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1S Bin specification and normalization for PAID histograms (cf. section 2.1) 

When forming a PAID histogram for the large number of photons obtained in fluorescence fluctuation 

experiments, it is more meaningful to place events in bins than to make a scatter plot.   In choosing the 

size and spacing of bins, one needs to consider that fluorescence fluctuations occur over a large range of 

time scales.  To cover a large range of time scales with a minimum number of histogram bins, log or 

quasi-log time bins are commonly used in FCS.  For the PAID histogram, we choose the bins for the 

time intervalτ axis to be log-spaced, with 10 bins per decade.  To use a log scale for the monitor photon 

axis is more problematic (especially at low photon counts) since the number of monitor photons that 

arrive is strictly an integer.  The clock time resolution t∆  can be chosen to be small enough to make the 

integer nature of the discrete time interval variable [ ]tτ= ∆τ  negligible in the µs regime, but this 

cannot be done with the number of monitor photons counted.  Unless one is willing to use a spacing of 

bins that is extremely sparse (powers of 2,3,4…), the discrete spacing of the number of monitor photons 

will cause log bins to be inconsistently occupied at low n ; some bins may not even have an integer in 

them.  So, we use a quasi-log scale adapted from the multiple tau correlation technique 1,2.  The first 16 

bins are evenly spaced with increments of 1, ( ) ( )1 16, , 0,1, ,15=n n… … ; then, with each set of 8 bins, the 

increment is doubled.  The next 8 bins are ( ) ( )17 24, , 16 17,18 19, ,30 31= − − −n n… …  with an increment 

of 2, followed by ( ) ( )25 32, , 32 35,36 39, ,60 63= − − −n n… …  with an increment of 4, etc.  On the large 

scale these bins are log-spaced, while on the small scale they are linearly spaced.  In this way, we can 

cover a large dynamic range of integers in a consistent manner with a small number of bins.  After 

placing events in the histogram bins, normalization is necessary to obtain ( )C ,STM τ n .  First, the 

histogram is multiplied by S TN NT  in eq 9 in the main text.  Second, for a bin that has time interval 

axis limits lowτ  and highτ  and monitor photon axis limits that include the integers lown  through highn , we 

divide by the size of the bin ( )( )high low high low 1− − +τ τ n n .  The value for the bin is an average of 

( )C ,STM τ n  over the bin limits, rather than an integral over the bin limits. This normalizes the 
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histogram, giving us ( )C ,STM τ n .  Unfortunately, this is a non-ideal representation for a log scale: when 

plotting a slice of the histogram in the log scale of the monitor photon count axis, for a constant time 

interval, we want the actual area under the curve to correspond to the value of the correlation ( )CST τ .  

To do this, we approximate the photon monitor variable n  as a continuous variable n , then convert to a 

log scale using the expression 10log nζ = .  We want to keep the relation in eq 10 in the main text valid 

in the new variable.  We approximate the sums over n  as integrals over a continuous variable n , and 

convert to the log variable ζ :  
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By looking at the differentials, we find that by changing variables from n  to ς  we change amplitude of 

the PAID by a factor ( )ln10 n .  So, the histogram bins are in addition weighted by a factor of 

( 0.5) ln10+n .  We add 0.5  because we consider each bin in n  as covering a range between n  and 

1+n , and the average over this range is 0.5+n .  This only makes a difference at low n , and causes the 

0n = bin to be weighted by the factor 0.5 rather than 0 .  We emphasize that this rescaling is made to 

ease the visual interpretation of the histogram, and in no way affects the statistical characteristics of the 

histogram.  
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2S Algorithms for constructing PAID histograms (cf. section 2.1) 

A direct algorithm to form PAID histograms from photon streams compares each photon from the 

start channel with each photon in the stop channel, then calculates the number of monitor photons that 

fall between each start and stop photon.  If there are SN  photons in the start channel, and TN  photons in 

the stop channel, there are S TN N∼  entries into the histogram, making the algorithm ( )2O N , and 

limiting the dynamic range of the PAID histogram.  A more efficient algorithm exploits the log spacing 

of the time interval bins aτ and the quasi-log spacing of the monitor photon count bins bn  (Fig. 1S-A; 

filled square placed at the integer-valued time of arrival of each detected photon, S
it ; time interval and 

monitor photon count bins corresponding to the first start photon are denoted by the arrow at the top).  

The time interval bins, log-spaced with integer time intervals 2,4,8,16,… are shown below the S photon 

stream.  The monitor photon count bins, log-spaced with monitor photon counts 1,2,4,… are shown 

below the M photon stream.  The time interval and monitor photon count bins, combined to form the 

2D-histogram bins, are shown below S.  The number of stop photon inside each bin is shown.  These 

values are transferred to the 2D-histogram in Fig. 1S-B. The algorithm: (1) consider each start photon 

arrival time S
it , and search for photons in T and M that are closest to this time; (2) set the current time 

interval ( )τ bin to curra 1= , and the current monitor photon count ( )n  bin to currb 1= ; (3) calculate the 

time interval Mτ  at which M switches to the next monitor count bin currb 1+ ; (4) if Mτ  is less than the 

time interval of the ( )th
curra 1+ τ  bin, perform a binary search on T to find the photon arriving just after 

Mτ , to determine how many stop photons arrive in the current bin and add them to the ( )curr curra , b  bin 

of the histogram; advance curr currb b 1= + , and go to step 3; (5) otherwise, perform a binary search on T 

to find how many stop photons arrive up to the time of the ( )th
curra 1+ τ  bin, and add them to the 

( )curr curra , b  bin of the histogram and advance curr curra a 1= + ; go to step 3, till there are no more stop 

photons or ( )curr curra , b  is outside of the histogram; (6) go to step 1 till there are no more start photons.   
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Figure 1S.  Generation of 2D-PAID histograms with log time-interval axis and log or quasi-log 

monitor photon count axis. A, photons detected in the start, monitor, and stop channels (filled 

squares) in the time axis (shown with discrete clock units, figure 3).  The contribution to the 

PAID histogram for the first start photon, marked with the top black arrow, is shown in B.  The 

time interval bins are shown as gray and white bands between the start channel and the monitor 

channel.  The bins are log-spaced, with 2,4,8,16,…clock units.  The monitor photon count bins 

are shown as gray and white bands between the monitor channel and the stop channel.  These 

bins are also log-spaced, with 1,2,4,8,… photon counts.  The gray and white bands below the 

stop photon channel show how the time interval and monitor photon count bins combine to form 

the two-dimensional histogram bins.  Each bin is labeled with the number of stop photons 

counted within the bin, subsequently transferred to the histogram in B. 

This algorithm uses the fact that the start, stop, and monitor channels are ordered lists (each 

successive photon is at a later time) by performing binary searches.  A modified search algorithm that 

uses increments of increasing size from the initial search index to bracket the desired value before 

performing a standard binary search was found to be most effective (see description of hunt in ref 3.)  

Also, because of the log spacing on both axes, a small number of binary searches can cover a large 

dynamic range.  The algorithm is extendable to multiple monitor channels.  On a 1.2 GHz Pentium 3 
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based PC, the algorithm shown here is able to form the PAID histogram of a 10 sec data set with 

3,750,000 photons in 2 minutes and the PAID histogram of a 30 sec data set with 150,000 photons in 

4.4 seconds, scaling nearly linearly with the number of photons in the data set. 
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3S PAID Function Model (cf. section 2.3) 

We develop a model of the PAID function for several diffusing species with a Poisson background in 

a tightly focused laser excitation volume.  The ensemble averages in the PAID function in eq 8 in the 

main text are simplified by averaging over the “shot noise” contribution (intrinsic to photon counting 

experiments).  We then split the photon emission rates into independent contributions from each 

molecule and background (assuming that all species diffuse independently, with the time between 

association and dissociation much longer than the diffusion time).  The PAID function for all species is 

expressed as a sum of convolutions of distributions for each species, which are approximated by Monte 

Carlo simulation of possible diffusion paths through Veff 4.  These path integrals need only be 

approximated once; changes in the diffusion time and brightness parameters are accounted for by a 

scaling law.  This means that, although the model is not expressed in closed analytical form, it can still 

be used practically in a fitting routine using a pre-calculated kernel. 

In modeling the light emission and detection processes, we assume that the lifetime of each 

fluorophore is negligible compared to both the time scale under consideration (>1 µs) and the inverse of 

the excitation rate (far from singlet-state saturation).  This assumption means that the photon emission 

statistics are determined by a Poisson process with a single fluctuating rate ( )Ak t  for each channel A  

(fluctuations can be due to diffusion, intersystem crossing, etc.).  Additionally, we assume that the 

fluorophores only undergo fluorescence transitions, ignoring photophysical processes such as 

intersystem crossing and photobleaching.  With these assumptions, the photon emission rate ( )Ak t  

equals the laser excitation intensity multiplied by the absorption coefficient and the quantum efficiency.   

Using this rate, the probability for the number of photons counted up to time t  follows the series of 

differential equations ( ) ( ) ( ) ( ) ( )P ,
P , 1 P ,A

A A A A

t
k t t k t t

t
∂

= − −
∂

n
n n ; the probability to have n  counted 

photons is increased by transitions from the 1−n  photons state, and decreased by transitions out of the 

n  counted photons state. Solving these equations, we obtain the Poisson probability distribution5,6,  
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where we define ( ) ( )
0

0 ,  
t

A At
K t t dt k t′ ′= ∫  as the cumulative intensity.  This expression only accounts for 

the “shot noise” intrinsic to the photon counting process; any random fluctuations in ( )Ak t  widen this 

distribution further. 

We now apply these expressions to the PAID function given in eq 8 in the main text , where the 

ensemble averages are performed first to account for the shot noise contribution, then for the rate 

fluctuation contribution 
shot rate

=" " .  ( )k t  and its integral ( )0 ,AK t t  are functions of continuous 

time, and will not be written using discrete time variables (we will use t t= ∆t  and tτ = ∆τ ).  We 

assume that the stochastic processes are stationary so that ensemble averages and time averages are 

equivalent, and the variable t  can then be dropped.  For ( )SI t  in the denominator, stationarity 

implies ( ) ( )0S SI I=t ; the shot noise contribution is found by averaging the number of photon 

counts ( )SI t  against the probability distribution in eq 2S (the continuous time interval corresponding to 

the discrete time t  is of duration t∆ ),   
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The final approximation assumes that t∆  is much smaller than the fluctuation time scale of ( )k t .  

Defining Sk  to be the average ( )
rateS Sk k t= , we can write ( )S SI k t= ∆t  (similarly, ( )T TI k t= ∆t ).  

For the numerator in eq 8, the shot noise contribution is independent for different time windows, 

allowing the shot noise averages to be evaluated separately for each factor.   We obtain 

( ) ( )
shot

0S SI k t= ∆t  and  ( ) ( )
shotT TI k tτ+ = ∆t τ  for the first two factors.  The third factor is 

evaluated as follows,  
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Equation 8 is rewritten in terms of rates,  

 ( ) ( ) ( ) ( )
rate

C , 0 Poi , , ,STM S T M S Tk k K t k kτ τ= ∆  τ n n  (5S) 

We then perform ensemble averaging over the “rate fluctuations.”  To do this, each rate ( )Ak t  is split 

into contributions from background and each of αN independently diffusing and emitting molecules 

from each species 1 Fα = …  in the sample volume sampleV  (concentration is [ ] sample effc Vα αα = =N V ), 

 ( ) ( ) ( )
( )0 1 ,

F

A iA iA
i i

k t k t k t
α

α α
α α= =

= ≡∑∑ ∑
N

 (6S) 

For the constant background ( )0α = ,  we set 0 1=N  and ( )01 0A Ak t k= .  Since the probability 

distribution for a sum of independent random variables is the convolution of the probability 

distributions for each of the independent random variables, and ( ) ( )
( ),

, ,M iM
i

K t K tα
α

τ τ∆ = ∆∑  (a direct 

extension of eq 6S), eq 4S can be rewritten  

 ( ) ( )( )
( ),

Poi , , Poi , , .M iM
i

K t K tα
α

τ τ∆ = ∆ ∗      ∏n n  (7S) 

The star inside the parantheses indicates repeated convolution in the variable n rather than 

multiplication.  For later convenience, we define ( ) ( ), Poi , ,iM iMS K tα ατ τ≡ ∆  n n  (S is for “shot 

noise”).  Using the relation xy x y=  which is true for any independent random variables x  and y , 

along with eqs 5S, 6S, and 7S, and grouping direct multiplication terms separately from cross terms, we 

obtain 
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Equation 8S breaks ( )C ,STM τ n  into combinations of four single-molecule expressions.  The first is 

( ) ( ) ( )
rate

0 ,iS iT iMk k Sα α ατ τ n , which is the numerator for the PAID function of the single molecule i  of 

species α .  To evaluate this ensemble average, there are only three quantities, ( )0iSkα , ( )iTkα τ , and 

( ),iMK tα τ∆ , required for each set of rate functions ( )iSk tα , ( )iTk tα , and ( )iMk tα .  Therefore, the rate 

ensemble averages can be written as integrals over a probability distribution ( ), ,STM S T MP k k Kα τ .   

Since all molecules i  of a species α  share the same properties, this probability distribution is the same 

for all i .  Therefore, the index i  is dropped.   

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

rate 0 0 0

1,1

0

0 , , , Poi ,

Poi ,
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dK f K K

α α α α

α

τ τ τ

τ

∞ ∞ ∞

∞

=

=

∫ ∫ ∫
∫

n n

n
(9S) 

Sk , Tk , and MK  are integration variables that take the place of ( )0iSkα , ( )iTkα τ , and 

( ),iMK tα τ∆ respectively.  The final expression, ( ) ( ) ( )1,1

0 0
, ,STM M S T STM S T M S Tf K dk dk P k k K k kα ατ τ

∞ ∞
= ∫ ∫ , is 

obtained by integrating over the variables Sk  and Tk ; we retain the integration over MK .   

The remaining single molecule expressions in eq 8S are written as follows, 
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where ( ) ( ) ( ),

0 0
, ,p q p q

STM M S T STM S T M S Tf K dk dk P k k K k kα ατ τ
∞ ∞

= ∫ ∫ .  eq 8S can now be simplified to read 
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,
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(11S) 

where we have used the approximation 1α �N ; sampleV  and αN  are taken to be very large, 1α �N  and 

sample effV�V .  Also, as a simplification, the integration over K  is performed only once, after all of the 

convolutions have been performed in K  space rather than n  space (see section 3.1S for proof of 

equivalence).  Note that the powers are multiple convolutions, not multiplications. 

We subsequently compute the functions ( ),p qf .  We use Monte Carlo sampling of diffusion paths 

through the detection volume (Gaussian or numerically computed volume) to estimate them.  A 

diffusion path L  is defined by its position as a function of time ( )x t LG .  The probability for each 

diffusion path L  can be found by dividing the path into a series of X  positions evenly spaced in time; 

each position is separated by the time interval δτ  (distinct from t∆ ), so that τ δτ=X 7.  By taking the 

limit 0δτ → , we obtain a probability density for L  suitable for path integration.   

 ( ) ( )( )
( )

( )21 1
1

3 20 01

0 , lim exp
44

x xdxP L x x
DDα δτ

αα

τ
δτπ δτ

− −
+

→
==

   −
= −         

∑∏
X X

h hh

hh

G GGG G
 (12S) 

The exponential factor comes from the probability for a particle to diffuse from position xh
G  to position 

1x +h
G  after a time δτ ; the probability of each diffusion path depends on the diffusion constant Dα .  For 

each path L ,  there is a corresponding rate for each channel ( , ,A S T M= ), ( ) ( )A Ak L q xα αδτ φ= hh G , 

where Aqα  is the brightness and φ  is the detectivity, both defined earlier.  From these rates we calculate 

( )iSk tα , ( )iTk tα , and ( )0 ,iMK t tα .  The relationship between the diffusion time (where the correlation 

function decays by a factor of 2) and the diffusion constant D Dα ατ η=  (η  is a constant of 

proportionality) depends on the detectivity, and needs to be determined for each detection volume.   
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To calculate ( ),p qf  , we first find ( ), ,STM S T MP k k Kβ τ .  To calculate this probability, we average over 

the initial, final, and all intermediate positions, restricting the values of the following variables: 

( )0S Sk q xα φ=
G , ( )T Tk q xα φ= X

G , and ( )
1

1
M MK q xα φ δτ

−

=

=∑
X

h
h

G .  We also need the probability distribution for 

initial positions, which we take as being equal throughout the sample volume, ( )0 0 sampleP x dV=
G

V .  

sampleV  is finite, but large enough so that converging integrals may be extended to infinity with negligible 

error.  Integrating over all positions with the restrictions just mentioned, we obtain  

( ) ( ) ( )

( )
( ) ( )

00
sample

21 1 1
1

3 2
0 11

, , lim

exp
44

S
STM S T M S T M T S S T T

M M S T M

dVP k k K dk dk dK dV k q x k q x

x xdx K q x dk dk dK
DD

β α αδτ

α
αα

τ δ φ δ φ

δ φ δτ
δτπ δτ

→

− − −
+

= ==

= − −       


   −  − −              

∫ ∫

∑ ∑∏∫

X

X X X
h hh

h
h hh

G G

G GG G

V
 (13S) 

Now, integrating over Sk  and Tk  to obtain ( ) ( ),p q
STM Mf Kα τ , 

 

( ) ( ) ( ) ( )

( )
( ) ( )

,
00

sample

21 1 1
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0 11

lim

exp
44

p qp q S
STM M M T S T

M M M

dVf K dK dV q x q x

x xdx K q x dK
DD

α α αδτ

α
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τ φ φ

δ φ δτ
δτπ δτ

→

− − −
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= ==
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   −  − −              
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X X X
h hh

h
h hh

G G
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 (14S) 

An extremely important property of ( ) ( ),p q
STM Mf Kα τ  is obtained if we change variables in the expression, 

now using 0 D
αδτ δτ τ= , 0 D

M M MK K qα ατ= and 0 D
ατ τ τ= ,  

 ( ) ( ) ( ) ( ), , 0 0 0
0

p q p qp q
STM M M S T STM M Mf K dK q q f K dKα α ατ τ=  (15S) 

Once the function ( ) ( ), 0 0
0

p q
STM Mf K τ (where 0 0 0 0 1D

S T Mq q qα α α ατ= = = = ) is known, the function for any other 

parameter values can be obtained by scaling the variables according to the definitions of 0τ  and 0
MK  

and eq 15S, making the use of Monte Carlo simulation of diffusion paths practical for model 

calculations (the kernel simulation only needs to be performed once). 
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Using eq 14S without the limit, a series of diffusion paths is simulated, and the function 

( ) ( ), 0 0
0

p q
STM Mf K τ  is estimated by averaging over 104-107 diffusion paths.  δτ is a small time window (100 

times smaller than D Dα ατ η= ) where the position of the molecule is assumed constant.  There is a 

useful time symmetry in eq 14S: the reverse of each path is equally likely.  This implies that 

( ) ( ) ( ) ( )1,0 0,10 0 0 0
0 0STM M STM Mf K f Kτ τ= .  For ( )1,1

0STMf , ( )1,0
0STMf , and ( )0,1

0STMf , the factors ( )0
0Sq xα φ
G and ( )0

Tq xα φ X
G  act to 

emphasize paths that emit more strongly at the endpoints, when molecules are in the detection volume.  

Therefore, when estimating these functions with Monte Carlo simulation, the probability distribution for 

the starting points of the diffusion paths are chosen to match the detectivity ( )xφ G .  Because of this 

emphasis on strongly emitting paths, the sample volume is allowed to go to infinity, sample →∞V .  This 

is not possible for the function ( )0,0
0STMf , since the factors ( )0

0Sq xα φ
G and ( )0

Tq xα φ X
G  are not present in the 

expression; molecular paths with initial and final points anywhere in the sample volume contribute 

equally.  To calculate the PAID function in eq 11S, it is necessary to perform many successive 

convolutions on ( )0,0
0STMf .  In order to limit this number, while providing accurate results, a simulation 

volume sampleV  is chosen that is 100 to 1000 times as large as the detection volume Veff.  To obtain an 

occupancy of cα  for species α , the number of convolutions sample effc Vα α=N V  is used in eq 11S to 

simulate the presence of many molecules. 

Depending on the accuracy desired, ( )xφ G  is set as an analytical Gaussian detection volume, as a 

numerical approximation, or as an experimentally-measured detection volume, allowing the direct 

application of the expected detection volume to the model.  In contrast to either FIDA or FIMDA 

(where for simplicity, only the volume density for a given brightness value is required), our method 

directly models the possible diffusion paths through Veff 8,9.  To obtain expressions for the PAID 

function through combining single-molecule expressions, it is necessary to compute many convolutions, 

producing the primary computational task in the model calculation [similar to PCH 10 and FIDA9].  

Because of the wide temporal and dynamic ranges over which fluorescence fluctuations occur, log axes 
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are used.  For the most efficient calculation, the convolution method used must work in a log domain.  

However, pure Fast Fourier Transform (FFT) methods demand linearly-spaced data, which quickly 

produces huge arrays.  We have developed a novel method that combines the use of the FFT with a 

quasi-log scale, making the model calculation practical (sections 3.2S).   

The computation of the PAID function begins by scaling the pre-computed kernels to match the 

brightness in each channel Aqα and diffusion time D
ατ  for each species α , obtaining ( ) ( ),p q

STM Mf Kα τ , re-

binning the functions in the quasi-log bins used for the convolution method (section 3.2S).  Using the 

relation sample effc Vα α=N V , the presence of multiple molecules is accounted for using the convolutions 

in eq 11S.  The final step is to implement the final integration as a matrix multiplication, described in 

section 3.3S.   

3.1S Equivalence of convolutions in n -space and K -space 

One property that needs to be established is the equivalence of performing convolutions in n  space 

and K space. Consider three distributions ( )f n , ( )g n , and ( )h n , such that h  is the convolution of f  

and g :  

 ( ) ( ) ( ) ( ) ( )
0

h f ' g ' f g
′=

= − ≡ ∗∑
n

n

n n n n n n  (16S) 

We can write each of these distributions in n  as a Poisson transformation: ( ) ( ) ( )
0

f f Poi ,K K dK
∞

= ∫n n� , 

( ) ( ) ( )
0

g g Poi ,K K dK
∞

= ∫n n� , and ( ) ( ) ( )
0

h h Poi ,K K dK
∞

= ∫n n� .  By substituting these expressions for 

( )f n  and ( )g n  into eq 16S, we get 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

f f g g f g
' 00 0

f f g g f g
0 0

0 0

h f g Poi , ' Poi , '

f g Poi ,

f g Poi ,
K

dK K dK K K K

dK K dK K K K

dK dK K K K K

∞ ∞

=

∞ ∞

∞

= −

= +

 
′ ′ ′= − 

 

∑∫ ∫

∫ ∫

∫ ∫

n

n

n n n n

n

n

� �

� �

� �

 (17S) 
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Since we also know that ( ) ( ) ( )
0

h h Poi ,dK K K
∞

= ∫n n� , we find 

 ( ) ( ) ( ) ( ) ( )
0

h f g f g
K

K dK K K K K K′ ′ ′= − = ∗∫� � �� �  (18S) 

 This shows that convolutions can equivalently be performed either in n -space or K -space. 

3.2S Efficient calculation of convolutions on a quasi-logarithmic scale 

Because of the large number of convolutions necessary to calculate the PAID histogram, it is 

necessary to have an efficient algorithm for convolutions.  The standard method is to Fast Fourier 

Transform (FFT) the data, multiply the data in the complex transform space, and then FFT back to real 

space (See for example Ch. 13 of ref 3).  The FFT, however, requires evenly spaced bins, which can 

produce huge arrays for a large dynamic range.  We use a convolution method inspired by the multiple-

tau correlation technique1,2 that uses the FFT for small convolutions.  For each vector (a andb ) to be 

convolved, we produce a series of linearly spaced arrays of length 64, where the resolution of each is 

reduced by a factor of 2 compared to its predecessor.  The structure of these vectors is shown in Fig. 2S-

A.  In the figure, the arrays are of length 8 (rather than 64) for each factor of 2 in resolution.  The array 

with the smallest spacing is shown at the left.  In Fig. 2S-A, the first array has a spacing of 0.1K∆ = .  

The second array has double the spacing, 0.2K∆ = .  The first four elements are each made up of a sum 

of two elements from the first array.  The third array has a spacing that is doubled again, 0.4K∆ = .  

Again, the first four elements are each made up of a sum of two elements from the second array.  

Continuing this structure to successively lower resolution, one obtains a series of linearly spaced arrays 

that can efficiently span a large dynamic range. 

In Figs. 2S-B and 2S-C, we illustrate how the convolution of two series of such arrays is performed.  

One array is labeled with lower-case letters, and the other is labeled with upper-case letters.  To 

calculate the convolution of two vectors, ∗a b , the arrays with the smallest spacing ( 0.1)K∆ =  are 

convolved with each other first, as shown in Fig. 2S-B.  The FFT procedure described above is used, 

with the arrays are zero-padded to twice the original length.  We use the FFTW (Fastest Fourier 
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Transform in the West) set of routines, developed by M. Frigo and S. G. Johnson.  The lower half of the 

array becomes the new array for the smallest spacing.  The whole array is rebinned to the next largest 

spacing, and serves as a contribution to the convolution with spacing 0.2K∆ = .   

In Fig. 2S-C, we show how the convolution for the larger spacing 0.2K∆ =  is performed.  Because 

we already performed part of the convolution with that spacing, we need to exclude that contribution in 

subsequent calculations.  This is done by setting (or “clipping”) the lower half of one sub-array (lower-

case) to 0, and convolving it with the other sub-array (upper-case).  The clipped version from a  is 

convolved with the full version fromb , and vice versa.  By adding these results with the array obtained 

by rebinning the result with spacing 0.1K∆ = , we obtain the final result for 0.2K∆ = .  This allows the 

use of information from higher resolution arrays to contribute to the convolutions with lower resolution 

arrays.   

In the quasi-logarithmically spaced arrays, we approximate the function to be convolved by a series of 

steps; over the range of each bin, the function is assumed to be constant.  When two such steps are 

convolved, we get a triangle, shown in Fig. 2-SD.  The convolution of the two steps leaks into the next 

bin.  The discrete convolutions shown in Figs. 2S-B and 2S-C do not account for this because they 

assume that the function is nonzero only at discrete values.  In order to approximate the continuous 

functions with the method presented, the convolution is shifted one-half bin up after each FFT-based 

convolution in Figs. 2S-B and 2S-C.   
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Fig. 2S: In A, the structure of the arrays with quasi-logarithmic spacing used for fast 

convolutions is shown.  In B and C, we illustrate how the convolution of two series of such 

arrays is performed.  In D, the convolution of two step functions is shown. 

In eq 11S, there are successive convolutions performed on the same array which have the 

form ( ) ( )0,0
STM Mf K

γ

γ τ ∗ 
N

.  In order to compute γN  successive convolutions on the original distribution 
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( ) ( )0,0
STM Mf Kγ τ , we can use a trick to prevent performing γN   convolutions directly.  We express the 

number γN  in binary.  By recursively convolving the original array, we obtain a series of vectors for 

each convolved power of 2: 1,2,4,8,…  By convolving only those convolved powers of 2 in the binary 

representation of γN , we obtain ( ) ( )0,0
STM Mf K

γ

γ τ ∗ 
N

.  This allows the number of convolutions 

performed to increase logarithmically with γN . 

3.3S Conversion of PAID function from K -space to n -space 

The PAID function is expressed in eq 11S as an integral of the Poisson distribution over a function of 

K  (defining ( )C ,STM Kτ� ), 

 ( ) ( ) ( )
0

C , Poi , C ,STM STMdK K K
∞

= ∫τ n n τ�  (19S) 

We have dropped the subscript M for simplicity. 

The kernels used as the basis for the model have finite sized bins in K , which are indexed by b  and 

have the range )min max,b bK K .  Because of the finite bin size, what is really calculated is the average over 

a bin ( )max

min
max minC ,

b

b

K b b
STMK

dK K K Kτ′ ′ −∫ � .  We assume that the amplitude is constant across each bin, so 

that ( ) ( )max

min
max minC , C ,

b

b

Kb b b
STM STMK

K dK K K Kτ τ′ ′≈ −∫� �  for K  in the range )min max,b bK K .   

The expression for ( )C ,STM τ n  as calculated until now gives the instantaneous rates at a particular τ .  

However, the time interval bins for the photon counting data have finite extent, and so ( )C ,STM τ n  must 

be averaged over the range of the time bin.  To calculate ( )C ,STM Kτ�  within the time interval minτ  

and maxτ , we interpolate between ( )minC ,STM Kτ�  and ( )maxC ,STM Kτ� .  We project ( )minC ,STM Kτ�  forward 

in time from minτ , noting that the limits of a bin in cumulative intensity scales with time interval, 

( )min min min
b bK Kτ τ τ′ = and ( )max max min

b bK Kτ τ τ′ = .  The value interpolated forward from minτ  
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is ( ) ( ) ( )max

min

frwd
min max min minC , C ,

b

b

Kb b b
STM STMK

K dK K K Kτ τ τ τ′ ′≈ −∫� �  for K  in the range ( ) ( ))min max,b bK Kτ τ′ ′ . 

( )frwd C ,b
STM Kτ�  is 0 outside of this range.  Similarly, the value interpolated backward from maxτ  (with 

( )min min max
b bK Kτ τ τ′′ = and ( )max max max

b bK Kτ τ τ′′ = ) 

is ( ) ( ) ( )max

min

bkwd
max max min maxC , C ,

b

b

Kb b b
STM STMK

K dK K K Kτ τ τ τ′ ′≈ −∫� �  for K  in the range ( ) ( ))min max,b bK Kτ τ′′ ′′ .  

( )bkwd C ,b
STM Kτ�  is 0 outside of this range.  A weighted average over [ )min max,τ τ τ∈  of the forward and 

backward projections is performed, with the results rebinned into the original spacing,    

( ) ( ) ( )max

min

avgd frwd bkwdmax min
max min

max min max min

C , C , C ,b b b
STM STM STM

b

K d K K
τ

τ

τ τ τ ττ τ τ τ τ τ
τ τ τ τ

′ ′

′

′ ′− −′≈ + −
− −∑∫� � �  (20S) 

for K  in the range )min max,b bK K , and τ  in the range [ )min max,τ τ . 

The final integration over K shown in eq 19S is implemented as a matrix multiplication.  The 

approximation that the value of ( )C ,STM Kτ�  is constant over a bin with limits min
bK , and max

bK  leads to 

the expression, 

 ( ) ( ) ( )max

min

avgdC , C , Poi ,
b

b

Kb
STM STM K

b
K dK Kτ τ ′ ′= ∑ ∫n n�  (21S) 

The integral on the right can be expressed in terms of the incomplete gamma 

function ( ) ( )
1

0

1,
x

t aa x e t dt
a

γ − −=
Γ ∫ , 

 ( ) ( ) ( )max

min
max minPoi , 1, 1,

b

b

K b b

K
K dK K Kγ γ= + − +∫ n n n  (22S) 

We keep the bin spacing fixed, so the integrals in eq22S need to be performed only once to create the 

matrix. 
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4S Figure of numerically approximated detection volume (cf. section 3.5) 
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Figure 3S: Comparison of the numerically approximated detection volume to a Gaussian 

detection volume (see section 3.5 for description of calculation).  A, Numerically approximated 

detection volume.  B, Gaussian detection volume fitted to detection volume in A (lateral width = 

0.27 mm; longitudinal width = 0.84 mm).  C, Difference between detection volumes.  Although 

the central peak is well-fitted, the wings of the detection volume are poorly fitted. 
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5S Single-channel, intermediate-occupancy simulations; modified FIMDA (cf. 

section 4.2) 

5.1S Expanded tables including intermediate occupancy simulations  

Table 1S.  Parameters Extracted using PAID, modified FIMDA, and FIMDA for single-channel, 

one-component simulations in a Gaussian detection volume 

parameters Simulation PAID modified 
FIMDA FIMDA FCS FIDA 

Averaged Fits for 10 Simulations (30 s each): Low Occupancy 
2χ  - 1.2 ± 0.1 1.1 ± 0.1 4.7 ± 0.2 1.3 ± 0.1 0.6 ± 0.1 

01k  (kHz) 0.0 0.01 ± 0.01 0.002 ± 
0.001 0.01 ± 0.01 N/A 0.02 ± 0.01 

1c  (mol) 0.1 0.100±0.001 0.099±0.001 0.100±0.001 0.099±0.001 0.105±0.001
D
1τ  (µs) 100.0 98 ± 1 99 ± 1 99 ± 1 100 ± 1 N/A 

11q  (kHz) 50.0 48.9 ± 0.3 49.2 ± 0.3 49.7 ± 0.3 N/A 47.3 ± 0.3 

Averaged Fits for 10 Simulations (10 s each): Intermediate Occupancy 
2χ  - 1.0 ± 0.1 0.8 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.7± 0.1 

01k  (kHz) 0.0 0.03 ± 0.01 0.06 ± 0.01 0.13 ± 0.03 N/A 0.3 ± 0.1 

1c  (mol) 1.0 0.99 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.05 ± 0.01 
D
1τ  (µs) 100.0 99 ± 1 101 ± 1 94 ± 1 100 ± 1 N/A 

11q  (kHz) 50.0 49.5 ± 0.2 48.6 ± 0.2 50.8 ± 0.2 N/A 47.6 ± 0.2 
 

Table 2S. Parameters Extracted using PAID, modified FIMDA, and FIMDA for single-channel, 

two-component simulations in a Gaussian detection volume 

parameters simulation PAID modified 
FIMDA FIMDA FCS FIDA 

Averaged Fits for 10 Simulations (30 s each): Low Occupancy 
2χ  - 0.77 ± 0.04 0.75±0.04 1.1 ± 0.3 1.3 ± 0.2 0.5 ± 0.1 

01k  (kHz) 2.0 2.00 ± 0.01 2.00 ± 0.01 1.90 ± 0.01 2.0 1.99 ± 0.03 

1c  (mol) 0.05 0.048±0.001 0.048±0.001 0.064±0.001 0.05 0.059±0.002
D
1τ  (µs) 100.0 100 ± 2 99 ± 2 117 ± 4 105 ±  7 N/A 

11q  (kHz) 50.0 50 ± 1 50 ± 1 51 ± 2 50.0 48 ± 2 

2c  (mol) 0.05 0.052±0.001 0.052±0.001 0.042±0.002 0.05 0.048±0.003
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D
2τ  (µs) 150.0 145 ± 2 146 ± 2 146 ± 3 142 ± 3 N/A 

21q  (kHzl) 100.0 98 ± 1 98 ± 1 106 ± 1 100.0 100 ± 2 

Averaged Fits for 10 Simulations (10 s each): Intermediate Occupancy 
2χ  - 0.9 ± 0.1 0.58 ± 0.02 0.55 ± 0.02 1.4± 0.2 0.7 ± 0.1 

01k  (kHz) 2.0 2.03 ± 0.02 2.05 ± 0.01 1.6 ± 0.2 2.0 1.6 ± 0.3 

1c  (mol) 0.5 0.45 ± 0.03 0.43 ± 0.04 0.51 ± 0.04 0.5 0.57 ± 0.03 
D
1τ  (µs) 100.0 88 ± 6 95 ± 8 92 ± 5 120 ±  7 N/A 

11q  (kHz) 50.0 53 ± 1 50 ± 2 52 ± 2 50.0 46 ± 4 

2c  (mol) 0.5 0.53 ± 0.02 0.56 ± 0.04 0.50 ± 0.04 0.5 0.52 ± 0.04 
D
2τ  (µs) 150.0 153 ± 1 148 ± 3 144 ± 4 141 ±  3 N/A 

21q  (kHz) 100.0 96 ± 1 94 ± 2 101 ± 2 100.0 97 ± 2 
 

5.2S Modified FIMDA model 

A new model for FIMDA can be developed using the methods in the section 3S.  A modification of 

Eq. 11S may be used to obtain the photon count distribution for a bin width τ ,   

 ( ) ( ) ( ) ( )0,0

0
, Poi ,STM M M STM MP dK K f K

γ

γ
γ

τ
∞

 = ∗ ∏∫τ n n
N

 (23S) 

The scaling laws described with the PAID function model are used here as well, and the convolutions 

are performed as described in section 3.2S.  We refer to this model as “modified FIMDA”.  

The columns in Tables 1S and 2S labeled “modified FIMDA” use our model to extract the parameters 

from the histograms, and the columns labeled “FIMDA” use the original FIMDA model8.  The 

simulations for Tables 1S and 2S are the same as those for Tables 1 and 2 in the main text.  Some 

differences were found between fitting the FIMDA histograms with the modified FIMDA model and the 

original model in ref 8.  For the single-species simulations at low occupancy, the accuracy of the 

extracted values is similar to the accuracy found using PAID and modified FIMDA, but 2χ  is 

significantly higher than 1.  This comes from the region where time delays are larger than the diffusion 

time.  The fits for one modified FIMDA histogram using the modified FIMDA model and the original 

FIMDA model are shown in Fig. 4S. It is possible to see in fig. 4S-C and 4S-D the deviation of the 

FIMDA model (green line) from the data (black line).   
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Fig. 4S: One of the fits in Table 1S using FIMDA.  The occupancy is 1 0.1c = , the diffusion time 

is D
1 100 µsτ = , the brightness is 11 50 kHzq = , and the background count rate is 01 0 kHzq = .  The 

FIMDA histogram   for the simulation is in A (represented using the normalization described in 

this section), and the fit using modified FIMDA is in B.  Horizontal slices of both are shown in 

C, and vertical slices are shown in D.  The slices of the simulation are shown in black with error 

bars, the slices of the fit using modified FIMDA are shown in red, and the slices of the fit using 

the FIMDA model, specialized to the Gaussian detection volume with no triplet state, are shown 

in green.   

The difference between the models is less pronounced at higher occupancies.  For the single-species 

simulations at intermediate occupancy, the 2χ  is near 1, and the extracted parameters are close to the 

simulation values, except for a 5% downward bias in the diffusion time using the FIMDA model.   

The parameters extracted using the FIMDA model for the simulations of the low occupancy mixtures 

had larger biases than those extracted with the modified FIMDA model (Table 2S).  For the low 
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occupancy mixture, the biases in the occupancies were close to 20%.  It performed better with the 

intermediate occupancy simulations (with smaller biases in the occupancy values), except that the 

background count rate values extracted were extracted more accurately with PAID and modified 

FIMDA.   

We attribute the increased 2χ  and biases found using the original FIMDA model to the assumption 

made that the functional form of the photon counting histogram changes only through changes in 

effective brightness and effective occupancy.  In the view of the original model, at time bins larger than 

the diffusion time, the effective occupancy is increased while the effective brightness is reduced; the 

detection volume increases in size as time passes, but retains the same shape.  This view does not 

account for the dynamic picture, neglecting for example the chance that a molecule re-crosses the 

detection volume.   
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6S Single-channel, intermediate-occupancy experiments; initial experiments using 

Cy3 (cf. section 4.3) 

6.1S Tables for single-channel, intermediate-occupancy experiments 

 Table 3S. Parameters extracted using single-component PAID fits for single-channel, single-

species experiments 

parameters DNACy3B,1T DNACy3B,1T/Cy3B,65B 

Averaged Fits for 10 Measurements (30 s each): Intermediate Occupancy 
2χ  1.5 ± 0.1 1.2 ± 0.1 

01k  (kHz) 0.23 ± 0.04 2.2 ± 0.3 

1c  (mol) 2.21 ± 0.02 2.32 ± 0.04 
D
1τ  (µs) 620 ± 10 650 ± 10 

11q  (kHz) 8.7 ± 0.1 17.9 ± 0.2 
Buffer-only measurements - 01 0.24 0.01 kHzk = ±  

Table 4S. Parameters Extracted using two-component PAID fits for single-channel, one- and 

two-species experiments 

Paramete
rs 

DNACy3B,1T 

fixed ratio 
fita 

DNACy3B,1T 

restricted 
fitb 

DNACy3B,1T

/Cy3B,65B 
fixed ratio 

fit 

DNACy3B,1T

/Cy3B,65B 
restricted 

fit 

DNACy3B,1T 
DNACy3B,1T

/Cy3B,65B 
fixed ratio 

fit 

DNACy3B,1T

DNACy3B,1T

/Cy3B,65B 
restricted 

fit 
Averaged Fits for 10 Measurements (30 s each): Intermediate Occupancy 

2χ  1.3 ± 0.1 1.6 ± 0.1 1.0 ± 0.1 1.3 ± 0.1 2.5 ± 0.1 2.8 ± 0.1 

01k  (kHz) 0.7 ± 0.1 0.24 0.5 ± 0.1 0.24 0.9 ± 0.1 0.24 

1c  (mol) 2.04 ± 0.04 2.19 ± 0.01 0.5 ± 0.1 0.2 ± 0.1 1.4 ± 0.1 1.99 ± 0.04 
D
1τ  (µs) 640 ± 10 620 630 ± 10 620 680 ± 10 620 

11q (kHz) 9.0 ± 0.2 8.7 9.2 ± 0.1 8.7 7.4 ± 0.1 8.7 

2c  (mol) 0.10 ± 0.03 0.005±0.002 2.1 ± 0.1 2.41 ± 0.04 1.0 ± 0.1 0.49 ± 0.03 
D
2τ  (µs) 640 ± 10 620 630 ± 10 620 680 ± 10 620 

21q (kHz) 4.5 ± 0.1 17.4 18.5 ± 0.3 17.4 14.9 ± 0.3 17.4 
aThe ratio between the brightness of both components fixed to a factor of 2, and the diffusion 
times of the two components are linked. 
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bThe brightness values are 1 and 2 times the values extracted from the DNACy3B,1T samples, and 
the diffusion times are fixed.  The background rates were extracted from separate experiments. 

6.2S Initial single-channel PAID experiments using Cy3 

Initially, our single-channel PAID experiments were performed using Cy3 (rather than Cy3B); in this 

case, the ratio in brightness between DNACy3,1T/Cy3,65B and DNACy3,1T was measured to be ~1.5 (data not 

shown).  Even at low excitation intensities (<10 kW/cm2 ), the factor of ~1.5 persisted, excluding triplet 

state saturation and photobleaching from the possible sources of the discrepancy.  Using FCS, we 

observed a fluctuation that became faster with increasing excitation intensity without a corresponding 

change in the fluctuation amplitude (unlike triplet fluctuations).  A similar effect was observed 

previously for Cy5, and was identified as photo-induced isomerization11.  Since isomerization of two 

distinct fluorophores is uncorrelated, the amplitude of the fluctuation is reduced by a factor of 2 in the 

DNACy3,1T/Cy3,65B, increasing the apparent concentration of the double-labeled species as compared to 

the single-labeled DNACy3,1T, resulting in only a factor of ~1.5 difference in brightness.  Using Cy3B, a 

conformationally-constrained analog of Cy3 which prevents isomerization, the fluctuation is absent.  

This emphasizes the importance of the choice of fluorophore when attempting to use brightness as a 

measure of stoichiometry.  Dual-channel methods (discussed in sections 4.4-4.6) are less sensitive to 

such effects. 
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7S Simulations–quantitative analysis of binding using dual-channel PAID; PAID 

histograms with two monitor channels (cf. section 4.4) 

7.1S Simulations–quantitative analysis of binding using dual-channel PAID 

PAID and FCCS in dual-channel applications with two spectrally-separable fluorophores were 

investigated using multiple species simulations.  As in the single-channel case, low- and intermediate-

occupancy regimes were studied (Tables 5S and 6S).  The parameters used for the simulations are listed 

in the 2nd column of tables 5S and 6S.   

For each simulation, three fits were performed.  The 1st fit (Tables 5S and 6S, 3rd column) uses PAID 

with all parameters unrestricted.  The 2nd fit (Tables 5S and 6S, 4th column) also uses PAID, with all 

parameters of the free components except for the occupancies being fixed. For the 1st and 2nd fits, all 

combinations of the dual-channel PAID histogram are fitted simultaneously; since each histogram 

emphasizes different species, parameters for all species can be extracted.  The 3rd fit (Tables 5S and 6S, 

5th column) uses FCCS to simultaneously fit the autocorrelations of the red and yellow channels and the 

two cross-correlations, with all brightness and background values fixed. 

Table 5S. Parameters Extracted using PAID and FCCS fits for two-channel, three-component 

simulations in a Gaussian detection volume at low occupancy 

parameters Simulation PAID- 
unrestricted fit 

PAID- 
restricted fit FCCS 

Averaged Fits for 10 Simulations (30 s each): Low Occupancy 
2χ  - 0.72 ± 0.02 0.79 ± 0.02 0.95 ± 0.04 

0Rk  (kHz) 2.0 2.00 ± 0.01 2.0 2.0 

0Yk  (kHz) 2.0 2.00 ± 0.01 2.0 2.0 

1c  (mol) 0.05 0.049 ± 0.001 0.049 ± 0.001 0.050 ± 0.001 
D
1τ  (µs) 300.0 287 ± 7 300.0 311 ± 4 

1Rq  (kHz) 50.0 50.3 ± 0.4 50.0 50.0 

1Yq  (kHz) 0.0 0.05 ± 0.01 0.0 0.0 

2c  (mol) 0.05 0.049 ± 0.001 0.050 ± 0.001 0.050 ± 0.001 
D
2τ  (µs) 300.0 294 ± 7 300.0 306 ± 4 
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2Rq  (kHz) 5.0 4.8 ± 0.1 5.0 5.0 

2Yq  (kHz) 45.0 44.8 ± 0.3 45.0 45.0 

3c  (mol) 0.05 0.050 ± 0.001 0.050 ± 0.001 0.051 ± 0.001 
D
3τ  (µs) 400.0 394 ± 6 389 ± 7 404 ± 8 

3Rq  (kHz) 55.0 54.9 ± 0.3 55.2 ± 0.1 55.0 

3Yq  (kHz) 45.0 44.7 ± 0.2 44.8 ± 0.1 45.0 
Values that are fixed are shown in italics, with no errors listed.   

Table 6S.  Parameters Extracted using PAID and FCCS fits for two-channel, three-component 

simulations in a Gaussian detection volume at intermediate occupancy 

parameters Simulation PAID- 
unrestricted fit 

PAID - 
restricted fit FCCS 

Averaged Fits for 10 Simulations (10 s each): Intermediate Occupancy 
2χ  - 0.81 ± 0.02 0.90 ± 0.04 0.76 ± 0.09 

0Rk  (kHz) 2.0 2.02 ± 0.02 2.0 2.0 

0Yk  (kHz) 2.0 2.00 ± 0.02 2.0 2.0 

1c  (mol) 0.5 0.50 ± 0.01 0.49 ± 0.01 0.050 ± 0.01 
D
1τ  (µs) 300.0 320 ± 9 300.0 313 ± 3 

1Rq  (kHz) 50.0 49.1 ± 0.2 50.0 50.0 

1Yq  (kHz) 0.0 0.06 ± 0.02 0.0 0.0 

2c  (mol) 0.5 0.49 ± 0.01 0.49 ± 0.01 0.50 ± 0.01 
D
2τ  (µs) 300.0 306 ± 11 300.0 303 ± 7 

2Rq  (kHz) 5.0 4.9 ± 0.2 5.0 5.0 

2Yq  (kHz) 45.0 44.5 ± 0.4 45.0 45.0 

3c  (mol) 0.5 0.50 ± 0.01 0.49 ± 0.01 0.49 ± 0.01 
D
3τ  (µs) 400.0 395 ± 4 390 ± 6 407 ± 5 

3Rq  (kHz) 55.0 54.3 ± 0.4 55.0 ± 0.2 55.0 

3Yq  (kHz) 45.0 44.5 ± 0.5 45.1 ± 0.2 45.0 
 

The unrestricted fit extracted reliable values, within 1-10% for all parameters in both sets of 

simulations.  Unexpectedly, fixing the brightness of the free components and the background resulted 

only in a modest improvement for the brightness values for the complex and no improvement for the 

diffusion time or for the occupancies.  The parameters extracted using FCCS had similar statistical 

accuracy (~1% range) to those found using PAID.  The extracted diffusion times are somewhat better 
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with FCCS (the error bars were ~20% smaller), mainly due to the smaller numbers of fitted  parameters 

(brightness and background were fixed to their simulation values; for experiments, it would be 

necessary to measure the brightness  and background values using a method different than FCS.) 

7.2S PAID histograms with two monitor channels  

Higher sensitivity could be achieved if two monitor channels were used for the two-channel 

experiments, allowing better use of ratiometric information available in dual-channel experiments.  

Observables in single-molecule diffusion studies that depend on the ratio of two channels are more 

sensitive than brightness.  A PAID histogram with two monitor channels has three axes: the time 

interval axis τ , the number of photons in the red channel Rn , and the number of photons counted in the 

yellow channel Yn .  Fig. 5S-A shows three slices of this histogram at different time intervals when A y , 

Br , and A By r  are present, and Fig. 5S-B shows the same three slices when A By r  is absent.  The 

histograms shown are for the PAID histogram with the red channel assigned as the start channel 

( S R= ), the yellow channel assigned as the stop channel (T Y= ), and a monitor channel for each 

channel ( 1M R=  and 2M Y= ).  A cartoon of a particular type of molecule is placed in the 

1 msτ = slice at the approximate location where it contributes.   The histograms in Figs. 6C and 6G in 

the main text are the collapse of Figs. 5S-A and 5S-B, respectively, summing along the yellow monitor 

channel axis, while keeping the time interval and red monitor channels axes.  For an isolated burst, the 

number of photons counted depends on the diffusion path taken through the detection volume, whereas 

the ratio between two channels does not.  For example, the correlation density peak in Fig. 5S-A at 

1 msτ =  corresponding the complex is wider in the direction of the diagonal R Y=n n  than in the 

perpendicular direction.  The one monitor channel PAID histogram is a collapse of the two monitor 

channel histogram onto the Y  or R  axis.  This collapse smears the central peak; the subpopulations of 

complex and free molecules are not clearly separated in the one monitor channel case, but are separated 

with two monitor channels (compare the 1 msτ = slice in Fig. 5S-A with the corresponding single 
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monitor channel histogram in Fig. 6C.)  Although the benefits are clear, the fitting model has not yet 

been extended to account for two monitor channels.   

C
or

re
la

tio
n 

D
en

si
ty

20
6
2

0.6
0.2

0.06
0.02

0.006
0.002

A

B

τ = 100 µs

τ = 1 ms

τ = 10 ms

Time Interval τ
Bkgd.

Ye
llo

w
 C

h.
 P

ho
to

n 
C

ou
nt

s

100

101

102

103

100 101 102 103

Red Ch. Photon Counts

τ = 100 µs

τ = 1 ms

τ = 10 ms

Time Interval τ
Bkgd.

S
R

T
Y

M1
R

M2
Y

 

Figure 5S.  Two-channel, two monitor channel PAID histograms for the same simulations as in 

fig 5 in the main text.  The red channel is assigned as the start channel and the first monitor 

channel along the horizontal axis.  The yellow channel is assigned as the stop channel and the 

second monitor channel along the vertical axis.  Because the start and stop channels are assigned 

to different channels, these histograms emphasize the species that emits in both channels, the 

complex.  A two-monitor channel PAID histogram is three-dimensional, so three two-

dimensional slices at 100 µsτ = , 1 msτ = , and 10 msτ = are shown for each histogram.  In A, 

both free species and complex are present.  In the 1 msτ = slice, a cartoon of each diffusing 

species is placed next to the contribution from that species.  In B, the complex is absent.  
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8S Correlations for dual-channel, low-occupancy experiments; PAID and FCS 

analysis of dual-channel, intermediate-occupancy experiments (cf. section 4.5) 

8.1S Figure of correlations for dual-channel, low occupancy experiments 
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Fig. 6S: Correlations for dual-channel, low-occupancy mixture samples discussed in section 4.6.  

These correlations are collapses of the PAID histograms shown in fig 7 in the main text.  RR and 

YY are the autocorrelations of channels R and Y, respectively; RY and YR are cross-correlations.  

When these data are fitted using the PAID model, time intervals < 10 µs are excluded from the 

fit (black line).  The dramatic increase in the autocorrelations at short time is from afterpulsing 

effects from the APDs.  Note that the cross-correlation amplitudes increase when 

DNACy5,1T/Cy3,65B is present (the residual cross-correlation without DNACy5,1T/Cy3,65B is due to 

leakage of the fluorophore y into channel R).   

8.2S PAID analysis of dual-channel, intermediate occupancy experiments 

In addition to the low-occupancy dual-channel experiments discussed in section 4.6, we also 

performed intermediate-occupancy dual-channel experiments.  The occupancies for the intermediate-

occupancy samples were expected to be 0.85 ± 0.09 for DNACy5,1T, 1.15 ± 0.05 for DNACy3,65B, and 0.84 
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± 0.03 for DNACy5,1T/Cy3,65B.  As in the main text, the fragments were prepared as free components and 

in the following mixtures: DNACy5,1T/DNACy3,65B (to simulate non-interacting species); and 

DNACy5,1T/Cy3,65B /DNACy5,1T/DNACy3,65B (to simulate interacting species).   

Using PAID, we extracted occupancy, diffusion time, and brightness from dual-channel experiments 

performed on single-species samples (Table 7S), then from dual-channel experiments performed on 

mixtures of those species (Table 8S).  As in Tables 5 and 6 in the main text, we obtained fits with 2χ  in 

the range 10> 2χ  >1 (ideally 2 1χ ∼ ).  Consistency between the values extracted from fits of data from 

single species samples and values extracted from multiple-species fits of mixtures demonstrates the 

ability of PAID to analyze mixtures of species.  

Table 7S. Parameters extracted using PAID fits for two-channel, single-species, intermediate 

occupancy experiments 

parameters DNACy5,1T DNACy3,65B DNACy5,1T/Cy3,65B 

Averaged Fits for 10 Measurements (30 s): Intermediate occupancy 
2χ  4.7 ± 0.2 2.2 ± 0.1 1.4 ± 0.1 

0Rk  (kHz) 1.30 ± 0.01 0.99 ± 0.01 0.92 ± 0.01 

0Yk  (kHz) 1.33 ± 0.01 1.44 ± 0.01 1.29 ± 0.01 
DNA Fragment 1 DNACy5,1T DNACy3,65B DNACy5dark,1T/Cy3,65B 

1c  (mol) 0.68 ± 0.01 1.08 ± 0.01 0.32 ± 0.01 
D
1τ  (µs) 390 ± 10 550 ± 20 700 ± 10 

1Rq  (kHz) 9.4 ± 0.2 0.82 ± 0.01 0.70 ± 0.03 

1Yq  (kHz) 0.02 ± 0.01 9.0 ± 0.1 10.7 ± 0.2 
DNA Fragment 2 None None DNACy5,1T/Cy3,65B 

2c  (mol)   0.24 ± 0.01 
D
2τ  (µs)   580 ± 10 

2Rq  (kHz)   7.6 ± 0.1 

2Yq  (kHz)   7.6 ± 0.2 
 

Table 7S show fitted values for the samples containing only one species of labeled DNA, where the 

background rates, occupancies, diffusion times, and brightness in each channel were fitted parameters.  
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For the single-species, low-occupancy data (Table 6), the extracted occupancies were 35%-70% lower 

than expected from higher-concentration FCS experiments, whereas for the single-species, intermediate-

occupancy data (Table 7S), they are 4%-20% lower than expected. The fact that the difference is 

smaller for the intermediate occupancy supports the suggestion in the main text that the difference 

between extracted and estimated occupancies can be attributed to loss of DNA on surfaces during 

handling (this problem is less severe at higher concentrations).  The diffusion times extracted for 

DNACy5,1T/Cy3,65B  and DNACy3,65B are similar to those found for low occupancy  theoretical ones (550-

700 µs ); diffusion times for DNACy5,1T are similar as well (~400 µs).    

Table 8S. Parameters extracted using PAID fits for two-channel, multiple-species, intermediate 

occupancy experiments 

Parameters 

DNACy3,65B, 
DNACy5,1T 

unrestricted 
2 component fit 

DNACy3,65B, 
DNACy5,1T 
restricted 

3 component fit 

DNACy3,65B, 
DNACy5,1T, 

DNACy5,1T/Cy3,65B 
unrestricted 

3 component fit 

DNACy3,65B, 
DNACy5,1T, 

DNACy5,1T/Cy3,65B

restricted 
3 component fit 

Averaged Fits for 10 Measurements (30 s each): Intermediate occupancy 
2χ  1.8 ± 0.1 3.0 ± 0.2 3.0 ± 0.1 4.8 ± 0.2 

0Rk  (kHz) 1.4 ± 0.1 0.71 1.66 ± 0.01 0.71 

0Yk  (kHz) 1.44 ± 0.01 1.15 1.3 ± 0.1 1.15 
DNA Frag. 1 DNACy5,1T DNACy5,1T DNACy5,1T DNACy5,1T 

1c  (mol) 0.43 ± 0.01 0.57 ± 0.01 0.37 ± 0.01 0.74 ± 0.01 
D
1τ  (µs) 350 ± 10 389 360 ± 10 389 

1Rq  (kHz) 11.0 ± 0.1 9.4 14.5 ± 0.4 9.4 

1Yq  (kHz) 0.20 ± 0.03 0.02 0.3 ± 0.1 0.02 
DNA Frag. 2 DNACy3,65B DNACy3,65B aDNACy3,65B aDNACy3,65B 

2c  (mol) 0.86 ± 0.01 0.96 ± 0.01 1.0 ± 0.1 1.56 ± 0.01 
D
2τ  (µs) 560 ± 10 554 500 ± 10 554 

2Rq  (kHz) 0.75 ± 0.02 0.82 0.5 ± 0.1 0.82 

2Yq  (kHz) 9.8 ± 0.1 9.0 11.5 ± 0.3 9.0 
DNA Frag. 3 None DNACy5,1T/Cy3,65B DNACy5,1T/Cy3,65B DNACy5,1T/Cy3,65B 

3c  (mol)  0.01 ± 0.01 0.58 ± 0.05 0.22 ± 0.01 
D
3τ  (µs)  575 450 ± 10 575 

3Rq  (kHz)  7.6 5.3 ± 0.4 7.6 
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3Yq  (kHz)  7.6 6.4 ± 0.1 7.6 
a Includes contributions from DNACy5dark,1T/Cy3,65B 

As in table 6 in the main text, we performed two fits for mixtures of DNA fragments simulating non-

interacting and interacting species (Table 8S).  The 1st fit assumes the correct number of species, but 

allows all parameters to freely vary; the 2nd fit uses the single-species parameters already extracted to 

restrict the parameters for the free components, except for occupancy.  These fits show that a sample 

with two species can be distinguished from a sample with three species, as is necessary for measuring 

interactions.  PAID performed extremely well for all fits except the unrestricted fit of the three-

component mixture.  Although the three-component, unrestricted fit at intermediate occupancy 

identified three species, it produced values less consistent with values obtained with other fits.   

The occupancies extracted from the mixtures using restricted fits were consistent with the 

occupancies extracted from the single-species samples (within 15%, except for DNACy5,1T at low 

occupancy, which is 27% lower ).   

For the unrestricted intermediate-occupancy fits in Table 8S, the occupancies for DNACy5,1T were 

smaller (25%-50%), with compensating increases in the brightness in R .  The occupancies extracted 

using the unrestricted fit from DNACy3,65B and DNACy5,1T/Cy3,65B  in the three-fragment mixture are 

different from those obtained with the restricted fit (a 33% decrease and a 160% increase).  With the 

unrestricted fits, the diffusion times are similar to those extracted for the single-species samples.  The 

consistency found for brightness is excellent for all fits (typically ~10%).   

These intermediate-occupancy experiments demonstrate that PAID can work in a variety of 

concentration regimes, and give additional support to the findings in the main text. 

8.3S FCS analysis of dual-channel, intermediate occupancy experiments 

The effects of triplet state fluctuations and fluorescence saturation12, photobleaching13,14, and photo-

induced isomerization11 are well-characterized in FCS; many of these features are evident in the data 

analyzed here.  To compare with results using PAID, the data from Tables 7S and 8S were analyzed 

using FCS over the same range of time intervals, modeling only diffusion.  We used simulated diffusion 
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paths through the non-Gaussian detection volume in section 3.5 to calculate the expected correlation 

function ( )0C τ  for unit occupancy and unit diffusion time.  This function was scaled to provide a 

functional form for fitting ( Dτ  is diffusion time and c  is occupancy): ( ) ( )D
0 1 1C C cτ τ τ = − +  .   

Table 9S. Parameters extracted using FCS fits for only one two-channel correlation function in 

single-species, intermediate occupancy experiments – modeling diffusion time only 

parameters DNACy5,1T 

Cy5 autocorr. 
DNACy3,65B 

Cy3 autocorr. 
DNACy5,1T/Cy3,65B 

Cy5 autocorr. 
DNACy5,1T/Cy3,65B 

Cy3 autocorr. 

DNACy5,1T/Cy3,65B 

Cy3-Cy5 cross-
corr. 

Averaged Fits for 10 Measurements (30 s): Intermediate occupancy 
2χ  1.7 ± 0.1 1.6 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.6 ± 0.1 

1c  (mol) 1.03 ± 0.01 1.48 ± 0.03 0.59 ± 0.01 0.86 ± 0.01 1.31 ± 0.02 
D
1τ  (µs) 510 ± 10 710 ± 10 580 ± 10 750 ± 10 900 ± 10 

 

Table 9S shows parameters extracted using FCS fits of single correlation functions from the single-

species dual-channel experiments used in Table 7S.  The cross-correlation of the DNACy5,1T/Cy3,65B 

sample provides the longest, least biased diffusion time: photophysics of the Cy3 and Cy5 fluorophores 

are uncorrelated with each other, so the cross-correlation is affected only by diffusion.  The remaining 

autocorrelations are shorter due to photophysical properties of the fluorophores.   

Table 10S. Parameters extracted using FCS fits for only one two-channel correlation function in 

single-species, intermediate occupancy experiments – modeling diffusion time and a short time 

scale photophysical process (most likely photo-induced isomerization) 

Parameters DNACy5,1T 

Cy5 autocorr. 
DNACy3,65B 

Cy3 autocorr. 
DNACy5,1T/Cy3,65B 

Cy5 autocorr. 
DNACy5,1T/Cy3,65B 

Cy3 autocorr. 

DNACy5,1T/Cy3,65B 

Cy3-Cy5 cross-
corr. 

Averaged Fits for 10 Measurements (30 s): Intermediate occupancy 
2χ  0.8 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.63 ± 0.04 0.6 ± 0.1 

1c  (mol) 1.13 ± 0.01 1.60 ± 0.02 0.64 ± 0.01 0.94 ± 0.01 1.31 ± 0.02 
D
1τ  (µs) 590 ± 10 840 ± 30 650 ± 10 860 ± 10 900 ± 10 

F  0.26 ± 0.01 0.18 ± 0.01 0.26 ± 0.04 0.18 ± 0.01 - 
Photophysics
1τ  (µs) 25 ± 2 60 ± 10 40 ± 10 54 ± 3 - 
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Table 10S uses the same data, but now fits an additional “photophysical factor”, which can be due to 

either triplet state related fluctuations or photo-induced isomerization (the latter is the primary source of 

fluctuations for the Cy3 and Cy5 fluorophores11).  Accounting for this, the diffusion times for the Cy3 

autocorrelations are less than 10% smaller than the cross-correlation value.  However, the diffusion 

times for the Cy5 autocorrelations are still significantly smaller, indicating that another effect such as 

photobleaching within the detection volume may play a role in the shortened diffusion time.   

The previous fits show how photophysical properties of the fluorophores can give rise to variations in 

apparent diffusion time.  However, the fitted diffusion times for the PAID histograms combine 

information from autocorrelations and cross-correlations.  Therefore, the precise diffusion time values 

extracted using PAID for different DNA species depends on the contribution each species makes to the 

S=T PAID histograms (analogous to autocorrelation in FCS) and S≠T PAID histograms (analogous to 

cross-correlation in FCS), as well as the presence of other species.  For example, the value for 

DNACy5,1T/Cy3,65B is affected by all of the histograms, since it emits equally in both channels, whereas 

DNACy5,1T.is affected primarily by the S=T=Cy5 PAID histograms.     

To compare FCS-extracted and PAID-extracted diffusion times, the Cy3 and Cy5 autocorrelations 

and the Cy3-Cy5 cross-correlations are simultaneously fitted for the data sets used in Tables 7S and 8S 

(the fit is similar to the FCCS fits performed in Tables 5S and 6S).  The background levels, 

brightnesses, and occupancies are all fixed to the values from Table 7S or the unrestricted fit values 

from Table 8S.  Only the diffusion times are allowed to vary.  The results of these fits are in Tables 11S 

and 12S.  The fitted diffusion times were around 15% longer than extracted using PAID.  Spreading the 

correlation function over the monitor photon axis likely enhances the effects of short time scale 

fluctuations.  Most importantly, the variations in diffusion time extracted using FCS correlated with 

those extracted using PAID in Table 7S and 8S (see Figure 7S), indicating a common source for the 

variations.   
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Table 11S. Parameters extracted using simultaneous FCS fits for all two-channel 

autocorrelations and cross-correlations in single species, intermediate occupancy experiments – 

modeling diffusion time only 

parameters DNACy5,1T DNACy3,65B DNACy5,1T/Cy3,65B 

Averaged Fits for 10 Measurements (30 s): Intermediate occupancy 
2χ  1.8 ± 0.2 1.8 ± 0.1 1.3 ± 0.1 

0Rk  (kHz) 1.30 0.99 0.92 

0Yk  (kHz) 1.33 1.44 1.29 
DNA Fragment 1 DNACy5,1T DNACy3,65B DNACy5dark,1T/Cy3,65B 

1c  (mol) 0.68 1.08 0.32 
D
1τ  (µs) 450 ± 10 630 ± 10 770 ± 30 

1Rq  (kHz/mol) 9.4 0.82 0.70 

1Yq  (kHz/mol) 0.02 9.0 10.7 
DNA Fragment 2 None None DNACy5,1T/Cy3,65B 

2c  (mol)   0.24 
D
2τ  (µs)   670 ± 20 

2Rq  (kHz/mol)   7.6 

2Yq  (kHz/mol)   7.6 
 

Table 12S. Parameters extracted using simultaneous FCS fits for all two-channel 

autocorrelations and cross-correlations in multiple species, intermediate occupancy experiments 

– modeling diffusion time only 

parameters 
DNACy3,65B, 
DNACy5,1T 

2 component fit 

DNACy3,65B, 
DNACy5,1T, 

DNACy5,1T/Cy3,65B 
3 component fit 

Averaged Fits for 10 Measurements (30 s each): Intermediate occupancy 
2χ  1.2 ± 0.1 1.5 ± 0.1 

0Rk  (kHz) 1.4 1.66 

0Yk  (kHz) 1.44 1.3 
DNA Fragment 1 DNACy5,1T DNACy5,1T 

1c  (mol) 0.43 0.37 
D
1τ  (µs) 420 ± 20 380 ± 20 
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1Rq  (kHz/mol) 11.0 14.5 

1Yq  (kHz/mol) 0.20 0.3 
DNA Fragment 2 DNACy3,65B aDNACy3,65B 

2c  (mol) 0.86 1.0 
D
2τ  (µs) 650 ± 20 560 ± 10 

2Rq  (kHz/mol) 0.75 0.5 

2Yq  (kHz/mol) 9.8 11.5 
DNA Fragment 3 None DNACy5,1T/Cy3,65B 

3c  (mol)  0.58 
D
3τ  (µs)  630 ± 50 

3Rq  (kHz/mol)  5.3 

3Yq  (kHz/mol)  6.4 
aIncludes contributions from DNACy5dark,1T/Cy3,65B 
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Fig. 7S: Variations in diffusion times fitted using PAID are correlated with variations in 

diffusion times fitted using FCS when only diffusion time is modeled.  The PAID values are 

taken from tables 7S and 8S, and the FCS values are taken from tables 11S and 12S .  The 

correlation coefficient is 0.96, and the linear fit using D D
PAID FCSτ ατ= gives 0.86 0.02α = ± . 
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