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1. Introduction

Single-molecule fluorescence methods, and in particular single-
molecule fluorescence resonance energy transfer (smFRET),
have provided novel insights into the structures, interactions,
and dynamics of biological systems.[1–11] Since the early days of
smFRET, it has been apparent that the width of a FRET distribu-
tion carries important information about the static and dynam-
ic heterogeneity of biomolecules.[12, 13] Nonetheless, most
single-molecule experiments only made use of the mean
values of FRET distributions,[9, 14, 15] partially because the mean
values were easier to obtain and more straightforward to inter-
pret. Early efforts to interpret the widths of FRET histograms
were limited to establishing lower bounds for histogram
width, either through computational methods[12, 13, 16–18] or well-
characterized static controls.[19]

Pioneering works[1–3] have laid a statistical framework for in-
terpreting not only the widths, but also the overall shapes of
FRET histograms. These approaches, which we collectively call
probability distribution analysis (PDA) methods, are based on
the premise that shot-noise-limited FRET histograms—the
widths of which are determined solely by photon statistics—
can be recapitulated using the distributions of photon counts
obtained directly from experimental data. Indeed, these meth-
ods were able to predict the exact shapes of FRET histograms
under typical experimental conditions. These methods were
subsequently extended to account for the shapes of single-
molecule fluorescence anisotropy histograms[20] and to de-
scribe mixtures of multiple, static FRET species.[2] In the latter
case, a particularly useful application was the ability to extract
the underlying distribution of static FRET values in a nonpara-
metric fashion, by using a maximum-likelihood estimator ap-
proach. However, no method has yet been detailed to account

for the shape of smFRET histograms for species dynamically in-
terconverting between multiple FRET states, despite the fact
that such a method has previously been suggested.[1] While
refs. [1, 21] have applied a variant of the PDA method to study
the conformational dynamics of biomolecules (DNA hairpin
and LacY, respectively), the details of such methodology have
not been published. Dynamic conformational transitions are
associated with many biomolecular functions.[22] While smFRET
experiments on diffusing molecules have been important for
our understanding of such systems, analysis of these experi-
ments has generally been limited to time traces[4, 6, 23] or correla-
tion-based analyses.[4, 24–27] Time trace analysis of diffusing
single molecules is mainly qualitative in nature due to the low
information content available in short fluorescent bursts (with
duration of �1 ms for an average globular protein or a short
DNA fragment). Correlation analysis, on the other hand, pro-
vides quantitative information about the timescales of confor-
mational fluctuations; however, its interpretation is often com-
plicated by its strong model dependence, and by the presence
of optical artifacts.[28]

Probability distribution analysis (PDA) is a recently developed
statistical tool for predicting the shapes of single-molecule
fluorescence resonance energy transfer (smFRET) histograms,
which allows the identification of single or multiple static mo-
lecular species within a single histogram. We used a general-
ized PDA method to predict the shapes of FRET histograms for
molecules interconverting dynamically between multiple
states. This method is tested on a series of model systems, in-
cluding both static DNA fragments and dynamic DNA hairpins.
By fitting the shape of this expected distribution to experimen-
tal data, the timescale of hairpin conformational fluctuations
can be recovered, in good agreement with earlier published

results obtained using different techniques. This method is
also applied to studying the conformational fluctuations in the
unliganded Klenow fragment (KF) of Escherichia coli DNA poly-
merase I, which allows both confirmation of the consistency of
a simple, two-state kinetic model with the observed smFRET
distribution of unliganded KF and extraction of a millisecond
fluctuation timescale, in good agreement with rates reported
elsewhere. We expect this method to be useful in extracting
rates from processes exhibiting dynamic FRET, and in hypothe-
sis-testing models of conformational dynamics against experi-
mental data.
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Herein, we use an extension of the PDA method to predict
the shapes of smFRET distributions for molecules dynamically
interconverting between distinct FRET states, described using
kinetic schemes of arbitrary complexity. Specifically, we inter-
rogate a biologically relevant model for conformational dy-
namics: a simple two-state system in which a molecule sto-
chastically interconverts between two FRET states. This method
uncovers quantitative information about FRET fluctuations di-
rectly from smFRET experimental data, therefore providing a
novel tool for studying the conformational dynamics of protein
and nucleic acid complexes. We validated this approach by
using Monte Carlo simulations of two-state systems, as well as
through experiments on DNA hairpins, which served as a
model system for biomolecular dynamics. We further used this
method to recover the conformational-fluctuation timescale of
the fingers subdomain in the DNA polymerase I of Escherichia
coli ; our results were in excellent agreement with timescales
determined using different methods, thus validating the PDA-
based approach.

2. Results and Discussion

2.1. Theory

FRET is a photophysical interaction (a nonradiative transfer of
excited-state energy from a fluorophore to a suitable chromo-
phore) that reports on the proximity of two sites within a bio-
molecule or a complex of biomolecules. Typically, each of the
sites is labeled with one of two different probes, which act as
either the FRET donor (D) or acceptor (A). Experimentally, the
FRET efficiency is generally defined as the number of photons
detected in the acceptor emission channel over the total
number of detected photons over time; in studies on diffusing
molecules, the number of photons involved typically refers to
a single fluorescent burst (i.e. the spike in the fluorescence
photons that is observed when a fluorescent molecule moves
in and out of the detection volume). This apparent FRET value,
or proximity ratio, is defined as E* = (BA + FA)/N, where FA is the
number of photons (excluding background) detected in the
acceptor-emission channel, BA is the background count in the
acceptor-emission channel, and N is the total number of pho-
tons detected in both donor- and acceptor-emission channels.
The proximity ratio is distinct from the accurate FRET efficiency
due to several factors: the presence of background and spec-
tral crosstalk, as well as differences in the detection efficiency
and quantum yield between donor and acceptor fluorophores.
The background contribution arises primarily from scattering
of the incident laser light off water molecules (Raman scatter-
ing).[29] Some of the crosstalk contribution arises from the frac-
tion of donor fluorescence emitted at the acceptor-emission
channel (hereafter termed “leakage”); moreover, some of the
acceptor fluorophores will be directly excited by the donor-ex-
citation laser (hereafter termed “direct excitation”). Differences
in the detection efficiencies and quantum yield of the fluoro-
phores will influence the proportion of photons detected in
each channel, therefore directly affecting the value of the prox-
imity ratio. While it is possible to correct for these effects to

obtain accurate FRET values,[30] most smFRET experiments are
concerned only with relative FRET changes, the interpretation
of which is not typically complicated by these artifacts. As
such, the proximity ratio, which we focus on herein, is a more
common measure of relative distance changes in biomole-
cules.[1, 12, 31]

We build the theory on the formalism laid out in ref. [3] , in
which the theoretical distribution of the proximity ratio, E*,
can be calculated as [Eq. (1)]:

PðE*Þ ¼
X

all FD ;FA ;BD ;BA yielding E*
PðFD; FA; BD; BAÞ ð1Þ

which is a simple sum over the probabilities of all combina-
tions of FD, FA, BD, and BA yielding the desired E* value. Here, FX

is the number of photons detected in the X-emission channel
(not including background photons) and BY is the background
photons arising during the molecular transit and detected in
the Y-emission channel. E* is calculated as [Eq. (2)]:

E* ¼ BA þ FA

BD þ BA þ FD þ FA
¼ BA þ FA

BD þ BA þ F
¼ BA þ FA

N
ð2Þ

where F is the total number of fluorescence photons arising
from the molecule (and not from the background), and N is
the total number of photons in a burst (including background).
To extend this analysis to multiple molecular states, we gener-
alize the photon counts to include contributions from each
state (i) occupied by the molecule [Eq. (3)]:

E* ¼ BA þ
P

ai

BD þ BA þ
P

di þ
P

ai

¼ BA þ
P

ai

BD þ BA þ
P

fi

¼ BA þ
P

ai

N

ð3Þ

where fi is the fluorescence photon count while the molecule
is in state i, and di and ai are the subsets of these photons de-
tected in the donor and acceptor channels, respectively. We
can then rewrite Equation (1) as [Eq. (4)]:

PðE*Þ ¼
X

all ðBAþ
P

aiÞ=N¼E*

Pð~a;~d; BD; BAÞ ð4Þ

where ~x is a vector of all photon counts xi, for all possible
molecular states i.

The background in single-molecule experiments on freely
diffusing molecules is Poisson-distributed with respect to time
and independent of emission from the fluorescent particle
[Eq. (5)]:[1, 27]

PðBg T ; rg

�� Þ ¼ ðrgTÞBg e�ðrgTÞ

Bg!
ð5Þ

where rg is the rate of background in the Y-channel and T is
the burst duration. We can thus rewrite Equation (4) as
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[Eq. (6)]:

PðE*Þ ¼
X

all ðBA

P
aiÞ=N¼E*

Pð~a;~dÞ � PðBD T ; rDÞ � PðBA T ; rAÞ � PðTÞjj ð6Þ

where P(T) is the distribution of burst durations.
Although we do not know the joint distribution Pð�a; �dÞ of all

ai and di, we can simplify the expression by assuming the total
photons emitted in each state, fi, are known. In this case, the
values of ai each follow a binomial distribution,[1, 3] with their
means set by the FRET efficiency of each state, Ei [Eq. (7)]:

PðE*Þ ¼
X

all ðBA

P
aiÞ=N¼E*

Ym

i¼1

ðPðai fi; EiÞ � PðfiÞÞj
" #

�

PðBD T; rDÞ � PðBA T ; rAÞ � PðTÞjj

ð7Þ

where m is the number of states, and [Eq. (8)]:

Pðaijfi; EiÞ ¼
fi

ai

 !
ðEiÞai ð1� EiÞfi�ai ð8Þ

is the binomial distribution describing the probability of de-
tecting ai photons in state i, where fi total fluorescence pho-
tons have been emitted.

The joint distribution of all fi is not directly measurable, but
each fi can be expressed as a function of known distributions
by making the simplifying assumption of uniform excitation in-
tensity. Compared with approaches incorporating more realis-
tic spatial brightness functions,[32] this assumption decreases
the variance of photon counts assigned to each FRET state,
and therefore decreases the width of the FRET histogram.
However, it does not affect the means or relative occupancies
of each state in the histogram (the features to which our mini-
mization function is most sensitive), and is much less computa-
tionally expensive. As a result, this method is rapid and ach-
ieves good agreement between the expected and predicted
distributions (Figure 2).

Under this assumption, the total number of fluorescence
photons fi arising from each state follows a Poisson distribu-
tion with a mean proportional to the state’s brightness, bi, and
to the time spent in that state, ti. Estimating the distribution
of F by incorporating the experimental distribution of photon
counts, P(F) where F = N�BA�BD,[3] and assuming we know the
joint distribution of all ti values, the distribution of fi can then
be reduced to a simple multinomial [Eqs. (9) and (10)]:

P E*ð Þ ¼
X

all BAþ
P

aið Þ=N¼E*

Ym

i¼1

P ai fi; Eijð Þ � P fi F;~t;~b
���

� �h i( )
�

P ~t Tjð Þ � P BD T ; rDjð Þ � P BA T ; rAjð Þ � P T ; Fð Þ

ð9Þ

P fi F;~t;~b
���

� �
¼ F!ð Þ

Ym

i¼1

ti=
P

bitið Þð Þfi

fi!

� �( )
ð10Þ

where we replace P(T) with the joint distribution P(T,F), since
the terms are non-independent and can be obtained jointly
from the experimental data. Herein we assume that all states
have equal brightness, a good assumption for the fluorophores
and experimental setup used. We also note that the effects of
brightness on the PDA method have been treated in depth
elsewhere.[2, 20]

The dwell-time distribution of times spent in each state,
Pð~t Tj Þ (see Figure 1 A), can be determined based on the posit-
ed kinetic model and the known experimental distribution of
burst durations, P(T). We note that while the dwell-time distri-
bution Pð~t Tj Þ is analytically solvable in simple (i.e. two-state)
cases,[18] we advocate a numerical approach, where Pð~t Tj Þ is
determined using a Monte Carlo simulation of molecular tran-
sitions given the experimental P(T) ; such an approach allows
the evaluation of systems with kinetic schemes of arbitrary
complexity.

2.2. Determining the Dwell-Time Distribution

To implement a Monte Carlo determination of Pð~t Tj Þ, we need
to consider the rates of interconversion between each set of
states, and the equilibrium occupancy of each state. For a bio-
logical molecule with m interconverting states, where the tran-
sition from state i to state j occurs with a single-exponential
rate kij, and this rate is independent of the states previously oc-
cupied by the molecule (i.e. a “memoryless” system), the kinet-
ic fluctuations of the molecule represent a continuous-time
Markov process.[33] Defining the m � m ij-th rate matrix Q as the
matrix of rate constants qij, the vector containing the equilibri-
um frequencies of each state, p, can be calculated as [Eq. (11)]:

pQ ¼ 0 where � qii ¼
X

i 6¼j

qij;
X

pi ¼ 1 ð11Þ

For any given molecule, the probability that it enters the
volume while in state i is therefore equal to the i-th element of
p. And, since the transition to any other state j is memoryless
and occurs with rate constant qij, the waiting time distribution
P(tij) for a transition into any state j is given by a single
exponential distribution [Eq. (12)]:

PðtijÞ ¼ qije
�qij t ð12Þ

2.3. Implementation

While it is possible to implement PDA using a precise calcula-
tion of the proximity ratio histogram by considering all possi-
ble variable combinations,[2, 3] we based our implementation on
the Monte Carlo method of Nir et al.[1] . We evaluated Equa-
tion (9) using a Monte Carlo approach taking into account the
experimental distribution of P(T,F). For simplicity, we ignored
the negligible contribution of background in our measure-
ments (typically <4 kHz, corresponding to a signal-to-noise
ratio >10). It has been previously shown that a background of
<6 kHz for typical single-molecule FRET confocal measure-
ments has only a marginal effect on the FRET histograms[1]
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(see also the Supporting Information, Figure S-2). If needed, a
background contribution can be included as suggested in
ref. [1] .

This algorithm produces a predicted E* histogram using the
following approach:

1) Choose an oversampling factor K (typically K = 5) and realis-
tic initial kinetic parameters.

2) Repeat for each collected burst :
3) Repeat K times:
4) Determine ~t by drawing from Pð~t Tj Þ using Monte

Carlo simulation of the kinetic model given the kinetic pa-
rameters and P(T,F).

5) Determine the number of photons fi in each state by
drawing from the multinomial distribution PðfijF;~t; b

*

Þ.
6) For each state, determine the photons emitted, ai, by

drawing from the binomial distribution Pðai fi; Eij Þ.
7) Add the value Sai/F to the E* histogram.
8) Divide the final E* histogram by K.
9) Refine the kinetic parameters using the gradient descent

method and return to step (2) unless successive parameter
estimations are different by less than a given tolerance
(typically <0.1 % of the expected parameter value).

The Ei value in step (6) can be “broadened” by replacing the
static Ei value in step (6) with a random variable drawn from a
Gaussian distribution with a given mean, Ei, and standard devi-
ation, si. This broadening was necessary to account for the
heterogeneity observed in experimental measurements of
double-stranded DNA.[1, 3] The kinetic parameters obtained at
the end of step (9) represent the best approximation to the
actual kinetic rates, given the proposed kinetic model.

To calculate the goodness of fit in our models, we use the
reduced chi-squared statistic suggested by Antonik et al.[3]

[Eq. (13)]:

c2
r ¼

1
n�m

Xn

i¼1

FreqðXiÞ � FreqMðXiÞ½ �2
FreqðXiÞ

ð13Þ

where m is the number of adjustable model parameters, n is
the total number of nonzero bins, and Freq and FreqM repre-
sent the frequency of data falling into bin i in either the data
or prediction, respectively, and we include only those bins con-
taining at least one data point. A perfect fit corresponds to
cr

2 = 1. To fit our data, we use minimization of cr
2 using a

simple gradient-descent algorithm.[34] We chose this algorithm
due to its implementation simplicity. We also note that the
choice of minimization algorithm is not crucial for the PDA ap-
proach; moreover, better and faster algorithms can easily sub-
stitute the gradient-descent algorithm used here.

To provide a measure of the uncertainty of the fitting pro-
cess, we repeated each fitting procedure five times and report-
ed the standard deviation value of each fitted parameter. We
note that a more accurate measure of the uncertainty on each
parameter value can be obtained by considering the model

Figure 1. A) Monte Carlo simulations were used to generate distributions of
dwell times, P(tijT), for a two-state kinetic model. From left to right:
1) Simple two-state kinetic model, with the two states centered at E1 and E2,
respectively; k1 = transition rate from state 1 to state 2; k�1 = transition rate
from state 2 to state 1. 2) Example time trace showing interconversions be-
tween the two states within a burst duration T. 3) ti is the total time spent
in state i, where Sti = T. The ratio ti/T gives the proportion of time within a
burst spent in state i. 4) Histogram of dwell times in the first state, P(t1jT),
was constructed by binning the t1/T value for each burst. B) Distributions of
dwell times [P(tijT), where i = 1,2 for a two-state system] obtained using
Monte Carlo simulations (left) and their respective FRET distributions after
considering the shot-noise contribution (right; dark gray histograms).
E1 = 0.4, E2 = 0.6, k1 = k�1. For brevity, only the distributions of dwell times in
the first state, P(t1jT), are plotted; the distributions of dwell time in the
second state, P(t2jT), are identical due to the equal forward and backward
rates. From top to bottom, the average dwell time in first state (t1 = 1/k1)
was increased relative to the average diffusion time through the confocal
volume (TD). When the dwell times were much shorter than the diffusion
time (fast dynamics), the two FRET states merged into one shot-noise-limited
peak (e.g. t1/TD = 0.001; solid black line: shot-noise-limited peak with E = 0.5,
s= 0). On the other hand, when the dwell times were much longer (slow dy-
namics), the two states appeared as two well-resolved shot-noise-limited
FRET peaks (e.g. t1/TD = 10; solid black lines: two separate shot-noise-limited
peaks, E1 = 0.4, s1 = 0 and E2 = 0.6, s2 = 0).
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objective function over the space of the model parameters ;
such plots are generated in a later section (Figure 3).

2.4. Detectable Dynamic Timescales

To illustrate the effect of dynamics on the shape of the E* his-
togram, we first considered a simple two-state kinetic system
(Figure 1 A-1) in which a molecule fluctuates between FRET
states E1 and E2 at forward and reverse rates k1 and k�1, which
gives rise to fluctuations in FRET over time (Figure 1 A-2). We
used a Monte Carlo method to calculate the distribution of
times spent in each FRET state, P(t1,t2jT) = Pð~t Tj Þ, where ~t is
the joint distribution of t1 and t2 (Figure 1 A-3,4).

Figure 1 B illustrates the different Pð~t Tj Þ achieved for differ-
ent kinetic rates and dwell times, where t1 = t2 = 1/k1 = 1/k�1

(left : light gray histograms), and their effect on the resulting
proximity ratio histograms, P(E*) (right: dark gray histograms).
To generate the Pð~t Tj Þ distributions, we assumed a uniform
distribution of burst durations, T =t1 + t2 = 1 ms. To generate
the P(E*) distributions, we assumed all bursts had the same
number of photons, F = 100, and that the distribution was
shot-noise limited [Eq. (9)] . While in our actual implementation
neither burst duration nor photon count are assumed to be
fixed [Eq. (9)] , here we make these assumptions just for the
purpose of generating Figure 1 B. From these simple examples
(Figure 1 B), it is apparent that Pð~t Tj Þ plays an important role
in determining the shape of the final FRET distribution. In the
limit of short dwell times, the two states fluctuate so fast that
they appear as a single, shot-noise-limited state with inter-
mediate mean E* (top panel ; compare dark gray histogram
with the gray line). As the dwell time increases, this peak
broadens, eventually splitting into two distinct peaks which, in
the limit of very long dwell times, are themselves shot-noise-
limited (bottom panel).[35] We note that the PDA method is
most sensitive when 0.01 ! (tr/TD) ! 10, where TD is the average
dwell time in the confocal volume (see the Supporting Infor-
mation, Figure S-3). To achieve the highest sensitivity using the
PDA method, one can tune the value of TD to match the range
of the conformational rates to be explored. This can be accom-
plished by increasing the size of the confocal spot, by using
polyacrylamide gels, or by changing the viscosity of the sur-
rounding medium.[4]

2.5. Comparison with smFRET Simulations

To validate the PDA approach, we first performed Monte Carlo
simulations of diffusing single molecules (see the Experimental
Section). In particular, we simulated molecules with either one
or two states, and with different mean FRET values and rates
of interconversion. We then used PDA to fit the simulated data
using either a one- or two-state model and extracted both the
kinetic parameters and a cr

2 value. We found excellent agree-
ment between the original simulation parameters and the fit-
ting results (Figure 2): the cr

2 values for all fits were close to 1,
which indicated a good fit to the data in all cases. For single-
state systems and two-state systems with equal forward and
backward rates (Figure 2 A,B), the fitted parameters were well

within 2 % of the original simulation parameters. For the two-
state systems with differing forward and backward rates (Fig-
ure 2 C), the mean values of the fitted parameters were up to
�20 % away from the original parameters, but still within error
of the fitted parameters in all cases.

Our steepest-descent minimization algorithm minimizes the
sum of squared error (SSE) between the data and the PDA pre-
diction over a significant parameter space [Eq. (14)]:

SSE ¼
X

i¼all bins

FreqðXiÞ � FreqMðXiÞ½ �2 ð14Þ

SSE was chosen over cr
2 because it can be calculated using

even those bins without any data points, and therefore pro-
vides a more stable minimization method in dealing with large
differences between the data and the PDA prediction. A pa-
rameter minimization surface for a two-state dynamic system
(E1 = 0.4, E2 = 0.6, and 1/k1 = 1/k�1 = 1 ms) is shown in Figure 3 A
(which corresponds to the middle panel of Figure 2 B), where a
minimum corresponding to best-fit rate parameters is easily
identifiable. In some other cases, the SSE surface might be flat.
This indicates the presence of a degeneracy problem in which
many sets of parameters are equally good at minimizing the
SSE (see Figure 3 B as well as the rightmost panel of Fig-
ure 2 C). Due to the stochastic nature of our PDA implementa-
tion, each run of the minimization routine will return slightly
different results. The standard deviation obtained from these
repeated fittings can be used as a measure of the certainty of
the fitting procedure. When the SSE surface has a clear mini-
mum, repeated PDA runs will yield a tight distribution of fitted
parameters; when the SSE surface is flat, however, repeated
PDA runs will stop at different points along the basin of the
surface, which increases the variance in the fitted parameters.
We can therefore use large standard deviations on fitted pa-
rameters as an indicator of a flat SSE surface, with the standard
deviation itself providing an index of confidence in the fitted
parameters.

2.6. A Static Control : Double-Stranded DNA

To further validate this approach, we analyzed two DNA sam-
ples using PDA: a short double-stranded DNA, and a dynamic
DNA hairpin.

Figure 4 A shows the comparison between the PDA predic-
tion and the experimental FRET distribution obtained for the
T1-Cy3B,B18-ATTO647N double-stranded DNA sample. The experimen-
tal FRET distribution is �1.8-fold wider than the prediction of
the single-FRET state model (see the Supporting Information,
Figure S-4, sexperimental = 0.061, sshot noise = 0.034), consistent with
refs. [1, 3] , which reported similar widening for double-strand-
ed DNA samples. In ref. [1] , the discrepancy between the ex-
perimental and shot-noise-only histograms was accounted for
by assuming a quasi-static Gaussian distribution of distances
with a standard deviation of 1.6 �, in good agreement with
the 2 � we obtained for our sample. This analysis helped us
determine the baseline broadening beyond shot noise expect-
ed for a typical double-stranded DNA molecule.
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2.7. Conformational Dynamics in a DNA Hairpin

We next used PDA to analyze the conformational fluctuations
in a DNA hairpin (Figure 4 B,C). DNA hairpins interconvert sto-
chastically between a folded and an unfolded conformation
(Figure 4 B). In addition to the broadening beyond shot noise
caused by this interconversion, each of the two conformations
may be assumed to demonstrate broadening beyond shot-
noise similar to a simple, double-stranded DNA. Assuming a
two-state model, with standard deviations of 2 � in each state,
the experimental FRET distribution was best fitted with folding
and unfolding rates of 310(�20) and 280(�30) s�1, which gave
a total reaction time tR = 1/(kfold+kunfold) = 1.7(�0.1) ms. This
result is in good agreement with the 0.5–1 ms reaction time
obtained in previous studies on the same hairpin using correla-

tion-based analyses.[4, 5] The fluctuations are unlikely to be due
to photophysical processes, since these would have been visi-
ble as an additional process in our static DNA control (see Fig-
ure 4 A), for which we used the same excitation intensities and
fluorophores as in the dynamic hairpin. Moreover, triplet-state
fluctuations for our acceptor (ATTO647N) are not significant
(only a 6 % triplet fraction with a lifetime of �2 ms), and there-
fore do not affect the timescale of the dynamics observed for
the hairpin DNA.

We note that although the source of broadening in double-
stranded DNAs is unknown, this method produced a good fit
to the experimental hairpin data even when we increased or
decreased the broadening by 20 %, which suggests that it is
robust to such sources of broadening (see Supporting Informa-
tion, Figure S-5).

Figure 2. Comparison of Monte Carlo simulations (light gray histograms), PDA fitting results (red lines), and PDA predictions given the original kinetic parame-
ters (black lines). The original simulation parameters and the cr

2 values obtained from PDA predictions made using those parameters are displayed in black
above each panel ; the parameters recovered through fitting and their cr

2 values are displayed in red; some parameters are fixed during fitting to reduce the
number of free parameters. The average diffusion time of the single-molecule simulation was 1 ms. A) Simulations of a one-state system for low (left, E = 0.2),
intermediate (middle, E = 0.5), and high (right, E = 0.8) FRET values. B,C) Simulations of a two-state system (E1 = 0.4, E2 = 0.6, s1 =s2 = 0). The rates of intercon-
version are as displayed on the respective panels. The simulations in (B) have equal forward and backward rates (k1 = k�1), while those in (C) have faster for-
ward rates (k1>k�1).
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An important feature of PDA is its ability to test the consis-
tency of the observed distribution with a particular kinetic
model (“hypothesis testing”). While our fit was good (cr

2 =

1.17), the predicted distribution also shows signs of systematic
deviation from the data (Figure 4 C); for instance, the two-state
model prediction contains a small peak at E* = 0.55 not ob-
served in the actual data. This could be due to more complex
kinetic schemes, as identified in recent biophysical studies of
DNA hairpins.[36, 37] While some of these behaviors are expected
to occur on timescales too short to be detected by PDA (e.g.
multiple loop orientations in the open conformation), longer-
lived states (e.g. mismatched closed conformations) may be
addressable via PDA by using more complex models and ap-
propriate controls.

2.8. Conformational Dynamics in the Klenow Fragment (KF)
of E. coli DNA Polymerase I

DNA polymerase I is an important enzyme involved in DNA
replication and repair.[38] One of the important characteristics
of this enzyme is its remarkable fidelity, which is in part due to
a series of noncovalent transitions that precede the chemical
step of phosphoryl transfer and serve as kinetic checkpoints
that reject inappropriate substrates early in the reaction path-

way.[39] An important conforma-
tional change is the “fingers-
closing” transition, inferred from
cocrystal structures, in which the
addition of the correct comple-
mentary deoxyribonucleotide
(dNTP) to a polymerase–DNA
(Pol–DNA) binary complex re-
sults in a transition from an
open to a closed conformation,
thus forming a snug binding
pocket around the nascent base
pair (Figure 5 A).

Our previous studies on a bac-
terial DNA Pol I revealed millisec-
ond-timescale dynamics in the
unliganded Pol enzyme.[6] Such
rapid fluctuations were not pre-
viously anticipated based on the
available crystal structures.[40–43]

We postulated that these rapid
motions play an important role
in the fast rejection of the large
number of incorrect nucleotide
substrates encountered by a
DNA polymerase in vivo. The
timescale and the nature of the
conformational fluctuations
made this system an attractive
experimental system for PDA.

To study conformational dy-
namics in the Klenow fragment
(KF) of DNA polymerase I (here-

after Pol I), we analyzed smFRET data obtained using a Pol I
molecule site-specifically labeled with two fluorophores, Cy3B
as the FRET donor and ATTO647N as the FRET acceptor. Char-
acterization of the labeled enzyme has been described else-
where.[6] The placement of the fluorophores allowed the study
of the finger-closing motion through a large change in FRET
(from E*�0.5 in the open state to E*�0.7 in the closed state).

The E* histogram of unliganded Pol I exhibits a broad and
flat distribution, centered on E*�0.6 (Figure 5 B). We have
shown previously that such a distribution cannot be accounted
for either by a single FRET distribution with E* = 0.6, or a super-
position of two shot-noise-limited FRET distributions.[6] We pro-
posed that such broadening originated from interconversions
between the open and closed states, in the form of a classical
two-state kinetic model.

We used a two-state system model to fit the E* histogram of
unliganded Pol I. To reduce the number of free parameters, we
fixed the mean E* and the E* standard deviation of the open
and closed states using the PDA fitting results of the FRET
histograms of the Pol–DNA binary complex (which favors
the open state) and the Pol–DNA–dNTP ternary complex
(which favors the closed state; see Supporting Information,
Figure S-6).

Figure 3. Left : Parameter minimization surface, where each point on the surface represents the goodness of fit
(represented as sum of squared error, SSE; dark blue: low SSE, red: high SSE) given the combination of the param-
eter (X, Y). Here, we illustrate how parameters were optimized using simulated data from Figure 2. The combina-
tions of (X, Y) that correspond to the original simulation parameters are marked by the orange circles. Right: 2D
projection of the parameter minimization surface. A) The parameter minimization surface for a two-state system
with 1/k1 = 1/k�1 = 1 ms forms a deep well around the expected rates. B) For a two-state system with unequal
rates, 1/k1 = 5 ms and 1/k�1 = 10 ms, the parameter space forms a flat and elongated basin around the expected
parameter combination. Such a topographic feature gives rise to many, equally good, fitting results along the
floor of the basin.
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The parameter-minimization surface in Figure 5 C illustrates
the combinations of the opening and closing rates that ach-
ieve the best fit (i.e. minimize the SSE). The best fit is obtained
for opening and closing rates of 189(�23) and 191(�25) s�1, re-
spectively; the minimum is clearly identifiable and localized (as
in Figure 2 A). These rates agree very well with the 166 s�1

opening and closing rates obtained using fluorescence correla-
tion spectroscopy (FCS).[6] The excellent agreement between
the actual and PDA-predicted histograms (Figure 5 B) suggests
that a simple, two-state kinetic model is both adequate and
reasonable in accounting for the dynamics of unliganded KF.

We also used PDA to characterize the Pol–DNA binary com-
plex. We found that the E* distribution could not be accounted
for by a simple model that assumes two static non-intercon-
verting FRET populations (see Supporting Information, Fig-

ure S-7C). This indicates that the binary complex interconverts
between the open and closed conformations, albeit very
slowly (Supporting Information, Figure S-7A; closing rate =

59(�5) s�1, opening rate = 111(�13) s�1). Furthermore, the Pol–
DNA–dNTP ternary complex exhibits a FRET histogram that pri-
marily populates the closed conformation. The 5:1 ratio be-
tween the closing and opening rates obtained using PDA fur-
ther confirms our previous observations (Supporting Informa-
tion, Figure S-7B).[6, 44] However, the PDA method gave an
opening rate of 101(�13) s�1, approximately threefold faster
than the opening rate estimated using values from ensemble
stopped-flow experiments.[6, 44] Such a difference may be due
to the different labeling scheme employed previously,[44] which
may in turn report slightly differently on conformational transi-
tions of the fingers subdomain. The rate difference may also
mean that a simple two-state model is not sufficient to de-
scribe the transitions in the ternary complex. The PDA-based
approach should be important for testing and validating con-
formational models for this system, especially once higher-
resolution single-molecule data become available.

2.9. Comparison with Correlation-Based Analysis

Both correlation-based analysis and PDA can provide informa-
tion about the conformational transitions of biomolecules;
however, since the nature of the processes measured is slightly
different, the kind of information available from each method
is also different. A correlation-based analysis relies on statistical
analysis of fluorescence fluctuations above and beyond the
background noise. To achieve an optimal signal-to-noise ratio,
FCS experiments are rarely performed at the single-molecule
level (i.e. at �100 pm fluorescent analyte given a femtoliter de-
tection volume). Instead, typical FCS experiments are per-
formed in the 1–100 nm range, thus foregoing some of the
benefits of single-molecule methods. The timescale of fluores-
cence fluctuations is recovered by fitting a mathematical
description of the process to the temporal correlation curve.

The main source of fluorescence fluctuations in freely diffus-
ing molecules is molecular diffusion through the confocal
volume. It is often difficult to determine the rates of transition
that occur at a timescale similar to that of diffusion (tr�TD;
where tr is the rate of transition) ; the same problems are en-
countered when the rates of the process of interest overlap
with other processes, such as triplet-state formation. Extraction
of reliable rates for such conditions is difficult and requires
careful characterization of the optical setup and the interfering
processes.

PDA, on the other hand, uses the distribution of photon sta-
tistics obtained from single-molecule FRET experiments. Thus,
the PDA method is most sensitive to conformational transi-
tions with rates similar to the timescale of diffusion (tr�TD) as
such rates provide the largest signal, that is, the largest devia-
tion from a simple shot-noise-limited distribution (see Support-
ing Information, Figure S-3). As a result, the PDA approach is
less sensitive to very fast or very slow dynamics, wherein the
resulting FRET distributions approach the shot-noise limit. The
effects of bleaching, blinking, and triplet-state behaviors can

Figure 4. Comparison of experimental FRET histograms (light gray) and PDA
predictions (black lines) for double-stranded DNA and DNA hairpin. A) The
E* histogram of the T1-Cy3B,B18-ATTO647N DNA (schematic shown as inset;
bp = base pair) was best fitted using a PDA prediction that incorporated a
Gaussian distribution of FRET values [E = 0.48, sE = 0.05(�0.002), cr

2 = 1.22] .
The value of sE = 0.05 translates to a distance change of approximately 2 �
(given R0 = 67 �, determined as in ref. [48]). B) Schematic of a DNA hairpin
fluctuating between the folded (high FRET) and unfolded (low FRET) states.
C) The experimental E* histogram of the hairpin in a buffer containing MgCl2

(5 mm) exhibits a bimodal distribution that can be fitted to a two-state
model with folding and unfolding rates of 310(�21) and 278(�29) s�1

(E1 = 0.25, E2 = 0.86, s1 =s2 = 0.05, cr
2 = 1.17). The experimental E* histogram

was dithered prior to fitting to remove binning artifacts (see ref. [1]).
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be important at times, but there are many methods to identify
them (e.g. FCS), minimize them experimentally (e.g. by using
special buffer components[45, 46]) or, in the case of PDA, remove
them during data analysis.[1]

Another important benefit of PDA over correlation-based
analysis is the use of a Monte Carlo approach in determining

the Pð~t Tj Þ distribution. This approach allows for the incorpora-
tion of arbitrarily complex kinetic models, which cannot always
be represented analytically, in contrast to the interpretation of
FCS curves, which require fitting to well-defined mathematical
expressions.

3. Conclusions

We have demonstrated a straightforward numerical implemen-
tation of PDA for molecules undergoing conformational dy-
namics. In particular, we use a generalized PDA method that
allows for the incorporation of any arbitrary kinetic model of
FRET dynamics. This was accomplished by incorporating the
experimental joint photon count-burst duration distribution,
P(T, F), into the analysis, to calculate the dwell-time distribution
of the molecule in each state using Monte Carlo methods.

In practice, it may not be possible to determine the true un-
derlying kinetic model using only the PDA approach. Translat-
ing a complex molecular mechanism, with multiple states and
rates, into a one-dimensional FRET distribution will inevitably
lead to a degeneracy problem where more than one set of pa-
rameters adequately describe the same final FRET distribution;
indeed, this problem arose previously in the work of Kalinin
et al.[2] when attempting to recover underlying distributions of
static states from E* distributions. As such, PDA is best used
for hypothesis testing, and rejecting, of plausible kinetic
models, rather than deriving an underlying model without any
prior input. The method should also prove useful for extracting
parameters (rates, energies, etc.) by fitting the data to a
preexisting model.

We validated this approach by comparing the PDA predic-
tions to FRET histograms obtained from simulations, as well as
single-molecule FRET experiments on double-stranded DNA
and a dynamic DNA hairpin. Consistent with previous re-
ports,[1, 3] we observed a broadening of the FRET distribution
beyond the shot-noise limit for double-stranded DNA. Applica-

Figure 5. Use of PDA to study the conformational dynamics in unliganded
DNA polymerase I. A) The crystal structures of open Pol–DNA binary com-
plex (PDB file 1L3U) and closed Pol–DNA–dNTP ternary complex (PDB file
1LV5) are illustrated using structural data from Bacillus stearothermophilus
DNA polymerase,[49] a close homologue of Pol I (KF). The structure shown is
a superposition of the binary and ternary complexes showing the closing of
the fingers subdomain upon the addition of matched dNTP to the Pol–DNA
binary complex. The direction of movement of the fingers subdomain from
open to closed is denoted by the dashed arrow. The a-carbon backbone of
the protein is shown in beige, except for the mobile segment of the fingers
subdomain, which is shown in teal in the binary complex and dark blue in
the ternary complex. The DNA is shown in gray. The b carbon atoms of the
two side chains used as fluorophore attachment sites are shown in space-fill-
ing representation; residue 744 (Pol residue numbers) in green (labeled with
Cy3B), and residue 550 in red (labeled with ATTO647N). B) The experimental
E* histogram obtained from unliganded Pol exhibits a broad distribution
that can be fitted using a two-state system (black line) with opening and
closing rates of 189(�23) and 191(�25) s�1, respectively (cr

2 = 1.94). C) A pa-
rameter minimization surface (top) and its 2D projection (bottom) for panel
(B) [dark blue: low SSE (good fit) ; red: high SSE (bad fit)] . The minimum SSE
(best fit ; shown as orange circles) is achieved when 1/kopen = 1/kclosed�4–
6 ms.
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tion of this method to the DNA hairpin uncovered millisecond
folding/unfolding rates, in good agreement with rates previ-
ously reported for the same hairpin using different experimen-
tal approaches.[4, 5]

Although our hairpin data were consistent with a two-state
model via the chi-squared metric, we also observed a system-
atic deviation between our data and the model. Recent studies
of DNA hairpin dynamics have identified putative intermedi-
ates in the folding pathway,[36, 37] which could explain this dis-
crepancy. However, we caution that the detection of such in-
termediates by PDA should involve the use of novel experi-
mental controls, and not simply an increase in the number of
free parameters. The number of fitting parameters increases
nearly quadratically with the number of states [see the rate
matrix Q in Eq. (11)] . As a result, a “simple” three-state model
would require at least nine fitted parameters, thus exacerbat-
ing the parameter degeneracy problem. To circumvent this
“parameter explosion,” the number of parameters must be
kept to a minimum by making reasonable simplifying assump-
tions and, where possible, determining the values of these
parameters through independent controls.

It is instructive to compare the PDA results with results ob-
tained using correlation-based approaches, as they provide
complementary information. Once a correlation-based or other
method has established that the FRET heterogeneity arises
from dynamic processes, a PDA-based model can be used to
extract rates, and hypothesis-test a proposed model. In con-
trast to FCS and other correlation approaches, the PDA-based
approach is most sensitive to conformational transitions
around the timescale of diffusion. Moreover, artifacts such as
the presence of aggregates, which can strongly skew correla-
tion-based analyses, do not significantly affect FRET histograms
and can often be removed with data-filtering methods.

Finally, we used this method to analyze the conformational
dynamics in unliganded DNA polymerase I (KF). Using a simple
two-state kinetic model, we recovered interconversion rates
consistent with those obtained in a previous publication.[6] Fur-
thermore, the goodness of the fit itself (cr

2 near 1) suggests
that this simple model is sufficient to explain the dynamics of
the unliganded polymerase and to provide rate information
about conformational transitions in the case of binary and ter-
nary complexes. Regarding the ternary complex, we observed
rates slightly different from those reported previously, due
either to differences in labeling strategies, or to the inadequa-
cy of a simple two-state model to explain the transitions in the
ternary complex; the latter intriguing possibility may be due to
a complicated conformational landscape for the ternary com-
plex.

Our results demonstrate the utility of PDA in modeling and
quantifying biomolecular dynamics. We expect that the PDA-
based approach will complement other approaches, such as
FCS, to enhance our understanding of the dynamics of biologi-
cal systems. We note that this relatively simple analysis can
also be performed retrospectively on existing single-molecule
FRET data, since the required inputs—the joint distribution of
photon counts and burst durations—are typically preserved in
single-molecule experimental data.

Experimental Section

DNA: Amino-modified oligonucleotides (IBA, Germany) were la-
beled using NHS-conjugated fluorophores according to the manu-
facturer’s instructions, and purified either on a reverse-phase C18
fast protein liquid chromatography (FPLC) column (mRPC C2/C18,
GE Healthcare, UK) or via denaturing PAGE purification. Where nec-
essary, labeled, single-stranded DNA samples were annealed in hy-
bridization buffer [Tris (50 mm, pH 8.0), EDTA (1 mm), NaCl
(500 mm)] . All DNA sequences are listed in the Supporting Informa-
tion, Figure S-1.

DNA Polymerase I (KF): The expression, purification, and labeling of
our doubly labeled Pol I have been described elsewhere.[6, 44] We
used a Pol I derivative labeled at position 550 with ATTO647N and
at position 744 with Cy3B. The specificity of the labeling orienta-
tion was �88 %. Labeled proteins were stored at �20 8C in Tris–
HCl (50 mm, pH 7.5), dithiothreitol (DTT; 1 mm), and glycerol [40 %
(v/v)] . The extent of labeling, calculated from UV spectra, was
�70 %.

Single-Molecule Experiments: Single-molecule measurements were
performed on an alternating laser excitation (ALEX) microscope as
described elsewhere.[4, 6, 15] The excitation powers were 400 and
60 mW for the 532 and 638 nm lasers, respectively. Samples were
analyzed at a concentration of 50–100 pm. The double-stranded
DNA sample was measured in Tris–glycine (TG) buffer (Tris
(25 mm), glycine (200 mm), pH 8.0), while the hairpin sample was
measured in TG buffer with additional MgCl2 (5 mm). The Pol I
sample was measured in 4-(2-hydroxyethyl)-1-piperazineethanesul-
fonic acid (HEPES)–NaOH (40 mm, pH 7.3), MgCl2 (10 mm), DTT
(1 mm), bovine serum albumin (100 mg mL�1), glycerol [5 % (v/v)] ,
and mercaptoethylamine (1 mm).

Simulations of smFRET Experiments: Monte Carlo simulations of
diffusing molecules in confocal microscopy have been de-
scribed.[1, 47] We simulated molecules diffusing through a 3D Gaussi-
an excitation/detection volume. For each type of molecule, we de-
fined its concentration, diffusion coefficient, a set of rates describ-
ing the interconversion between the open and closed states, and a
set of fluorophore-specific parameters (stoichiometry, molecular
brightness, interfluorophore distance). Simulations (written in
C ++ ) were performed using a 1 ms time step, much faster than
diffusion (occurring at the �3 ms timescale) and laser alternation
due to ALEX (10 kHz). The results were analyzed as with the experi-
mental data.

Data Analysis: Single-molecule data (from experiments or simula-
tions) were analyzed using custom software written in LabVIEW
(National Instruments, USA). Fluorescent bursts were separated
from the background by using published burst-search algo-
rithms.[1, 4] For each detected burst, we calculated a range of burst
statistics, including E* (apparent FRET), S (relative stoichiometry),
total photon count due to excitation of the donor, and burst dura-
tion. The PDA algorithm was implemented in MATLAB (MathWorks,
USA).
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