CHEMPHYSCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010

Characterizing Single-Molecule FRET Dynamics with Probability Distribution Analysis

Yusdi Santoso,^[a] Joseph P. Torella,^[a, b] and Achillefs N. Kapanidis^{*[a]}

cphc_201000129_sm_miscellaneous_information.pdf

Figure S-1. List of DNA sequences. The position of the fluorophore labels are as highlighted (green for FRET donor and red for FRET acceptor). (A) T_{1-Cy3B} , $B_{18-ATTO647N}$ double stranded DNA. (B) A DNA-hairpin with 5 bp stem and a poly? A loop. (C) The unlabelled DNA-hairpin substrate for Pol I.

Figure S-2. Contributions of background photons can be safely ignored in the analysis as long as the counts are low (< 6kHz in each channel). (A) Time traces of experimental data (hairpin in 5 mM MgCl₂) binned at 0.5-ms resolution. Green: F_D (photon counts in the donor channel due to donor excitation); red: F_A (photon counts in the acceptor channel due to donor excitation); grey: $F_{Aex,Aem}$ (photon counts in the acceptor channel due to acceptor excitation). (B) Time traces of

Monte-Carlo simulation with similar background counts as in A. (C) The simulated data in B can be fitted very well to a single-state PDA model with no broadening ($?_r^2$ =1.20), even without accounting for the presence of the background counts. The absolute value of E^* is shifted due to the differences in average background counts between the F_D and F_A channels, however this is likely to be a problem as most smFRET experiments are concerned only with relative FRET changes (see main text).

Figure S-3. The sensitivity of PDA is assessed by comparing the width of E^* distributions (s_{dist}) to the width of a simple one-state shot-noise limited distribution (s_{sN}). The closer the E^* distribution to the shot-noise limited distribution ($s_{dist}/s_{sN}=1$), the less sensitive PDA in detecting the conformational dynamics. We note that PDA is most sensitive when $0.01 = (t_1/T_D) = 10$. s_{dist} was obtained by simulating a two-state FRET system using the following parameters: $E_1=0.4$, $E_2=0.6$, $s_1=s_2=0$, $t_1=t_2$, $T_D=1$ ms, F=100 photons. When t_1/T_D^{\sim} 2, the FRET distribution splits into two distinct peaks (see figure 1B in main text); the s_{dist} width reported for this range ($t_1/T_D=2$) is calculated from one peak only.

Figure S-4. Experimental FRET histogram of double stranded DNA $(T_{1-Cy3B}, B_{18-ATTO647N}; grey histogram)$ is approximately 1.8 times wider than the histogram due to shot noise alone (PDA prediction with no broadening; black line). The experimental histogram can be fitted to a Gaussian distribution with a standard deviation of $s_{experimental} = 0.061$. Meanwhile, PDA prediction due to shot-noise alone has a width of $s_{ShotNoise} = 0.034$.

Figure S-5. Experimental FRET histogram of the hairpin DNA in buffer containing 5 mM MgCl₂ (grey histogram) and the corresponding PDA predictions given 20% less broadening (black line, $s_1 = s_2 = 0.04$) and 20% more broadening (red line, $s_1 = s_2 = 0.06$) as compared to the broadening of dsDNA (s = 0.05). Even with 20% error in the width parameters, the PDA predictions still produced good fit to the experimental data (see $2r^2$ values in the figure legend).

Figure S-6. Using PDA to uncover kinetic parameters of the PoI-DNA binary and PoI-DNA-dATP ternary complexes. (A) The *E** histogram of PoI-DNA binary complex can be fitted using a two-state system with the following parameters: $E_{open}=0.5$, $s_{open}=0.035$, $E_{closed}=0.715$, $s_{closed}=0.04$, $k_{open to closed}=59$ (±5) s⁻¹, $k_{closed to open}=111$ (±13) s⁻¹, $?_r^2=2.02$. (B) The *E** histogram of PoI-DNA-dATP ternary complex can be fitted using a two-state system with the following parameters: E_{open} , s_{open} , E_{closed} , and s_{closed} are the same as in A, $k_{open to closed}=498$

(±53) s⁻¹, $k_{closed to open}$ =101 (±13) s⁻¹, $?_r^2$ =1.95. (C) On the other hand, PDA predictions using two non-interconverting FRET peaks can not account for the experimental histogram of the Pol-DNA binary complex. The PDA prediction using two static peaks with no broadening (red line; *s*=0) differs considerably from the experimental histogram ($?_r^2$ =35), while the prediction with additional broadening (black line; *s*=0.04) matches the experimental data better ($?_r^2$ =5.23), even though it still underestimates the number of events between the two peaks.