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ABSTRACT Single-molecule FRET (smFRET) has long been used as a molecular ruler for the study of biology on the nano-
scale (~2-10 nm); smFRET in total-internal reflection fluorescence (TIRF) Forster resonance energy transfer (TIRF-FRET)
microscopy allows multiple biomolecules to be simultaneously studied with high temporal and spatial resolution. To operate
at the limits of resolution of the technique, it is essential to investigate and rigorously quantify the major sources of noise and
error; we used theoretical predictions, simulations, advanced image analysis, and detailed characterization of DNA standards
to quantify the limits of TIRF-FRET resolution. We present a theoretical description of the major sources of noise, which was
in excellent agreement with results for short-timescale smFRET measurements (<200 ms) on individual molecules (as opposed
to measurements on an ensemble of single molecules). For longer timescales (>200 ms) on individual molecules, and for FRET
distributions obtained from an ensemble of single molecules, we observed significant broadening beyond theoretical predictions;
we investigated the causes of this broadening. For measurements on individual molecules, analysis of the experimental noise
allows us to predict a maximum resolution of a FRET change of 0.08 with 20-ms temporal resolution, sufficient to directly resolve
distance differences equivalent to one DNA basepair separation (0.34 nm). For measurements on ensembles of single mole-
cules, we demonstrate resolution of distance differences of one basepair with 1000-ms temporal resolution, and differences
of two basepairs with 80-ms temporal resolution. Our work paves the way for ultra-high-resolution TIRF-FRET studies on
many biomolecules, including DNA processing machinery (DNA and RNA polymerases, helicases, etc.), the mechanisms of

which are often characterized by distance changes on the scale of one DNA basepair.

INTRODUCTION

Biological systems studied by single-molecule FRET
(smFRET) are often characterized by distance changes at
the nanometer scale. In DNA replication and transcription,
for example, the characteristic distance scale is one DNA
basepair (1 bp), just 0.34 nm (1). Because the resolution
of SmFRET is fundamentally determined by the noise and
error on the measurement, a complete understanding of all
major sources of heterogeneity and error is required for
studies at this scale.

A fundamental advantage of smFRET is the ability to
resolve sample heterogeneity. A sample may contain static
heterogeneity, i.e., differences between molecules within
the sample (e.g., the sample may contain a mixture of
distinct, noninterconverting species), or dynamic heteroge-
neity, i.e., time-dependent changes of individual molecules
(e.g., conformational changes). In addition to these hetero-
geneity sources related to biomolecular function, the resolu-
tion of measurements is limited by heterogeneity introduced
by experimental noise and error, which must be carefully
investigated to accurately quantify smFRET resolution.

Total internal reflection fluorescence (TIRF) microscopy,
combined with sSmFRET (TIRF-FRET, hereafter tFRET),
allows multiple surface-immobilized molecules to be
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imaged simultaneously, allowing static and dynamic hetero-
geneity to be monitored in complex systems. To charac-
terize the limits of spatial and temporal resolution in
tFRET, we require theoretical predictions for heterogeneity
and robust experimental characterization of the technique
using well-understood standards. Although such character-
ization has been reported for confocal sSmFRET (2-7), to
our knowledge this has never been reported for tFRET:
a significant omission given the general importance of the
method.

A tFRET measurement involves acquisition of a sequence
of images of surface-immobilized molecules (8), followed
by extraction of FRET data by image analysis. This imaging
step adds complexity to the analysis and theoretical descrip-
tion of smFRET heterogeneity compared to diffusion-
based smFRET or surface-immobilized confocal smFRET
measurements, but careful designing and testing of
custom-built analysis software allowed us to minimize the
effects of these complications.

Building on previous work (2—4,9,10), we derived a theo-
retical description of the heterogeneity expected on a tFRET
measurement for a homogeneous, static sample (heteroge-
neity due to experimental sources of noise). We compared
predictions against simulations and experimental data,
considering results for static and dynamic heterogeneity
separately (we term these analysis methods “dynamic
heterogeneity analysis” and “static heterogeneity analysis”,
respectively). We then characterized the current limits of
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spatial and temporal resolution of tFRET. Our analysis
paves the way for measurement of molecular dynamics
within immobilized molecules at timescales inaccessible
to dwell time analysis and for design of experiments
involving multiple static or molecular subpopulations.

THEORY

For a surface-immobilized molecule with constant donor-
acceptor separation excited at constant intensity, the donor
and acceptor fluorescence photon counts are well approxi-
mated by independent Poisson distributions (4), with the
ratio of the mean acceptor to the sum of donor and acceptor
photon counts determined by the accurate (i.e., true) FRET
efficiency,

1
Er = ———— (1)

1+ (RL)6
Ro
where Rp, is the donor-acceptor separation and Ry is the
Forster radius (usually ~5-7 nm (11)).

Emitted photons are collected and focused onto an
electron-multiplying charge-coupled device (emCCD)
camera (12), producing two images containing the point
spread functions (PSFs) of immobilized molecules in the
donor and acceptor emission channels. We measure the
photon counts from the molecular PSFs in the donor and

acceptor emission channels, and calculate the apparent
FRET efficiency,

E=A/N, N =D + A, )

where D, A, and N are the donor, acceptor, and total photon
counts, respectively. E reports on the separation of the
donor-acceptor pair and can be related to E upon applica-
tion of correction factors (8,13). Although derivations
presented here are for apparent (uncorrected) FRET, the
same expressions hold for accurate FRET E7on substitution
of corrected photon counts and variances.

We measure the acceptor photon count upon direct
acceptor excitation (AA) via alternating laser excitation
(14-16), and calculate the stoichiometry S,

D+ A

S =Dt aAxan

3

We use S and AA to select exclusively molecules labeled
with one donor and one acceptor, and to monitor photophys-
ical fluctuations of either fluorophore.

We derived predictions for heterogeneity on a static
homogeneous sample with mean FRET, Ej, in the presence
of the heterogeneity sources inherent to a tFRET measure-
ment: shot noise from stochastic photon emission (12),
background photons and noise due to the electron-multi-
plying gain register (17), read-out noise (12), dark noise
(12), and noise due to finite spatial resolution of the camera
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(pixelation effects) (9,10,18). We use the standard deviation
o(E) of the observed FRET distribution as the metric for
measurement of heterogeneity. Building upon previous
work (2,4,5,9,10), we derived expressions for limiting
heterogeneity in a tFRET measurement based on x*-mini-
mization. For data distributed independently and normally
about their true values (a reasonable assumption for a sample
with constant donor-acceptor separation (4)), this approach
is the maximum-likelihood method (19), and resulting
predictions are approximately the optimal signal/noise
achievable in a measurement.

We modeled the molecular PSF in each channel as
a circular two-dimensional Gaussian (9),

D (i —x0)° + (j — yo)’
Dy = ¢ Y By, @
T 2msp p( 253 b, &
A (i—xo)2+(/—yo)2
Aj; e By, 5
Y 2w, Xp( 253 + B )

where (i,j) are the pixel coordinates; (xo, yo) is the position
of the molecule; D;; D, and A;; A are the photon counts for
a single pixel and for the entire PSF, in the donor and
acceptor channels respectively; s, and s4 are the widths of
the PSF in the donor and acceptor channel; and Bp and By
are the expected background levels in the donor and
acceptor channels.

We performed x*-minimization (9,10) in the donor and
acceptor channels for Eqs. 4 and 5, and performed error
propagation (5,20) for Eq. 2, to obtain an expression for
a(E) (see the Supporting Material). (For the full theoretical
prediction, see Eq. S21 and Eq. S22 in the Supporting
Material.)

Assuming that, where the magnitudes of shot noise and
background noise are similar, g(E) is well approximated
by interpolation between the separate results for high photon
counts and high background, and neglecting pixilation
effects (9), we obtained an analytic expression for o(E),

’Ey(1 — E, 47
o) = O A g+ i), ©

where E is the mean apparent FRET value; b and b, are
the observed standard deviations (photons per pixel) of the
background noise in each channel; a is the pixel size; and
fc is the excess noise factor (~ \/5), accounting for noise
introduced by the emCCD (17).

We also derived predictions of ¢(E) for aperture pho-
tometry, a commonly used photon-counting method
(8,21-23), wherein a small aperture is placed around a mole-
cule, and the total within-aperture photon count is measured.
Pixels outside the aperture are used to measure local back-
ground. The prediction for limiting heterogeneity using
aperture photometry is given by Eq. S22 in the Supporting
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Material. An investigation of the photon-counting accuracy
of different photon-counting methods is included in the Sup-
porting Material.

MATERIALS AND METHODS
DNA

We used dsDNA FRET standards labeled with a donor fluorophore, Cy3B
(GE Healthcare, Little Chalfont Buckinghamshire, UK) and acceptor fluo-
rophore, ATTO647N (ATTO-TEC, Hannover, Germany) (see Fig. 1 and see
sequences in the Supporting Material). The ssDNAs were prepared by
automated synthesis (IBA, Munich, Germany), labeled with fluorophores,
and purified using denaturing polyacrylamide gel electrophoresis. The

T1B16

15bp |

T1B18INT /@\

.
.
.
.
.
- '

< | ————
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FIGURE 1 DNA FRET standards used for heterogeneity analysis. D,
donor fluorophore; A, Acceptor fluorophore; B, biotin. TIB16, T1B17,
T1B18: 15-, 16-, and 17-bp donor-acceptor separation, respectively, with
an end-labeled donor, and an internally labeled acceptor. TIBI18GC: 17-
bp donor-acceptor separation, sequence adjacent to donor changed to
CCG, as shown. TIBISINT: 17-bp donor-acceptor separation, internally
labeled donor, modified sequence as shown. Full sequences included in
the Supporting Material.
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ssDNAs were annealed to produce final dsDNAs. Labeling at the 5’ end
was to a 5’-amino-C6; internal labeling was to an amino-modified-dT.

smFRET data acquisition

Our experimental apparatus has been previously reported (24) and is pre-
sented in detail in the Supporting Material. Briefly, an objective-type TIRF
microscope (24) was used to excite surface-immobilized dsDNAs at 532
nm (donor excitation) and 635 nm (acceptor excitation), using alternating
laser excitation (14). Fluorescence emission was imaged using an emCCD
camera (Andor Technologies, Belfast, Northern Ireland), with pixel size
measured as 94 nm. A motorized xy-scanning stage (MS-2000; ASI Imaging,
Vista, CA) was used to control the coverslip position relative to the objective.

Simulations

Monte Carlo simulations of surface-immobilized fluorescent molecules
included the effects of shot noise, electron-multiplying gain, digitization
noise, pixelation noise, and Gaussian background noise. For results in the
main text, we simulated isolated immobilized molecules, neglecting
complications due to random PSF overlap. This approximation is supported
by results presented in the Supporting Material for multiple randomly
distributed surface-immobilized molecules, which showed that our filtering
algorithm (discussed below) is effective at excluding the effects of PSF
overlap. Simulated PSFs were modeled as circular two-dimensional
Gaussian PSFs (Eqs. 4 and 5). For comparison to theory, mean background
level B = 129 photons and background noise b = 2.9 photons was used in
both channels; and sp, and s, were 132 nm and 150 nm, respectively, match-
ing typical experimental values. For comparison to experiment, all simula-
tion parameters were chosen to match the experimentally observed mean
values for each dataset.

Data analysis: image analysis

Image analysis was carried out using custom-built software (see the
Supporting Material; this software will be released to the community).
Briefly, molecules were automatically identified by convolution of an
averaged image of the first five recorded frames with a Gaussian kernel,
and selection of above threshold pixels (18,25). Photon counts in each
channel were measured by fitting molecular PSFs with an elliptical two-
dimensional Gaussian (26),

2 /2

X y
eXp ﬁ + ﬁ
X y

o By, 7
T 2msesy + Bu @

where M;; and M indicate the expected photon count for a single pixel and
for the entire PSF, respectively; and B, is the expected background level.
The values y' and x’ are the pixel coordinates in the coordinate system
aligned to the major axis,

/

Yy = (i — x)sinf + (j — yo)cos#,
and the minor axis,

/

X' = (i — xo)cosf — (j — yo)sind,

of observed elliptical PSF, where (xq,y) is the expected position of the
molecule, (ij) are the pixel coordinates, and @ is the angle between the
(i) and (¥',y") coordinate systems. The values s, and s, are the PSF widths
along each elliptical axis. Recent work (27) showed that fitting to molecular
PSFs using a Gaussian model ignores ~40% of a PSF’s photons, mainly
those contained in its power-law tail, which is ignored or treated as back-
ground by the Gaussian model. However, the Gaussian model is still appro-
priate for FRET measurements because the mean of the FRET ratio is
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unaffected by the addition of a fixed fraction to the photon counts. Equation
6 remains valid as an estimator of FRET heterogeneity for Gaussian profile
fitting, but in principle, if the 40% extra photons could be measured and
included in the photon count entirely uncontaminated by real background
(a nontrivial task), this ideal situation could reduce observed FRET hetero-
geneity by 20% (H. Flyvbjerg, Technical University of Denmark, personal
communication, 2010).

Fitting was carried out by ordinary-least-squares (OLS) minimization
(28), i.e., by minimizing,

OLS = X;;(my —M::f)z, ®)

where my; is the observed photon count and Eq. 7 defines M;;.

The apparent FRET E and the stoichiometry S were calculated (Egs. 2
and 3). Only molecules detected in both emission channels (indicating
the presence of a single donor and acceptor) were included in the analysis.
Molecules with close nearest-neighbors were excluded from the analysis.
Data were filtered on a per-frame basis to exclude molecules too dim, too
bright, or with large eccentricity (i.e., a very asymmetric PSF; see
Eq. S23 in the Supporting Material) to minimize errors introduced by over-
lapping PSFs.

Data analysis: heterogeneity analysis

We separately performed two types of analysis: heterogeneity analysis on
the distributions of individual molecules, which we term “dynamic hetero-
geneity analysis”, and heterogeneity analysis on the combined distributions
of many molecules, which we term “static heterogeneity analysis”. Both
include intrinsic heterogeneity due to photon-counting shot noise and
background noise (determined by Eq. 6). In addition to intrinsic heteroge-
neity, dynamic heterogeneity is sensitive to conformational changes of indi-
vidual molecules, whereas static heterogeneity is sensitive to constant
differences between individual molecules; these latter heterogeneity
sources are typically of interest in terms of biomolecular function. Any
additional heterogeneity must arise from unexpected experimental noise
or error, which we term excess heterogeneity. In particular, because we
expect our dsDNA standards to be static and homogeneous, any heteroge-
neity larger than intrinsic heterogeneity may be identified as excess
heterogeneity.

For dynamic heterogeneity analysis, it is important to separate the time-
scales at which different sources of heterogeneity are significant. To achieve
this, we calculated the standard deviation of the difference series (9),
formally known as the Allan deviation (29),

1
V2
where i indicates the index in an n data-point time-series. This time-series
metric is standard in metrology (29,30) and is now finding use in biophysics
(31,32) because, unlike the standard deviation, o, is sensitive only to noise
sources on the timescale of the integration time for a measurement, and not
to longer timescale variations. To test for the presence of longer timescale
variations, we simply recalculated the Allan variance after increasing the
integration time post hoc by software binning (32). Additionally, in the
presence of drifts (i.e., any time-correlated variation in mean value),
the conventional standard deviation is rather counterintuitively dependent
on the duration of the measurement, whereas the Allan deviation is not
(29). In the absence of drifts, the Allan deviation converges exactly to the
conventional standard deviation (29).

For static heterogeneity analysis, because it is not possible to calculate
the Allan deviation when combining data from multiple molecules, we
calculated the standard deviation from the fit of a one-dimensional Gaussian
to the combined histogram of the data.

For heterogeneity analysis of simulated data, the mean and standard
deviation was calculated directly from the raw data rather than from a fit

o (E) = ((Eit1 —Ei)2>1/2’ 9
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to the data. Errors on measurements in all cases represent the standard error
on the mean.

RESULTS AND DISCUSSION
Simulations

To test the validity of our theoretical heterogeneity predic-
tions, we compared them to heterogeneity seen in simulated
data (Fig. 2). For the simplest case where only shot noise is
included, FRET heterogeneity decreases as 1/ VN for
increasing photon count N (see Fig. 2 A, black line). The
heterogeneity has a parabolic dependence on mean FRET,
Ey, reaching a maximum at £, = 0.5 and decreasing for lower
or higher FRET (see Fig. 2 B, black line). If we include back-
ground noise in the predictions, we see similar behavior,
except that heterogeneity is significantly increased for low
photon counts (21% for Ey = 0.5, N = 390 photons) or
extreme FRET values (27% for E; = 0.1, N = 2000 photons),
demonstrating the importance of incorporating background
noise into predictions (see Fig. 2, A and B, red line).

We tested the validity of the assumptions made in deriva-
tion of Eq. 6 (see Theory) by performing numerical
integration of Eq. S10 and Eq. S11 from the Supporting
Material (see Fig. 2, A and B, green line). The numerical
predictions are only 6% larger than those from Eq. 6 at
low photon counts (Ey = 0.5, N = 390 photons), becoming
negligible for large photon counts, showing that Eq. 6 is an
acceptable approximation in most cases. For accuracy, we
compared subsequent experimental results with the numer-
ical expression.

Simulations showed good agreement with theoretical
predictions for all values of FRET and photon counts,
even outside the linear range of FRET (see Fig. 2, A
and B, blue dashed line); however, the simulations showed
constant ~30% excess heterogeneity. This arises because
the PSF fitting algorithm used (OLS minimization) does
not account for shot noise in the image, but assumes
constant Gaussian background noise only (9,27) (see the
Supporting Material). This excess heterogeneity is not
a serious issue for the analysis of experimental data; to
verify that our experimental results agreed with the theoret-
ical description of the system, we simply compared
observed heterogeneity to predictions based on simulation
rather than theory alone, thereby incorporating excess fitting
heterogeneity into our predictions.

Heterogeneity analysis of dsDNA FRET standards
Dynamic heterogeneity analysis

To test whether dynamic heterogeneity present on individual
static molecules (with constant donor-acceptor separation)
was consistent with theory, we carried out dynamic hetero-
geneity analysis for 648 dsDNA molecules labeled with
donor and acceptor at 17-bp separation (T1B18 standard,
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FIGURE 2 (A and B) Simulated datasets (blue line, simulation)
compared to theoretical predictions for a wide range of number of collected
photons N (A) and mean FRET efficiencies E, (B). Theoretical predictions
presented for numerical integration of full theoretical prediction (theory
(exact), green line); for analytic result, Eq. 6, with approximations
discussed in main text (theory (approximate), red line); and for analytic
result, neglecting background noise in the prediction (theory, no back-
ground (approximate), black line). Results in panel A for Eq = 0.50, results
in panel B for N = 2000 photons per molecule per frame. (C) Heterogeneity
analysis for 17-bp donor-acceptor separation dsDNA (T1B18, E, = 0.45).
Results of dynamic heterogeneity analysis (dynamic, black circles) and
static heterogeneity analysis (static, red circles) compared to predictions
from simulation (blue dashed line) and theory (green line). Heterogeneity
o < 0.04 is required for 1-bp resolution (see text). Integration time at acqui-
sition was 20 ms; duration of each measurement, 20 s. Each data point
combines results for all molecules observed for >5 frames at that integra-
tion time in a 648-molecule dataset from 18 combined FOVs. Simulation
parameters matched experimentally observed values at the original 20 ms
integration time. Simulation values for longer integration times, 7, were

calculated as ogim(7) = 04im(20 ms)4/20 ms/7.
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Eo = 0.45; see Fig. 2 C, black circles). When the integration
time (and thus photon count per molecule per frame) is
increased by post hoc software binning, dynamic heteroge-
neity decreases, eventually leveling off toward o4p(E) =
0.01. Consistent with results in Fig. 2, A and B, both exper-
imental results and simulations (see Fig. 2 C, black circles
and blue dashed line, respectively) showed excess heteroge-
neity of 30% compared to theory (due to noise introduced by
the OLS fitting algorithm).

For timescales below 200 ms, we observed good agree-
ment between experimental data and simulation (from 6%
excess heterogeneity at 20 ms up to 14% excess heteroge-
neity at 160 ms), validating our description of the major
sources of heterogeneity affecting a static sample on short
timescales. Furthermore, our results confirm that for time-
scales between 20 and 200 ms, doubly labeled dsDNA
indeed behaves as a static FRET standard, with measured
heterogeneity arising solely from shot noise, background
noise, and the OLS algorithm, rather than dynamic fluctua-
tions of the dsDNA or of the fluorophores (previously a topic
of some debate (2,3,7)).

Above 200 ms, we observed significantly excess hetero-
geneity compared to simulations (see Fig. 2 C; black circles
deviate from blue dashed line, 27% excess heterogeneity at
320 ms, increasing to 119% excess heterogeneity at
1280 ms). We investigated the source of this heterogeneity
by analyzing and manually classifying the individual fluo-
rescence trajectories of all molecules in the dataset
(Fig. 3). Of the 648 molecules, 119 contained too few
frames for analysis of dynamics at the longest integration
times and were excluded from analysis. The remaining
molecules appeared to be separated into three distinct
subpopulations (Fig. 3).

The major population (Fig. 3 A; 227 molecules, 43%),
showed steady FRET, stoichiometry, and fluorescence
intensities for the entire measurement, resulting in small
excess heterogeneity for all measured integration times
(Fig. 3 A). A second population (Fig. 3 B; 191 molecules,
36%), showed steplike fluctuations in FRET coincident
with significant changes in stoichiometry and acceptor
photon count upon acceptor excitation, but without changes
in total photon count under donor excitation. This resulted in
large excess heterogeneity for integration times >200 ms.
A third population (Fig. 3 C; 58 molecules, 11%), showed
slow fluctuations in FRET and total photon count under
donor excitation, again resulting in large excess heteroge-
neity for integration times >200 ms. Finally, 53 molecules
(10%) could not be clearly classified into any of the three
populations.

The first population is consistent with static molecules,
with heterogeneity as predicted by theory. The second
population most likely arises from stochastic photophysical
fluctuations in quantum yield and emission or absorption
spectra of the acceptor, resulting in a transient change in
Ry for the FRET pair (7). The first and second populations
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FIGURE 3 Excess dynamic heterogeneity investigated by manual anal-
ysis and classification of molecular subpopulations. Example of single-
molecule time-traces from 648-molecule dataset used for heterogeneity
analysis (T1B18, Fig. 2 C). A set of 119 molecules with too few above-
threshold frames were excluded from manual analysis. (Top) Apparent
FRET (E, red line) and stoichiometry (S, black line). (Middle) D, donor
excitation donor emission (green); A, donor excitation acceptor emission
(red); AA, acceptor excitation acceptor emission (black); and total emission
during donor excitation, N, (cyan). (Bottom) Observed Allan deviation, o 4p
(black circles); predictions from simulation (blue dashed line). (A) A set of
227 molecules (43%) show stable fluorescence, FRET, and stoichiometry
for the duration of the measurement. (B) A set of 191 molecules (36%)
show steplike E fluctuations with a corresponding sharp change in AA emis-
sion and without a corresponding change in N emission, characteristic of
acceptor photophysics. (C) A set of 58 molecules (11%) show slow E fluc-
tuations with corresponding slow change in total emission intensity under
donor excitation, characteristic of focal drift. Fifty-three molecules (10%)
could not be clearly classified into any of the three populations.

likely reflect two snapshots of the same underlying popula-
tion; if the first population were observed for sufficient
duration, we expect that stochastic photophysical fluctua-
tions would have been observed. These results establish
that acceptor photophysics is the major limiting factor on
FRET resolution at long timescales (>200 ms) for the
FRET pair used in this study.

The most likely source of the third population, which
showed slow fluctuations in FRET and fluorescence inten-
sity, is focal drift (variation in the distance between the
coverslip and the objective lens). Although raw images do
not show visually detectable focal drift, intensity fluctua-
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tions are correlated for a significant minority of the
molecules within affected movies (e.g., 13 of 42 molecules
for the movie presented in Fig. S1 in the Supporting
Material). The fact that intensity fluctuations are not
observed for all the molecules within affected movies
excludes laser power fluctuations as the source of this
behavior. For a stable measurement apparatus and acquisi-
tion times of 20 s, the fraction of molecules affected by focal
drift was relatively small (10%), but clearly, focal drift is
a significant potential source of excess dynamic heteroge-
neity for timescales >200 ms.

Static heterogeneity analysis

To investigate the static heterogeneity present within ensem-
bles of molecules, we carried out static heterogeneity
analysis on the same dataset analyzed via dynamic heteroge-
neity analysis. Static heterogeneity analysis revealed large
excess heterogeneity compared with simulations (see Fig. 2
C; red circles deviate from blue dashed line, from 50% at
20 ms to 634% at 1280 ms). We considered four possible
sources of static heterogeneity to explain these deviations:

1. Intrinsic heterogeneity, which we use to describe the
dynamic heterogeneity on an individual molecule, which
largely agreed with theoretical predictions.

2. Location-dependent heterogeneity, i.e., heterogeneity
across the field of view (FOV), e.g., due to chromatic
aberration or image distortion.

3. Focal drift on combination of data from multiple fields of
view, due to stage drift and manual refocusing between
acquisitions of images for each FOV.

4. Intermolecular heterogeneity, i.e., differences between
individual molecules which remained constant over the
duration of the measurement.

To measure the magnitude of the different heterogeneity
sources, we carried out static heterogeneity analysis on
ensembles of molecules subject to different combinations
of static heterogeneity (Fig. 4). We first measured the
heterogeneity on a single individual molecule in a single
position on the FOV (see Fig. 4 A, single position, a,),
which should reflect only intrinsic heterogeneity. We
next measured the heterogeneity on an individual
molecule moved to multiple different positions within the
FOV using an xy-scanning stage (see Fig. 4 A, multiple
positions, o) which should include intrinsic heterogeneity,
location-dependent heterogeneity, and focal drift. We
also measured the heterogeneity for multiple different
molecules in a single FOV (see Fig. 4 A, multiple molecules,
ogc) which should include intrinsic heterogeneity, loca-
tion-dependent heterogeneity, and intermolecular hete-
rogeneity. Finally, the heterogeneity on multiple molecules
in multiple FOVs was measured (see Fig. 4 A, multiple
FOV, p), which should include all four heterogeneity
sources.

Biophysical Journal 99(9) 3102-3111
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FIGURE 4 Sources of static heterogeneity. (A) Sources of static hetero-
geneity on T1B18 dsDNA standard probed in the presence of different
heterogeneity sources. Single position: static heterogeneity on a single
molecule in a single position on the FOV. Multiple positions: single mole-
cule moved between multiple different positions on the field of view (FOV)
using a scanning stage. Multiple molecules: multiple molecules from
a single FOV only. Multiple FOV: multiple molecules from multiple
FOVs. Measurement parameters: Integration time, 100 ms; duration of
measurement, 5 s; 80 photons/ms per molecule. Results for multiple mole-
cules and multiple FOV from three separately prepared samples, >400
molecules per sample, ~20 FOV per sample. Results for single position
and multiple positions are from 19 molecules, each measured for 5 s in
>4 different positions within an area of ~1 FOV, yielding in total 84
distinct, randomly distributed positions across the FOV. This dataset is
necessarily small, because only molecules within a small area could be
used, and all molecules retained in the analysis were excited for >20 s
without bleaching. (B) Magnitudes of static heterogeneity sources calcu-
lated using results from panel A. (C) Intermolecular heterogeneity investi-
gated using dsDNA FRET standards shown in Fig. 1. Measurement
parameters: Integration time, 100 ms; duration of measurement, 5 s; 80
photons/ms per molecule; three sample repeats for each measurement;
>20 FOV per sample; >190 molecules per sample.

Assuming linear addition of the variances (20), we
extracted estimates for the magnitude of the individual
heterogeneity sources using the simple model of

g4 = a; = 0.0135 + 0.0007, (10)

os = \/o? + 0} + o2 = 0.0238 = 0.0017,  (11)
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oc = \/o? + a7 + o}, = 0.0341 = 0.0009, (12)

op = [0} + 0} + o} + 0§ = 0.039 = 0.001, (I3)

where 04, 0p 0¢, and op are the measured heterogeneities,
as above, and o; o, op and oy are the heterogeneity
sources: intrinsic heterogeneity, location-dependent hetero-
geneity, focal drift, and intermolecular heterogeneity,
respectively. Solving this model yields estimates for the
contribution of each heterogeneity source (Fig. 4 B):

1. Intrinsic heterogeneity, o; = 0.0135 = 0.0007;

2. Location-dependent heterogeneity, o, = 0.0016 =
0.0023;

3. Focal drift, o = 0.0195 = 0.0013;

4. Intermolecular heterogeneity, g, = 0.031 £ 0.002.

Intrinsic static heterogeneity is close to predictions from
simulations (g, = 0.0119), consistent with the results of
dynamic heterogeneity analysis. Intermolecular heteroge-
neity was the largest heterogeneity source, with focal drift
also being significant. Location-dependent heterogeneity
was not observed, even though some image distortion was
visibly present.

Intermolecular heterogeneity very likely arises due to the
slowly-interconverting photophysically distinct states of
the acceptor (6,7), or possibly from slow fluctuations in
donor-acceptor separation, e.g., due to DNA-fluorophore
interactions (33). We investigated whether intermolecular
heterogeneity was specific to the DNA sequence, FRET
values, or fluorophore local environment of the sample using
four different dsDNA standards (Fig. 1). All four samples
showed near identical dynamic heterogeneity (Fig. 4 C).
Three of the samples (T1B18, TIB16, and TIB18INT)
showed similar static heterogeneity, measured for a single
FOV to exclude focal drift (¢ = 0.0341 *+ 0.0009, 0.0331
+ 0.0016, and 0.0345 = 0.0002, respectively). In contrast,
the sample with a more GC-rich local environment in the
region of the donor (T1B18GC) showed a statistically signif-
icant reduction in noise (¢ = 0.0276 = 0.0003). Although the
source of this difference is unclear, all the samples showed
very similar low steady-state anisotropies (0.15-0.22; see
Table S1 in the Supporting Material), insufficient to indicate
restricted rotational freedom on timescales resolvable by
tFRET measurements (34). Additionally, the variation on
total photon count upon donor excitation (D) and acceptor
photon count upon acceptor excitation (AA) for the different
samples was small compared to the error on the measure-
ments, suggesting that sample-specific reduction of donor
quantum yield (quenching), or acceptor photophysics, are
not responsible for the reduction in heterogeneity.

Photophysical fluctuations caused a much larger increase
in static heterogeneity than dynamic heterogeneity,
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indicating that the ensemble and single molecule averages
of this process are not equivalent; this is likely an example
of nonergodicity on the timescale of observation (35). Our
results also show that recent efforts to reduce static hetero-
geneity via accurate FRET correction on a single-molecule
basis (36) may indeed reduce the effects of a major broad-
ening source (focal drift); however, this approach cannot
reduce the largest broadening source, i.e., intermolecular,
position-independent heterogeneity (due to photophysics).

Defining the limits of resolution

To quantify the current practical limits of tFRET spatial reso-
lution, we compared the observed experimental resolution
(Fig. 2 C) with the resolution required to resolve a 1-bp
distance difference. After measuring the Forster radius, Ry,
for Cy3B-A647N on dsDNA as 6.2 nm (11), we estimated
that a distance difference equivalent to a 1-bp step
(0.34 nm) corresponded to a FRET difference of AE = 0.08
in the range of maximum FRET resolution (0.4 < E < 0.6)
for this pair. Using a Rayleigh-limit approximation (37),
AEin ~ 20(E), we obtained a limit on the FRET resolution
required to resolve a single basepair step: 7 ,p(E) < 0.04.

For studies of dynamic heterogeneity, opp(E) < 0.04 is
observed even at an integration time of 20 ms
(60 photons/ms per molecule) (see Fig. 2 C, black circles),
showing that 1-bp resolution is possible for measurements
of dynamic heterogeneity even at very short integration
times and moderate photon counts.

For studies of static heterogeneity, greater excess hetero-
geneity places 1-bp resolution on the limit of our measure-
ment capability (see Fig. 2 C, red circles). To investigate
whether we could achieve this resolution, we prepared
a mixture of two static dsSDNA samples with a D-A separa-
tion of 15 bp (T1B16; see Fig. 5 A, fop, Ey = 0.53 when
measured alone) and 16-bp (T1B17; see Fig. 5 A, middle,
Ey = 0.47 when measured alone). We maximized resolution
by using software binning to extend integration time to
1000 ms and by sampling a large number of molecules
(1236 molecules).This revealed a main peak at E = 0.47
and a secondary peak at E = 0.53 (Fig. 5 A, bottom), match-
ing the positions of the peaks for the pure TIB17 and T1B16
samples, respectively. However, the separation of the two
peaks is clearly at the limit of resolution of the measure-
ment; we conclude that 1-bp resolution represents a best-
case for static heterogeneity studies, at the limit of current
experimental capabilities.

To test the minimum distance difference which could be
unambiguously resolved, we prepared a mixture of dSDNA
standards with a 2-bp distance difference, using dsDNAs
with a separation of 15 bp (T1B16; Ey = 0.53) and 17 bp
(T1B18; Ey = 0.45) (Fig. 5 B). We analyzed the observed
FRET distributions for the presence of peaks at these
E, values, acquiring data at 20-ms integration time, using
software binning to analyze longer integration times. At
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FIGURE 5 High-resolution static heterogeneity analysis. (A) One-base-
pair resolution with 1000-ms time resolution. Measured FRET distributions
for dsDNA with 15-bp (T1B16) and 16-bp (T1B17) donor-acceptor
separation, and for an equimolar mixture of each (T1B16-T1B17 mix).
(B) Two-basepair resolution with 80-ms time resolution. Measured FRET
distribution at increasing integration times for an equimolar mixture of
dsDNA with 15-bp and 17-bp D-A separation (T1B16-T1B18 mix).
Measurement parameters, 1-bp data: integration time at acquisition,
100 ms; duration of measurement, 5 s; ~50 photons/ms per molecule;
>1200 molecules; ~45 combined FOV. Measurement parameters, 2-bp
data: integration time at acquisition, 20 ms; duration of measurement,
20 s; 55 photons/ms per molecule; 335 molecules; 11 combined FOV.

20 ms, the two species were not resolved; however, on
increasing the integration time to 80 ms (55 photons/ms
per molecule) we could clearly resolve the two species,
demonstrating clear 2-bp spatial resolution with high
temporal resolution. Increasing the integration time to
160 ms and 240 ms further increased resolution.

The resolution limits which we report should be achiev-
able on any apparatus with similar photon detection rates
and focal stability to those we reported, using gel-purified
dsDNA standards and the Cy3B-ATTO647N FRET pair.

CONCLUSIONS

Despite the importance and popularity of tFRET, a theoret-
ical and experimental characterization of the limits of
resolution of the technique has not been previously reported.
This is a significant omission, particularly for the ultra-high-
resolution studies required for the study of DNA processing
machinery such as polymerases and helicases. To address
this, we derived a theoretical description of the maximum
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signal/noise achievable for a tFRET measurement, and
observed good agreement among theory, simulation, and
experimental measurements of dynamic heterogeneity at
short timescales (<200 ms). Significant excess heteroge-
neity was observed for dynamic heterogeneity analysis at
long timescales (>200 ms) and for static heterogeneity anal-
ysis over all timescales measured. In both cases, the excess
heterogeneity was identified as arising primarily from
acceptor photophysics, with focal drift also being signifi-
cant. Excess static heterogeneity was also dependent on
dsDNA sequence adjacent to the donor fluorophore, which
merits further investigation.

We quantified the current limits of tFRET resolution. For
studies of dynamic heterogeneity, e.g., conformational
changes of individual molecules, we can clearly achieve
1-bp resolution for short integration times (20 ms,
60 photons/ms per molecule). Results using switchable
FRET (38), a method that allows monitoring of two FRET
efficiencies and corresponding distances within one mole-
cule, have already demonstrated this capability (S. Uphoff,
S .J. Holden, and A. N. Kapanidis, unpublished). For studies
of static heterogeneity, i.e., resolution of multiple species
within a single sample, we established that 2-bp resolution
is possible even at short integration times (80 ms, 55
photons/ms per molecule). Previous FRET measurements
of distance changes on the order of 1-bp were either based
on analysis of the mean values of FRET histograms (3,39),
or exploited the coupling of a small distance change to a larger
observable (39,40). Our quantification of FRET resolution for
direct measurements will provide a useful reference for
experimental design and analysis, and indicates the feasibility
of single basepair translocation studies for helicases and
DNA/ RNA polymerases via tFRET, consistent with recent
reports (39).

Clearly, the exact magnitudes of different excess heteroge-
neity sources will be unique to the tFRET apparatus, FRET
pairs, and imaging buffers of an individual lab. However,
for an optimized tFRET apparatus, we expect that acceptor
photophysics and focal drift will be the limiting factors for
FRET resolution. Importantly, the methods described here
can be applied to any surface-immobilization-based
smFRET apparatus (including prism-type TIRF and wide-
field smFRET) to quantify its performance, and determine
its FRET-resolution limit; the magnitude of excess heteroge-
neity and the dsDNA standards reported here may be used as
initial reference standards.

We identified the major limiting factor to FRET resolu-
tion as acceptor photophysics, emphasizing the fundamental
importance of understanding and controlling fluorophore
photophysics, and designing more photostable fluorophores.
Focal stability of tFRET apparatus was also a limiting factor
to FRET resolution even where focal drift was not visibly
apparent on raw images, making high focal stability an
important consideration in experimental design, particularly
for measurements over extended periods (facilitated by opti-
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mized fluorophores and buffers (8,41,42)). Finally, FRET
resolution is also limited by the OLS fitting algorithm
used for data extraction. At present, the OLS algorithm
does not achieve optimal signal/noise, introducing ~30%
excess heterogeneity into measurements. Recent work (27)
showed that it should be possible to improve the fitting algo-
rithm by use of maximum-likelihood methods rather than
OLS, allowing near-optimal signal/noise to be achieved.

Our results demonstrate that we have a good predictive
understanding of tFRET dynamic heterogeneity at short
timescales. Conformational changes in biological systems
often occur on the timescale of 1-10 ms, currently at the
limit of tFRET temporal resolution (at ~5 ms; S. Uphoff
and A. N. Kapanidis, unpublished). Our work paves the
way for the extension of probability distribution analysis
(2-4,43,44) and burst variance analysis ((43) and J. P. Tor-
ella, S. J. Holden, Y. Santoso, J. Hohlbein, and A. N. Kapa-
nidis, unpublished) to tFRET measurements, which should
allow analysis of unresolved dynamic heterogeneity at or
just below the temporal resolution of the measurement, ex-
tending the utility of the technique.
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