Nature Methods

Monitoring multiple distances within a single molecule using switchable FRET

Stephan Uphoff, Seamus J Holden, Ludovic Le Reste, Javier Periz, Sebastian van de Linde, Mike Heilemann & Achillefs N Kapanidis

Supplementary Figure 1	Single-molecule vs. combined <i>E*-S</i> histogram for Cy5-Cy3B-Cy5 sample		
Supplementary Figure 2	Accurate FRET efficiencies from a single molecule		
Supplementary Figure 3	Monte Carlo simulation of switchable FRET with four acceptors		
Supplementary Figure 4	Direct comparison between simulation and Cy5-Cy3B-Cy5 experiment		
Supplementary Figure 5	Energy diagram and model for switchable FRET with one donor and two acceptors		
Supplementary Figure 6	Single-molecule vs. combined E^* -S histogram for the CAP-DNA complex		
Supplementary Figure 7	Holliday junction controls		
Supplementary Figure 8	Simulation of Holliday junction dynamics with switchable FRET		
Supplementary Table 1	DNA sequences and modifications		
Supplementary Table 2	Percentages of molecules of the different experiments that exhibited a certain number of states		
Supplementary Table 3	Accurate FRET data for molecule in Supplementary Fig. 2		
Supplementary Table 4	Simulation parameters		

Supplementary Figure 1 | Single-molecule vs. combined E^* -S histogram for Cy5-Cy3B-Cy5 sample. (**a**,**b**) Single-molecule data from **Fig. 2** (mean E^* of the clusters are given below the 2D scatter plot) compared to the combined data of 147 molecules under identical conditions. The higher abundance of the 0-DA state compared to the A-D0 state is due to the higher activation rate of the proximal acceptor; the deactivation rates are similar.

Supplementary Figure 2 | Accurate FRET efficiencies from a single molecule. (a) Sections of an ALEX timetrace from Cy5-Cy3B-Cy5 experiments. In addition to the four states (0-D0, A-D0, 0-DA, A-DA) discussed in Fig. 2, this time-trace also shows an acceptor-only state (A-00) after the donor bleached (grey background). (b) The presence of the clusters 0-D0, A-D0, 0-DA, and A-00 in the E^* -S histogram allows the calculation of accurate FRET efficiencies E. The donor-only state 0-D0 gives information on the leakage factor Lk. The acceptor-only state A-00 is used to estimate the acceptor-direct-excitation factor Dir. The slope between A-D0 and 0-DA after correction for direct excitation and leakage yields the detection correction factor γ , which is used for calculating accurate FRET efficiencies.

Supplementary Figure 3 | Monte Carlo simulation of switchable FRET with four acceptors. (a) Simulated ALEX time-trace of a system with one donor and four acceptors with individual FRET efficiencies of E = 0.2, 0.4, 0.6, and 0.8, respectively. The simulation parameters reflected the photophysical properties of Cy3B and Cy5 (see Supplementary Table 4). (b) E^* -S histogram of the four single-pair FRET states of the data in a. The E^* values differ from the input E values because of the simulated donor leakage and the effect of γ , which also causes the negative slope between the clusters. (c) The E^* -S histogram of a simulated time-trace of 800 s displays the four individual FRET states at intermediate S (D:A = 1:1). At lower S, there are six partly overlapping clusters with two active acceptors (D:A = 1:2), four overlapping clusters with three active acceptors (D:A = 1:3), and a few data points with four active acceptors (D:A = 1:4, at lowest S). The donor-only state was omitted for clarity.

Supplementary Figure 4 | Direct comparison between simulation and Cy5-Cy3B-Cy5 experiment. (a) Experimental ALEX time-trace and E^* -S histogram from Fig. 2. (b) Simulated ALEX time-trace and E^* -S histogram (for simulation parameters see **Supplementary Table 4**). (c) Experimental (top) and simulated (bottom) FRET distributions of the cluster A-D0 from the data in a,b. The standard deviation was obtained from a Gaussian fit. (d) Stoichiometry distributions for cluster A-D0.

Supplementary Figure 5 | Energy diagram and model for switchable FRET with one donor and two acceptors (for simulation parameters see **Supplementary Table 4**). Each fluorophore cycles between its ground state S_0 and excited state S_1 by excitation (k_{exc}) and fluorescence emission (k_{fl}) . The donor transfers energy to either acceptor via FRET (k_{T}) . The acceptors switch-off by a transition to an inactive state (k_{off}) and switch-on by a transition to the ground state (k_{on}) . Green and red excitation dependent rates are highlighted in color.

Supplementary Figure 6 | Single-molecule vs. combined E^* -S histogram for the CAP-DNA complex. (**a**,**b**) Single-molecule data from **Fig. 4** compared to the combined data of 33 molecules measured under identical conditions. Increased heterogeneity between different molecules within the CAP-DNA sample compared to the Cy5-Cy3B-Cy5 sample (**Supplementary Figure 1**) is apparent from the increased width of clusters, most likely representing the distribution of DNA bend angles within the sample.

Supplementary Figure 7 | Holliday junction controls. (a) ALEX time-trace showing dynamics of a single Holliday junction from a control sample labeled with e-Cy5 and Cy3B only. (b) E^* -S histogram of the data in a. (c) Combined E^* -S histogram of 311 molecules of the control sample measured under identical conditions. (d,e) Single-molecule data from Fig. 5f compared to the combined data of 118 molecules that showed conformational dynamics.

Supplementary Figure 8 | Simulation of Holliday junction dynamics with switchable FRET. (a) Slow photoswitching compared to dynamic rates. Boxed sections display a single acceptor probing multiple conformational changes (at 200 ms temporal resolution). (b) Similar photoswitching and dynamic rates. Boxed sections display a single acceptor probing individual conformational changes (at 40 ms temporal resolution). (c) Fast photoswitching compared to dynamic rates. Boxed sections display a single conformational state probed multiple times by two acceptors (at 10 ms temporal resolution). Simulation parameters are given in **Supplementary Table 4**.

Cy5-Cy3B-Cy5 Con	struct
Top Strand	5'-CAG ACG GCT GGC ACG ACT T <u>X</u> T GCA CGA TCA GCC CTG GGC GAG CGC ATT GTT GCG C-Biotin, modified at the 3'-end with Biotin and at position 20 (<u>X</u>) with Cy3B.
Bottom Strand	5'-GCG CAA CAA TGC GCT CGC CCA GGG C <u>Y</u> G ATC GTG CAA AAG TCG TGC CAG CCG TCT G-Cy5, modified at the 3'-end and at position 30 (<u>Y</u>) with Cy5.
Cy5-Cy3B Control: I	dentical to Cy5-Cy3B-Cy5 construct, except that the bottom strand is only 3'-modified with Cy5.
Cy3B-Cy5 Control: I	dentical to Cy5-Cy3B-Cy5 construct, except that the bottom strand is only modified at position 30 with Cy5.
ATTO655-Cy3B-AT	TO655 Construct
Top Strand	5'-AAG ACG GCT GGC ACG ACT TXT GCA CGG TAA ATG CTG GGC GAG CGC ATT GTT GCG C-Biotin, modified at the 3'-end with Biotin and at position 20 (X) with Cy3B.
Bottom Strand	5'-GCG CAA CAA TGC GCT CGC CCA GCA T \underline{Y} T ACC GTG CAA AAG TCG TGC CAG CCG TCT T-ATTO655, modified at the 3'-end and at position 30 (\underline{Y}) with ATTO655.
ICAP DNA Construc	xt
Top Strand	5'-Cy3B-AAC GCA ATA AAT GTG AAG TAG ATC ACA TTT TAG GCA CCA, modified at the 5'-end with Cy3B.
Bottom Strand	5'-Biotin-TGG TGC CTA AAA TGT GAT CTA CTT CAC ATT TAT TGC GTT, modified with Biotin at the 5'-end.
Holliday junction Co	nstructs
X Strand	Cy3B-5'-CCC AGT TGA GAG CTT GAT AGG G, modified at the 5'-end with Cy3B.
B Strand	5'-CCC TAX CAA GCC GCT GCT ACG G, modified at position 6 (X) with Cy5 (internal "i-Cy5").
R Strand	Cy5-5'-CCC ACC GCT CTT CTC AAC TGG G, modified at the 5'-end with Cy5 (end "e-Cy5").
H Strand	Biotin-5'-CCG TAG CAG CGA GAG CGG TGG G, modified at the 5'-end with Biotin.

Supplementary Table 1 | DNA sequences (5'-3') and modifications.

Experiment	5 states	4 states	3 states	2 states	1 state	$\operatorname{ambiguous}$
Cy5-Cy3B-Cy5	-	57%	28%	6%	0%	9%
ATTO655-Cy3B-ATTO655	-	48%	13%	8%	0%	31%
CAP-DNA	-	26%	48%	9%	0%	17%
Holliday junction	8%	42%	22%	20%	2%	6%

Supplementary Table 2 | Percentages of molecules of the different experiments that exhibited a certain number of states. To account for incomplete labelling, only fully labeled molecules that carried two acceptors and a donor were included by filtering all recorded particles based on emission intensity thresholds and the presence of dual-step photobleaching/photoswitching events in the F_{AA} time-trace. Molecules marked "ambiguous" showed no clear states or states at unexpected positions.

Cluster	0-D0	A-D0	0-DA	A-DA
E^*	0.113 ± 0.005	0.279 ± 0.001	0.778 ± 0.006	0.811 ± 0.003
S	0.970 ± 0.001	0.394 ± 0.002	0.264 ± 0.003	0.168 ± 0.002
E_{PR}	-0.001 ± 0.008	0.174 ± 0.005	0.729 ± 0.008	0.751 ± 0.009
E	-0.001 ± 0.023	0.386 ± 0.008	0.889 ± 0.004	0.900 ± 0.004
E_{th}	0	0.387	0.890	0.896 ± 0.004

Supplementary Table 3 | Accurate FRET data for molecule in Supplementary Fig. 2. Whereas acceptordirect-excitation Dir has a minor effect ($Dir = 0.036 \pm 0.002$), the leakage is substantial with about 13% of the donor emission being detected in the acceptor channel ($Lk = 0.127 \pm 0.002$). Correction of leakage and direct excitation yields the FRET proximity ratio E_{PR} . Because of the distinct slope between A-D0 and 0-DA in the E^* -S histogram, the effect of $\gamma = 0.336 \pm 0.001$ must be corrected for, yielding accurate FRET efficiencies E. Here, E^* is closer to E than E_{PR} because the effects of leakage and γ partially cancel out. Standard errors of the mean (s.e.m.) were calculated by error propagation of the s.e.m. of the clusters in the E^* -S histogram. Theoretical FRET E_{th} for A-D0 and 0-DA was calculated from equations 7 and 8 (Online Methods) assuming a cylindrical model of helical DNA. Applying theory of FRET between one donor and multiple acceptors, theoretical E_{th} of A-DA was calculated based on the measured E of A-D0 and 0-DA (equation 9, Online Methods).

Fig.	4	Suppl. 3	Suppl. 8a	Suppl. 8b	Suppl. 8c
E_1	0.2	0.284	0.333, 0.821	0.333, 0.821	0.333, 0.821
E_2	0.4	0.872	0.798, 0.539	0.798, 0.539	0.798, 0.539
E_3	0.6	-	-	-	-
E_4	0.8	-	-	-	-
$k_{ m on}$	0.32	1.6	0.3	3	30
$k_{ m off}$	0.2	0.4	0.1	1	10
$k_{ ext{I-II}}$	-	-	2	2	0.2
$k_{ m II-I}$	-	-	3	3	0.3
Exposure time	0.1	0.1	0.1	0.02	0.005
$F_{\rm DD} + F_{\rm DA}$	4000	3000	4000	1000	500
$F_{ m AA}$	4000	4000	4000	1000	500
$B_{ m DD}$	30	30	31	6	3
$B_{ m DA}$	34	34	31	6	3
$B_{ m AA}$	38	38	31	6	3
γ	0.5	0.481	0.5	0.5	0.5
Lk	0.2	0.129	0.2	0.2	0.2

Supplementary Table 4 | Simulation parameters. E_1 - E_4 : Accurate FRET efficiencies for each acceptor. In Supplementary Fig. 8, each acceptor has two values corresponding to two interconverting conformations. k_{on} , k_{off} : Photoswitching rates (s^{-1}) . k_{I-II} , k_{II-I} : Dynamic rates (s^{-1}) . Exposure time (s). $F_{DD} + F_{DA}$, F_{AA} : Emission intensities (counts/(exposure)). B_{DD} , B_{DA} , B_{AA} : Background intensities (counts/(pixel · exposure)). γ , Lk: Detection biases and leakage.