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Theory

Thompson et al. (1) derived predictions for the photon-counting error of a conventional CCD
camera without an electron multiplying gain register. We use a slightly modified version of this
derivation, and include electron multiplication effects, noting important experimental considera-
tions which must be taken into account. We also explicitly derive predictions (implied in Thomp-
son’s work) for photon-counting error, and predictions which include pixelation effects and do not
interpolate in the regime where the effects of shot noise and background noise are of similar
magnitude.

Having obtained photon-counting error predictions for a single channel, we extend this result
by error propagation (2) to obtain predictions for the expected heterogeneity on a FRET measure-
ment.

Photon counting error for an emCCD

Fluorescence emission photons are collected from a surface-immobilized biomolecule and focused
onto an electron multiplying CCD (emCCD) camera. The photons collected on a single pixel
within the integration time for a single image frame generate electrons amplified in the electron
multiplying gain register of the camera to reduce the effective read noise of the device (3). The
amplified electron count is converted to digital units (DU) by the analogue to digital converter. It is
these DU which form the pixel counts in the final image of fluorescence emission. For an individual
channel M , DUs and photon count are related by:

MDUij = UMij , U = G/C. (S1)

MDUij and Mij are the number of DU and photons collected on a single pixel with index ij,
respectively. U is the effective gain (DU/photon), determined by G, the electron multiplying gain
(electrons/photon), and C, the CCD sensitivity (electrons/DU). The value of C may be obtained
from the camera manufacturer. G is set by the operator and is typically 100-1000 (4). However, G
frequently differs significantly from the manually set value, due primarily to aging of the EM gain
register (5). For photon-counting applications U should be measured directly on a regular (at least
annual) basis using standard methods (6, 7). The photon count Mij may then be calculated from
the pixel count MDUij by Eq. S1.

Modifying Thompson’s result (1) to include effects of electron multiplication, the expected vari-
ance on measured photon count for a single pixel is

σ2
ij = f2

GMij + b2. (S2)

fG is the excess noise factor introduced by the electron multiplication (4). For typical values of G
(100-1000), fG =

√
2 to good approximation (4). The term f2

GMij represents the total contribution
of photon-counting shot noise taking into account excess noise from electron multiplication. b is
the observed standard deviation of background noise per pixel (excluding photon-counting shot
noise), including background in the measurement and any on-camera noise due to read noise and
dark noise, which for an emCCD we expect to be very small. We neglect digitization noise (3) since
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its effect for typical experimental parameters is a correction of <0.1% (unpublished data). We ne-
glect dead time and smearing due to frame transfer (3), since for currently available fluorophores,
maximal photon emission rates are such that these effects are not significant.

To obtain a prediction of photon-counting error for a surface-immobilized molecule located at
(x0, y0), with total expected photon count M0 and independent Gaussian distributed errors, we
begin with the criterion of least-squares fitting, that χ2,

χ2(x, y,M) =
∑

i,j

{mij −Mij(x, y,M)}2
s2ij

, (S3)

is minimized, where mij is the observed photon count, Mij is the photon count expected from
a model PSF located at (x, y) with total photon count M , and s2ij is the observed photon count
variance (distinct from the expected variance σij defined by Eq. S2).

We note the criterion of least-squares minimization for Gaussian distributed errors derives from
minimization of the exponent term of the multivariate normal distribution (8). However, since the
variance term appears not only in the exponent of this distribution, but also in its normalization
term, it follows that the variance must be held fixed during least-squares minimization for inde-
pendent Gaussian distributed errors. Therefore, it is most appropriate to use the observed (rather
than the expected) variance in minimization of Eq. S3, assuming the sample size is sufficiently
large that the observed variance is a good estimate of the “true” population variance (this criterion
being imposed in our derivation by calculating the expectation value of s2ij in Eq. S5).

Using the condition for the minimum, ∂χ2/∂M = 0, we expandMij(x, y,M) about Mij(x0, y0,M0).
Considering only first order terms in ∆M = M −M0, and noting that ∂s2ij/∂M = 0, we obtain:

∆M ∼ −

∑

i,j
∆mij

∂Mij

∂M /s2ij

∑

i,j

(

∂Mij

∂M /sij

)2 , (S4)

where ∂Mij/∂M is evaluated at Mij(x0, y0,M0), and ∆mij = Mij(x0, y0,M0) − mij . Squaring
Eq. S4, calculating the expectation value, and using σ2(M) = 〈(∆M)2〉 (because 〈(∆M)〉2 = 0),
yields

σ2(M) =







∑

i,j

(

∂Mij

∂M

)2

/〈s2ij〉







−1

. (S5)

Using the fact that the expectation value of the observed variance 〈s2ij〉 equals the expected vari-
ance σ2

ij defined by Eq. S2, we obtain,

σ2(M) =







∑

i,j

(

∂Mij

∂M
/σij

)2






−1

. (S6)

We assume a circular 2D Gaussian PSF,

Mi,j =
M

2πs2
exp

(

(i− x0)
2

2s2
+

(j − y0)
2

2s2

)

+BM . (S7)
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(i, j) are the pixel coordinates. (x0, y0) is the position of the molecule. M is the total expected
photon count, Mij is the expected photon count at pixel (i, j). s is the width of the PSF. BM is the
expected background level.

If we neglect pixelation effects, we may replace Eq. S6 with an integral:

σ2(M) ∼
{

∫ ∫
(

∂Mij

∂M
/σij

)2

didj

}

−1

. (S8)

If we substitute Eq. S7 into Eq. S8 and assume (following Thompson) that in the intermediate
regime where f2

GMij ∼ b2, σ(M) is well approximated by the sum of the limiting cases when the
first and then the second terms in Eq. S2 dominate, we obtain:

σ2(M) = f2
GM +

4πs2

a2
b2. (S9)

To include pixelation effects and avoid interpolation where f2
GMij ∼ b2, we must substitute

Eq. S7 into Eq. S6, and average over all (x0, y0):

〈(σ2(M)〉x0,y0 =

∫

∞

−∞

∫

∞

−∞
σ2(M)dx0dy0

∫

∞

−∞

∫

∞

−∞
dx0dy0

. (S10)

By symmetry, each pixel is equivalent with respect to (x0, y0), allowing us to reduce our range of
integration to one pixel in each direction. For square pixels of width a, this yields:

〈(σ2(M)〉x0,y0 = a−2

∫ a

0

∫ a

0







i,j=∞
∑

i,j=−∞

(

∂Mi,j

∂M
/σi,j

)2






−1

dx0dy0. (S11)

Expected FRET measurement error

To obtain a prediction for FRET error, we perform error propagation (2, 9), assuming D and A are
independently distributed, for apparent FRET, E:

E = A/N, N = D +A. (S12)

where D, A and N are the donor, acceptor, and total photon counts for an individual molecule,
respectively. Then

σ(E) =

√

(

∂E

∂D

)2

σ2(D) +

(

∂E

∂A

)2

σ2(A), (S13)

which simplifies to

σ(E) =
1

N

√

E2
0σ

2(D) + (1− E0)2σ2(A), (S14)

where E0 is the mean FRET value.
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For the full prediction of σ(E), we numerically integrate Eq. S11 for each channel, and substi-
tute the results into Eq. S14.

If we neglect pixelation and interpolate between the high shot noise and high background limits,
then using Eq. S9 we obtain:

σ(E) =

√

f2
GE0(1− E0)

N
+

4π

a2N4

(

D2s2Db
2
D +A2s2Ab

2
A

)

. (S15)

E0 is the mean FRET value. sD, sA are the PSF widths in donor and acceptor channels. bD , bA
are the standard deviations (photons per pixel) of observed background noise in each channel. a
is the pixel size. fG is the excess noise factor.

Instrumentation

We used a custom-built objective-type TIRF apparatus (Figure S1) to collect smFRET data for
fluorescently labeled dsDNA immobilized on a microscope coverslip. A green laser (532 nm,
continuous-wave solid state laser, Samba model, Cobolt, Sweden; modulated using an acousto-
optical modulator from AA Optics, France) and a red laser (635 nm, directly modulated diode laser,
Cube model, Coherent, USA) operated in ALEX mode (10–12) were combined via a dichroic mirror
and coupled into an optical fiber. The output of the fiber was focused onto the back-focal-plane
of the objective lens (100x oil immersion objective, NA 1.4, Olympus, Japan), displaced from the
center of the optical axis such that the excitation light was incident upon the coverslip at an angle
greater than the critical angle for total internal reflection, generating an exponentially decaying
evanescent wave with a decay constant of ∼100 nm (13), in order to selectively excite only a small
volume adjacent to the coverslip (13, 14). All experiments were carried out at laser powers of 2
mW (532 nm) and 1 mW (635 nm). An integration time of either 20 ms with 50 Hz alternation
and frame rate, or of 100 ms with 10 Hz alternation and frame rate, was used, the choice for
each experiment being specified in the main text. A motorized xy-scanning stage (MS-2000, ASI
Imaging, USA) was used to control the coverslip position relative to the objective.

Emission fluorescence was collected by the objective lens and separated from the excitation
light using a dichroic mirror (545 nm/ 650 nm, Semrock, USA) and additional filters (545 nm LP,
Chroma, USA; and 633/ 25 nm notch filter, Semrock, USA). The emission fluorescence was then
focused through an aperture to make the field of view of view rectangular, and spectrally separated
into green and red emission channels via a dichroic mirror (630 nm DRLP, Omega, USA). The two
emission channels were focused side by side onto an emCCD camera (Andor iXon 897, UK), with
pixel size a measured as 94 nm.

DNA sequences

The sequences and positions of labels for all dsDNA FRET standards used in this work (shown
in Figure 1) are listed below. X indicates a 5-C6-Amino-dT, labeled with ATTO647N. Y indicates a
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5’-Amino-C6, labeled with Cy3B, except for FRET standard number 5, where Y indicates a 5-C6-
Amino-dT, labeled with Cy3B. Amino-modified biotinylated top strand, and amino-modified bottom
strand single-stranded DNA was purchased from IBA (Gottingen, Germany). Top strands were
labeled with Cy3B, bottom strands with ATTO647N, and purified using denaturing PAGE. Strands
were annealed by mixing equimolar amounts of top and bottom strand in annealing buffer (Tris-HCl
pH 8.0, 500 mM NaCl, 1 mM EDTA), and heating to 95◦C, followed by slow cooling to 4◦C.
1. T1B16

Top: Y-5’-TAAATcTAgTAAcATAAggTAAcATAAcgTAAgcTcATTcgcg-3’-Biotin

Bottom: 3’-ATTTAgATcATTgTAXTccATTgTATTgcATTcgAgTAAgcgc-5’

2. T1B17

Top: Y-5’-TAAATcTAAgTAAcATAAggTAAcATAAcgTAAgcTcATTcgcg-3’-Biotin

Bottom: 3’-ATTTAgATTcATTgTAXTccATTgTATTgcATTcgAgTAAgcgc-5’

3. T1B18

Top: Y-5’-TAAATcTAAAgTAAcATAAggTAAcATAAcgTAAgcTcATTcgcg-3’-Biotin

Bottom: 3’-ATTTAgATTTcATTgTAXTccATTgTATTgcATTcgAgTAAgcgc-5’

4. T1B18GC

Top: Y-5’-ccgATcTAAAgTAAcATAAggTAAcATAAcgTAAgcTcATTcgcg-3’-Biotin

Bottom: 3’-ggcTAgATTTcATTgTAXTccATTgTATTgcATTcgAgTAAgcgc-5’

5. T1B18INT

Top: 5’- gcgTTgcAYAAATcTAAAgTAAcATAAggTAAcATAAcgTAAgcTcATTcgcg-3’-Biotin

Bottom: 3’- cgcAAcgTATTTAgATTTcATTgTAXTccATTgTATTgcATTcgAgTAAgcgc-5’

Sample preparation

Biotinylated dsDNAs at a concentration of ∼50 pM were surface-immobilized on a polyethylene-
glycol coated coverslip (15). We used silicone gaskets (Grace Bio-Labs, USA), covered with
an additional glass coverslip to seal the imaging chambers from oxygen. To minimize photo-
physics, we used an imaging buffer containing an oxygen-scavenging system and a triplet-state
quenching agent: phosphate buffered saline (PBS), pH 7.4, 2 mM TROLOX (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid), 1% w/v glucose, 2 mg/ml glucose oxidase, and 80 µg/ ml
catalase.

Monte Carlo simulations

We carried out Monte Carlo simulations to model tFRET data, including the Poisson noise on
detected photons, explicit simulation of electron multiplying gain, simulation of the analogue to
digital converter, a general background noise term, and pixelation effects. In order to separate the
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effects of different noise sources, we carried out simulations which neglected the effect of multiple
overlapping molecules, by simulating an isolated single molecule randomly positioned within a
single pixel at the center of a small area (24×24 pixels). In separate simulations, presented
below, we analyzed the errors introduced by the presence of multiple overlapping molecules using
simulations of multiple molecules of varying surface density, randomly positioned within an area
of 256×256 pixels. In each case, the position of a molecule was randomly chosen with sub-
nanometer accuracy, and we simulated the effects of pixelation using pixel size, a, of 94 nm and
PSF widths matching experimental values (typically ∼130 nm in the donor channel and ∼150 nm
in the acceptor channel).

We assume that photon counts in the donor and acceptor channels are independently Poisson
distributed variables (16), with mean values

〈D〉 = N(1− E0), 〈A〉 = NE0. (S16)

Molecular PSFs are modeled as 2D circular Gaussians (Eq. S7) with a total photon count
(ie. volume) determined by Eq. S16. The photon count arising from a single molecule for each
pixel is then drawn from a Poisson distribution with mean equal to the value of the PSF at that
pixel.

We model electron multiplying gain for a 526-stage gain register (matching that of the camera
used for experiments). Although it is straightforward to explicitly model each stage of a multi-stage
gain register (17), this is an exceedingly slow process. Instead we perform rejection sampling (18)
of the approximate probability density function for electron counts resulting from a gain regis-
ter (17):

P (n)

{

= (n−m+1)m−1

(m−1)!(G−1+1/m)m exp
(

− n−m+1
G−1+1/m

)

if n ≥ m,

= 0 otherwise,
(S17)

where n is the final electron count, m is the input photon count and G is the electron multiplying
gain. This expression has been shown to be accurate for even low values of G (17), and use of this
algorithm produces a speed increase of a factor of ∼1000. We simulate the analogue to digital
converter by calculating the conversion from electrons to DUs and rounding the result. Finally,
we include a general background noise term by adding Gaussian distributed noise with standard
deviation bDU = Ub (bDU is the noise measured in DU, U is the effective gain, b is the noise
measured in photons), rounding the final result.

Simulations with one molecule per image were written in MATLAB. Simulations with multiple
molecules per image were written in C++.

Image analysis

To optimize extracted signal-to-noise and ensure statistical robustness of data, it is important to
automate the data extraction from tFRET movies. To this end, we built on previous work within
the field of single molecule biophysics (1, 19–22) and in astronomy (23–27), which deals with the
similar problem of accurate photon-counting for multiple overlapping diffraction limited PSFs using
CCDs. We designed and implemented highly-automated and robust image analysis software (to
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be shortly released to the community). Image analysis code was written in MATLAB, except for
the PSF-fitting code which was written as a C++ library with a MATLAB interface.

Our source data consists of synchronized movies of fluorescence emission in the donor and ac-
ceptor emission channels from multiple randomly distributed surface-immobilized single molecules.
Image analysis for tFRET consists of 5 essential steps: image registration, detection & localization,
association, photometry and filtering.

Image registration

Image registration is the process of generating a spatial mapping between the donor and acceptor
coordinate systems. We apply the simple method of calibration using the leakage of acceptor
emission of immobilized fluorescent beads into the donor channel to identify matching positions
in each channel (19, 28). These “control points” are manually selected using a simple GUI and a
spatial mapping is generated between the coordinate systems by solving

xA = TxD, (S18)

where T is a projective transformation matrix, xD are the donor control points and xA are the
acceptor control points. The resulting quality of alignment is checked visually using a color-coded
overlay of the green and red channels. The semi-automatic nature of this task is acceptable since
it is only necessary to perform it at most once for a daily set of experiments, however it should be
straightforward to automate this task (29, 30).

Detection & localization

Detection and localization are the steps of automatically detecting molecules, and localizing their
centroid. This step is performed separately in each channel. For detection, the classic approach is
to apply a high pass spatial filter to remove noise, followed by convolution with a Gaussian mask of
size similar to the candidate molecules, followed by identification of above-threshold pixels (22, 23,
26). We exploit the fact that molecules are immobilized and therefore only perform auto-detection
and localization at the beginning of a movie, averaging typically 5-10 frames to maximize signal-
to-noise.

To localize the centroid to high precision, we fit the detected molecules with an elliptical 2D
Gaussian (Eq. 7) using ordinary-least-squares minimization, with the molecule’s position (x0, y0)
set as a free parameter. The fitting algorithm is identical to that employed for photometry, dis-
cussed shortly.

Point matching

Point matching is the process of matching detected molecules in the donor channel with molecules
in the acceptor channel. If our data were entirely free from noise and optical aberrations, and
our coordinate transform matrix was perfectly accurate it would be possible to assume that the
position of a donor molecule in the acceptor channel is exactly given by Eq. S18. However,
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primarily due to an imperfect transformation matrix, it is necessary to account for the remaining
differences between the apparent positions of a molecule in each channel, or inaccurate photon
counts would result. We achieve this by carrying out distance-based hierarchical clustering (31)
for both the acceptor channel positions xA and the transformed donor channel positions TxD.
Clusters containing zero or one molecules in each channel are retained, whereas clusters with
ambiguous stoichiometry (for example a cluster containing two donor molecules and one acceptor)
are discarded.

Photometry

Photometry is the term given in astronomy to the measurement of photon counts. Our algorithm
of choice is profile-fitting photometry (25, 26, 32–35): fitting of a model PSF profile to an identified
molecule. We fit Eq. 7 to a square subimage of width 2wim

1, centered on the position identified
during the localization step. We use the Lourakis implementation (36) of constrained Levenberg-
Marquardt optimization (37) to carry out ordinary-least-squares (OLS) minimization (37) of Eq. 8.
For algorithmic speed, we set the coordinates (x0, y0) as constants (although it is straightforward
to relax this assumption if experimental factors such as stage drift are significant). This algorithm
implicitly assumes uniform noise across the whole image.

An alternative profile-fitting photometry algorithm is weighted-least-squares (WLS) minimiza-
tion defined by Eq. S3 and used eg. by Thompson et al. (1). OLS implicitly assumes uniform noise
the image, whereas WLS explicitly models the noise for each pixel. In principle, where uniform
noise cannot be assumed (as in our case due to additional photon-counting shot noise arising
directly from the immobilized molecule), WLS might optimize signal-to-noise where OLS fails to do
so.

The simplest method available, and one commonly employed for tFRET measurements is aper-
ture photometry (19–21, 24, 38). This is carried out by creating apertures, defined by radii r1, r2
and r3 centered around a molecule. The total collected number of photons is estimated from pixels
falling within the aperture defined by r(ij) < r1, and the background is estimated from pixels within
the annulus defined by r2 < r(ij) < r3 (we generally set r1 = r2). The background-subtracted
photon count is thus

Map =
∑

r(ij)<r1

Mij −
npix

nB

∑

r2<r(ij)<r3

Mij , (S19)

where npix is the number of pixels within the inner circle, and nB is the number of pixels in the
annulus,

npix =
∑

r(ij)<r1

1, nB =
∑

r2<r(ij)<r3

1. (S20)

Variant methods include the use of square apertures (19–21) and time-averaging the background
value over a number of adjacent frames to reduce noise (20). We note that the noise predictions
differ from those obtained for profile fitting (27), and therefore derive a prediction for FRET error

1We define the subimage width as 2wim for simplicity of comparison with methods which use a circular subimage of
radius wim
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on an aperture photometry measurement. The photon-counting error for aperture photometry is
given to good approximation (27) by

σ2
ap(M) = f2

GM + αb2, α = npix

(

1 +
npix

nB

)

. (S21)

Applying error propagation, we derive a prediction for aperture photometry FRET measurement
error,

σap(E) =

√

f2
GE0(1− E0)

N
+

1

N4

(

D2αDb2D +A2αAb2A
)

, (S22)

where E0 is the mean FRET value, D, A and N are the donor, acceptor and total photon counts.
bD and bA are standard deviations of background noise in the donor and acceptor channels. αD

and αA are defined in each channel by Eq. S21.
We examined the performance of the different methods (Figures S2-S3) for an effective win-

dow radius of 6 pixels (∼ 4s) and typical experimental parameters specified in the Materials &
Methods. We set sD=132 nm and sA=150 nm. Considering first the photon-counting perfor-
mance (Figure S2), we see that OLS shows the smallest systematic error, but shows a constant
∼25% excess noise compared to theoretical predictions. WLS asymptotically approaches opti-
mal signal-to-noise, confirming that it is noise introduced by OLS fitting which causes the 25%
(this finding is supported by previous reports (1, 39)). However, WLS shows significant system-
atic photon-counting errors, consistent with the literature (40, 41). In particular, the size of WLS
systematic error varies as a function of total photon count, making it unsuitable for accurate mea-
surements. Aperture photometry shows the greatest noise at low photon counts, however for high
photon counts it approaches optimal signal-to-noise. Aperture photometry shows ∼4% system-
atic photon-counting errors, particularly in the acceptor channel, which has a larger PSF width2.
Systematic errors for aperture photometry also cause an eventual increase in observed noise in
the acceptor channel (Figure S2B).

Next, we analyzed FRET measurement performance of the different methods (Figure S3). OLS
and WLS show the best performance at low photon counts, with WLS and aperture photometry
showing the best performance at high photon counts. At extreme FRET values (E0=0.1 or 0.9)
the performance of aperture photometry suffers because of the low photon counts in one of the
channels (Figure S3C). Because FRET is a ratiometric method, the systematic errors observed
for WLS and aperture photometry photon counts largely cancel out for FRET measurements;
systematic FRET measurement error for either method is effectively negligible.

Why then do we still recommend the use of OLS profile fitting as our algorithm of choice? We
discount first the WLS method because in practice we found it to be rather unstable, requiring
good initial estimates of background level and background noise, and knowledge of the effective
gain, U .

Considering aperture photometry, the method offers acceptable and in some cases better
signal-to-noise performance than OLS, and high computational speed. However, we find that
OLS is generally a more robust method. OLS shows negligible systematic photon-counting errors,
even for quite small effective window radii, wim, whereas aperture photometry requires care in the

2We note that approaches exist to correct for these systematic errors (38, 42)
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choice of aperture size to avoid systematic errors. We also find that OLS is less error prone in the
presence of nearby or overlapping molecules. Where x-y stage drift or focal drift is an issue, by
relaxing the assumption of fixed position in the fit and by fitting using an elliptical Gaussian, we are
able to minimize their effects using OLS. The computational speed of OLS is quite acceptable (58
molecular fits per second for a 2.40GHz processor). Finally, the performance of OLS for low pho-
ton counts was observed to be better than aperture photometry. However, for low surface density
of molecules and high signal-to-noise, aperture photometry is a fast alternative method.

The ideal solution to photon-counting for tFRET is a profile fitting approach which has the
advantages described for OLS, but which also obtains optimal signal-to-noise. A recent report by
Mortensen by al. (39) shows that maximum-likelihood methods (43) may be just that approach; it
should be straightforward to adapt our software to use these methods.

Filtering

A significant concern for the analysis of surface-immobilized molecules is to exclude errors intro-
duced by overlapping unresolved molecules. We show that filtering based on nearest-neighbor
distance and shape is sufficient to obtain performance at a level better than the Rayleigh criterion.

We use two metrics to identify and exclude overlapping molecules. The first is the nearest-
neighbor distance between resolved molecules in any channel, based on the position of molecules
in the image used for autodetection. Any resolved molecules with too small separation will signifi-
cantly affect the measured photon-counts for each molecule, so they are excluded. Secondly, we
calculate the eccentricity of each molecular PSF, for each individual frame (34),

ǫ =

√

1−
s2y
s2x

, (S23)

where sy and sx are the PSF widths along the major and minor axes respectively, defined in Eq. 7.
Monitoring the eccentricity on a per-frame basis has the additional advantage of providing a robust
means to test whether sections of a recorded dataset are significantly out of focus (these sections
can then be excluded from analysis if necessary).

We tested our ability to efficiently filter overlapping molecules in Monte Carlo simulated datasets.
We simulated molecules with uniform photon count M=5000 photons/molecule per frame, and
fixed surface density, n molecules µm−2, with a uniform random spatial distribution. Images were
generated for a 256x256 pixel imaging grid with pixel size of 94 nm and PSF width of 132 nm,
to match typical experimental values for the donor-emission channel. Other simulation parame-
ters were as previously described. Image analysis was carried out as described above, including
calculation of a 10-frame-averaged image for auto-detection and calculation of nearest-neighbor
distance.

We first tested the effectiveness of eccentricity filtering for a random distribution of particles
at moderate density (0.86 molecules µm−2). We segregated the detected points into correctly
identified single molecules, and multiple molecules incorrectly identified as a single molecule using
distance-based hierarchical clustering (31). We calculated the resulting eccentricity distributions
for each case (Figure S4A). The distribution including both unresolved and resolved molecules
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separates into two clear peaks, and the vast majority of overlapping molecules may be excluded
by a simple threshold on eccentricity after visual inspection of the eccentricity distribution.

We tested the efficiency of filtering (including both nearest-neighbor distance and eccentricity)
in improving photon-counting accuracy, and compared it with the performance we would expect
from a Rayleigh-criterion limited technique. The Rayleigh-limit for a visible light microscope is
approximately λ/2 (44, 45). For Gaussian PSFs, this roughly corresponds to ∆xmin ∼ 2s (s is the
PSF width), which we use here as our reference standard for a filtering algorithm with Rayleigh-
limit performance. We assume that the photon count observed for multiple unresolved molecules
is simply the sum of their individual photon counts. For a surface density of n molecules per
unit area, we derived an expression for the root-mean-square (RMS) photon-counting error of a
theoretical Rayleigh-limit performance filtering algorithm based on simple Poisson statistics:

∆Mrms

Mtrue
=

√

1− e−µ − µ+ µ2

1− e−µ
, µ = 4πs2n. (S24)

We analyzed the observed photon-counting errors for a wide range of surface densities (Fig-
ure S4B), and the effect of different filtering thresholds. Without filtering, photon-counting errors
are approximately at the same level as Rayleigh-limit performance. If we apply a standard ec-
centricity threshold of ǫ ≤ 0.6 (see Figure S4A), and different nearest-neighbor thresholds, we
observe significantly smaller photon-counting errors than the Rayleigh-limit level. Since higher
thresholds lead to the exclusion of a larger fraction of candidate molecules, in many cases a low
nearest-neighbor threshold of 4s is entirely sufficient to give good performance at moderate sur-
face density. For maximum accuracy, a higher threshold of 6s reduces photon-counting errors
even further.
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Supporting figures

Figure S1: Apparatus for tFRET. Modulated 532 nm and 635 nm lasers are combined into an
optical fiber and excite a surface-immobilized sample in TIRF mode. Fluorescence emission is
collected and imaged onto an emCCD camera. DM, dichroic mirror; BS, beam-splitter; OBJ, ob-
jective lens; CS, coverslip; TIR, Total Internal Reflection; MR, mirror; emCCD, electron-multiplying
charge-coupled device.
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Figure S2: Photon counting performance of different photometry methods. A-B. Photon counting
standard deviation for increasing photon count. A. Simulations for typical PSF width of donor
channel, 132 nm. B. Simulations for typical PSF width of acceptor channel, 150 nm. C. Systematic
photon-counting error for increasing photon count. Green lines, simulations for donor channel,
PSF width 132 nm; red lines, simulations for acceptor channel, PSF width 150 nm. Solid lines, OLS
minimization results; dashed lines, WLS minimization results; dotted lines, aperture photometry
results.
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Figure S3: FRET error for different photometry methods. Red line, aperture photometry; blue line,
OLS minimization; green line, WLS minimization; black line, theoretical predictions. PSF width
in donor channel, s=132 nm, PSF width in acceptor channel, s=150 nm. A-B. FRET standard
deviation and systematic error for increasing photon count, mean FRET 0.5. C-D. FRET standard
deviation and systematic error for varying E0, total photon count per molecule, 2000 photons.
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Figure S4: Thresholding based on eccentricity and nearest-neighbor distributions allows discrimi-
nation of overlapping molecules with super-Rayleigh-limit performance. A. Analysis of the eccen-
tricity distribution for a simulated dataset with moderate surface density (0.86 molecules µm−2).
Distribution for all detected positions (green line) is compared with the known stoichiometry of the
simulated molecules: isolated particle (blue line), multiple overlapping molecules (red line). By
filtering all molecules after the first major peak in the eccentricity distribution (ǫ < 0.6), we are able
to exclude most overlapping molecules. B. Effect of filtering on normalized RMS photon-counting
error for simulated datasets of increasing surface density. Black line, photon-counting error as-
suming Rayleigh-limit performance; green line, unfiltered molecules; pink line, filtered molecules,
minimum nearest-neighbor distance > 4s; blue line, filtered molecules, minimum nearest-neighbor
distance > 6s (s is width of molecular PSF). ǫ < 0.6 for both filtered datasets.
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Figure S5: Focal drift within a single FOV causes excess dynamic heterogeneity. A-C. Examples
of molecules from a single FOV showing slow correlated fluctuations in total photon count N , and
excess dynamic heterogeneity, consistent with the source being focal drift. Interestingly, not all
molecules within a single FOV appear to be affected by focal drift; an exemplar molecule shown
in D, from the same FOV as the molecules shown in A-C shows stable photon counts and FRET
over the whole measurement. For the FOV shown here, only ∼13 out of 42 molecules within the
FOV appeared to be affected by focal drift.
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Supporting Tables

Sample Cy3B anisotropy ATTO647N anisotropy
Cy3B 0.04 N/A
T1B16 0.20 0.15
T1B18 0.22 0.16
T1B18GC 0.22 0.15
T1B18INT 0.22 0.17

Table S1: Ensemble fluorescence anisotropy measurements for dsDNA standards show similar
anisotropy for all samples. The control sample, free Cy3B-NHS ester, showed very low anisotropy
consistent with high rotational freedom. All dsDNA FRET standards show increased anisotropy
(consistent with slow global rotation of dsDNA), but anisotropy is not sufficiently large to suggest
restricted rotational freedom of the fluorophores on the millisecond timescale. Anisotropy is similar
for all dsDNA standards suggesting no change in rotational freedom of the dyes between the
samples. Measurements carried out in PBS buffer. Cy3B anisotropy measurements were carried
out at 540 nm excitation, 580 nm emission. ATTO647N measurements were carried out at 635 nm
excitation, 675 nm emission.
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