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Abstract 
This thesis describes the mathematical modeling of the Bacterial Flagellar 

Motor (BFM) system, for both the torque-generation and switching mechanisms. For 

the torque generation mechanism, a two-state Markov-Fokker-Planck model (also 

known as the Langevin dynamics formalism) was constructed. The model 

successfully explains the torque-speed relationship and stepping behaviour of the 

BFM. The model is not sensitive to the structural details of the BFM or model 

parameter variation. Thus, it can be used as a framework for future study of the BFM, 

when new experimental inputs become available.  

On the switching mechanism, the Ising Allosteric model was reviewed and 

modified to fit the BFM system. A series of experiments were designed and 

performed to test the model and the results are consistent with the model’s predictions. 

This work has established that the Ising model from condensed matter physics can 

also be applied to a complex multiprotein as an amplification mechanism. 

The final chapter of the thesis investigates the free diffusion of fluorescently 

labelled stator complexes on the cell membrane and their exchange with functioning 

stators in the BFM with a simple diffusion-capture model.  

The contents of this thesis represent a good example of intimate collaboration 

between theory and experiments: mathematical modeling helps us understand and 

direct future experiments; while experiments provide the foundations for accurate 

modeling. 
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Introduction to the Study of Molecular 
Motors 

 
1.1 THE MOLECULAR MOTOR FAMILY 

1.1.1 A General Introduction 

Molecular motors are proteins which can perform mechanical work by 

consuming ‘fuel’- the free energy of nucleotide hydrolysis or ion gradients. They are 

machines made by nature that take part in almost every important biological process, 

including DNA transcription, replication, cell division, muscle contraction, bacterial 

motility and ATP synthesis. At the moment, they are far superior to the machines 

made by humans at this scale. These machines share some common features with 

macroscopic manufactured machines, such as the use of repeating cycles and similar 

velocity-load output relationships. However, there are also significant differences. 

First, these motors are of nano-scale size and live in a wet environment (molecules, 

subcellular organelles, and cells are all immersed in an aqueous environment). At this 

length scale, the motion of protein motors is dominated by thermal fluctuations as the 

surrounding water molecules never stop buffeting the motors [1]. While Brownian 

motion blurs motor trajectories, it also provides driving force that allows molecules to 

pass over high energy barriers which is usually forbidden in the macroscopic world 
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[2]. Another distinct feature of this environment is described as ‘the world of low 

Reynolds number’. When small things move through fluids slowly, viscous forces are 

important but inertial forces are not [2]. These small objects will stop immediately 

after the applied force/ torque is withdrawn. It is this unique living environment that 

gives molecular motors remarkable power. However, it also brings great challenges. 

Only by combining cutting edge single-molecule imaging, manipulation techniques 

with complicated stochastic simulation algorithms can we shed light on the 

fundamental working mechanism of molecular motors.  

The molecular motors family mainly falls into two categories: linear motors, 

which run in a preferred direction on linear tracks, such as DNA strains and actin 

filament; and rotary motors, which rotate around a central axis, generating a torque. 

The main research target in my thesis is the bacterial flagellar motor, a member of the 

rotary motor family. Here I provide a brief review of other molecular motors, for a 

comparison of the similarities and differences.  

 

1.1.2 Linear Motors 

Myosin 

Myosins are a large superfamily of motor proteins that move along actin 

filaments by using the energy released from ATP hydrolysis [3]. Most of the family 

members are non-processive. One such example is myosin II, which is abundant in 

muscle tissues and responsible for muscle contraction. The myosin motor is a dimer 

with two identical heads that act independently. Each myosin head contains a catalytic 

site and an actin binding site. A coiled-coil rod links the two heads together and 

attaches them to the thick filament. Each motor is composed of two heavy chains and 

four light chains. The two heavy chains form the head domain. Each heavy chain 
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begins with a globular head at the N-terminal and ends with an alpha-helix at the C-

terminal [4-6]. Motor domains of most myosins move non-processively along actin 

filaments toward the plus ends of the filaments. A few exceptions (eg. myosin V and 

myosin VI) move processively on actin filaments [7] (with myosin VI moving 

towards the minus end of the actin filament [8]).  

 

Figure 1.1.1 Schematic plot shows how muscle myosin works. Muscle contraction is 
caused by the sliding between actin and myosin filaments. After each power stroke, 
muscle myosin detaches from the filament. (adapted from reference[9]). 

 

Extensive research has revealed the working mechanism of myosin motors 

[10-13]. At the beginning of a motor cycle, the myosin head containing bound ADP 

and phosphate has medium affinity to the actin filament. Once it attaches properly to 

the actin filament, phosphate is released. This tightens the binding of the myosin head 

to actin and also triggers the power stroke that pushes the actin filament. At the end of 

the power stroke, ADP is dissociated and a new ATP molecule binds to the catalytic 

binding site, causing the myosin head to be detached from the actin filament. 
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Subsequent hydrolysis of the ATP molecule resets the motor head to its pre- stroke 

position and thus completes a motor cycle. The sliding movement between myosin 

and actin filament triggered by ATP hydrolyzing in the head domain leads to fast and 

powerful muscle contraction when a large number of such motors work together.  

 

Kinesin & Dynein 

Kinesin is an important member of the superfamily of microtubule-based 

motors that perform force-generating tasks such as organelle transport and 

chromosome segregation [14]. Similar to myosin in structure, the kinesin motor is 

also a dimer with two identical motor heads. Each head consists of a catalytic site and 

a neck linker. In a cell, the major function of kinesin motors is to transport organelles 

along microtubules. Therefore, kinesin moves processively along a microtubule while 

the organelle is attached to the tail domain of the motor. Extensive research work has 

focused on the stepping behaviour of the motor [15-16] and its response to external 

load [17]. The working mechanism of kinesin motor is now well understood. At the 

beginning of the motor cycle, both kinesin heads contains bound ADP and move 

randomly in solution driven by Brownian motion. When one of the heads encounters a 

microtubule, it binds tightly. Microtubule binding causes the ADP to be released from 

the attached head and ATP rapidly enters the empty binding site on the head. This 

exchange triggers the ‘power stroke’, which throws the second head forward and 

brings it to the next binding site on the microtubule. During this action, the first head 

hydrolyzes the ATP and releases phosphate. Then the second head, which is now 

ahead, exchanges its bound ADP for an ATP from the solution and triggers the second 

‘power stroke’. The first head is thrown forward to the next binding site, finishing the 
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cycle and resetting the system. As the motor repeats the cycle, the kinesin motor 

moves processively on the microtubule by a ‘hand-over-hand’ mechanism [18].  

 

Figure 1.1.2 Schematic plot shows the working mechanism of kinesin and dynein 
motors. (adapted from reference [19]). 
 

Dynein is another important member of the linear motor family. Dyneins have 

two major categories: axonemal dyneins and cytoplamic dyneins. Axonemal dynein 

works in a collaborative manner. They produce the bending motions that propagate 

along cilia and flagella by interacting between nine microtubule doublets arranged 

cylindrically around a pair of central microtubules [20-21]. During the ‘power stroke’, 

axonemal dynein undergoes a conformational change, which causes the microtubule-

binding stalk to swing relative to the cargo-binding tail, pushing one microtubule 

forward. This sliding leads to bending movement of the cilia. Coordinated activation 

and inactivation of dynein molecules along different sides of the central microtubule 

enables a beating movement.  

Similar to kinesin, cytoplasmic dyneins are also cellular transporters that drive 

a variety of fundamental cellular processes, including chromosome separation during 

mitosis and the positioning and function of many intracellular organelles [22-23]. 

Cytoplasmic dynein moves along cytoskeletal microtubules. However, they move 

towards the minus-end of the microtubule while kinesin moves to the plus-end. The 
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motor structure comprises between one and three heavy chains, each containing sites 

for ATP hydrolysis and microtubule binding [24]. Electron microscopy has revealed 

that the heavy chain folds to form a globular head with two elongated structures, the 

stalk and stem [25]. These two domains bind to the microtubule and cargo organelles, 

respectively [26]. At the beginning of a motor cycle, dynein binds tightly to a 

microtubule without any ‘fuel’ molecule. After ATP binds to the motor domain, 

dynein detaches from the microtubule. The detached dynein quickly hydrolyzes ATP 

and re-primes its conformation for a power stroke. Binding to the microtubule of the 

stalk domain promotes a concerted conformational change in the head ring, thereby 

releasing ADP and phosphate from the motor and generating a power stroke that pulls 

the cargo forward. This resets the system and completes one motor cycle [27-28].  

 

1.1.3 Rotary Motors 

F1F0 ATPase  

F1F0 ATPase is considered to be the most important member of all molecular 

motors. It consists of two parts: the membrane embedded F0 motor and the 

cytoplasmic F1 motor (Figure 1.1.3 left). F1F0 ATPase uses the energy of 

transmembrane electrochemical gradient to synthesize ATP by a rotary mechanism.  

The transmembrane F0 motor is built from two different assemblies, 

conventionally called a ‘stator’ and ‘rotor’. The rotor consists of a ring-shaped array 

of 10-14 double-helical c-subunits. The stator converts the ion motive force across the 

membrane into mechanical rotation of the rotor. The rotor connects to the γ -shaft 

which sits deep in the F1 motor. Therefore mechanical torque is delivered to the F1 

motor through this connection. The F1 motor consists of a hexamer of alternating 

α and β subunits whose interfaces harbor six nucleotide binding sites. Three of these 
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are used for ATP synthesis and the other three are used only as structural support. Due 

to the irregular shape of the coiled-coil γ -shaft, the rotation of the shaft interacts with 

the 33βα hexamer, which causes great conformational changes and catalyses ATP 

synthesis.  

In the past decade, the progress of the F1F0 study has been rapid and we have 

learned much about its structure and function. More recently, steps in the motor’s 

rotation were observed, supporting Boyer’s hypothesis that one ATP molecules is 

generated per of rotation [29-30]. Successful mathematical models have been 

constructed to illustrate the working mechanism at a molecular level [31-33]. 

Furthermore, the F

°120

1 part can also operate in reverse by hydrolyzing ATP at a high 

ATP concentration and driving the F0 motor in reverse as an ion pump. This property 

is regarded as highly promising for future bionanotechnology applications [34][19].  

 

Figure 1.1.3 On the left: schematic plot of the F1Fo ATPase. The F1 hexamer contains 
three catalytic sites alternating with three noncatalytic sites. The rotation of the central 
shaft is driven by the Fo motor using the energy of transmembrane ion motive force. 
The shaft is eccentric, so that its rotation sequentially stresses the catalytic sites to 
release ATP. Details of the structure and Boyer’s ‘‘binding change’’ model can be 
found in references [35-37]. Scale bar, 5 nm. On the right: schematic plot of the 
bacterial flagellar motor, which is reconstructed from images of the hook-basal bodies 
seen in an electron microscope [38-39]. The general morphological features are C-
ring, MS-ring, P-ring, L-ring, hook, hook-associated proteins and filament. Scale bar, 
25 nm. (adapted from reference [19]).  
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Bacterial Flagellar Motor 

Flagellar rotation is the major means of bacterial motility. The bacterial 

flagellar motor is not only responsible for propulsion, but also plays an important part 

in chemotaxis. A thorough review of the BFM will be given in the following section.  

 

1.1.4 Molecular Motor Applications 

Given the wide variety of essential biological functions that motor proteins 

serve, it is not surprising that malfunction of many motor proteins is responsible for 

various diseases. Understanding their working mechanism provides guidance for 

developing drugs that recover or fix their normal function. Also promising is the 

engineering future of molecular motors to form nano-scale machines. At such small 

sizes, fluid transportation is dominated by low Reynolds number dynamics and 

becomes highly inefficient if driven by pressure gradient. Hence extensive efforts 

have been made to utilise molecular motors for the purpose of microscopic 

transportation and even preprogrammed medicine delivery.  

 

1.2 BACTERIAL FLAGELLAR MOTOR 

Flagellar rotation is one of the major means for bacterial motility. Using the 

transmembrane electrochemical H+ (or Na+) motive force to power rotation of the 

bacterial flagellar motor (BFM), free-swimming bacteria can propel their cell body at 

a speed of 15-100 μm/s, or up to 100 cell body lengths per second (reviewed in [40-

41]). 

The Escherichia coli (E. coli) BFM is the best understood among all BFMs. E. 

coli is a gram-negative bacterium. It is a rod-shaped cell, about 1 mμ  in diameter and 

2 mμ  long. A cell contains about four extracellular helical flagellar filaments (on 
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average) each driven at its base by a rotary motor that is located at random positions 

on the cell surface. The major part of the BFM is embedded in the cell envelope and 

the rotor connects to the extracellular filament (Figure 1.2.1 a). A motor is about 50 

nm in diameter and contains more than 20 different protein parts. In the following 

section, a thorough review of the BFM is given.  

 

1.2.1 Structure 

A schematic plot of the key components of the E. coli BFM is given in Figure 

1.2.1 b, derived from collected research of electron microscopy, sequencing and 

mutational studies. More recently, crystal structures of some of the proteins have 

become available (reviewed in [42]). In Figure1.2.1 b, we see that in the extracellular 

part of the cell, a long flagellum (about 5 or 10 times the length of the cell body) is 

connected to the motor through the hook domain. The flagellum and the hook are 

formed by polymers of flagellin (FliC) and hook protein (FlgE), respectively. The 

mechanical packing structure of the flagellum and hook are completely different so 

that the flagellum is rigid but the hook is flexible [43-44]. Under the hook is the BFM 

basal body, which spans across the outer membrane, peptidoglycan and inner 

membrane into the cytoplasm of the cell. The basal body comprises a rod connecting 

four protein rings: the L-ring, P-ring, MS-ring and cytoplasmic C-ring (reviewed in 

[42]). Functionally, the basal body is the rotor of the BFM, which rotates the 

flagellum when torque is applied to it. Around the periphery of the MS-ring, there is a 

circular array of 10-12 stator complexes [45]. Each complex is made up of the 

proteins MotA and MotB in an A4BB2 stoichiometry [46]. Both MotA and MotB span 

the cytoplasmic membrane, forming two ion channels in the centre of the A4B2B  

structure. The peptidoglycan-binding motif of MotB is a structural linker that anchors 
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the stator complex to the rigid framework of the peptidoglycan. MotA has four 

transmembrane α -helical loops [47]. Ion binding/unbinding to the channel in stator 

causes conformational changes in the stator complex, which later delivers torque to 

the rotor via rotor-stator interaction. Mutational studies that modify protein expression 

of individual components of the BFM found that there are critical charged residues on 

MotA cytoplasmic loops that interact electrostatically with charged residues on the C-

terminus of FliG on the C-ring [48]. This interaction is believed to account for the 

torque generation mechanism in the BFM (the torque generation mechanism will be 

discussed further in Chapter 3).  

 

Figure 1.2.1 The BFM. (a) The overall structure of the BFM. Figure is courtesy of 
David DeRosier. (b) A cartoon plot of the key structural components involved in 
torque generation.  
 

At the bottom of the basal body, FliG, FliM, and FliN constitute the C ring 

and are also referred to as the “switch complex,” since mutations in this region often 

lead to defects in switching function. The chemotactic signaling protein, CheY-P, 

which is produced by the chemotactic network in the cell, binds to FliM. This binding 

event increases the probability that the motor rotates in the clockwise (CW) direction 
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by a not-yet-clear conformational change at the torque generating interface (more of 

this will be discussed in Chapter 5). 

 

1.2.2 Power Input 

The bacterial flagellar motor is powered by the flow of ions down an 

electrochemical gradient across the cytoplasmic membrane into the cell. The ions are 

typically H+ (protons) in Escherichia coli and Na+ in alkalophiles and marine Vibrio 

species. The protonmotive force (pmf) consists of two parts:  

                            formula (1.1) 

The first contribution is from the transmembrane electrical potential gradient. The 

fluid inside and outside a cell is highly conductive, but a cell’s plasma membrane is 

resistive. The membrane potential arises from the electronic filed generated by 

different concentrations of cations and anions across the membrane, which is 

maintained by ion transporters embedded in the membrane. The second part is due to 

the entropic effect of transmembrane pH difference. Here  is the Boltzmann 

constant, T the absolute temperature, and e the proton charge (reviewed in [40]).  

Bk

At room temperature and E. coli’s normal growth conditions, the electrical 

potential contribution is about 120mV while the pH difference gives an extra 40mV, 

which in total equals 160mV. In the case of the chimera motor, which uses the Vibrio 

stator and E. coli rotor, the membrane potential is 140mV. With the external [Na+] 

concentration at 85mM and internal [Na+] concentration at 12mM, the total smf is 

approximately 190mV [49].  
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1.2.3 Power Output 

To understand the mechanism of the flagellar motor we need to understand the 

mechanochemical cycle of torque generation and how it couples ion flux to motor 

rotation. 

Like macroscopic machines, the torque-speed relationship gives a full picture 

of the power output of the BFM under external loads, and it also indicates the energy 

conversion efficiency. Moreover, the torque-speed curves, measured with increasing 

stators number, shed light on how individual torque-generating units cooperate and 

the duty ratio of the motor [50].  

Experimentally, two different methods have been used to measure the torque-

speed relationship of the BFM. The first method is by electrorotation, in which a cell 

is tethered to a glass coverslip by a single flagellar filament. External torque, extτ , is 

applied to the cell body with a high-frequency rotating electric field, and the rotation 

rate of the cell body, ω , is monitored optically [51]. A torque balance on the motor 

gives extM ττζω += , where is the torque generated by the motor. The frictional 

drag coefficient is 

Mτ

LM ζζζ += , where Mζ is the drag coefficient due to internal 

friction in the motor and Lζ  is the external drag coefficient of the load, in this case, 

the cell body. The motor torque vs. speed curve is derived from the usual external 

load torque vs. speed curve as follows. The motor is broken by applying a large 

external torque to force rotation in the reverse direction. Next, the external torque, extτ , 

is applied to the broken motor, for which the force balance relation is 

extextM τωζζ −=+ ')( . Therefore, the motor torque is given by subtracting the broken 

motor speed from the motor speed: ).')(( ωωζζτ −+= LMM  
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The second method is to tether a polystyrene bead to the stub of a flagellum, 

with the cell fixed to the surface of a glass coverslip (technical details will be given in 

the next section). The rotation speed of the bead is monitored in a weak optical trap 

while the viscosity of the external medium is rapidly changed by adding Ficoll [52] or 

while the drag coefficient of the bead is changed by varying the bead size [53]. In this 

case, the motor torque is calculated from ωζωζζτ LLMM ≈+= )( , where the bead 

drag coefficient Lζ  can be calculated from the Stokes formula.   

In the torque-speed curve of the E. coli BFM, the torque remains 

approximately constant up to ~ 170 Hz at 23ºC, and then drops abruptly to zero 

beyond a ‘knee’ velocity of ~ 300Hz. The sodium-driven flagellar motor exhibits a 

similar motor output relation with a higher ‘knee’ speed and zero load speed. 

Experiments that control the pmf show that the motor rotation speed depends linearly 

on the pmf in both low and high load regimes [54]. The unusual motor torque-speed 

relation and pmf dependence are crucial to understanding the underlying working 

mechanism of the BFM, and thus have been subject to extensive experimental and 

theoretical investigations.  

 

1.2.4 Stepping 

The BFM has long been suspected to be a stepping motor, but only recently 

was experimental evidence found. Steps in the F1 ATPase were first seen in 1998 [29], 

and later, substeps were resolved [30]. However, observation of steps in the BFM is 

much more difficult in that several technical obstacles are hard to overcome. First, the 

step size in the BFM is very small. Stochastic analysis shows that the step number per 

revolution increases linearly with stator number and in a fully expressed (full stator) 

motor this number is about 400 steps per revolution [55-56]. One can estimate the 
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number of steps per revolution with a single stator by dividing this number by 11 (the 

stator number of a fully resurrected motor [57]). Or one can consider the 26-fold 

symmetry of FliG on the C-ring. The expected 36/2π , or 26/2π stepsize calculated 

by the above two means are all very small compared to the 3/2π stepsize of the F1 

ATPase. Second, the wild type E. coli BFM runs very fast and its energetics are hard 

to control. Third, there is an intrinsic flexibility in the BFM system: the hook. When 

an indicator (latex bead or fluorescent bead) is attached to the flagellum, the elasticity 

in the hook smoothes the indicator movement. Even if the motor is making discrete 

steps, the indicator trajectory will be filtered into a continuous curve.  

Only very recently have the technical problems outlined above been solved. 

Sowa et al. constructed a chimera motor, with sodium driven stators in an E. coli 

BFM background. With the new motor, they managed to express only one stator 

under low sodium concentration. This results in a very slow rotation rate, which leads 

to a relatively long dwelling time between steps, making step detection easier. An 

optical trapping system with high temporal and spatial resolution was used while a 

small indicator (a latex bead of diameter 0.2-0.5 microns) was attached to the 

flagellum. This reduced the relaxation time of the hook-bead system. Finally, 26 steps 

per revolution were confirmed [58] for the first time.  Furthermore, with improved 

angular resolution and better control of the motor speed, information about key 

statistical quantities (such as step sizes with multiple stators, dwelling time 

distribution between steps) can be obtained. However, the detailed torque generation 

mechanism remains unclear. 
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1.2.5 Switching 

In the low Reynolds number world, bacteria can not change their swimming 

direction by steering wheel. They depend on the thermal fluctuations from the 

surrounding environment to rectify their direction. The BFM has two rotation modes, 

counterclockwise (CCW) and clockwise (CW) (as viewed along a filament from its 

end toward the body). When the motor spins CCW, all of its flagellar filaments form a 

bundle that pushes the cell steadily forward. When one of the motors spins CW, these 

filaments fly apart and the cell tumbles. The BFM switches stochastically from CCW 

to CW direction and hence the cell repeats a ‘run’-‘tumble’-‘run’ pattern. This enables 

a chemotactic navigation in a low Reynolds number environment (reviewed in [40]). 

The probability of rotation direction is tuned by a chemotactic signaling protein, 

CheY. When the chemoreceptors sense attractant/repellent in the surroundings, 

less/more CheY will be phosphorylated. When the phosphorylated form of CheY, 

CheY-P, binds to the switch complex, the chance of CW rotation is enhanced, leading 

to more ‘tumbling’ and the opportunity for the cell to escape from the repellent.  

 

1.3 EXPERIMENTAL TECHNIQUES 

This is a review of the standard experimental techniques used in the study of 

the BFM. The results presented in Chapter 5 are from these experimental setups.  

1.3.1 Optical Trapping System 

Since their invention just over 20 years ago optical traps have been widely 

used for research purposes in both physics and biology, ranging from the cooling and 

trapping of neutral atoms to manipulating live cells and viruses [59-62]. Optical traps 

implement a highly focused laser beam to hold a dielectric particle. Because of the 

exchange of momentum between the trapped particle and the incident photons, a 
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potential well is created at the focus of the laser beam, which is able to attract the 

small particle to a fixed position in three dimensions. More recently, optical traps 

have been extensively employed in the experimental investigations of molecular 

motors (reviewed in [62]). Their ability to apply piconewton forces to micron-sized 

particles, while simultaneously measuring displacement with nanometer precision, 

makes them the best tool in practice. With the help of optical traps, the stepping 

behaviour of the linear motors myosin, kinesin and dynein has been resolved. The 

implementation of ‘force clamps’ and ‘position clamps’ combining optical traps with 

controllable feedback systems provides more information about the motors’ 

mechanochemical cycles and working mechanisms [17]. In our case, the trap is 

specially designed to work with rotary motors. Figure 1.3.1 is a schematic plot of the 

optical trapping system we use (published in [63]).  

 
Figure 1.3.1 Anatomy of a laser trapping system. Figure is courtesy of Teuta Pilizota. 
Details of the building and calibration process can be found in our publication [63]. 
The system consists of two laser sources. The near-infra-red Ytterbium laser on the 
left is used to form the optical trap. The Helium-Neon laser on the right is used for 
position detection by back-focal-plane interferometry.  
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The system consists of an inverted microscope and two laser sources, which 

are used for detection and trapping, respectively. The basic setup is a bright-field 

imaging microscope comprising a light-emitting diode, high N.A. objective, light 

condenser and high-resolution CCD camera. Above the objective is the specimen 

slide holding position, which is mounted on a 3-axis piezo-electric stage. Position 

detection on the specimen plane is by back-focal-plane interferometry method using a 

Helium-Neon laser. The beam is first focused in the specimen plane by the objective 

lens and later collimated onto the face of a quadrant photodiode detector (QPD). The 

actual optical trap is formed by a separate light path on the left using a near-infra-red 

Ytterbium fiber laser. Acousto-optic deflectors in the light path are finely controlled 

by a digital signal processing board, which enables fast and precise movement of the 

trap focus in the specimen plane. Data acquisition, feedback calculations and control 

of the optical trap are all centrally managed by a host computer with Labview. With 

this system, we are able to accurately measure the rotation speed of an indicator 

attached to the flagellum of a BFM and apply fine manipulation of the indicator, 

through acceleration, deceleration, ‘angle clamp’ and ‘torque clamp’ techniques.  

In Chapter 5 of this thesis, this optical trapping system is intensely used to 

investigate the switching dynamics of the BFM. In those experiments, the power level 

of the Helium-Neon laser was attenuated at the back aperture of the objective to 

minimize photo-damage of the motor with two neutral density (ND 1) filters. The 

beam was projected onto a quadrant photodiode to detect bead displacement. The 

photo-current signals outputted by the quadrants were amplified using a current-to-

voltage amplifier and sampled by a computer at 10 kHz using National Instruments 

hardware inputs. For the purpose of studying the switching dynamics of the BFM, the 

optical trapping system we used was designed to provide the highest spatial and 
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temporal resolution achieved for monitoring motor activity. Custom LabView 

software allowed real-time monitoring of the spatial trajectory of the particular bead 

under examination and cells providing steady elliptical or circular trajectories were 

recorded for 30 seconds. This recording time avoided photo-damage concerns and 

limited cell behavioural variability, for the purposes of later categorising cells by bias. 

A method of fast attractant removal was used to provide cells with low and middle 

CW biases. The Labview software outputted bead X, Y position, angular position and 

radius against time, allowing the calculation of the instantaneous angular speed of the 

bead. 

 

1.3.2 Tethered Cell Assay and Fast Bead Assay 

Apart from the above experimental techniques in optics, we also need to 

establish robust procedures that maintain cells at good biological conditions for 

measurement.  

 
Figure 1.3.2 Schematic plot of the tethered cell assay and fast bead assay.  
 
Bacteria preparation  

During my study, the bacteria strains I have used are wild type E. coli KAF 84, 

non-switching E. coli KAF 95, and wild type stator inducible E. coli HCB 1271. 

Previous studies have found suitable growth conditions for these strains. Cell cultures 
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were prepared by adding 100 lμ  of strain stock taken from a  freezer to 5 ml  

of tryptone-broth (1% tryptone, Difco, USA; 0.5% sodium chloride) and 5

C°− 80

lμ  of 

ampicillin (Sigma-Aldrich, UK). Cultures were grown for five hours in an incubator 

at , shaken at 200 r.p.m. C°30

For the switching experiment described in Chapter 5, we collected data from 

about 3000 cell samples (E. coli wild type KAF84). E. coli non-switching cell (strain 

KAF95) and stator inducible cell (strain HCB1271) were used for comparison.  

 

Tethered Cell Assay 

The tethered cell assay was the dominant technique used in the early stage of 

BFM research. The E. coli cell (after incubation) is attached to a coverslip surface by 

its own flagellar filament and the BFM rotates the cell body in the reverse direction, 

as shown in Figure 1.3.2 a. The tethered cell assay is easy to make and since the cell 

body is relatively large, measurement of rotation rate is possible even with low 

resolution video records. However, in the tethered cell assay, as the external load of 

the BFM is the whole cell body, rotation rate is normally very slow, below 20Hz. This 

method only shows how the BFM operates in a low-speed, high-load regime. To 

explore the full torque-speed relationship of the BFM, we need a better controlled cell 

assay.  

 

Fast Rotation Bead Assay 

The bead assay method attaches small polystyrene bead to a truncated 

flagellum of the BFM (Figure 1.3.2 b). By monitoring the rotation of this indicator in 

the optical trapping system, we gain a better resolution.   

Compared to the tethered cell method, in the bead assay, the viscous load on 
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the motor depends closely on the bead diameter and the eccentricity of rotation. By 

varying the size of the bead attached to the motor, we are able to investigate the 

dynamical properties of the BFM in a full load range. 

To construct a bead assay, we follow a custom developed procedure: after the 

cell culture is harvested, flagellar filaments are sheared by passing 7ml of fresh 

culture through a shearing device [52] made of two syringes with narrow gauge 

needles connected by polyethene tubing. When the cells pass through the tube rapidly, 

the gradient of the turbulent flow shears the flagella off. Normally, we shear 70 times 

at moderately high speed to ensure that the majority of cells are left with short flagella.  

Sheared cells are spun down in a centrifuge for two minutes and washed in 1 

 of motility buffer (10mM potassium phosphate; 0.1mM EDTA (Sigma-Aldrich, 

UK) at pH 7.0; 1mM L-methionine; 0.05% lactic acid) three times with the final 

suspension in 250

ml

lμ  to provide the desired cell density. At the same time, a slide that 

holds the bead assay in the optical trapping system needs to be prepared. Double sided 

tape is used to attach a potassium hydroxide-cleaned glass coverslip to a microscope 

slide. A tunnel is cut in the middle of the tape, which later is used to flow the cells in. 

10 lμ  of poly-L-lysine (Sigma-Aldrich, UK) is first injected into the tunnel and left 

for one minute before being flushed out with 200 lμ  of motility buffer, thus providing 

a surface on the coverslip which the cells can be immobilized on. An illustration of a 

tunnel slide is shown in Figure 1.3.2 b.  

In the last step, 10 lμ  of the cells is injected into the tunnel and left in a 

humidifier for ten minutes, with the slide placed upside down to allow cells to settle 

on the poly-L-lysine monolayer. Loose cells are then flushed out with 100 lμ  of 

motility buffer before injecting 10 lμ  of small latex beads (Polysciences Inc., 

Eppelheim, Germany; size ranges from 0.2 micron meter to 2 micron meter depends 
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on experimental requirements) at 0.5% concentration in motility buffer. The slide is 

again placed in the humidifier for ten minutes to allow the beads to settle and attach to 

the flagella. Loose beads are flushed out with 100 lμ  of motility buffer before the 

ends of the tunnel are sealed with vacuum grease to prevent evaporation from the 

sample. At this stage, the slides are ready to take measurements from the optical 

trapping system.  

 

1.3.3 Flow Chamber 

On top of the bead assay slide setup described above, a few more components 

can be easily added, among which the ‘flow chamber’ setup is most useful.  

 

Figure 1.3.3 Custom built ‘flow chamber’ that allows the living environment of 
bacteria to be changed while taking measurements in the optical trapping system  
 

In some experiments, it is often required that the rotation rate of the BFM be 

measured while its living environment is changed. For example, the switching 

behaviour of the BFM is controlled by the chemotaxis network and the cell can adapt 

to a new environment within minutes. Any research work which attempts to look at 

the switching dynamics will be restricted to a fixed chemotactic activity region if the 

cell sample is isolated. This problem can be solved with the ‘flow chamber’ setup. 

Before we stick together the slide and the coverslip, we drill holes on the bottom side 

of the slide at a size that thin polyethene tubes can just pass through (Figure 1.3.3). 

Later we glue the tubes to the slide and cut off the part above the top side of the slide.  
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Pre-designed double sided tape is used to stick the coverslip to the slide, which makes 

a tunnel in the middle with crossroads that connects the tube entrance points. With 

this new setup, injection and removal of solution is through the polyethene tubes. 

After we immobilize cells on the coverslip with beads attached, the inlet tubes are 

connected to large reservoirs of motility buffer with different attractant or repellent 

levels. While the slide remains firmly in the specimen plane of the microscope, we 

can gradually change the living environment of the bacteria by opening different inlet 

tubes without harming their activity. Therefore, this method allows a complete 

exploration of switching dynamics across a full bias range.  

 

1.4 CONCLUSION 

Molecular motors play indispensable roles in many fundamental biological 

processes. After a few decades’ research endeavour, advanced experimental 

techniques have been developed for the study of molecular motors. The secrets of 

these remarkable machines are ready to be revealed.  
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                                            CHAPTER   2  
 

 
 

Mathematical Modeling of Molecular 
Motor Systems 

 

2.1 THE PHYSICS OF MOLECULAR MOTORS 

From a physicist’s point of view, before we start modeling any particular 

molecular motor, it is wise to identify the general features of these ‘tiny machines’. 

First, due to their small dimensions and aqueous living environment, molecular 

motors are subject to large thermal fluctuations and they have to develop an efficient 

strategy that generates directional movement out of the random environment. This 

strategy needs to make the most of their energy input, which is only slightly higher 

than that of the thermal bath (the free energy associated with hydrolysis of one ATP 

molecule is 12 kBT; and that of proton motive force is 6 kBT. The energy input is used 

in driving molecular transitions between key states in the motor’s mechnochemical 

cycle, making the free energy source for each transition on the order of ～kBT). 

Second, the motors live in a world of low Reynolds number. They have no sense of 

inertia but a strong sense of viscous friction. A model needs an appropriate stochastic 

algorithm to describe the motor’s movement in this damped and viscous environment. 

Third, similar to macroscopic motors, there is an accurate coupling between chemical 
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reaction and physical advancement in the molecular motor. Periodicity exists in both 

the reaction coordinate and the position coordinate.  

Physical theories that aim to understand the fundamental working mechanism 

of molecular motors should be able to capture the above three features, especially the 

role of fluctuations in their operation, the nature of the mechanochemical coupling, 

and the efficiency and reversibility of energy conversion. The theory proposed by C. 

Bustamante, D. Keller, and G. Oster provides a good starting point for our 

understanding [64].  

In their theory, the free energy landscape is used to model the driving force of 

both chemical reaction and physical movement. A system containing the motor 

molecule, the interacting filament track and surrounding molecules in solution 

possesses many degrees of freedom. Some are external variables and the others are 

internal, called the system variables. The same physical concept that has been widely 

used in statistical mechanics can also apply to the description of this system. The 

system variables of the molecular motor form an n-dimensional state space. Each 

point on the state space represents a unique configuration of the motor and has an 

associated free energy, the potential of mean force. The potential of mean force is 

primarily from three sources: (1) interaction energy within the motor (eg. rotor-stator 

interaction, arm-linker interaction), and between the motor and its track (if it has one) 

(2) chemical interactions between the motor and the fuel molecules (3) interactions of 

all of the above with the solvent environment. The motor moves in the state space 

from one point to another, forming a reaction pathway.  

The basic role of molecular motors is to transfer chemical energy into 

mechanical movement. Therefore, among all the system variables, an important group 

measures the progress of chemical reactions. We call them the chemical variable. All 
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others will be called mechanical variables, which describe the relative movement of 

components within the motor or the progress of the motor along its track or, for rotary 

motors, the angle of rotation around its axis.  

 
Figure 2.1.1 (a) Minimal potential energy surface that demonstrates molecular motor 
working mechanism. The surface is periodic in both the reaction coordinate and 
position coordinate, reflecting the cyclic nature of both enzymatic turnovers and 
motor cycles. The surface is tilted along the chemical axis, representing the driving 
force for the motor, i.e., the free energy of reaction. An externally applied load force 
would appear as a tilt of the surface along the position coordinate. The motor (system 
point) diffuses on this potential energy surface. The optimal reaction path way (the 
energy valley in the center connecting local minima) couples chemical energy to 
mechanical motion. (b) Correspondence between the potential energy surface and the 
kinetic representation of the motor. Diffusion between minima is equivalent to 
chemical transitions, which can be described by kinetic rate constants. (Figure is 
courtesy of  reference [64]) 
 

In the simplest case, when the motor can be defined by only one chemical and 

one mechanical variable, an imaginary potential energy surface that demonstrates the 

principles of motor movement can be constructed (see Figure 2.1.1a). A motor that 

works in a higher dimension state space follows the same principle, but that is hard to 

visualize on paper.  

In Figure 2.1.1a the periodicity in the reaction coordinate reflects the cyclic 

nature of biochemical turnover. During a chemical reaction, the motor undergoes a 

number of steps that correspond to changes in conformation and chemical state and 
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eventually resetting the system to the original state. For instance, the chemical steps 

typically involve catalysis of an ATP molecule (for example, as in myosin, kinesin, 

helicases, and F1 ATPase), or translocation of an ion across an electrochemical 

gradient (for example, as in F0 ATPase and the BFM). The periodicity in the position 

coordinate corresponds to the repeated steps in motor advancement along tracks or 

angular displacement (for example, steps in a linear motor, 120 degree steps in F1 

ATPase, and 26/2π steps in the BFM). On this free energy surface, thermal 

fluctuations are essential to motor movement in that they assist crossing of energy 

barriers. A cut through the free energy surface along the chemical coordinate gives a 

reaction free energy diagram. On this diagram, the relative position of each chemical 

state is shown as separate energy wells. A cut through the free energy surface along 

the position coordinate gives the potential of mean force which drives movement of 

the motor along its track or around its axis in a certain chemical state.  

There are numerous ways that the motor can move on this free energy surface. 

However, the valley connecting all the local free energy minima in the center of 

Figure 2.1.1 a (arrows) is the optimal reaction pathway that nature chooses. Chemical 

transition is precisely coupled to mechanical motion as the slope of the surrounding 

energy barriers restricts the motor movement along the low-energy pathway. In this 

way, when the motor proceeds in the chemical coordinate, simultaneously, 

advancement in the position coordinate is achieved. 

 

2.2 THREE LEVELS OF MODELING 

The free energy surface in Figure 2.1.1 a is used to demonstrate the general 

principle of modeling molecular motors. The next question is how to reconstitute this 
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free energy surface for a particular motor based on available experimental information. 

There are three levels of modeling methods that we can use for this purpose [65].  

 

2.2.1 All Atom Molecular Dynamics Simulation 

The highest level is the all atom Molecular Dynamics (MD) simulation. 

Molecular Dynamics method follows the motions of all of the atoms of the motor and 

sometimes the surrounding water and other chemical molecules in the system. By 

solving Newton’s equations using a variety of semi-empirical potential functions that 

model the forces between atoms, MD simulation reveals intrinsic information about 

protein conformational changes and ion channel properties (see review in [66]). 

Recently, this method has been used in the study of molecular motors [67-68]. The 

MD simulation reconstitutes the free energy surface from fundamental all atom-atom 

interactions. Therefore the motor mechanism can be best understood once a correct 

MD model is built. However, this is not easy in practice. First, for an accurate MD 

simulation the atomic structures of the system are usually needed beforehand. Second, 

due to current computer capability, a large protein system involving many 

components in a complicated solvent environment is hard to solve. Third, the typical 

simulation time achievable with MD simulation is normally short, long time traces are 

hard to produce.  

 The above three limitations restricts the use of the MD method in molecular 

motor modeling. Molecular motors are normally large protein complexes with many 

components. Not all of them have a well determined atomic structure, especially the 

parts embedded in the cell membrane, which are extremely hard to crystallize. 

Additionally, molecular motors make remarkable and coordinated mechanical 

movements triggered by chemical catalysis of the fuel molecule. To capture the force 
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generation picture, a long time simulation of a multi-body system is normally required. 

This time scale ( ) exceeds the typical MD simulation time ( ~ms ns sμ ). Therefore, 

applying MD to domains of the molecular motor yields valuable insights, but the time 

to study the whole motor using MD has not yet come.  

 

2.2.2 Discrete Kinetic Models 

 Compared to the complicated MD simulations, the simplest way of modeling 

is with discrete kinetic models. Kinetic models have been widely used in the 

description of chemical reactions. A kinetic model is usually based on the assumption 

that the free energy surface can be divided into discrete potential wells, which are 

separated by rather high potential barriers [69]. The system dwells in the potential 

well for most of the time, but can capture large thermal fluctuations and make 

instantaneous barrier-crossing transitions. This process is normally referred to as a 

Poisson process and the average number of transition events in a unit time is defined 

as the transition’s kinetic rate.  

The molecular motor cycle can also be modeled as Markov transitions 

between a discrete set of states connected by kinetic rates. For example, for ATP 

driven motors, the discrete states of chemical status are normally: catalytic site Empty 

(E), ATP bound (T), ADP/Pi bound (DP), and ADP bound/Pi release (D); for ion 

driven motors, the discrete states of chemical status usually are: ion bound (On) and 

ion release (Off).  

In Figure 2.1.1 b, we show the equivalent kinetic representation of the motor 

reaction pathway shown in Figure 2.1.1 a. We assign state A, B, C to the three local 

energy minima. Therefore, a continuous optimal path on the state space can be 

replaced by a three states kinetic model.  
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Figure 2.2.1  A three states kinetic model.  

Next if we know the portion of free energy consumed and the percentage 

of mechanical advancement completed in each transition, the kinetic rates between 

states can be modeled as a function of the free energy and motor force via an 

exponential Boltzmann factor.  
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where λ is a free parameter that defines how GΔ influences the kinetic rate and 

the transition attempting rate.  0k

In this way, a complete treatment of the potential of mean force is simplified 

to a set of kinetic transitions. The GΔ  in the exponential factor reflects the physical 

ingredients that free energy from chemical transition assists forward transitions and 

output force opposes them. By solving the master equation that corresponds to a 

steady state of the kinetic model, one can retrieve the force-speed relationship of the 

molecular motor. A successful example following this approach is the three states 

model Richard Berry used to explain the torque-speed relationship of the BFM in 

reference [51].  

However, kinetic models also have obvious limitations. They usually contain a 

large set of parameters. These parameters form a broad model space. In order to 
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reproduce the experimental results, the optimization process searching the model 

space requires a lot of computation power/time. Additionally, kinetic models are not 

specific to a certain system. The same framework can be used to explain various 

phenomena and even cross area results, with no or little modification. Completely 

opposite predictions can be made from different regions in the model space. This 

great compatibility to different predictions loses particularity of each model, therefore 

undermines the value of each kinetic model. For example, a four state kinetic model is 

often used to describe the function of the kinesin motor and with a certain parameter 

set, it reproduces some experimental results. The same model, however, with a new 

parameter set, can explain properties of the myosin motor. In this case, for the 

purpose of fitting experimental data, we have two different sets of parameters for 

kinesin and myosin, but it is usually very difficult to relate such choices to the 

fundamental distinctions between the two motors, such as differences in size, 

structure, molecular weight, biological activities, etc. To conclude, kinetic models are 

useful in providing phenomenal descriptions, but usually hard to reveal insights of the 

systems being modeled.  

 

2.2.3 Markov-Fokker-Planck Model 

The method I used in this thesis to model molecular motors is an intermediate 

between all-atom MD simulation and discrete kinetic models.  

The motor proteins constitute a system with many degrees of freedom (DoF). 

Most of the DoF are high-frequency modes, eg. chemical transitions, compared with 

mechanical advancement. Therefore, the effects of these DoF can be averaged out. On 

the free energy surface we presented in Figure 2.2.1 a, if one can identify the primary 

chemical states, intersection planes at these discrete points along the position 
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coordinate gives you a set of primary driving potentials. The dynamics of the motor 

can be described by a set of such potentials of mean force as functions of these low-

frequency DoF. In this way, the all-atom MD simulation of the system can be 

approximated by a combination of Langevin simulations of the motor in these driving 

potentials along the position coordinate and kinetic (Markov) jumps between 

potentials describing chemical transitions. This new approach can be formally 

retrieved from the all-atom MD simulation by selecting some primary degrees of 

freedom, projecting out all the remaining degrees of freedom. Also, this Markov-

Fokker-Planck formalism replaces the discrete states of kinetic models with 

continuous potential functions defined on geometrical coordinates that represent the 

major conformational motions of the protein.  

The Markov-Fokker-Planck model effectively simplifies the all atom MD 

simulation by treating the chemical process as kinetic transitions while dealing 

explicitly with mechanical movement. The particularity of each motor isn’t lost as 

with pure kinetic model as these driving potentials have to be constructed from 

available molecular structures and relevant experimental results. We emphasize that 

Markov-Fokker-Planck models complement MD simulation and kinetic models; each 

has its proper place in understanding protein motors, depending on the users’ 

requirement and expectation.  
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2.3 MATHEMATICAL FORMALISM OF THE MARKOV- 
FOKKER-PLANCK MODEL 

 
Figure 2.3.1 A simple ‘flashing ratchet’ model that illustrates the basic working 
mechanism of a linear motor.   
 

In Figure 2.3.1, we show the simplest Markov-Fokker-Planck model that can 

be used to illustrate the working mechanism of a linear walking motor [70]. The 

model consists of two states, S1 and S2. The motor can be in one of these two 

chemical states: S1 corresponds to the nucleotide-binding site being occupied and S2 

corresponds to it being empty. In the empty state, the motor is dissociated from the 

polymer track and subject to free Brownian motion. In the bound state, the motor 

attaches to the track and during hydrolysis of the fuel molecule, a power stroke pushes 

the motor forward by the step size L. The kinetic scheme for the chemical reaction is  

 

where the transition rates k12(x), k21(x) are dependent on the position coordinate x. 

The potential of mean force we assign to the empty state is a constant zero and that of 

the bound state is a saw tooth potential of period L and amplitude A. Although simply 
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constructed, this model captures the primary feature of a dynein motor. When the 

motor is in the bound state, it dwells at the local minimum of the saw tooth potential, 

eg. position 0. Dissociation of the fuel molecule switches the motor to the empty state. 

Hence, the motor undergoes free Brownian motion around position 1, it has the same 

probability to diffuse to the left side or right side of position 1. When the next fuel 

molecule binds to the motor, it brings the motor to S1 again.  The motor can be caught 

at position 0 or position 2. If at position 0, then the hydrolysis of the fuel molecule is 

futile, producing no mechanical movement; if at position 2, the driving slope of the 

saw tooth potential (power stroke) pushes the motor forward by step size L.  

This ‘flashing ratchet’ is the simplest Markov-Fokker-Planck model that can 

be used to understand motor function. Next, we discuss how to solve the model 

numerically. There are mainly two approaches to solve the above two-state model. 

The first way is the classical Langevin simulation.  

 

2.3.1 Langevin Simulation Approach 

The dynamics of a particle undergoing one-dimensional Brownian motion 

(here referred to as the motor) subject to a potential can be described by the following 

Langevin equation: (In the low Reynolds number case, the inertial term has already 

been neglected [2]) 
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where ζ  is the frictional drag coefficient of the motor, x  is the position coordinate, t  

is time, iφ  is the driving potential of the empty state or bound state, and f(t) is the 

Brownian force due to thermal fluctuations. The statistical properties of f(t) are 
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where T is the temperature in Kelvin.  

A random variable described as such is referred to as Gaussian White Noise. 

Numerical simulation of the Langevin equation can be performed by 

introducing the Weiner Process,  
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     i=empty, or bound     formula (2.4) 

where Z is a standard normal random variable, i.e. with mean 0 and variance 1, and 

ζ
TkD B=  through the Einstein relation. With this numerical algorithm, one can 

update the position of the motor systematically. First, we specify the simulation time 

step (usually a very small value for accurate modeling and convergence of the 

result) and the initial chemical state i and position 

tΔ

x  of the motor. Then in each , 

we calculate the deterministic displacement ‘
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’ according to the driving 

potential of this state. The motor trajectory is updated following equation (2.4) with a 

random variable generator to mimic the stochastic force due to thermal fluctuations. 

At the same time, a Monte Carlo process determines whether the motor will stay or 

jump to the next chemical state according to the kinetic scheme. The new chemical 

state i and position x  of the motor is taken to the next iteration.  

The Langevin simulation approach readily shows the stepping trajectory of the 

motor under all stochastic forces, although trajectories will differ given the same 

initial conditions due to the stochastic nature of the Brownian force and chemical 

transitions. Moreover, even a detailed examination of the path cannot distinguish 

whether a particular displacement (eg. step) is caused by a Brownian fluctuation or 

the effect of the driving potential. Only by tracking the particle for a long time and 

computing the average position vs. time can one detect that the diffusion of the 
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particle exhibits a drift velocity in the direction of the force. Therefore average 

properties of the motor (eg. speed) can only be obtained by running a very long time 

simulation and dividing the final displacement by the total simulation time. 

 

2.3.2 Coupled Fokker Planck Equation Approach 

The second way to solve the two-state model is through the Fokker-Planck 

equation [71]. A better way to think about stochastic motion is to imagine a large 

collection of independent particles moving together. Then we can define the 

concentration of particles at position x  and time t and track the evolution of this 

ensemble. The Fokker Planck equation works directly with the probability distribution 

functions. Average properties of the stochastic system can be represented as a 

function of the final steady state probability distribution function. For the above two- 

state model, we use ),(1 txρ , ),(2 txρ to represent the probability density function that 

the motor can be found at position x  and time t in state 1 (bound) and 2 (empty) 

respectively. The coupled Fokker-Planck equations governing the propagation of the 

two states probability density functions are:  
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Comparing formula (2.5) with the Langevin approach, we notice that the Brownian 

force is replaced by the diffusion term and the effect of the deterministic forcing is 

captured by the drift term. Equation (2.5) further couple chemical transitions by 

probability flux in /out of state 1 and 2. The above Fokker-Planck equation must be 

solved with appropriate boundary conditions, which are closely dependent on the 
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system being modeled. For the two-state ‘flashing ratchet’ we show in Figure 2.3.1, 

we can choose a periodic condition. At steady state, the total probability flux in the 

spatial dimension is  
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which is a constant independent of x   

After the coupled Fokker Planck equation is solved, the average speed of the motor 

can be easily calculated as .  LJv =

 To conclude, in this section, we demonstrated the two primary mathematical 

approaches that can be used to deal with a stochastic system and their application to a 

simple two-state model. Each formalism has its own advantages and shortcomings. 

The implementation of the Langevin simulation is often straightforward, but the user 

has to be cautious about the time step size and the overall simulation is time 

consuming. On the other hand, the Fokker-Planck approach yields the average 

quantity of the system by solving the steady state probability distribution function. 

However, this often involves complicated numerical techniques to solve the PDEs. In 

practice, these two methods complement each other and people usually use both.  

 A successful application of the Markov-Fokker-Planck model in the study of 

molecular motors is to the F1F0 ATPase, pioneered by George Oster, Hongyun Wang, 

Timothy Elston and Jianhua Xing et al. Detailed information can be obtained from 

their publications [31-33]. The Markov-Fokker-Planck model can also be used to 

explain protein translocation [72], biomolecular transport [73] and protein allostery 

[74].  
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2.4 CONCLUSION 

The unique size and living environment of molecular motors requires a special 

stochastic modeling treatment. Molecular motor operation can be conveniently 

visualized as stochastic motion on a free energy surface. The optimal path on the 

surface ensures molecular motor mechanochemical coupling. All atom MD simulation, 

kinetic model, and Markov-Fokker-Planck model are modeling approaches at 

different levels. In this thesis, we focus on the Markov-Fokker-Planck model. The key 

element in using this model is to identify the primary chemical states and the rates of 

transition between them. The driving potentials along the mechanical coordinate of 

each state can be determined from available knowledge of protein geometry. 

Langevin simulation and the Fokker Planck equation are the mathematical tools to 

solve the Markov-Fokker-Planck model.  

In this chapter, we finished the theoretical preparation and are ready to start 

mathematical modeling of the bacterial flagellar motor system.  
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                                                                                             CHAPTER 3 
  
 

 

The Torque-Speed Relationship of the 
Bacterial Flagellar Motor 

 
Many swimming bacteria are propelled by flagellar filaments driven by a 

rotary motor. Each of these tiny motors can generate an impressive torque. The motor 

torque vs. speed relationship is considered one of the most important measurable 

characteristics of the motor and therefore is a major criterion for judging models 

proposed for the working mechanism. Here we give an explicit explanation of the 

physics behind this torque–speed curve.  

 This chapter is mainly reformed from my publication:  

Xing, J., Bai. F., Berry, R.M. and Oster, G. Torque-speed relationship of the bacterial 

flagellar motor. Proc.Natl.Acad.Sci.USA. 103, 1260-1265 (2006). 

 Here I acknowledge the contributions from Jianhua Xing, Richard Berry and 

George Oster.  

  

3.1  MODEL FORMATION 

To understand the mechanism of the bacterial flagellar motor, we need to 

understand the mechanochemical cycle of torque generation and how it couples ion 

flux to motor rotation. Before direct step measurement, the torque–speed relationship 
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is the best probe that we can use to explore the mechanism. Experimentally, two 

different methods have been used to measure the torque–speed relationship of the 

BFM. The first method is electrorotation and the second method is to tether a 

polystyrene bead to a flagellar stub with the cell fixed to the surface of a glass 

coverslip.  

Figure 3.1.1 Idealized motor behaviour. The motor torque–speed curve is nearly 
constant up to a knee speed, whereupon it decreases nearly linearly. Here, torque is 
normalized to the maximum torque at stall ( ω = 0). For a given viscous load 
(characterized by its frictional drag coefficient, iζ , i = 1, 2, 3), the speed of the motor 
is determined by the intersection of the "load line" with the motor torque-speed curve.  
 

These two methods give similar torque-speed curves for the BFM. In Figure 

3.1.1, we show an idealized plot of motor torque (normalized to the maximum torque) 

vs. speed. At a given pmf, the motor–torque curve is swept out by varying the viscous 

drag on the load. The torque generated by the BFM remains approximately constant 

up to 170 Hz at 23°C and then drops rapidly beyond a "knee" velocity to zero at a 

velocity of 300 Hz. The sodium-driven BFM exhibits a similar motor torque–speed 

relation. Experiments using micropipettes revealed that motor rotation rates depend 

linearly on the pmf at the high load regime [75]. The unusual motor torque–speed 

relation and pmf dependence are thought to reveal properties underlying the working 
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mechanism of the BFM. Here we will show that those observations arise from some 

very general characteristics of the motor.  

The lack of detailed information about the motor structure and the 

mechanochemical cycle leaves much room for speculative modeling, and indeed 

various models have been proposed for the working mechanism of the BFM (see 

reviews in reference[76]). However, the special shape of the torque vs. speed curve 

discussed above remains unexplained. Here, we will demonstrate that the 

mechanochemical behaviour of the BFM can be reproduced by any model that 

incorporates the following physical assumptions.  

 

Assumption A. The rotation of the motor is observed through a soft elastic 

linkage between the motor and the viscous load.  

The soft linkage arises from the elasticity of the "hook" region connecting the rotor 

and the flagellum and the linkage between MotB and the peptidoglycan (see Figure 

1.2.1) [77]. The consequence of this compliant linkage is to allow the motor and the 

load to move on different characteristic time scales. When coupled to a large viscous 

load, the soft linkage produces the plateau region of the motor torque–speed curve.  

 

Assumption B. Motor rotation and ion transport are tightly coupled.  

First suggested by Meister et al. [78], this assumption is necessary to explain the 

linear pmf dependence at low speed, and the addition of equal increments of motor 

torque with each additional stator in resurrection experiments [79].  
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Assumption C. The power stroke is driven by a conformational transition in the 

stator that is triggered by the protons hopping onto and off the stator, probably 

via the MotB residue, D32.  

The proton motions are much faster than the mechanical motion of the stator, so the 

stator conformational movement is the rate-limiting step for the motor. This 

assumption also was suggested by Gabel and Berg to explain the nearly linear pmf 

dependence at high speed [54].  

 

Assumption D. The ion channel through the stator is gated by the motion of the 

rotor.  

That is, access of the periplasmic protons to the stator-binding site is triggered by a 

rotor–stator interaction. Consequently, the ion conductance through the stator varies 

with the motor speed. This assumption is necessary to explain the non-linear shape of 

the torque–speed curve, especially the sharp transition at the knee between the flat and 

decreasing regions.  

 

Current biochemical and structural studies imply that the motor torque is 

generated by conformational changes in the stator upon ion binding/unbinding to the 

negatively charged D32 residue on the MotB helices. This motion is transmitted to the 

rotor by means of interactions at the rotor–stator interfaces [48]. The details of these 

interactions will remain vague until the atomic structure of the stator has been 

determined; currently the structures of but a few portions of the rotor are available 

[80-81]. Here we construct our model based on the rotor–stator interaction model 

proposed by Blair and coworkers [82].  
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To generate sufficient torque, we assume that one power stroke cycle of the 

stator is driven by the binding free energy of two protons (the need for two ions is 

intensely discussed in reference [40-41] and investigated by a kinetic model in 

reference [51]) to the two negatively charged D32 residues on the two MotB helices 

in the stator. The binding energy of the protons to MotB is converted into a "flashing" 

electric field in the stator that triggers a pair of conformational transitions. The 

detailed dynamics of the motor can be described by the stochastic motion along the 

slow DoF (degree of freedom) driven by the multidimensional potentials of mean 

force.  

In Figure 3.1.2a we show a schematic illustration of the torque generation 

mechanism of the BFM suggested by our model. In our model, one motor cycle 

consists of two steps: 

Step 1: The stator can be modeled as an asymmetric bistable system, 

alternating between two free-energy potential minima as shown in Figure 3.1.2 a. At 

the end of previous cycle, D32 residues on the stator are unprotonated, and the stable 

conformation is as shown on the left; the cytoplasmic loop of one MotA (the right one 

in the figure) is down, engaging the rotor. Binding of two protons to the MotB D32 

residues neutralizes them, allowing a thermally activated transition to the alternate 

conformational equilibrium to perform the first power stroke with the other MotA 

loop engaging the rotor. This process is characterized by the transition rate , which 

is a composite of ion hopping on rates and the thermally activated conformational 

transition rate.  

onk

Step 2: At the end of the first power stroke, the two binding protons are 

released to the cytoplasm. This transition triggers another conformational change of 

the stator so the (right) MotA loop engages to the rotor to perform the second power 
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stroke. This process is characterized by the transition rate , which is a composite of 

ion-hopping off rates and the thermally activated conformational transition rate. At 

the end of the cycle, the stator has returned to its conformation at the beginning of the 

cycle, with the rotor advancing one step to the right. During the entire two-step cycle, 

the rotor is almost always engaged, so that the duty ratio is close to 1. The stator loops 

interact electrostatically/sterically with 26 copies of FliG arrayed circumferentially 

around the rotor. 

offk

In Figure 3.1.2b we show the modeled driving potentials sensed by the rotor 

when stator changes its conformation. The driving potentials (free energies) of the 

stator are approximated by identical piecewise linear functions offset by half a 

wavelength 2  /26 (parameters used to construct the saw-tooth potential are listed in 

Table1 and Figure 3.1.4.). Each transition between the two potentials initiates a power 

stroke, which, for simplicity, we model as a constant force. The motion of the rotor is 

tracked by means of a large load (with drag coefficient Lζ ) attached to the motor via 

a compliant elastic linkage. The soft elastic coupling between the rotor and the load is 

indicated by the spring. The sharp peaks in the potential may be due to steric 

interactions between FliGs and the MotA cytoplasmic loops that prevent thermal 

fluctuations from taking the system down the backside of the potential. In our model, 

these peaks ensure tight coupling between rotation and proton flux. Each motor cycle 

transports two ions from periplasm to cytoplasm, which decreases the free energy of 

the system by pmfe ×2  and advances the rotor by 2  /26. The (shaded) transition 

regions specify the positions where the transitions between the potentials can take 

place. Assumptions A-D have all been presented in this model.  
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Figure 3.1.2 The rotor–stator interaction according to the model of Blair et al. [82]. 
The stator assembly MotA4/MotB2 is a bistable system: two conformations are 
separated by an energy barrier. (a) Schematic illustration of one motor cycle. (b) The 
driving potentials (free energies) of the stator corresponding to (a) are approximated 
by identical piecewise linear functions offset by half a wavelength 2  /26. The soft 
elastic coupling between the rotor and the load is indicated by the spring, A. The 
sharp peaks in the potential labelled B ensure tight coupling between rotation and 
proton flux. The (shaded) transition regions C specify the positions where the 
transitions between the potentials can take place.  
 

 

Figure 3.1.3 A 3 D view of the stator-rotor interaction mechanism proposed by our 
model.  
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Figure 3.1.4 Schematic plot shows how the model driving potential is constructed 
from parameters listed in Table 1.  
 
 In our model, the choice of a saw-tooth potential is mainly to capture the 

‘power stroke’ feature of the rotor-stator interaction [51]. However, the parameters 

that we used are not all determined by experiments. They are reasonable estimates of 

the actual interaction energy profile (we made these estimates based on the typical 

value of inter-protein interaction energy at this length scale and previous modeling 

experiences of molecular motors [31-33][50]). θα and θβ specify the boundaries of two 

localized windows for chemical transitions. This localization arises because the ion 

channels open only when the conformational change in the stator complex pushes the 

rotor to a certain relative position. We let the transition window centre on the local 
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minimum of the saw-tooth potential to achieve maximum length of the power stroke. 

These parameters can be justified and further tuned when structural information of the 

motor’s key components becomes available.  

Table 1. Parameters used in the model calculations. 

Quantity Value Comments 

Potential periodicity, δ 2π /26 Reference [58] 

Rotor drag coefficient, Mζ  3102 −×  pN•nm•s/rad2 Estimated  

Bead drag coefficient, Lζ  0.01–200 pN•nm•s/rad2 Calculated from Stokes’ 
Law 

Linkage spring constant, κ  150-500 pN•nm/rad2 Estimated from 
experimental 
measurements [77] 

Saw-tooth potential height, U 10 k T B

Ratio of the two potential 
branches,  rightleft LL /

1/9 

Fixed parameters of the 
model 

Height 15 k T BPotential bumps 

Width 0.2δ  

Centers 0.1δ ( State1) 

0.6δ (State 2) 

θα,   0.3δ, 0.8δ  Transition 
windows 

θβ 0.58δ, (0.58+0.5)δ Free parameters of the 
model.  

Fitting data.  
0k  0.9 × 105 -1  s  (T =22.7 C) °

0.5 × 105 -1 s   (T =17.7 C) °

0.45 × 105 -1 s  (T =15.8 C)°
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3.2  CALCULATION DETAILS 

The physical model we proposed in the previous section is a two state 

Markov-Fokker-Planck model. We can translate it into a mathematical model 

following the procedure we introduced in Chapter 2. The dynamics of a single stator 

motor pulling a viscous load by means of an elastic linkage can be described by the 

following Langevin equation:  

      formula (3.1) 

Mζwhere is the effective drag coefficient of the rotor. The viscous load (e.g., the bead 

in Figure 3.1.2 b) is coupled to the rotor via an elastic linkage, which is modeled by a 

harmonic potential, , where 2)(2/1 LRLV θθκ −= Lθ is the angular position of the load 

with respect to the rotor. The last term is the stochastic Brownian force acting on the 

rotor, where is uncorrelated white noise. is the potential of mean force along 

the minimum energy path re-expressed as a function of the rotation angle 

)(tfM MV

θ , and  is 

a binary variable referring to the stator conformational state: right or left piston down. 

The slope of  determines the force profile the stator exerts on the rotor. This 

potential has not yet been measured, and so for simplicity we choose the two 

potentials  as identical periodic free-energy profiles, each offset by a half-period, 

as shown in Figure 3.1.2 b (parameters used to construct the saw-tooth potential are 

listed in Table1 and Figure 3.1.4). The features of the potentials implement the 

requirements labelled A, B, and C in the cartoon. The high peak at the top of each 

potential ensures tight coupling between the rotor and stator by preventing a thermal 

s

MV

MV
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fluctuation from carrying the system to the left and "wasting" a translocated proton. 

Structurally, this type of interaction is likely due to steric or electrostatic repulsion 

between an engaged (half) stator and the FliG proteins of the rotor. The switching 

between the two stator chemical states corresponds to switching between the two 

potential curves shown in Figure 3.1.2 b, which can be described by a Kramers jump 

process between the two stator potential minima.  

Simultaneously, the motion of the load is described by the Langevin equation:  

      formula (3.2) 

Here the elastic coupling term appears with a sign opposite to that in formula (3.1), 

and Lζ  is the drag coefficient of the load. The last term is the Brownian force on the 

load. The characteristic time scale for the motion of the load is κζ /LLt = . 

The above formula (3.1) and (3.2) can be replaced by the equivalent coupled 

Markov–Fokker–Planck equations describing the probability density, ),,( tLj θθρ  of 

the rotor and load being at position ),( θθ L at time t in chemical state j when driven by 

a single stator: 

      formula (3.3) 
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Here and are the diffusion constants of the rotor and the bead, respectively, 

related to the drag coefficients by the Einstein relation, 

MD LD

DTkB /=ζ .  

Assumption D is implemented by the potentials in Figure 3.1.2 b by ensuring 

that chemical transitions between chemical states are localized to a band near the 

potential minima (shaded in Figure 3.1.2 b). Localizing the stator transitions implies 

that there is a timing mechanism that depends on a rotor–stator interaction so that the 

power strokes are delivered to the rotor near the optimal angular rotor position. Blair 

et al. [82] ascribe this property to a charge–charge pairing between the MotA 

cytoplasmic loop and the -helix of FliG. Within this band, the most probable location 

where transitions take place varies with the rotor speed. This variation is because the 

effective transition rate is given by weighting the transition rate at each angle,θ , by 

the probability of being at that position  

∫≈ θθθθρθ ddkk LL ),()(                                                                           formula (3.4) 

Because of the elastic coupling to the load, the potentials in Figure 3.1.2 b will be 

sheared, skewing the probability density, ρ , and thus the most probable transition 

locus.  

To ensure that the transitions obey detailed balance, the transition rate between 

potentials are modeled by  

)/)(exp()( 12012 TkGkk Bθλθ Δ= ,  

)/)()1exp(()( 12021 TkGkk Bθλθ Δ−=               formula (3.5) 

where  

pmfUUG +−=Δ )()()( 2112 θθθ                                                                  formula (3.6) 

λIn formula (3.5) apportions the free-energy difference between forward and 

reverse rates; in our computations we set λ = 0.5. Note that in diagrams like Figure 
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3.1.2 b, the derivatives of the driving potentials specify the instantaneous torque 

generated at the rotor–stator interface: θθτ ∂−∂= /)( V  and the vertical distances 

between the potentials in the transition region is the thermodynamic contribution from 

the proton-motive force. In a full motor cycle, the motor consumes the free energy of 

two protons . In our model, we chose to use half of the energy for each 

transition, making each transition use the energy of one proton.  

pmfe ×2

In a full torque generation cycle, the system will go through 

state1 (proton unbound, empty state)  state2 (proton bound, occupied state)  

state1 (proton released, empty state) 

the individual binding/unbinding rates are modeled as a function of position θ : 

periplasm on rate 

                           formula (3.7) )/))()((5.0exp()()( 210 TkpmfUUfkk Bperion +−= θθθθ

periplasm off rate 

                        formula (3.8) )/))()((5.0exp()()( 210 TkpmfUUfkk Bperioff +−−= θθθθ

cytoplasm off rate 

                           formula (3.9) )/))()((5.0exp()()( 120 TkpmfUUfkk Bcytooff +−= θθθθ

cytoplasm on rate 

                       formula (3.10) )/))()((5.0exp()()( 120 TkpmfUUfkk Bcytoon +−−= θθθθ

where is the binding attempting rate constant, a free parameter of our model and 0k

)(θf is the transition window gating function accounting for the requirement that 

chemical transitions and the rotor position are coupled. Here we use a triangle shape 
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f (θα ,θβ ) =

θ − θα

1
2

(θβ − θα )
,  for θα < θ <

1
2

(θα + θβ )

1−
θ −

1
2

(θα + θβ )

1
2

(θβ − θα )
,  for 

1
2

(θα + θ β ) < θ < θβ

0,  otherwise

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

         formula (3.11) ,           

 are the two boundaries of the transition window.  βα θθ ,

The above two-state Markov-Fokker-Planck model can be solved by the 

methods we introduced in Chapter 2. However, when there are N stators acting in 

parallel (Figure 3.2.1) in the system, the mathematical representation becomes much 

more complicated. The torque now applied to the rotor will be a sum of the driving 

potential induced by individual stator at different position and with different ion 

binding status. Since the potentials we used are 2π /26 periodic, we can project all the 

stator positions into one period πδ =2 /26. The projection allows us to visualize the 

relative relations of these stator positions. In our model we assume the N stators are 

randomly distributed in πδ =2 /26 (however, we have also tried equally distributed 

stator positions and this distribution does not greatly influence the ability of our 

model to fit the data). Due to the distance between stators, the driving potential sensed 

by the rotor now is a combination of the positions that are separated by a relative 

phase Nii ...1,/ =Δ δθ . 

Unless stated otherwise, all of the results shown in this chapter are computed 

with N = 8 (the classically agreed stator number).  
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Figure 3.2.1 A cartoon plot shows how the motor works with multiple stators in the 

system.   

The complete two-state Markov-Fokker-Planck model with N stators is solved 

by the Langevin simulation approach. The simulation code (in FORTRAN language) 

is attached in the APPENDIX. In this code we implemented parallel Monte Carlo 

processes, to simulate the motion of the rotor and the bead driven by model potentials 

and the ion hopping on/off in each stator.  

Results shown in next section are all obtained from the Langevin simulation 

approach. Uncertainty of the exact values of the rotor and stator diffusion constants 

does not affect our ability to fit the motor torque–speed relations, which are mainly 

determined by the much slower load diffusion constant and effective chemical 

transition rates.  
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3.3 MODEL RESULTS 

3.3.1 Low-Speed Plateau of the Torque-Speed Relationship 

Analysis and simulations of the model equations show that, for a motor 

dragging a large load with a compliant elastic linkage, there exists a time-scale 

separation between the motor and the load dynamics:  << . In rotation 

experiments, viscous loads are attached to the flagellar motor via the hook, which is 

soft enough to allow the rotor to fluctuate over several step lengths before the load 

moves appreciably. Distending the soft elastic linkage effectively converts the viscous 

load into a conservative load on the motor. That is, the work done to stretch the 

linkage can be returned to the motor before it is dissipated by the viscous load. The 

Stokes and thermodynamic efficiencies are defined as the ratios of the power 

dissipated by a viscous load (Stokes) or the rate of work done against a conservative 

load (thermodynamic), respectively, to the power consumed by the motor. The 

separation of time scales between the flagellar motor and the load renders the Stokes 

efficiency nearly equivalent to a thermodynamic efficiency. Thermodynamics dictates 

that 100% thermodynamic efficiency is approached as the system evolves 

"infinitesimally" slowly (i.e., reversibly). This requirement is satisfied with a large 

bead and a soft linkage even at rotation speeds of several hundred Hz, because the 

bead motion is still much slower than the motor internal dynamics. Furthermore, the 

soft hook and time-scale separation ensure that the load does not see the details of the 

free-energy potentials shown in Figure 3.1.2 b, but a nearly smooth effective potential. 

Thus, the measured Stokes efficiency also will be 

Mt Lt

100%, implying that the torque 

appears nearly constant. This region is the operating regime in the plateau of the 

flagellar motor torque–speed curve, in which the following approximation holds: 

δδωζ /)(/ STHGLL Δ−Δ=Δ≈                                                                formula (3.12) 
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Lωwhere  is the angular velocity of the load, δ  = 2  /26 is the angular step length 

(i.e., distance between FliGs), and GΔ  is the free-energy drop per motor cycle.  

3.3.2 The Motor Torque–Speed Curve Drops Sharply at High Speed  

As the viscous load (e.g., a bead or the cell body) decreases, the tension 

between the load and the motor relaxes faster, and so the motor works against a 

smaller elastic load. An elastic load "shears" the potentials toward the left in Figure 

3.1.2 b and this shear decreases along with the load. Reduced load shifts the 

probability density distributions right toward the potential minimum, where the stator 

contributes zero, or even negative, torque. The average torque between the motor and 

the load (i.e., the motor torque) is determined by the potential gradients weighted by 

the probability density; therefore, the apparent motor torque decreases as the load 

decreases. However, this dependence only guarantees a concave-down torque–speed 

curve, but the sharpness is not so well controlled. The experimentally observed non-

linear shape of the torque–speed curve in the transition region sets a loose constraint 

on the relation between the potential shapes and the chemical rates )(θk . The model 

system presented in this work is only one of the many possible realizations.  

In our model we choose )(θk to be localized around the potential minima of 

each potential curve (see Figure 3.1.4). This localization arises because the ion 

channels open only at certain relative positions between the rotor and the stator. We 

propose the sharp transition in the torque–speed curve arises because of a positive 

feedback mechanism that can be explained through interplay between localized 

transitions along θ  and stator mutual interference. To make a transition from one 

potential curve to another one (corresponding to ion hopping on and off within one 

stator), the rotor needs to rotate into the transition window. However, other stators 

may push the rotator to move out of the transition window before the chemical 
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transition takes place. Consequently, the rotor is trapped before thermal fluctuations 

bring it back into the transition window so the stator can switch its chemical state. A 

load reduces occurrence of the trap by pulling the rotor backward. Therefore 

decreasing the load shortens the bead response time, and lengthens the motor internal 

dynamics at the same time. This results in abrupt change of the system from the 

thermodynamics-controlled plateau region (with time-scale separation between the 

bead response time and the motor internal kinetics) to the kinetics-controlled knee 

region (with no time-scale separation between them).   

Below, we show the model can well reproduce the experimental results. The 

model should be viewed as a framework for studying the BFM, which can be further 

elaborated as new experimental inputs become available.  

 

Figure 3.3.1 Comparison of model calculations and experimental data. (Upper) 
Experimental torque-speed curves at different temperatures (squares) (data from 
reference [45]). The filled dots are calculated from the model. (Lower) The linear 
dependence of the motor rotation speed with pmf at three different high loads. The 
experimental data (squares) are taken from Fung and Berg [75]. The calculated results 
are shown as filled dots. 
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3.4 CONCLUSION 

In this chapter, we have demonstrated that the motor speed of the BFM as a 

function of motor torque and pmf indicates some general physical features of the 

system. We have constructed a Markov-Fokker-Planck model of the BFM based on 

the qualitative proposal by Blair and coworkers that incorporates four generic 

assumptions. Although simply constructed, we show our model is consistent with a 

large body of experimental observations on the BFM and have explicitly explained 

the physics underneath the torque-speed relationship of the BFM.  

A central aspect of the mechanochemical measurements summarized in Figure 

3.3.1 is that they are performed by observing the motor through the filter of an elastic 

compliance coupled to a viscous load. Elston et al. [83-84] have given a detailed 

mathematical analysis of the role of a soft elastic linkage and time-scale separation on 

motor performance. A similar situation holds for other mechanochemical systems. For 

example, the F  motor of the F F  ATPase achieves 1 1 0 100% Stokes efficiency when 

loaded with a long elastic actin filament and exposed to high ATP concentrations. In 

this situation, the motor dynamics are not rate limiting. However, when the ATP 

concentration drops, slowing the motor dynamics, the Stokes efficiency drops as well 

[29][85]. Another example is the motor that drives the gliding motility of the 

mollicute Mycoplasma mobile. This bacterium can move forward at an amazing speed 

of several cell-body lengths per second. By attaching to the bacterium a large bead, 

Miyata et al. [86] observed that the velocity increased linearly with temperature, 

exactly what one would expect when the motor is observed through the filter of an 

elastic compliance (the cell body) attached to a large viscous load.  

Another notable feature of our model is the explanation it offers for the sharp 

transition between the two regimes of the torque–speed curve in terms of positive 
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feedback between the external load and the angle-dependent transition rates between 

the stator kinetic states.  
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CHAPTER 4 
  
 

 Model Studies on the Dynamics of the 
Bacterial Flagellar Motor 

 
Recent experiments that directly observe steps shed light on the fundamental 

working mechanism of the BFM and evoke a new generation of models. In the 

previous chapter, we have explained the general physics underneath the torque-speed 

curve with a simple two-states model. Here we continue our exploration of this model. 

With a more realistic formalism of ion jumping rate, we reproduced the latest 

experimental results of rotation dependence on ion concentration and stepping 

dynamics. We also showed that the same model can explain the behaviour of the Na+ 

driven chimera motor. Inspired by the method used to detect chimera motor stepping, 

the model predicts the conditions under which wild-type H+ E. coli BFM stepping can 

be observed and the corresponding stepping statistics. The model makes further 

predictions that can be tested by experiments.  

This chapter is mainly reformed from the paper we are going to publish:  

Bai, F., Lo, C., Berry, R.M. and Xing, J. Model studies on the dynamics of the 

bacterial flagellar motor.  

 Here I acknowledge the contributions from Jianhua Xing, Richard Berry and 

Chien-Jung Lo.  
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4.1  SEPARATION OF PMF 

The model of Chapter 3 was constructed before direct step measurement, 

when the torque-speed relationship was the best biophysical probe to study the 

mechanism. It gives a full picture of the motor’s power output under external loads, 

and gives an indication of the energy conversion efficiency. In the previous chapter, 

we have intensely studied this torque-speed relationship and we showed the flat 

plateau and steep concave-down transition are mainly due to rotation being observed 

through a soft elastic linkage between the motor and the viscous load and the 

diffusion dynamics of the motor and load being on different time scales. Recent 

progress in experimental techniques allowed us to observe 26 steps/revolution in a 

slow rotating chimera motor [58], consistent with the periodicity of the ring of FliG 

protein. Additionally, the smf (sodium motive force) can now be measured now in the 

chimera motor with the help of a fluorescent dye [49]. Changes in the membrane 

potential and ion-gradients show a nonequivalent control of the motor speed. All these 

new results evoke a revisit of our model. In this chapter, we improve the model with a 

more realistic formulation of the transition rate between potentials and compare it 

with the latest experiments.    

In the Chapter 3, we modeled the jumping rate between potentials as  

)/exp( 12012 TkGkk BΔ= λ ,  

)/)1exp(( 12021 TkGkk BΔ−= λ                formula (3.5) 

pmfUUG +−=Δ 2112 to satisfy detailed balance.  where 

Although this formulation has correctly modeled how pmf assists forward 

transitions, to use it as a single energy term instead of the sum of ion gradients and 

membrane voltage is thermodynamically unrealistic. This formulation is also 

unsatisfactory because we cannot test the motor response to individual changes in ion 
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gradient or membrane voltage. However, in most experiments it is easier to change 

ion concentration or membrane voltage alone rather than controlling the whole. 

Therefore, any model trying to explain the working mechanism of the BFM needs to 

predict how ion concentration and membrane voltage influence motor speed. The first 

improvement we make here is to model the jumping rate as an explicit function of 

external and internal ion concentrations, and membrane voltage.  

For the jump rates between the bulk ion concentration on the periplasmic side 

( ) and a stator binding site we specify: periC

)/)(5.0exp()()()( 210
2 TkVUUfkCk Bmemperiperion +−= θθ                           formula (4.1) 

)/)(5.0exp()(10)( 210
)2( TkVUUfkk Bmem

pK
perioff

a +−−= − θθ                       formula (4.2) 

For the jump rates between the bulk ion concentration on the cytoplasmic side ( ) 

and a stator binding site we specify: 

cytoC

)/)(5.0exp()(10)( 120
)2( TkVUUfkk Bmem

pK
cytooff

a +−= − θθ                         formula (4.3) 

)/)(5.0exp()()()( 120
2 TkVUUfkCk Bmemcytocytoon +−−= θθ                         formula (4.4) 

In this new formulation, while detailed balance still holds, we successfully separate 

the contributions from the membrane potential and the ion concentration difference in 

the pmf (smf). (Notice, in our model we assume two ions bind cooperatively in one 

torque generation cycle. Hence we take the square of  and the binding site 

 value. A model implementing sequential binding of ions is in consideration.) 

cytoC periC

apK

First we show that the E. coli BFM torque-speed curve can be reproduced with 

this new jumping rate formulation (Figure 4.1.1 a). At normal living conditions, the E. 

coli BFM works with intracellular pH 7.6, external pH 7 and membrane potential 

120mV. Without modifying the flashing energy profile, the E. coli BFM torque speed 
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curve can be easily reproduced by inputting these realistic values into our new 

formulation (Table 2).   

 

Figure 4.1.1 Model predicted torque-speed curves of (a) E. coli and (b) chimera with 
experimental data underneath. (experimental data points are from [52] and [87])  

 

The chimera motor, which uses Na+ type BFM stator and E. coli BFM rotor, is 

a successful product from synthetic biology. Since it is much easier to change Na+ 

concentration than pH value in the medium, we gain a more robust control of the 

energetics in the chimera motor than in the E. coli motor. Because of this obvious 

advantage, the chimera motor has become the favourable target in recent BFM studies. 

The torque-speed relationship of the chimera motor has been reported by Inoue et 

al.[87]. It is highly similar to that of the E. coli BFM except for a higher ‘knee’ speed 

and zero-load speed. Without changing the driving potential profile, we substitute the 

experimental values of chimera motor living condition into our model and fit the 

chimera torque speed curve (Figure 4.1.1 b).  
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Table 2 

E. coli BFM torque-speed curve fitting parameters (in addition to Table 1) 

Periplasmic ion 
concentration 

periC = M 710 − from experiments 

Cytoplasmic ion 
concentration 

= M 6.710−
cytoC

Membrane 
voltage 

mV =120 mV 

Stator binding 
site property 

3.7=αpK   free parameters 

αpK  is chosen half way 
between Binding rate -1

0k = 1.0  s2010× /M2
peripH  and  cytopH

Chimera BFM torque-speed curve fitting parameters 

Periplasmic ion 
concentration 

periC =85 mM from experiments 

Cytoplasmic ion 
concentration 

=12 mM cytoC

Membrane 
voltage 

mV =140 mV 

Stator binding 
site property 

5.1=αpK  free parameters 

αpK  is chosen half way 
between -( )Binding rate -1

0k = 6.0  s710× /M2
periClog  and -

( ) cytoClog

 

Here we show the torque-speed curves can be reproduced (for both E .coli and 

chimera) with the same model framework. Therefore we conclude that there is no 

fundamental distinction in the working mechanism between the E. coli BFM and the 

chimera motor, as expected from the similar shapes of the torque-speed curves. We 

attribute the differences to mainly the binding/unbinding rates of H+ + and Na  to the 

stator, not the stator-rotor interactive potential.  

With our new rate formulation, we can now test the motor response to 

independently varying ion concentration and membrane potential. Figure 4.1.2 shows 

that the motor speed varies proportionally with membrane voltage over a wide range 
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(E. coli 100mV-140mV, chimera 120mV-160mV). This result is consistent with 

Berg’s experiment [75].  

 

Figure 4.1.2 Model predictions show motor response to membrane potential is 
proportional over a wide range (a) in the E. coli motor (b) in the chimera motor.  

 

However, as shown in Figure 4.1.3, the motor speed response to periplasmic 

ion concentration is asymmetric. The saturation effect at high ion concentration is 

very obvious. This is consistent with Sowa’s experiment [53]. The underlying 

physical explanation for this is that at saturating ion concentration the internal 

conformational change that generates the ‘power stroke’ becomes the dominant rate-

limiting factor. The high ion binding rate can not effectively increase the flashing rate 

between driving potentials.  
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Figure 4.1.3 Model predictions show motor response to periplasmic ion concentration 
is asymmetric (a) in the E. coli motor (b) in the chimera motor.  

 

More interestingly, with our model we can investigate the effect of varying the 

relative ion concentration and membrane potential contributions while holding the 

total pmf (smf) constant.  

Figure 4.1.4 gives the torque-speed curve under a lower external ion 

concentration but with a higher membrane potential condition. We see the external 

ion concentration has a much stronger influence on the motor output. The motor speed 

decreases dramatically when external ion concentration is lowered despite the total 

pmf (smf) being compensated by a membrane voltage increase. This is consistent with 

Lo et al.’s recent publication [49].  
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Figure 4.1.4 Model prediction shows motor response to different combinations of 
membrane potential and ion concentration with the same total pmf (a) in the E. coli 
motor and the same smf (b) in the chimera motor 

Our new rate formulation has correctly captured the fact that motor speed does 

not respond solely to total pmf (smf). It depends more strongly on external ion 

concentration than membrane voltage. One obvious explanation is that the diffusion 

limited binding of ions is the rate limiting step in the motor cycle (see reference [49] 

for a detailed discussion).  

4.2 THE MOTOR IS A STEPPER 

The efforts devoted to the observation of BFM steps have lasted for more than 

three decades. In Chapter 1 I reviewed the technical difficulties. Only very recently, 

Sowa et al. managed to resolve steps in a chimera motor. The key requirements to the 

successful observation of steps are: 1) low induction of stator units (1～2); 2) low 

external sodium concentration; 3) optical trapping system with high temporal and 

spatial resolution. Finally, 26 steps per revolution were observed. However, this 

observation was made when the motor was in a non-stable transient state: stator 

resurrection and external sodium concentration were not precisely controlled. The 
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information of the living conditions of these cells was lacking. Here we can use our 

model to simulate stepping behaviour of the chimera motor and hence we gain an 

estimate of the environment that these experiments are conducted in.   

 

Figure 4.2.1 Steps of chimera stator. (left) experimental data taken at low sodium 
concentrations (adapted from [58]) (right) trajectories predicted by the model at 
different external Na+ concentrations. 

 

Similar to the experimental procedure, in our simulation we assign Nstator=1 

and lower the external sodium concentration. Langevin simulation (code attached in 

the APPENDIX) generates motor trajectory under these conditions. Stepping 

behaviour becomes very obvious when the motor speed is lower than 10Hz. In Figure 
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4.2.1, we show a series of stepping traces under different external sodium 

concentrations. By comparing the experimental traces with our simulation, we reach 

an educated guess of the sodium concentration for these cells. The central three traces 

running at 0.5 ～2 Hz are from an environment with approximately 0.5～1.5 mM 

external sodium concentration. If lower than 0.5mM, backwards steps occur 

frequently and the motor can not make noticeable advancement.  

Although steps have been resolved in chimera motors, whether they can be 

observed in the wild type E. coli motor remains unanswered. With our model, we can 

theoretically explore the conditions under which stepping of the E. coli motor could 

be observed. The speed of the motor decreases rapidly when the external pH value is 

increased. However, the E. coli cells are not able to endure a large pH change since 

they cannot survive in a strong alkali environment. Therefore, our aim is to find the 

least demanding condition in which steps could be resolved.  

 

Figure 4.2.2 A selected part of the sample trace (10s long) of the wild type E. coli 
BFM stepping predicted by our two-state model.  
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In Figure 4.2.2, we simulated the condition of =8.4, =7.6. The 

motor runs at about 8Hz and steps are easy to detect. With the step finder developed 

by Lo, the bead traces are filtered, which makes the stepping behaviour more obvious 

and collection of the corresponding statistics simpler.  

peripH cytopH

The step fitting algorithm is as described in reference [88]. In Figure 4.2.3, we 

show the step-size distribution of the sample trace shown in Figure 4.2.2 found by the 

step finder program. In this distribution, we see a clear peak in the centre 

corresponding to the step size of 26 steps / revolution. 

 

Figure 4.2.3 Step-size distribution of the sample trace (10s long) shown in Figure 
4.2.2.  
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Figure 4.2.4 Dwell time distribution between steps of the sample trace (10s long) 
shown in Figure 4.2.2  
 

The step finder can also detect the dwelling time between each stepping event 

and plot their distribution. In Figure 4.2.4, we see a linear relation on a log-linear plot, 

indicating a single exponential distribution of the dwelling time between steps. The 

underlying explanation for this distribution is as follows. When we lowered the 

external ion concentration, the binding rate of ions from the periplasm to the stator 

was greatly reduced. Compared to other rates, this binding rate becomes the only rate 

limiting step. The motor has to wait for the ion binding to start a new cycle and the 

other states in the cycle can be completed at a relatively high speed. Therefore, what 

we see is a dwelling state in between two fast jumping steps. From the exponential 

dwelling time distribution we can calculate the mean time between steps. Combining 

the already known step-size, we know the motor speed. The motor speed calculated 
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by this method is consistent with the program output that divides the displacement by 

the simulated time, which confirms the accuracy of our step finding algorithm.  

In this section, our model reproduced the chimera motor stepping and 

predicted the conditions under which the E. coli motor stepping can be seen and the 

corresponding statistics. Inspired by this work, experiments designed to observe wide- 

type E. coli BFM stepping are underway.  

4.3 STEP SIZE VS. STATOR NUMBER  

According to our model, the BFM is a stepper. For one stator, the current 

model shows a step size of 2π /26 at low external ion concentration. In this section, 

we will discuss how the step-size changes when there are multiple stators in the 

system.  

So far there is no experiment designed to directly answer this question. 

Fluctuation analysis predicted that the step-size will decrease to 1/n of 2π /26 if there 

are n stators in the system [56]. However, the latest observation of chimera motor 

steps [58] reported ‘the apparent independence of step size on stator number’. Clearly, 

the studies are contradictory.  

Our model can give some insights into the above question. Because the 

potentials are 2π /26 periodic, we can project all the stator positions into one period 

πδ =2 /26. The projection allows us to visualize the relative relations of these stator 

positions. We first focus on the situation of 2 stators in the system. Taking the first 

stator as the reference point, the second stator can come in at any position ∈θ δ [0, ].  

Since the stators are tightly coupled, the rotor and bead are now powered by two 

stator units. Figure 4.3.1 is a simple cartoon illustration of how the system works. Due 

to the distance between two stators, the driving potential sensed by the rotor is a 
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combination of the two positions that are separated by a relative phase δθ / . 

Here our model makes some interesting predictions: 

1. After the second stator resurrects in the system, the observed apparent step size 

may not be unique and depends on where the second stator recovers. In our model the 

ion binding step is the only rate limiting step. When there are two stators in the 

system, the original 2π /26 step will be divided into two substeps.  

In Figure 4.3.2, we show a simulation with θ δ=0.8 . The step sizes of the two 

substeps are 0.2L and 0.8L, respectively.  

In Figure 4.3.3, we show a simulation with θ δ=0.5 . The step sizes of the two 

substeps are half of the original step size.  

 

2. If the stator distribution has certain symmetries, the step size does not necessarily 

increase with an additional stator. If θ =0  or θ δ= , two stators are synchronized. 

The system won’t move until both of them jump to the ‘bound’ state and once they 

move, a displacement of 2π /26 will be finished in one step.  

 

Figure 4.3.1 Cartoon plot shows how two stators power the system.  
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Figure 4.3.2 Substeps predicted by the model when there are two stators in the system 
separated by 0.8 δ .  

 

Figure 4.3.3 Substeps predicted by the model when there are two stators in the system 
separated by 0.5 δ .  
 

Our model provides a possible way to reconcile the result from fluctuation 
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analysis and Sowa et al.’s observation. The theoretical step size obtained from 

fluctuation analysis may differ from the actual step size observed in experiment. For 

example, in the special case θ =0  or θ δ= , the actual angular step size does not 

change with the additional stator, and two independent rate limiting chemical 

transitions must take place at the same time for the rotor to advance. This might be the 

situation observed by Sowa et al.. However, fluctuation analysis, which counts the 

number of statistically independent events, will give a higher stepping count and 

hence half the step-size. 

 

4.4 TETHER STIFFNESS VS. TORQUE-SPEED CURVE 

As we emphasized many times in previous chapters, the BFM motor torque-

speed relationship derives from a set of general physical assumptions, among which 

the soft connection between the rotor and load is crucial. This soft tether allows the 

rotor and the bead to move on different diffusion time scales and hence produces the 

flat plateau. In Figure 4.4.1 our model verifies this. The red, blue and green torque-

speed curves are the model predictions with 1, 10 and 100 times the original hook 

stiffness respectively. The destruction of the flat plateau is very obvious. This is 

another important prediction of our model that can be tested by future experiments if 

the hook stiffness can be modified by biochemical means.  
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Figure 4.4.1 Model predicted BFM torque-speed curve at different hook stiffness (red) 
original value (blue) 10 times larger (green) 100 times larger.  
 

 

4.5 CONCLUSION 

Recent progress in the study of BFM has greatly pushed forward our 

understanding. This includes the observation of 26 steps/revolution in a slow rotating 

chimera motor and non equivalent control of motor speed between ion gradient and 

membrane potential. In this chapter we continued our exploration of the two-state 

Markov-Fokker-Planck model we constructed in Chapter 3, with special focus on the 

dynamics of the BFM. The questions we have discussed are: motor response to 

individual changes in ion concentration and membrane potential; BFM stepping 

behaviour; stepping statistics (step-size distribution, dwelling time distribution); 

predicted conditions under which wild type E. coli BFM stepping can be observed. 
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We first advanced the model by adding extra details to the dynamics of ion 

hopping on/off. Then we discussed the motor dynamics predicted by the model and 

compared them with experimental observations by presenting parallel results that can 

fit E. coli and chimera motor data respectively. Models of the two species derive from 

the same framework but differ by the values of some parameters (.e.g, ion hopping 

rates).  

Although simply constructed, we showed that our model has captured the 

main physical properties of the BFM and explained many puzzles. More importantly, 

a series of testable predictions have also been made, which will become the starting 

point of a new generation of experiments, demonstrating the instructive power of 

mathematical modeling in directing experiments.  
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                                                                                             CHAPTER 5 
  
 

 

Switching Dynamics of the Bacterial Flagellar 
Motor 

 
The chemotaxis network that controls the motion of E. coli is one of the most 

fascinating and best studied sensory systems in biology. Impressive progress has been 

made in identifying the relevant signalling proteins and their interactions have been 

intensely investigated, making this system a good candidate for quantitative systems 

biology analysis. However, how the direction of the mechanical rotation of the 

flagellar motor is reversed by the signalling molecule CheY-P – a central step in this 

system – remains unclear. Here we have investigated the dynamics of bacterial 

switching with a fast and high precision optical trapping system. Switching, pausing 

and slowdown events have been presented in great detail. By measuring the switching 

time (the interval that the motor takes to complete a switch), we conclude that 

switching is not instantaneous. It shows a wide distribution with a characteristic time 

of 4-8ms while the fastest events take less than 1ms and the slowest take up to 100ms. 

This switching time distribution does not change with the direction of the switch 

(CCW-CW or CW-CCW) or the bias of the motor. We further show that the 

switching interval (the time that the motor dwells in each state) follows an 

exponential distribution.  
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The three pieces of evidence we present in this chapter are all direct 

predictions of the Ising Allosteric transition model. A comprehensive discussion of 

the model is included and dynamic parameters of motor switching are estimated. This 

work has established that the Ising phase transition model is a universal amplifying 

mechanism in both physical and biological systems.   

This chapter is mainly reformed from the paper we are going to publish:  

Bai, F., Branch, R.W., Nicolau, V.D., Pilizota, T., Maini, P.K. and Berry, R.M. 

Experimental evidence for conformational spread in the bacterial switch complex. 

In this chapter, I designed and performed all the experiments and most of the 

data analysis. I also need to acknowledge the contributions from Richard Branch, Dan 

Nicolau, Teuta Pilizota, Philip Maini and Richard Berry and special thanks are given 

to Dr. Ian Graham and Prof. Thomas Duke from Cambridge University for 

introducing us the Ising Allostery model.  

 

5.1 CHEMOTACTIC GAIN 

A central goal in the study of the E. coli chemotaxis network is to locate the 

‘amplifier’ in the system, which can convert subtle change in the attractant 

concentration into prodigious gain of rotation bias at the output end [89]. Recent 

findings have identified two amplification steps in the signalling pathway. One is at 

the beginning of the chemotactic network - the sensor cluster. The fractional change 

in receptor occupancy can generate fractional changes in kinase activity that are 35 

times larger, via long-range cooperative interactions between receptors in the cluster 

[90]. The other one is at the BFM end: the motor is ultrasensitive to the concentration 

of the signalling molecule CheY-P [91]. A steep sigmoidal relationship has been 

revealed between the concentration of CheY-P and motor rotational bias (Figure 
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5.1.1). Earlier studies by Sourjik et al. [92] and Sagi et al. [93] revealed that binding 

of CheY-P to the FliM part of the motor is much less cooperative than the motor 

response and suggested that the amplification step is within the switch, subsequent to 

the binding of CheY-P. These results are all in favour of the Ising Allosteric model 

proposed by Duke et al. [94], which provides a new view of allostery and can 

reproduce the ultrasensitivity of the BFM to CheY-P.   

 

Figure 5.1.1 Response curve between chemotactic regulator CheY-P concentration 
and motor rotation bias revealing ultrasensitivity at the flagellar motor end (figure is 
courtesy of reference [91] ) 
 
5.2 ISING ALLOSTERIC MODEL OF THE BFM SWITCH 

COMPLEX 

 In the Ising Allosteric model, the subunits of the BFM switch complex are 

assumed to exist in two distinct conformations corresponding to CW and CCW 

rotational states. A subunit makes rapid stochastic transitions between the above two 

states and may also bind a single molecule of CheY-P, present in the surrounding 

solution at a given concentration. When no CheY-P binds to the subunit, the CCW 

state is energetically favoured by EA and the binding of CheY-P stabilizes the CW 

state. The free energy diagram for the energy states that a subunit may exist in is 
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shown in Figure 5.2.1.  

 

Figure 5.2.1 Energy states of a subunit in the BFM switch complex. (a) The free 
energy of the CW state (red) changes from +E to –E

A A 
relative to the CCW state 

(blue), when a subunit binds CheY-P. E
L 

represents the binding energy in the absence 
of any conformational change (E =0). (b) The subunit is stabilized by EJ A

if the 
adjacent neighbor is in the same conformation.  
 

In order to model the ultrasensitivity, a coupling energy EJ between adjacent 

neighbors in the ring is introduced. The free energy of a subunit is reduced by an 

amount equal to the coupling energy E
J 

for each neighboring subunit that is in the 

same conformational state.  

The probability of transition between state 1 and state 2 of a subunit is 

proportional to  

-energy )/kT),                                                                          formula (5.1) exp(-(energy2 1

where k is Boltzmann’s constant and T is temperature and energy  and energy1 2 are the 

energies of state 1 and state 2 respectively.  

The ratio of the dissociation constants for CheY-P from CW and CCW 

subunits, CW CCW
d dK K , is given by exp(-2EA/kT).  

Below a critical coupling energy, the ring exhibits a random pattern of states 

as the subunits flip independently of each other. Above the critical coupling energy, 

switch-like behaviour ensues: the ring spends the majority of time in a coherent 
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configuration, stochastically switching between the two extreme states where subunits 

are either all CW or all CCW. The proportion of time spent in each of the bistable 

configurations is governed by the concentration of CheY-P, with the sensitivity of the 

system to variations in this concentration determined by E
A
.  

By implementing parallel Monte Carlo processes, a computer program has 

been developed by my colleague Dan Nicolau to simulate the transition behaviour of 

the ring of subunits of the BFM switch complex. In each iteration, every subunit on 

the ring is polled by formula 5.1 to determine whether to stay in the old state or jump 

to a new state according to the free energy difference between the old state and the 

new state as a function of 1) free energy of the subunit itself 2) binding condition of 

the regulator molecule CheY-P 3) energy state of adjacent neighboring subunits.  
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Figure 5.2.2 Snapshots from the simulation realizing the Ising Allosteric model. On 
these plots, each subunit can exist in either the CCW state (white circle) or CW state 
(blue circle). The CheY-P regulator is indicated by red dots in the middle.  
 
 In Figure 5.2.2 we show a series of snapshots taken from this Ising Allosteric 

model simulation program. In this program, the model has five free parameters, EA, EJ, 

basic flipping rate k of each subunit, and the binding/unbinding rate  of 

CheY-P to each subunit.  

offon kk /
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5.2.1 Structural Basis for the Ising Allosteric Model 
 

The original Ising Allosteric model proposed by Duke et al. is a general model 

for allostery. Here we discuss putative structural bases for its application to the BFM 

system.  

 In the BFM, critical charge residues on the FliG C-terminal domain are found 

to interact electrostatically with opposite charge residues on the cytoplasmic loops of 

the stator complex. The chemotactic signalling molecule CheY-P binds to FliM [95-

96] and increases the probability of CW rotation. CheY-P binding presumably triggers 

a conformational change in FliM (and FliN) that is transmitted to FliG to reorientate 

its C-terminal with respect to the stator complexes. Recent publications support this 

idea by locating a putative hinge region in the FliG structure [81][97], along residues 

183-196 connecting the C-terminal domain and the middle domain. Mutational 

studies replacing these ‘hinge’ residues generates a group of mutants that are extreme 

in bias (exclusively CCW or CW), less frequently switching, rapidly switching, 

transiently paused and permanently paused [98]. This result strongly argues that this 

hinge region is directly involved in switching of the BFM.  

The following two models are all based on the assumption that this hinge 

region allows a relative movement of the C-terminal domain of FliG to the middle 

domain during a switch. They represent possible structural bases for the Ising 

Allosteric model.    

 

Scheme 1: 

This model is based on a crossbridge-type stepping mechanism. Biochemical and 

structural analyses suggest torque generation occurs via conformational changes in the 

stator unit upon ion binding/unbinding to the negatively charged D32 residue on the 
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MotB helices. This motion pushes/pulls the rotor by means of electrostatic and/or 

steric interactions at the stator-rotor interface. Critical charge residues responsible for 

this interaction have been labelled in Figure 5.2.3 a. Our main concern here is to 

understand how two opposite rotations could be generated by the same stator 

movement. Certainly, ion flux is not reversed in the natural CW state induced by 

chemotactic signalling (in forced reversed rotation by external torque such as with 

electrorotation or optical tweezers, ion flux through the stator is suspected to change 

direction and the motor functions as an ion pump, given the assumption of tight 

coupling. However, this idea requires further experimental evidence). The existence 

of the hinge region allows us to propose hypothetical models. Our first model is 

depicted in Figure 5.2.3 b, with the corresponding periplasmic view given in Figure 

5.2.3 c. This scheme makes the most of the MotA4MotB2 stoichiometry: the C-

terminal of the FliG interacts with the nearer two MotA cytoplasmic loops in CCW 

rotation and the farther two MotA loops in CW rotation. Changes in the occupation 

state of the channel result in relative movement between MotA and MotB for both of 

the two half stators driving cyclic motions of the cytoplasmic loops on MotA. The 

two cytoplasmic loops engage the rotor alternately (to ensure the high duty ratio) 

during the first and second half of the cycle to push the rotor. Due to the symmetrical 

arrangement in the stator complex, in a full motor cycle, the farther two MotA 

cytoplasmic loops undergo a similar conformational change as the nearer two, but in 

an opposite direction. The switching puzzle could be resolved if binding of the CheY-

P molecule to FliM triggers the spatial reorientation of the C-terminal FliG to a 

different interacting track (see Figure 5.2.3 c). Current structural data are not 

sufficient to verify this model but the distribution of charge residues on FliG and 

MotA are compatible in both working modes.  
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Figure 5.2.3 Hypothetical FliG conformational transitions driving the switch —
Scheme 1. (a) crucial charge residues for the torque generation at the stator-rotor 
interface. (b) side view of the proposed FliG reorientation upon CheY-P binding. 
Charge residues on the stator and rotor are compatible when FliG interacts with either 
the nearer end of the MotA4MotB2 complex or the farther end. (c) top view of the 
two tracks on which the stator interacts with the rotor, corresponding to counter-
clockwise and clockwise rotations. Switching rotation direction can be achieved by a 
conformational change in the FliG C-terminal domain controlled by CheY-P binding 
to the rotor.  
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Scheme 2   

This model is based on the ‘two pistons’ stepping mechanism proposed by Xing et al. 

[99] (Chapter 3). Kojima and Blair’s work [82] showed that when an ion binds to the 

D32 residue on MotB, a conformational change occurs in the stator complex. 

However, this conformational change might not only have an effect in the horizontal 

plane. The cytoplasmic loop between the MotA helix 2 and 3 may stretch and 

withdraw in the vertical plane acting like a piston. This up-and-down motion interacts 

with the rotor electrostatically and/or sterically to generate power strokes (which 

would require an inclined stator-rotor contact surface as shown in Figure 5.2.4 a and 

the accompanying movie of reference [99]). The switching puzzle can be resolved in 

this model by assuming a different FliG/FliM assembly on the rotor that forms an 

opposite inclination on the stator-rotor contact surface. Figure 5.2.4 b is the crystal 

structure of FliG taken from RCSB Protein Data Bank. Again, the flexible hinge 

region allows a spatial reorientation of the FliG C terminal, but this time FliG is not 

required to span the stator complex in the radial direction as proposed in Scheme 1. It 

only changes the way it leans against the neighbours when CheY-P binds to the 

FliG/FliM complex (Figure 5.2.4 c). This picture is structurally more probable.    
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Figure 5.2.4 Hypothetical FliG conformational transitions driving the switch —
Scheme 2. (a) a carton picture shows the ‘two piston’ stepping mechanism (b) side 
view of the FliG crystal structure (taken from RCSB Protein Data Bank No.1LKV) (c) 
view on the radial axis (facing the centre of the ring) of the two opposite inclinations 
of the stator-rotor contact surface. Switching rotation direction can be achieved by a 
conformational change in the FliG C-terminal domain controlled by CheY-P binding 
to the rotor.  
 

The above two models provide structural foundations for the Ising Allosteric 

model. Each FliG/FliM complex can exist in two conformations that lead to 

CCW/CW rotation respectively. The fact that these complexes are packed up into a 

ring structure naturally gives rise to the coupling energy between neighbours, which is 

the essential element of the Ising Allosteric model.  
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5.2.2 Predictions of the Ising Allosteric Model 

A strong coupling energy in the Ising Allosteric model (EA =1 , ETkB J= 4 

) can reproduce the ultrasensitivity (Figure 5.1.1) of the motor bias to CheY-P 

concentration (see Figure 6 of reference [94]). Further support for the model can be 

gained by testing predictions of the model, which are explored here.  

TkB

 

 

Figure 5.2.5 Cartoon plot showing the conformational spread on the FliG/FliM ring as 
a mechanism for bacterial switching. (a) 3 D view of the motor structure. Stator units 
are interacting with the FliG/FliM ring with a mixed conformation of CCW/CW 
subunits. (b) view from cytoplasm of the same structure as in (a) (c) a nucleation 
event followed by successful growth will eventually encompass the whole ring; but 
more frequently, the event will collapse due to the strong coupling energy of 
neighboring subunits.  
 

In Figure 5.2.5 we show a key element of the Ising Allosteric model – 

conformational spread. Switches are observed to occur via a nucleation event - 
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typically the flipping of one subunit to the opposite state – followed by growth of the 

new domain until it encompasses the entire ring as demonstrated in Figure 5.2.5 c. 

However, this conformational spread is not always successful. For most of the time, 

the ‘seed’ of the opposite conformation will soon disappear due to the strong coupling 

energy of neighboring subunits. This conformational spread as a mechanism for 

bacterial switching is the unique feature of the Ising Allosteric model. Next we 

construct a simple mathematical model to translate the ring activity simulated by the 

Ising Allosteric model into motor speed that can easily be observed.   

 The latest result by Reid et al. revealed that the maximum number of torque-

generating units in E. coli is at least 11 [57]. When the rotor interacts with this many 

stators, it is the percentage of CCW complexes on the ring rather than the distribution 

of CCW complexes that determines motor speed; additionally, due to the strong 

coupling energy, the chance of seeing more than two domains on the ring is very 

small. Therefore we make a simple assumption that a subunit in the CCW/CW state 

will promote CCW/CW rotation so that there is a direct proportionality between the 

overall state of the switch complex and motor speed: for example, 34 CCW/CW 

subunits will cause full speed CCW/CW rotation; 17 CCW and 17 CW subunits will 

result in a stationary motor. This assumption will fail if there are only 1-2 stators in 

the system, which will be investigated in future work. Here we use this linear 

approximation, as in our experiments we all use a fully resurrected wild-type E. coli 

strain.  

The proportionality between the state of the switch complex and motor speed 

is given by 

;17/)17)(()( 0 −= tNVtVrotor                                                                         formula (5.2) 

 88



V0 is an average speed taken from our experimental data or published torque-speed 

curves at a given load.  

Langevin simulation can be used to describe the motor movement as in Chapter 3. In 

each simulation step (we choose ), rotor position is updated following: st 710−=Δ

ttVttt rotorrotorrotor Δ+=Δ+ )()()( θθ ;                                                             formula (5.3) 

here Vrotor is the instantaneous speed calculated from formula (5.2) as a function of the 

 subunits out of 34 that are in the CCW state predicted by the Ising Allosteric 

model simulation at time t (this can be done by running two simulations in parallel 

and transfer the value to the Langevin simulation). 

)(tN

)(tN

In our experiments, all switching behaviour of the BFM is observed through 

the response of a latex bead attached to the flexible hook/flagellum. To make any 

comparison between our experimental results and predictions from the Ising 

Allosteric model, we need to take the bead movement into account.  

Bead position is updated by introducing a Wiener process 

ZtDtttt bead
bead

beadbead Δ+Δ+≈Δ+ 2)()(
ζ

τθθ ;                                         formula (5.4) 

here Z is a normal random variable with zero mean and unit variance (3),  beadζ  is the 

drag coefficient of the bead,  is the diffusion coefficient of the bead following beadD

bead

B
bead

TkD
ζ

= ;                                                                                              formula (5.5) 

τ  is the torque delivered through the flexible linkage in the hook/flagellum that can 

be modelled by assuming an ideal elastic spring  

)( beadrotork θθτ −= ;                                                                                      formula (5.6) 

where k is the experimentally determined stiffness of the hook/flagellum [68].  
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 Here we have developed a model framework that can correctly transfer the 

activity on the ring to an experimentally observable movement of the bead. In later 

parts of this chapter, when we refer to ‘simulated motor speed’, ‘simulated switching 

interval distribution’, ‘simulated switching time distribution’, we mean that they are 

all generated by this model framework.  

 Below we show an example of how this model framework works.  

 

Figure 5.2.6 Five second record of the number of CCW subunits on the ring predicted 
by the Ising Allosteric model simulation program.  
 

In Figure 5.2.6 we show a 5 second long record of the number of CCW 

subunits on the ring predicted by the Ising Allosteric model. Because of the strong 

coupling energy, we can roughly identify two coherent states of the ring in the above 

trace (complete CCW state, N=34; complete CW state, N=0), though fluctuations 

from these two coherent states are frequent. The instantaneous ring activity was used 

to calculate the instantaneous rotor speed according to formula 5.2. The rotor moves 
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at this speed, twisting the flexible hook/flagellum and hence delivering torque to the 

bead. By running the Langevin simulation, we can generate the bead trace (Figure 

5.2.7).  

 

Figure 5.2.7 Bead response to the ring activity (Figure 5.2.6) predicted by the Ising 
Allosteric model 
  

Comparing Figure 5.2.6 and Figure 5.2.7 we see the bead responds sensitively 

to the ring activity. When a majority of the ring is in the same conformation, the bead 

displays a smooth running. When the ring exists transiently in a mixed state, the bead 

pauses and slow downs; and reversal of direction occurs when the CCW subunits on 

the ring jumps from 0 to 34 or 34 to 0.  
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Figure 5.2.8 Filtered bead speed vs time trace calculated from the bead movement in 
Figure 5.2.7.  

The speed of the bead, which is a directly observable quantity in our optical 

trapping system, can be calculated from the bead trace (Figure 5.2.6). The 

instantaneous bead speed is calculated by taking the derivative of adjacent points in 

the bead trace. However, this speed calculated by a two-point derivative is excessively 

noisy. This problem can be solved by applying a 100 point median filter (Figure 5.2.7) 

(the same method as we apply to the experimental data when we taking measurements 

at the sampling rate of 10 kHz). Comparing Figure 5.2.5 to Figure 5.2.7, our model 

has correctly translated the activity on the ring to the speed of the motor output. We 

notice that the existence of the flexible hook/flagellum and viscous drag of the bead 

smooths the ring activity. Small deviations from a coherent (0 or 34) state are filtered 

out and now hidden in the speed fluctuations. Only major breaks from the coherent 

state are preserved in the speed vs. time trace, observed as ‘slowdown’ and ‘pausing’ 

events.  
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With the above model framework, we are able to examine the unique features 

of the Ising Allosteric model.  

If the Ising Allosteric model is the actual molecular amplification mechanism 

at the BFM end, three direct consequences should be observable:  

1) Creation of domains of the opposite conformation is frequent due to fast 

flipping of single FliM/FliG subunits, but most of them shrink and disappear, 

failing to occupy the whole ring. However, some big fluctuations can still 

produce obvious slowdowns and pausing of the motor. Therefore, switching 

behaviour of the BFM does not produce a standard binary trace. The trace 

contains frequent speed slowdowns and pauses.  

2) The switch interval (the time that the motor spends in the CCW or CW 

state) follows a single exponential distribution.  

3) The time that the motor takes to complete a switch (switching time) is 

non-instantaneous. It can be modeled as a biased random walk along the ring. 

The characteristic switching time depends on the size of the ring and flipping 

rate of each subunit in a complicated manner and due to the stochastic nature of 

this conformational spread, we expect to see a wide distribution of switching 

times.  

 Testing the above three predictions is the goal of our experiments. 

 

5.3 DYNAMICS OF BACTERIAL SWITCHING 

5.3.1 Studies of the Switching, Pausing, Slowdown Events 

Visual examination of speed records outputted from the Labview program 

reveals that the motor (WT strain KAF 84 with 0.50 mμ  bead attached as an indicator) 

is ordinarily locked in either a CW or CCW state, with switches between these states 
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accomplished rapidly. Contrary to representing a binary trace as reported recently, 

also visible are transient fluctuations in speed, to various levels including zero speed 

and reverse speeds, which do not reach the opposite locked state (Figure 5.3.1 a). 

Evidently from the angular position records (Figure 5.3.1 c d), a switch event begins 

with a deceleration in the original direction of rotation down to zero speed, and 

dwelling, then continues to accelerate in the reverse direction to full speed. Transient 

events to any level comprise a deceleration to a given speed, a dwell time of 

~milliseconds at that speed, and acceleration back to the original speed.  

The unparalleled resolution offered by our setup confirms the first prediction 

of the model regarding the existence of transient fluctuations in motor speed. Though 

these events have been reported previously [101-102], doubts have existed as to 

whether early resolutions were satisfactory to conclude their existence. The transient 

events are not an artefact due to mechanical hindrances experienced by the bead on its 

orbit. By monitoring the angular positions of these events, we conclude that they do 

not occur at fixed angles (Figure 5.3.1 b e f, Figure 5.3.2), as would be expected if 

mechanical hindrances were responsible. Additionally, in all our BFP data, a 

systematic binomial test demonstrates that the angles of pauses are uniformly 

randomly distributed around the orbit, with a confidence level of 0.01. The presence 

of transient events was also observed in an alternative switching E. coli strain (HCB 

1271). Meanwhile, their absence in a non-switching E. coli (KAF95) strain (Figure 

5.3.3) indicates further that the bead assay is not susceptible to hindrances and that the 

events are dependant on a functional chemotaxis network; notably, the events persist 

in WT E. coli records that are devoid of switching events (from extreme bias cells).  
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Figure 5.3.1 (see next page) Studies of the switching, pausing and slowdown events 
using our BFP data. a) A typical 30 second long speed vs. time trace of a cell we 
recorded in the optical trapping system. Switching, pausing and slowdown events are 
frequent and have been labelled by arrows of different colours.  b) a typical slowdown 
event (green arrow). X, Y records and its angular position on the rotating orbit are 
shown. c) a typical switching event (purple arrow) d) a typical successive switching 
event (two switching events happens close to each other; grey arrow) e)-f) typical 
pause events (red arrow).  

 

Figure 5.3.2 Angular locations of all the pausing and slowdown events from Figure 
5.3.1 a trace. These events are distributed widely on the rotation orbit.  
 

 
Figure 5.3.3 Speed vs. time trace taken from a non switching cell (strain KAF 95). 
Slowdown and pausing events are not seen.  
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5.3.2 Switching Interval Distribution 

This part is contributed by my colleague, Richard Branch. Here I only give a 

brief introduction to his analysis method and present the final result.  

For the interval work, only speed vs. time traces exhibiting bimodal speed 

histograms were considered. Furthermore, testing was conducted to disregard any 

records whose pause angles were determined to be non-uniformly randomly 

distributed. These measures ensure records are suitable for the implementation of a 

custom Matlab switching interval finding algorithm. The algorithm is designed to 

reliably determine the duration of locked state intervals without effect from transient 

events, which might otherwise skew the distribution towards a shorter timescale.  

For the purposes of setting non-arbitrary thresholds, a speed histogram is 

constructed from a given speed vs. time trace. The histogram typically exhibits two 

major peaks corresponding to the locked states. Gaussian fitting to the two major 

peaks provides mean speed MCCW and MCW and standard deviations SCCW and SCW for 

the two locked states, with which thresholds can be systematically defined. 

Positive and negative thresholds are set at MCCW-3SCCW and MCW+3SCW 

respectively. The algorithm output is robust to variation in threshold setting. Upward 

passages across the positive threshold mark the end of a CW interval and the 

beginning of a CCW interval. Downward passages across the negative threshold mark 

the end of a CCW interval and the beginning of a CW interval. Measurement of 

intervals is demonstrated in Figure 5.3.4. 

The interval distributions for locked CW and CCW states were determined 

systematically from speed records of 538 cells. Data were binned by bias to compare 

the kinetics of cells with different levels of CheY-P activity. Maximum likelihood 

estimation was used to obtain the parameters of the distributions. The distributions for 
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both CW and CCW intervals across all nine bias bins are displayed in Figure 5.3.5. 

We conclude that WT E. coli switching intervals are exponentially distributed, 

confirming the second prediction of the Ising Allosteric model.  

 

 
Figure 5.3.4 A custom written Matlab program can accurately find the length of 
switching intervals from our 30 second speed vs. time records.  
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Figure 5.3.5 Distributions of the switching interval for both the CCW (red) and CW 
(blue) states across 9 bias bins. No peak is found in the distributions and they can be 
well fitted by exponential distributions.  
 
5.3.3 Switching Time Distribution 

In order to get an accurate measurement of the switching time, we follow a 

strict selection procedure in our data analysis: 

1. When we take the data, the trajectory of the rotating bead is monitored in real-

time by custom LabView program. We only select the cells that show steady 

circular or elliptical trajectories.  

2. An ellipse fitting program was applied to the data recorded from the quadrant 

detector and motor angles were obtained. This program outputs 1) motor angle 

(revolution) vs. time; 2) instantaneous angular speed (calculated by taking the 

derivative of adjacent angular points) 3) rotation speed (smoothing the 
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instantaneous speed with a 100 point median filter) vs. time 4) radius of the 

circle as an indicator of fitting goodness.  

3. We went through all the cells we recorded and excluded those cells that 1) 

cease rotation during the 30 seconds 2) do not switch during the 30 seconds 3) 

rotates too slowly (below 60Hz) 4) do not stay on the same circular orbit 

stably.  

4. On these ‘good switching cells’, we apply a custom-written Matlab program to 

find the switching time distribution. It works with the output of the above 

Labview ellipse fitting program. First, the filtered speed vs. time plot was used 

to construct the histogram of the speeds (Figure 5.3.6), in which two peaks can 

be easily identified, corresponding to the rotation speed in CCW and CW 

modes respectively.  

 
Figure 5.3.6 Speed histogram constructed from the speed vs. time records.  

 
We run Gaussian fitting to these two peaks. As the shape of the speed 

histogram is influenced asymmetrically by transient pausing or slowdown 
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events, we therefore fit the outside portion of these two peaks to a Gaussian 

function, which gives us an accurate measure of the CCW speed S1 and its 

standard deviation σ1, CW speed S2 and its standard deviation σ2.  

5. We construct two thresholds: the up-threshold is set as S1-3σ1 and the down-

threshold as S2+3σ2. A switching event can be accurately located in the speed 

–time record if the program sees the speed pass through both thresholds; the 

direction of passage is used to label the direction of the switch CCW-CW or 

CW-CCW. The midpoint between these two thresholds is saved as the centre 

point of the switch event. (illustrated in Figure 5.3.7) 

6. The finding program then inputs the revolution vs. time (unfiltered) trace and 

searches for all the centre points of switch events that have been recorded in 

Step 5. A typical switching event on the revolution vs. time trace is shown in 

the inset of Figure 5.3.7. In a switching event, we normally see a smooth 

rotation in the CCW/CW direction (linear part), followed by a flat plateau 

(deceleration in the original direction → full stop → acceleration in the 

reversed direction), and then a smooth rotation in the CW/CCW direction 

(linear part). The centre point lies central to the plateau region, from which 

two running windows are set to run outwards. The windows continue moving 

until 1) the slope of the linear fitting of the points in this window is within σ1 

(σ2) of S1 (S2) and 2) the RMSE (root mean square error) of the linear fitting 

is within the noise profile of a smooth running state.  

7. The noise profile of a smooth running state is defined as follows: the same 

running window goes through the 30 second revolution vs time trace (in total: 

30×10 kHz = 300,000 points) and applies linear fitting. The RMSE at each 

point is used to construct the noise histogram (Figure 5.3.8). The shape of the 
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histogram deviates slightly from a Gaussian function, with a relatively long 

tail at large RMSE value, which is contributed by the transient and switching 

events in the trace. Again, we fit the noise histogram to a Gaussian function 

(without the long tail part) and define the RMSE value within this Gaussian 

shape as the noise profile of a smooth running state, which can be attributed to 

the fluctuations produced by the fundamental stepping mechanism. If the 

RMSE of the linear fitting of the window at a certain position is higher than 

the maximum value in the noise profile, we conclude that this position is still 

within a switching event. The noise profile changes slightly from cell to cell 

and so we repeat this process on each cell to calculate its own noise profile.  

 

Figure 5.3.7 Our switching time finding program locates switching events from the 
filtered speed vs. time trace. The raw revolution vs. time trace corresponding to such 
events were used to measure the switching time.  
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8. Finally, the distance between the place where the left moving window stops 

(start point) and right moving window stops (end point) is defined as the 

switching time. The choice of the window size is important: too small and the 

window lacks statistical accuracy; too long and it is not sensitive to the local 

change of slope and RMSE. We use 20 points (2ms) for the window, which 

gives an accurate measurement compared to the switch time determined by 

visual examination of the angular record and is robust to variations of ±5 

points.   

9. In order to ensure that the switching time reflects the activity on the ring, the 

radius of each switching event is checked again. The radius of the ellipse 

fitting is used as a criterion of the fitting goodness. In our ‘good switching 

cells’, the histogram of the orbit radius exhibits a clear unimodal peak. We fit 

this peak to a Gaussian function and use one standard deviation from the mean 

as a radius threshold. In each switching event, we consider the interval 10 

points before the start point to 10 points after the end point. If the radii of all 

the points in this interval are all above the radius threshold, we conclude the 

bead stays tightly on a circular orbit throughout the switch. The final switching 

time distributions we present here are all checked by this step.  

 
The final switching time distributions across bias are shown in Figure 5.3.9 a – 

f.  
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Figure 5.3.8 A typical noise profile generated by step 7 in our switching time finding 
procedure.  
 

 
Figure 5.3.9 a Switching time distribution of CCW-CW switches from cells with 
CCW bias 0-0.4 
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Figure 5.3.9 b Switching time distribution of CW-CCW switches from cells with 
CCW bias 0-0.4 
 

 
Figure 5.3.9 c Switching time distribution of CCW-CW switches from cells with 
CCW bias 0.4-0.7 
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Figure 5.3.9 d Switching time distribution of CW-CCW switches from cells with 
CCW bias 0.4-0.7 
 

 
Figure 5.3.9 e Switching time distribution of CCW-CW switches from cells with 
CCW bias 0.7-1.0 
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Figure 5.3.9 f Switching time distribution of CW-CCW switches from cells with 
CCW bias 0.7-1.0 
 

Data for CW-CCW switches and CCW-CW switches were separated out and 

binned by bias, again to compare the kinetics of cells with different levels of CheY-P 

activity. We notice that the switching time follows a very broad gamma-shaped 

distribution with a peak at 4-8ms (statistics of the distributions are listed in Table 3; 

determined by the Matlab maximum likelihood estimates). Contrary to previous 

measurements [103], only the fastest switches are less then 1ms in duration. The 

switch time distribution does not differ with the direction of the switch, nor is it 

dependant on bias. This result is in agreement with the third prediction of the Ising 

Allosteric model. However, we need to rule out other possibilities before we draw the 

conclusion.  
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Table 3 Experimental switching time distribution statistics 

 Gamma 

distribution 

Gamma 

distribution 

Peak position 

(ms) 

Mean value 

(ms) 

Standard 

deviation 

parameter a parameter b (ms) 

1.5905 13.1547 7.77 20.9221 17.85 CCW-CW 

bias 0-0.4 

1.4240 12.6035 6.34 17.95 17.91 CW-CCW 

bias 0-0.4 

1.9128 8.8354 8.06 16.90 14.57 CCW-CW 

bias 0.4-0.7 

1.4645 14.3019 6.64 20.95 18.97 CW-CCW 

bias 0.4-0.7 

1.8590 8.8880 7.63 16.52 14.51 CCW-CW 

bias 0.7-1.0 

1.6883 11.8493 8.16 20.01 17.04 CW-CCW 

bias 0.7-1.0 

In our experiment, the switching time is observed through the response of a 

bead attached to the hook/flagellum. The flexibility in the hook/flagellum may lead to 

an observable switching time even it takes no time to switch on the rotor. We carried 

out a theoretical simulation to investigate this possibility. We used the same Langevin 

simulation as in section 5.2.2, but rather than the rotor speed being imported from the 

Ising Allosteric model, we simulated its movement as a 400 steps/ revolution poisson 

stepper [55] executing instantaneous switches at a fixed frequency. We used the speed 

we observed in experiments (0.5  bead average 120Hz, 0.35mμ mμ  bead average 

160Hz) as a control parameter of the stepping frequency. The simulation outputs the 

bead movement vs. time trace (similar to the revolution vs. time trace in our 

experimental data). We apply the same switching time finding algorithm to the 

simulated trace and find the switching time distribution due to hook/flagellum/bead 
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response (the switch occurs instantaneously on the rotor) with a 0.50 mμ  bead 

(Figure 5.3.10) and a 0.35  bead (Figure 5.3.11).  mμ

From this simulated switching time, we can see: 

1) The average switching time of a 0.5  bead is about 1.5ms and that of a 0.35 mμ mμ  

bead is 0.5 ms (to ensure that our results are not dependant on the hook-bead system 

response, identical experiments were carried out with a 0.35 mμ  bead at high CCW 

bias.). They are too short to account for the switching time we observe in experiment.  

Furthermore, the distribution of simulated switching time due to rewinding of the 

hook/flagellum is quite narrow (range 0—5 ms for the 0.5 mμ  bead data, and range 

0—2.5 ms for the 0.35 mμ  bead data), far from the broad distribution (range 0—100 

ms for both the 0.5  and 0.35 mμ mμ  bead data) we observe in experiments. This 

strongly argues that our results are not an artefact of the hook/flagellum/bead response 

due to hook/flagellum rewinding, but in fact reflect the speed of conformational 

spread around the FliG/FliM ring.  

 
Figure 5.3.10 Simulated switching time of a 0.5 mμ  bead due to the 
hook/flagellum/bead response.  
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Figure 5.3.11 Simulated switching time of a 0.35 mμ  bead due to the 
hook/flagellum/bead response. 
 
2) With our experimental data, we ensured that the switching times we measured were 

those of switches in which the bead stayed tightly on the circular orbits. Therefore we 

make the assumption that the experimentally measured switching time is the sum of 

the hook/flagellum/bead response and the actual time required for conformational 

spread on the ring. The distribution of times due to conformational spread on the ring, 

which is our chief interest, can be obtained by taking a deconvolution (Figure 5.3.12) 

of the hook/flagellum/bead response distribution from the experimental distribution.  
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Figure 5.3.12 Deconvolution of the switching time on the rotor from the overall 
switching time with hook/flagellum/bead response.  
 
In Figure 5.3.12 we perform a deconvolution between gamma fitted experimental data 

(from the bias bin 0.7-1.0) and the gamma fitted hook/flagellum/bead response 

distribution, for both the 0.5  and 0.35 mμ mμ  bead datasets. The bias bin 0.7-1.0 was 

chosen because this provides the largest data set and gamma fitting was carried out 

with the maximum likelihood method. A peak is well retained in the deconvoluted 

distribution and the position of the peak does not differ between switching directions 

or bead sizes. This argues again our experiment has resolved the switching time due 

to conformational spread on the ring and is independent of the hook/flagellum/bead 

system. 

Based on the two points above, it is reasonable to conclude that the switching 

time distribution we measured in our experiments reflect the time needed for a 

conformational spread on the ring and confirms the third prediction of the Ising 

Allosteric model.   

 111



5.4 COMPARISON TO THE MODEL 

The three experimental results presented in section 5.3 confirm the three 

predictions of the Ising Allosteric model. Transient events are representative of the 

rapid, incomplete growth and shrinkage of domains of opposite conformation.  

Typically, the growth of a single domain is responsible for encompassing the ring, as 

opposed to two or more domains in concert. The nucleation of these domains is a 

Poisson process. Conformational spread in the switch complex is required to convert 

all subunits from one state to the other, and this spread is necessarily finite in duration. 

The duration is broadly distributed in magnitude due to stochasticity in the spread.  

In order to reproduce the experimental results, we did a thorough search in the 

model’s parameter space. For a certain parameter set, we ran the Langevin simulation 

introduced in section 5.2.2 to translate the ring activity predicted by the Ising 

Allosteric model to simulated speed vs. time and angle vs. time records. Later the 

same analysis method we used to analyze experimental data was applied to the 

simulated data to find out the switching interval distribution and switching time 

distribution. Finally, we determined a parameter set of the Ising Allosteric model that 

can quantitatively reproduce the results from our experiments (Figure 5.4.1, Figure 

5.4.2, Figure 5.4.3).   

TkE BA 1=  

TkE BJ 2.4=  

Flipping rate of each FliM/FliG subunit   sk /100.1 5×=

the binding rate of CheY-P = 30 Hz ( is used as a controlling parameter to 

produce datasets with different CCW bias) 

onk offk
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 A more rigorous parameter optimization is now underway and we will present 

the final results in our formal publication.  

 
Figure 5.4.1 The Ising Allosteric model can reproduce both the exponential 
distribution and rate constants for the switching interval distributions.  
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Figure 5.4.2 The Ising Allosteric model can reproduce both the characteristic 
switching time and the broad distribution of the switching time distribution (CCW-
CW   CCWbias 0.7-1.0). Gamma parameter a=1.6903  Gamma parameter b=8.6451  
peak position=5.97 mean value=14.61 standard deviation=12.47 

  
Figure 5.4.3 The Ising Allosteric model can reproduce both the characteristic 
switching time and the broad distribution of the switching time distribution (CW-
CCW   CCWbias 0.7-1.0). Gamma parameter a=1.4172  Gamma parameter 
b=12.0923  peak position=5.04 mean value=17.14 standard deviation=15.57   
 
 
 
 
 

 114



5.5 CONCLUSION 

 In this chapter, the Ising Allosteric model, which is a general approach to 

protein allostery, was reviewed and modified to explain the switching ultrasensitivity 

of the BFM. The model predicts three phenomena in the dynamics of bacterial 

switching. They are all confirmed by our experiments.  

This work has completed the chemotactic amplification pathway and more 

importantly, the BFM has been used as a test-bed for a general model for protein-

protein cooperative interaction. This has great importance from a systems biology 

perspective. The Ising Allosteric model (especially the idea of conformational spread) 

sheds light on information propagation in large protein complexes. In addition to the 

canonical MWC and KNF models, it provides a new approach to allostery.  
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                                                                                             CHAPTER 6 
  
 

 

Stoichiometry and Turnover in Single, 
Functioning Membrane Protein Complexes: 

A Mathematical Simulation 
 

Many essential cellular processes are carried out by complex biological 

machines located in the cell membrane. The bacterial flagellar motor is a large 

membrane-spanning protein complex. Within the motor, MotB is a part of the stator 

that couples ion flow to torque generation and anchors the stator to the cell wall. Mark 

Leake et al. measured the number and dynamics of MotB molecules labelled with 

green fluorescent protein (GFP–MotB) in the motor by total internal reflection 

fluorescence microscopy. Counting fluorophores by the stepwise photobleaching of 

single GFP molecules showed that each motor contains 22 copies of GFP–MotB, 

consistent with 11 stators each containing two MotB molecules. They also observed 

a membrane pool of 200 GFP–MotB molecules diffusing at 0.008 . 

Fluorescence recovery after photobleaching and fluorescence loss in photobleaching 

showed turnover of GFP–MotB between the membrane pool and motor with a rate 

constant of the order of 0.04 s

12 −smμ

-1: the dwell time of a given stator in the motor is only 

0.5 min.  
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In this chapter, my contribution to this work, a mathematical simulation of the 

system which determines several key parameters, is presented. More details of the 

experiments can be found in our publication [104]: 

Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM and Armitage JP. Nature 

443, 355-358 (2006).   

 Here I acknowledge the contributions from Mark Leake, Jennifer Chandler, 

George Wadhams, Richard Berry and Judy Armitage.  

6.1 BRIEF INTRODUCTION TO THE EXPERIMENTS 

AND RESULTS 

TIRFM (Total Internal Reflection Fluorescence Microscopy) is a standard 

technique that is widely used for in vivo imaging. Total internal reflection is a well 

known optical phenomenon which occurs when light travels from a dense medium to 

a less dense medium (lower refractive index). The critical angle is defined as: 
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cθ              n n1 , 2 the refractive indices of the two mediums    formula (6.1) 

If the angle of incidence is above the critical angle, all of the light is reflected. 

However, some of the energy of the beam still propagates to the less dense medium in 

the form of an evanescent wave. The strength of the wave decays exponentially with 

the distance into the medium, which normally survives a few hundred nanometres. 

Within this distance, a fluorophore molecule can absorb photons and be excited. 

Therefore this provides a good way of achieving fluorescence with a very low 

background of excitation light. In Leake et al.’s experiment, TIRFM is implemented 

to investigate the stoichiometry and turnover of the GFP labelled MotB complex in 

the membrane. A schematic plot of the experimental setup is presented in Figure 6.1.1 
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(a) and in Figure 6.1.1 (b) key structural components of the bacterial flagellar motor 

are shown. 

Figure 6.1.1 TIRF 
microscopy of live GFP–
MotB cells. 
(a) Antibody-tethered cell 
rotation assay. (b) 
Expansion of the motor 
structure (c) Consecutive 
brightfield (top) and TIRF 
(bottom) images showing a 
rotating tethered GFP–
MotB cell and a nearby 
stuck cell. Two motor spots 
are visible in the stuck cell, 
whereas one is visible at the 
centre of rotation in the 
tethered cell. 
 

 

 

 

 

 

 

Under TIRF illumination, a bright spot can be observed at the base of the 

flagellum, indicating a ring of GFP-MotB molecules anchored around the periphery of 

the 50nm diameter rotor. Continuous photobleaching of 400nm square regions of 

interest (ROI) containing a single motor show steps in intensity at roughly integer 

multiples of a unitary level, IGFP, consistent with photobleaching of individual GFP 

molecules (experimental photobleaching traces are shown in Figure 6.1.2 a). The 

Chung-Kennedy filter (a robust step finder) was applied to these traces (Figure 6.1.2 

b), making the steps easier to track. The pairwise-distance distribution function 

(PDDF) was constructed from these filtered traces and its power spectrum was 
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calculated (Figure 6.1.2 c, d). The peak in the power spectrum indicates a unitary step 

size of I ≈ 5370 counts.  GFP

 

Figure 6.1.2 TIRF photobleaching. (a) Three photobleaches for regions centred on 
motors, showing total (blue), motor (magenta) and background (green) intensities, and 
average autofluorescence (black) from 32 parental cells lacking GFP. (b) Expansions 
from traces in (a) with Chung–Kennedy filtered traces overlaid (red). PDDF (c) and 
power spectrum of the PDDF (d) for filtered intensity curve 3 in (a); the unitary peak 
is indicated (arrow).  
 

We can estimate the total number of GFP–MotB molecules per motor by 

dividing the initial motor intensities  by ImI 0 GFP for each trace from different cells. 

This gives 22 ± 6 GFP-MotB per motor. Separation of the total intensity into motor 

and background components gives us the initial membrane value. Dividing this initial 

membrane intensity by I  gives an average of 0.052 ± 0.022 molecules per pixel. GFP
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The cell-surface area is estimated as 3,700 ± 500 pixels; thus, the total number of non-

motor GFP–MotB molecules per cell is around 190 ± 80. 

Fluorescence Recovery after photobleaching (FRAP) and Fluorescence Loss 

in photobleaching (FLIP) methods were used to determine the protein turnover rate 

between membrane and motor components. In these experiments, 0.5 s focused laser 

exposure photobleaches all fluorophores in width of 1 mm regions. Figure 6.1.3 a 

shows TIRF images of a cell before and after bleaching of a region containing a motor. 

Fluorescence recovery (FRAP) of both motor and background components in the 

bleached region is visible, as is fluorescence loss (‘one-shot’ FLIP) at the other end of 

the cell. FRAP and FLIP (Figure 6.1.3 b) of motor and membrane components 

respectively, averaged over 13–38 cells, are shown in Figure 6.1.3 c and d.  

 

The FRAP and FLIP data reveals that free GFP-MotB molecules are diffusing 

on the membrane and rapidly exchanging with the anchored functioning GFP-MotB 

in the motor. The main purpose of the following mathematical modeling is to derive 

the diffusing coefficient of GFP-MotB and rate constant of this dynamic exchange.   
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Figure 6.1.3 Focused laser FRAP and ‘one-shot’ FLIP. (a) Successive TIRF images of 
a GFP–MotB cell before and after bleaching. The prebleach images are identical; the 
laser focus is indicated (circle, right panel). Arrows indicate positions of two motors, 
showing FLIP (red) and FRAP (blue); the cell is outlined (white). (b) Representation 
of FLIP and FRAP using ROIs with and without motors. Mean numbers of 
unbleached GFP–MotB molecules in motor (c) and membrane (d) components versus 
time. Data points were an average of 13 (motor, FLIP), 30 (motor, FRAP) and 38 
(membrane) ROIs. Error bars indicate 1 s.d. 
 

6.2 ESTIMATING THE DIFFUSION COEFFICIENT: 

COMPARISON WITH SIMULATIONS 

We constructed a custom MATLAB program to simulate the two-dimensional 

diffusion of GFP-MotB molecules over the cell surface, modeling the cell as a 
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cylinder of length 2 μm and diameter 1 μm capped with hemispherical ends. We 

assumed each cell contained ~200 GFP-MotB molecules in total (as per our 

experimental estimation), initially randomly distributed over the total surface area. A 

region for the focused laser bleach was assigned on the long-axis of the cell, either in 

the middle or displaced 0.5-1.0 μm from the middle towards one of the poles. The 

photobleach probability in this region was modelled as a normalized symmetrical 

two-dimensional radial Gaussian function of width ~1 μm, and each molecule was 

polled to determine whether it was photobleached or not. In each subsequent small 

time interval Δt (100ms) after the bleach we assumed each molecule to move a small 

distance (4DΔt)1/2 in a random direction in the membrane, where D was a trial two-

dimensional diffusion coefficient. We tracked the positions of all molecules during 

time intervals over a range of 1 to 256 s to match experimental data.  

To calculate the predicted TIRF image intensity from the positions of fluorescent 

molecules in the membrane we performed the following procedure:  

1. We assigned a brightness to each unbleached molecule equal to the TIRF 

evanescent field weighting function of exp(-z/d), where z was the relevant height of 

each molecule at a given time point and d was the characteristic 1/e field depth, 100 

nm.  

2. We approximated the intensity profile of each unbleached molecule by a symmetric 

two-dimensional Gaussian of width 240 nm. This ignores the effect of de-focusing on 

the point-spread-function, which in practice will be very small as all visible molecules 

are close to the focal plane defined by the coverslip and TIRF illumination field.  

3. We then binned the final intensity patterns into a two-dimensional pixel grid 

(50x50 nm per pixel), with the contribution from each molecule given by the 

weighted intensity (from steps 1 and 2 above) at the centre of the pixel.  
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Figure 6.2.1 Estimating the diffusion coefficient in the membrane by comparison with 
simulation. (a) x-y projections and TIRF images (averages of 10 simulations) before 
and after focussed bleaching of the centre of the cell, D=1×10

-3 
μm

2 -1
s . (b) Intensity 

in ROI centred on laser focus vs. time postbleach. Simulated traces (coloured) for 
values of D in range (0.125 to 16)×10

-3 
μm

2 -1 
s and experimental data (black squares) 

from FRAP data of membrane in non-motor regions (averaged from 8 GFP-MotB 
cells, error bars one s.d.)  

We simulated a series of D values in the range 0.125 to 16 × 10-3 μm2 s-1, 

calculating the average TIRF intensity patterns from 10 cells for each. We then 

analysed the averaged image for each value of D using the same method as for 

experimental focused laser FRAP and FLIP data, to assess the predicted recovery or 

loss of fluorescence intensity following photobleaching. By comparing these 

predictions with the membrane background component in experimental FRAP data 

for ROIs which contained no putative motor, we obtained an estimate for D at each 

time point by linear interpolation, and took the average of these estimates as the final 

estimate of D, 0.0075 ± 0.0013 μm2 s-1 (mean ± s.d.). This value is smaller than that 

of the free diffusion fluorophores on cell membrane [105], but in the same order as 

the diffusion coefficients of larger protein complexes [106-108].  
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6.3 A GLOBAL MODEL FOR INTENSITY CHANGES IN 

THE MOTOR AND MEMBRANE  

We extended the above diffusion model to include stator GFP-MotB 

photobleaching and stator exchange between free GFP-MotB and the motor. This 

allows us to estimate the rate of exchange with the motor and to verify our 

interpretations of the TIRF photobleach traces (Figure 6.1.2) and FRAP and FLIP data 

(Figure 6.1.3). The model was implemented in MATLAB as follows:  

1. Diffusion of stator units, each containing 2 MotB molecules was simulated as 

before, assuming a total of ~200 GFP-MotB molecules randomly dispersed in the cell 

membrane and a diffusion coefficient D = 0.0075 μm2 s-1 (values based on 

experimental estimates).  

2. A motor was located centrally on the ‘lower’ surface of the cylinder (defined as that 

closest to the TIRF excitation field) as was typical of the experimental assays, initially 

containing 11 stator units (based on experimental estimate).  

3. The exchange process was modelled by the standard diffusion-capture method. In 

every time interval Δt each stator unit attached to the motor either disassociated from 

the motor or remained bound according to a predefined rate kd (a free parameter in the 

program later optimized to actual experimental data): if the unbinding probability, 

kdΔt, was greater than a pseudo-random number in the range 0-1, the unit dissociated, 

otherwise it remained bound. A small circular region of radius 100 nm centred on the 

motor was defined as the motor capture zone i.e. a radius ~4 times larger than that of 

the motor itself (~25 nm). Any free membrane stator units found in this area were 

polled as above against either binding to the motor or remaining free, according to a 

predefined rate ka. We defined ka = kd exp( f(11-Ns) ), where Ns is the number of 

stators in the motor at the moment of polling and f a number (we used f = 5) tuning 
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the strength of the exponential factor. This formula ensures that ka = kd when Ns = 11, 

and leads to a stable equilibrium number of stators per motor close to the 

experimentally estimated number. The underlying physical meaning is that the 

binding rate is reduced as available binding sites on the motor are occupied and 

enhanced when there are plenty of empty sites on the motor. We monitor the position 

of each stator at each time point as well as the bleach state of its GFP molecules and 

whether it is free or motor-bound.  

4. On top of the main code two sub-routines were added, one responsible for 

bleaching the GFP-MotB in a pre-defined area and the other for predicting, as before, 

the observed fluorescence intensity within a 0.4x0.4 μm2 region of interest centred on 

the motor. For simulations of FLIP and FRAP the bleaching areas were tried in the 

range 1-2 μm2 to reflect the size of the focused laser spot (the largest area tried 

bleaching ~50% of the total membrane GFP-MotB content in the cell), centred either 

on the motor (FRAP) or displaced ~1 μm from the motor (FLIP). We assumed that the 

initial focused laser spot irreversibly photobleaches a similar quantity of GFP 

molecules in this area as per the first experimental post-bleach timepoint, on both the 

lower and upper membranes. For simulations of continuous TIRF bleaching two 

different bleaching areas were tried; either ~0.6x3.0 μm2 centred on the motor (the 

“TIRF bleach-zone”, close to that expected for an excitation field of depth ~100 nm) 

or the entire lower half of the cell surface (the “extended bleach-zone”, modeling 

possible scattering of the illuminating light beyond the TIRF field). In each time-step, 

each un-bleached molecule in the bleach-zone was deemed to have bleached if the 

probability, Δt/t (where t
0 0 

= 40 s, the experimentally estimated bleach time), was 

greater than a pseudo-random number in the range 0-1; otherwise it remained un-

bleached.  
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6.4 ESTIMATING DISSOCIATION RATES BY REPRO-

DUCING FRAP AND FLIP EXPERIMENTS  

The extended model was simulated with values of kd equal to 0.01, 0.02, 0.03, 0.04, 

0.05, 0.06, 0.07 and 0.09 s-1 in bleach-zones corresponding to FRAP and FLIP 

experiments. For each value of kd, mean FRAP and FLIP traces for motor and 

membrane components were obtained by averaging 500 simulations each lasting 300 

s (Figure 6.4.1 colour traces). These simulated data-sets were compared to the 

experimental data-set.  

 

Figure 6.4.1 Simulations for FRAP and FLIP. Predictions for the FRAP experiment 
on the motor and membrane components (a,c), and similarly for FLIP (b,d) at 
different k

d 
(showing only three values for clarity). The experimental data, scaled by 

the re-normalization coefficients gave the best fit for k
-1

d 
= 0.04 s , are overlaid (white 

circles, s.d error bars).  
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 An error function indicating the goodness of fitting is formed (see reference 

[93] for details). The minimized value of this error function is found for 

approximately kd = 0.04 ± 0.02 s-1.  

We also investigated the effects of having more than one motor in the cell. 

Placing three motors randomly within the original bleach spot resulted in no net 

change in the steady-state value for number of unbleached stators bound to the motor 

under observation, but did reduce the net total binding rate for unbleached stators at 

equivalent time points compared to the single-motor system by ~5%; adding more 

bleached motors into the system marginally increases the effective mixing time for 

bleached and unbleached stators in the membrane.  

 

6.5 Conclusion  

In this chapter, we have developed a mathematical model to mimic the 

diffusion and dynamic exchange of GFP labelled MotB molecules on the cell 

membrane. With comparison to the experimental data, this model identifies several 

key parameters and highlights valuable insights into the BFM system. Again, it 

demonstrates the intimate collaboration between theory and experiment.  
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                                                APPENDIX 
 

    
 

The Langevin simulation code we used to generate results in Chapter 3 and 
Chapter 4.  
 
       Program main 
c a Langevin simulation code for BFM 
c The coordinates are in the order: stator, rotor, load 
c time delay added 
       implicit none 
       integer debug 
       parameter (debug=0) 
       real*8 kBT, onepi,dt,t,kBT0 
c temperature * Boltzman's constant 
       parameter(kBT = 4.0807d0) 
       parameter (kBT0 = 4.1d0) 
       parameter(onepi = 3.1415926d0)  
       integer nstep, nsamp, nequil,istep,neq0 
       integer nfree,maxnts,nstator 
c number of stators 
       parameter(nstator = 8) 
c       parameter(ndof=nstator+1) 
c number of degrees of freedom 
       parameter(nfree = nstator+2) 
c the maximum number of chemical transitions per stator 
       parameter(maxnts = 1) 
c the chemical rates 
       real*8 C_P, C_C,pKa,kprefactor 
       real*8 krate(maxnts*nstator),R(maxnts+2),sumrate, 
     &      krate12,krate21,maxkrate          
       real*8 Dcnst(nfree),sqDt(nfree),DTt(nfree) 
c       integer ns(nfree)    
c the spring constants 
       real*8 kappa(2)               
c the equilibrium stator positions 
       real*8 thetaS0(nstator),thetaS00(nstator), 
     &     dF(nfree),V1,V2,dv1,dv2,dV, 
     &     torLR,thetaS,deltheta,deltheta2 
        
c time step 
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       parameter(dt = 1.0d-10) 
c total number of steps 
       parameter(nstep =  1000000000) 
c sampling the trajectory per nsamp steps  
       parameter(nsamp =  500000000) 
c the number of steps to equilibrate the system before sampling 
       parameter(nequil = 1000000000) 
       real*8 ran1,randnum,randnum1,randnum2 
       integer idum,i,j,icount,icount2 
c positioN 
       real*8 xi,ti,xold,xsamp 
       real*8 xt(nfree,nstep/nsamp+1),x(nfree),tsave(nstep/nsamp+1) 
       integer sct(nstator,nstep/nsamp+1),sc(nstator)  
       real*8 k12p,k12c, k21,kfac1,kfac2 
       real*8 ax0,xmin,xmax,Kscalef 
       real*8 xleft,height,Lleft,Lright,PMF,vbump,lbump 
       real*8 xr2,xr3,xr4           
       real*8 tdelay(nstator),taudelay 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c number of trajectories 
       integer ntraj,itraj,ipoint,npoint 
       parameter(ntraj=10,npoint=6) 
       real*8 omega(ntraj,npoint) 
       real*8 aveomega(2,npoint) 
       real*8 torque(npoint) 
       real*8 Dbead(npoint),pmf_s 
c       data Dbead/4.d0, 
c     &         5.d0/ 
c,10.d0,30.d0,50.d0, 
c     &         100.d0/ 
 data Dbead/0.1d0,0.5d0,3.d0, 
     &         5.d0,7.d0,100.d0/ 
C       data Dbead/10.d0,30.d0/ 
c       data pmf_s/60.d0,80.d0,105.d0,125.d0,150.d0/ 
        data pmf_s/120.d0/ 
c        data thetaS0/0.5d0/ 
       data thetaS00/0.4620d0, 0.2258d0, 0.6749d0, 
     &    0.3663d0, 0.1955d0, 0.0683d0, 0.8295d0, 0.0405d0/ 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
       idum = -10 
       ax0 = 2.d0*onepi/26.d0 
       do i = 1, nstator 
          thetaS0(i) = thetaS00(i)*ax0 
       enddo 
c potential parameters 
       xmin = 0.d0*ax0 
       xmax = 1.d0*ax0 
       Lleft = 0.1d0*ax0 
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       Lright = 0.9d0*ax0 
       xleft = 0.1d0*ax0 
       height = 10.d0*kBT0  
       vbump = 15.d0*kBT0 
       lbump = 0.1d0*ax0 
c windows for chemical reaction 
C Keffect function (rectangcle) 
       xr2 = 0.1d0*ax0 
       xr3 = 0.34d0*ax0 
       xr4 = 0.58d0*ax0 
       kfac1 = 0.d0 
       kfac2 = 1.0d0 
c chemical rates 1:occupied 2: empty 
       C_P = 1.0d-7 
       C_C = 10.0**(-7.6) 
       pKa = 10.0**(-14.6) 
       kprefactor = 0.4d20 
       k12p = C_P*C_P*kprefactor  !proton hops from periplasm 
       k12c = C_C*C_C*kprefactor   
       k21 =  pKa*kprefactor 
       TAUDELAY = 0.0D-6  
c spring constants 
       kappa(1) = 800.d0*kBT0 ! stator 
       kappa(2) = 500.d0 ! rotor-load 
c equilibrium stator positions 
c       Do i = 1,nstator 
c          thetaS0(i) = 2.d0*onepi*(i-1)/nstator 
c          thetaS0(i) = ax0*(i-1)/nstator             
c       Enddo    
c       thetaS0(1) = 0.d0 
c       thetaS0(2) = 2.d0*onepi*(2-1)/8.d0 
c       thetaS0(3) = 2.d0*onepi*(6-1)/8.d0 
       open(unit=1,file='BFMts1c.dat',status='unknown') 
       open(unit=2,file='BFMts1b.dat',status='unknown') 
       open(unit=10,file='BFM1.dat',status='unknown') 
       open(unit=11,file='BFM2.dat',status='unknown') 
Ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
       Do 300 ipoint=1,npoint 
           pmf = pmf_s*1.0d-3*160.2d0 
c initial position 
             Do i = 1,nstator 
                 x(i) = thetaS0(i) 
             Enddo 
             x(nstator+1) = -0.d0*ax0 
             x(nstator+2) = -0.d0*ax0 
c initial chemical states 
             Do i = 1,nstator 
                sc(i) = 1 
             Enddo 
c diffusion constant 

 130



       do i = 1,nstator 
          Dcnst(i) = 500.d0*kBT/kBT0 
       enddo 
       Dcnst(nstator+1) = kBT/2.0d-4 
       Dcnst(nstator+2) = Dbead(ipoint) 
       Do i = 1,nfree 
          sqDt(i) = dsqrt(2.d0*Dcnst(i)*dt) 
          DTt(i) = Dcnst(i)/kBT*dt 
       Enddo 
       t=0.d0 
       Do 200 itraj = 1,ntraj 
          if(itraj.eq.1)then   
             neq0 = nequil 
          else 
             neq0 = 500000  
          endif                        
          do i = 1,nstator 
             tdelay(i) = 0.d0 
          enddo 
          icount = 1 
          icount2 = 1 
c now starts the trajectory propagation 
       xsamp = 0.5d0*onepi  
       do 100 istep = 1,nstep+neq0 
          if(debug.eq.1)then 
             x(nstator+1) = (istep-1)*ax0/1000.d0 
             do i=1,nstator 
                sc(i) = 1 
             enddo 
          endif 
cccccccccccccccccccccccccccccccccccccccccccccc 
c calculate the potential and gradient 
cccccccccccccccccccccccccccccccccccccccccccccc 
          Do j = 1,nfree 
             dF(j) = 0.d0 
          Enddo 
c in the case of no stator spring  
          Do i = 1,nstator 
             x(i) = thetaS0(i) 
          Enddo 
          Do j = 1,nstator 
              thetaS = x(j) !the stator position 
              deltheta = x(nstator+1) - x(j) 
              deltheta = deltheta - int(deltheta/ax0)*ax0 
              if(deltheta.gt.ax0)then !scale back to [0,1]*ax0 
                 deltheta = deltheta-ax0 
              elseif(deltheta.lt.0*ax0)then 
                  deltheta = deltheta + ax0 
              endif 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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c here the potentials are calculated 
cccccccCccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
              if(deltheta.lt.xleft)then 
                 V1 =  height/Lleft * (deltheta-xmin)  
                 dV1 = height/Lleft  
              else 
                 V1 = height - height/Lright * (deltheta - xleft) 
                 dV1 = -height/Lright 
              endif 
             if(deltheta.gt.(xleft-lbump) .and. deltheta.le.xleft)then 
                 V1 = V1 + vbump/lbump *(deltheta-xleft+lbump) 
                 dV1 = dV1 + vbump/lbump  
             elseif(deltheta.gt.xleft .and.  
     &           deltheta.le.(xleft+lbump))then 
                 V1 = V1 + vbump/lbump* (xleft-deltheta) + vbump 
                 dV1 = dV1 - vbump/lbump  
             endif 
             deltheta2 = deltheta + 0.5d0*ax0 ! we shift the coordinate  
                                !so treating window 1(3) and state 1 is much easier  
             if(deltheta2.gt.ax0)then !scale back to [0,1]*ax0 
                 deltheta2 = deltheta2 - ax0 
             elseif(deltheta2.lt.xmin)then 
                  deltheta2 = deltheta2 + ax0 
             endif 
c             write(6,*) deltheta/ax0, deltheta2/ax0 
c             pause 
             if(deltheta2.lt.xleft)then 
                 V2 = height/Lleft * (deltheta2-xmin) 
                 dV2 =height/Lleft 
             else 
                 V2 = height - height/Lright * (deltheta2 - xleft ) 
                 dV2 = -height/Lright 
             endif 
             if(deltheta2.gt.(xleft-lbump) .and.  
     &          deltheta2.le.xleft)then 
                 V2 = V2 + vbump/lbump *(deltheta2-xleft+lbump) 
                 dV2 = dV2 + vbump/lbump 
             elseif(deltheta2.gt.xleft .and.  
     &           deltheta2.le.(xleft+lbump)) then 
                 V2 = V2 + vbump/lbump * (xleft-deltheta2) + vbump 
                 dV2 = dV2 - vbump/lbump 
             endif 
ccccccccccccccccccccccccccccccccc 
c here the rate constants are calculated 
cccccccccccccccccccccccccccccccccccccccccccc                 
                    krate12 = 0.d0 
                    if(deltheta2.ge.xr3 .and. deltheta2.lt.xr4) 
     &              then 
                        Kscalef=kfac2 - (kfac2-kfac1)/(xr4-xr3) 
     &                      * (deltheta2-xr3) 
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c                        Kscalef = 1.d0 
                        krate12 = k12p *Kscalef 
     &                      * dexp(0.5*(V1-V2+pmf)/kBT) 
                    elseif(deltheta2.ge.xr2 .and. deltheta2.lt.xr3) 
     &              then 
                        Kscalef=kfac1 + (kfac2-kfac1)/(xr3-xr2) 
     &                      * (deltheta2-xr2) 
c                        %Kscalef=1.d0 
                        krate12 = k12p *Kscalef 
     &                      * dexp(0.5*(V1-V2+pmf)/kBT) 
                    elseif(deltheta.ge.xr3 .and. deltheta.lt.xr4) 
     &              then 
                        Kscalef=kfac2-(kfac2-kfac1)/(xr4-xr3) 
     &                      * (deltheta-xr3) 
c                        %Kscalef = 1.d0 
                        krate12 = k12c *Kscalef 
     &                      * dexp(0.5*(V1-V2-pmf)/kBT) 
                    elseif(deltheta.ge.xr2 .and. deltheta.lt.xr3) 
     &              then 
                        Kscalef= kfac1 + (kfac2-kfac1)/(xr3-xr2) 
     &                      * (deltheta-xr2) 
c                        %Kscalef = 1.d0 
                        krate12 = k12c *Kscalef 
     &                      * dexp(0.5*(V1-V2-pmf)/kBT) 
                    endif 
c 
                    krate21 = 0.d0 
                    if(deltheta2.ge.xr3 .and. deltheta2.lt.xr4) 
     &              then 
                       Kscalef=kfac2 - (kfac2-kfac1)/(xr4-xr3) 
     &                        *(deltheta2-xr3) 
c                       Kscalef = 1.d0 
                       krate21 = k21 *Kscalef 
     &                        * dexp(-0.5*(V1-V2+pmf)/kBT) 
                    elseif(deltheta2.ge.xr2 .and. deltheta2.lt.xr3) 
     &              then 
                        Kscalef= kfac1 + (kfac2-kfac1)/(xr3-xr2) 
     &                      * (deltheta2-xr2) 
c                         Kscalef = 1.d0 
                        krate21 = k21 *Kscalef 
     &                      * dexp(-0.5*(V1-V2+pmf)/kBT) 
                    elseif(deltheta.ge.xr3 .and. 
     &                 deltheta.lt.xr4) then 
                       Kscalef=kfac2-(kfac2-kfac1)/(xr4-xr3) 
     &                        * (deltheta-xr3) 
c                       Kscalef = 1.d0 
                       krate21 = k21 *Kscalef 
     &                        * dexp(-0.5*(V1-V2-pmf)/kBT) 
                    elseif(deltheta.ge.xr2 .and. 
     &                 deltheta.lt.xr3) then 

 133



                       Kscalef= kfac1 + (kfac2-kfac1)/(xr3-xr2) 
     &                        * (deltheta-xr2) 
c                       Kscalef = 1.d0 
                       krate21 = k21 *Kscalef 
     &                        * dexp(-0.5*(V1-V2-pmf)/kBT) 
                    endif 
CCCCCCC 
              maxkrate = max(krate12,krate21) 
              if(maxkrate.gt.5.0e5)then 
                 krate12 = krate12*5.0e5/maxkrate 
                 krate21 = krate21*5.0e5/maxkrate 
              endif   
              if(sc(j).eq.1)then !currently empty 
                    dV = dv1 
                    krate(j) = krate12 
              else  !currently occupied 
                    dv = dv2 
                    krate(j) = krate21 
              endif 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccC 
              dF(j) = dF(j) - kappa(1)*(thetaS-thetaS0(j)) + dV 
              dF(nstator+1) = dF(nstator+1) - dV  
          Enddo 
          torLR = kappa(2)*(x(nstator+1)-x(nstator+2)) 
          dF(nstator+1) = dF(nstator+1) - torLR 
          dF(nstator+2) = dF(nstator+2) + torLR 
ccccccccccccccccccccccccccccccccccccccccccccccc  
          if(debug .eq.1)then          
             write(10,*)x(nstator+1)/ax0, V1,V2 
             write(11,*)x(nstator+1)/ax0,krate(1),pmf 
          endif   
c%%%%%%%%%%%%%%%%%%%%%%%%% 
c update chemical states 
          Do j=1,nstator 
             sumrate = 0.d0 
             R(1) = 0.d0 
             randnum = ran1(idum) 
             do i = 1,maxnts 
                sumrate = sumrate + dt*krate((j-1)*maxnts+i) 
                R(i+1) = sumrate 
c                if(R(i+1).gt.1) then 
c                   write(*,*)'too big dt' 
c                   stop 
c                endif 
                if(randnum.gt.R(i) .and. randnum .le.R(i+1)) then 
                   sc(j) = mod(sc(j),2)+1 
                   tdelay(j) = t 
                   goto 99 
                endif 
             enddo 
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 99       enddo 
c  update trajectories 
          t = t + dt   
          xold = x(nstator+2) 
          do i=1+nstator,2+nstator 
c first generate a random number from a normal gaussian distribution 
             randnum1 = ran1(idum) 
             randnum2 = ran1(idum) 
             randnum = dsqrt(-2.d0*dlog(randnum1)) 
     &            *dcos(2.d0*onepi*randnum2)   
             x(i) = x(i) + DTt(i) * dF(i) + sqDt(i) * randnum 
          enddo 
          if(istep.eq.neq0)then 
             xi = x(nstator+2)  
             ti = t 
          endif 
          if(istep.gt.neq0 .and. (xold-xi).lt.xsamp .and.  
     &           (x(nstator+2)-xi).ge.xsamp)then 
             write(11,55)t-ti,x(nstator+2)-xi 
             xsamp = xsamp + 0.5*onepi 
          endif           
 55       format(2x,4e15.7) 
          if(mod(istep-neq0,nsamp).eq.0 .and. istep.gt.neq0)then 
             Do i = 1,nfree 
                xt(i,icount) = x(i) 
             Enddo 
             Do i = 1,nstator 
                sct(i,icount) = sc(i) 
             Enddo 
             tsave(icount) = t 
             write(2,900)tsave(icount),xt(1,icount), 
     &            xt(nstator+1,icount),xt(nstator+2,icount) 
c             write(2,*)istep,icount,nstep/nsamp 
             icount = icount + 1 
           Endif  
c           if(ipoint .eq.1 .and. itraj .eq.1 .and.istep.gt.neq0  
c     &        .and.istep.lt.1e7  .and. mod(istep-neq0,100).eq.0 )then  
c               write(10,900)t,x(1),x(nstator+1),x(nstator+2) 
c           endif             
 100   continue 
 900   format(2x,4e15.6) 
       write(2,*) 
       write(11,*) 
c      call flush(2) 
       if(debug.eq.1)then 
          stop 
       endif 
cccccccccccccccccc 
       omega(itraj,ipoint) =   
     &     (xt(nstator+1,nstep/nsamp) 
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     &       -xt(nstator+1,1))/(tsave(nstep/nsamp) 
     &       -tsave(1))/2.d0/onepi 
       write(1,*)omega(itraj,ipoint) 
c       write(1,*)xt(3,nstep/nsamp),xt(3,1) 
c        close(10) 
c       close(11) 
 200   continue 
       write(1,*) 
       write(11,*) 
       aveomega(1,ipoint) = 0.d0 
       do itraj=1,ntraj 
          aveomega(1,ipoint) = aveomega(1,ipoint)  
     &           + omega(itraj,ipoint) 
       enddo 
       aveomega(1,ipoint) = aveomega(1,ipoint)/ntraj 
       aveomega(2,ipoint) = 0.d0 
       do itraj=1,ntraj 
          aveomega(2,ipoint) = aveomega(2,ipoint)  
     &        + (omega(itraj,ipoint)-aveomega(1,ipoint))**2 
       enddo 
       aveomega(2,ipoint) = dsqrt(aveomega(2,ipoint)/(ntraj-1.d0))  
       torque(ipoint) = aveomega(1,ipoint) * 2.d0*onepi 
     &          *(1.d0/Dcnst(nstator+2)+1.d0/Dcnst(nstator+1))*kBT        
 300   continue 
       write(1,*) 
       Do i = 1,npoint 
          write(1,*)aveomega(1,i),aveomega(2,i),torque(i)  
       enddo 
       close(1) 
       close(2) 
       close(11) 
c      elapsedtime = etime(telaps) 
C      WRITE(*,*) elapsedtime   
       end   
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
c---------------------------------------------------------------* 
c 
c Random number generator from Numerical Recipes (p. 197). 
c ran1 is used due to its simplicity and speed; however, 
c its ability is to be checked. 
c 
      FUNCTION ran1(idum) 
      INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV 
      REAL ran1,AM,EPS,RNMX 
      PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, 

 136



     & NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS) 
      INTEGER j,k,iv(NTAB),iy 
      SAVE iv,iy 
      DATA iv /NTAB*0/, iy /0/ 
      if (idum.le.0.or.iy.eq.0) then 
        idum=max(-idum,1) 
        do 11 j=NTAB+8,1,-1 
          k=idum/IQ 
          idum=IA*(idum-k*IQ)-IR*k 
          if (idum.lt.0) idum=idum+IM 
          if (j.le.NTAB) iv(j)=idum 
11      continue 
        iy=iv(1) 
      endif 
      k=idum/IQ 
      idum=IA*(idum-k*IQ)-IR*k 
      if (idum.lt.0) idum=idum+IM 
      j=1+iy/NDIV 
      iy=iv(j) 
      iv(j)=idum 
      ran1=min(AM*iy,RNMX) 
      return 
      END 
c---------------------------------------------------------------* 
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