retain the top 10-20% largest square magnitude frequencies. The linear threshold was set at 80 steps per 
revolution. The histogram FFT algorithm used 128 histogram bins and 128-point FFT. The kernel density peak-
picking algorithm had a Gaussian kernel with bandwidth parameter of 0.02 rads2, and peaks smaller than 10% 
of the maximum peak amplitude were discarded. 

Distribution fitting to dwell times. Standard maximum likelihood techniques minimizing the negative log-
likelihood have been used to fit each distribution model to the dwell times obtained from bacterial flagellar 
motor and F1-ATPase time-angle traces (see below for explicit details of the double exponential model). For 
distribution model comparison, the Bayesian Information Criterion is calculated as (15): 

NpLBIC log2              (S22) 

where p is the number of free parameters in each distribution model, N is the number of dwell times, and L is 
the log-likelihood of the distribution model. For the exponential, p = 1, gamma, lognormal and double 
exponential, p = 2, and for the generalized Pareto, p = 3. For the gamma with fixed k, p = 1. 

When there are multiple subsets of dwell times that require separate distribution models per dwell state, the total 
BIC is obtained by adding the BIC for each separate model – this is consistent with assumption that each dwell 
state is independent of the others. 

L1-PWC-AR1 autoregressive parameter estimation. To use the L1-PWC-AR1 algorithm, we use the 
standard covariance method for autocorrelation analysis to estimate the parameter a1, which is the 
autocorrelation at a time lag of one sample. This requires manual identification of a sufficiently long section of 
the signal where the molecular machine is stationary. In the real F1 data we studied, unambiguous, long dwells 
are frequent so that this approach is straightforward. 

Double exponential distribution. For more than one reaction cascaded together, a more complex process than 
the simple Poisson process is usually a better model for the observed discrete state dwell times. Assuming that 
one reaction has to wait for the other to finish, the total dwell time will be a random variable that is the sum of 
two exponentially-distributed dwell times T = T1 + T2 with rate parameters k1, k2. Then the distribution of T is 
the convolution of the distribution of T1 and T2. This becomes the product of the moment generating functions 
of the individual distributions: 
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Inverting the moment generating function gives the distribution: 
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with mean    2121 kkkk   and variance    2
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To fit the rate parameters given a set of dwell times Ti, i = 1, 2 … N, we can maximize the likelihood, which is 
equivalent to minimizing the negative log-likelihood: 
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This can be solved using a variety of generic nonlinear optimization techniques, with the constraint k1, k2 > 0. 
Confidence intervals for the rate parameters are obtained by 1000 bootstrap resampling operations (15). 

The degenerate case where k1 = k2 is the gamma distribution with scale parameter k = 2. 



 

Table S1: Performance of two different bump-hunting methods 
at recovering the dominant symmetry in the distribution of 
states for the nine test cases of simulated bacterial flagellar 
motor rotation time series described in the main text. The 
figures are the median dominant symmetry over five 
replications, and the associated interquartile range (difference 
between 25th – 75th percentile) in brackets. The bracketed 
number in the first column is the true symmetry. Algorithm 
ECF-Bump is described above. Kernel density with peak 
finding estimates the distribution of discrete states using the 
kernel density method, then counts the number of peaks in the 

estimated distribution. 

 ECF-
Bump 

Kernel 
density 
with peak 
finding 

Default (26) 26 (0.0) 27 (1.5) 
20% dwell aperiodicity (26) 26 (0.5) 27 (1.5) 
Gamma dwell times, k = 2 (26) 26 (0.0) 29 (1.3) 
Gamma dwell times, k = 10 (26) 26 (0.0) 29 (2.5) 
30 dwell locations (30) 30 (0.0) 32 (3.3) 
40 dwell locations (40) 40 (0.0) 46 (5.0) 
50 revs/sec (26) 26 (0.0) 39 (5.3) 
100 revs/sec (26) 26 (0.0) 45 (3.8) 
Flagellar stiffness, κ = 50 (26) 26 (0.0) 47 (8.8) 



 

Table S2: Performance of different 
bump-hunting methods at finding 
the dominant symmetry in the 
distribution of states of simulated 
bacterial flagellar motor rotation 
time series with exponential dwell 
times, over a wide range of 
dominant symmetries. Each entry 
shows the median estimated state 
periodicity, with the interquartile 
range (25th – 75th  percentile) in 
brackets. No result indicates that no 
dominant peak in the ECF could be 
found. The histogram with FFT 
method first estimates the 
distribution of states using a 

histogram, then finds the fast Fourier transform of that histogram; the largest peak in the spectrum is the 
estimated periodicity (method used in Sowa et al. 2005). Kernel density with peak finding estimates the 
distribution of states using the kernel density method, then counts the number of peaks in the estimated 
distribution. 

 Average exponential dwell time 
Number of dwell locations 2.5ms 1.5ms 1.0ms 0.75ms 0.50ms 
ECF-Bump 

20 20.0 (0.0) 20.0 (0.0) 20.0 (0.0) 20.0 (0.0) 20.0 (0.0) 
30 30.0 (0.0) 30.0 (0.0) 30.0 (0.0) 30.0 (0.0) 30.0 (0.0) 
40 40.0 (0.0) 40.0 (0.0) 40.0 (0.0) 40.0 (0.0) 40.0 (0.0) 
50 50.0 (0.0) 50.0 (0.0) 50.0 (2.5) 50.0 (0.0) 54.0 (8.0) 
60 60.0 (0.0) 60.0 (0.0) 60.0 (4.0) 60.0 (0.0) (no result) 

Histogram with FFT (13) (see caption) 
20 19.0 (0.0) 19.0 (1.0) 20.0 (1.0) 20.0 (0.0) 20.0 (0.0) 
30 29.0 (0.0) 29.0 (0.0) 29.0 (0.0) 29.0 (0.0) 30.0 (1.0) 
40 39.0 (0.0) 39.0 (0.0) 39.0 (34.0) 8.0 (16.0) 14.5 (13.0) 
50 5.5 (45.0) 4.5 (9.0) 4.0 (14.0) 15.5 (15.0) 15.5 (24.0) 
60 20.5 (47.0) 13.0 (16.0) 7.5 (9.0) 14.0 (17.0) 14.0 (18.0) 

Kernel density with peak finding (see caption) 
20 21.0 (0.0) 21.0 (1.0) 21.0 (1.0) 21.0 (1.0) 21.0 (1.0) 
30 30.5 (1.0) 30.0 (1.0) 31.0 (2.0) 32.5 (3.0) 34.0 (2.0) 
40 37.5 (2.0) 38.0 (3.0) 38.0 (2.0) 37.0 (1.0) 39.0 (2.0) 
50 40.5 (3.0) 37.0 (2.0) 37.0 (2.0) 36.0 (4.0) 38.0 (2.0) 
60 40.0 (3.0) 37.0 (4.0) 37.0 (4.0) 37.5 (1.0) 36.0 (4.0) 



 

Figure S1: Nine test cases of simulated bacterial flagellar motor time traces; pink line is measured bead angular 
position θt, black line the (unobservable) motor position μt. Dotted horizontal lines are the discrete state 
locations. (a) Default case: 26 regularly spaced states, exponential dwell times, flagellar hook stiffness κ = 
100kBT/ rad, 10 revs/sec. (b) As default, but with 20% dwell location asymmetry (see Supplementary Methods). 
(c) With gamma-distributed dwell times, k = 2. (d) Gamma dwell times, k = 10. (e) 30 states. (f) 40 states. (g) 
50 revs/sec. (h) 100 revs/sec. (i) Flagellar hook stiffness κ = 50 kBT/rad. 
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