Abstract
In its currently-envisioned initial stage, the Compact Linear Collider (CLIC) will collide beams with a 380 GeV center of mass energy. To maintain the luminosity within a few percent of the design value, beam stability at the interaction point (IP) must be controlled at the sub-nanometer level. To help achieve such control, use of an intra-pulse IP feedback system is planned. With CLIC’s very short bunch spacing of 0.5 ns, and nominal pulse duration of 176 ns, this feedback system presents a significant technical challenge. Furthermore, as part of a study to optimize the design of the beam delivery system (BDS), several L^* configurations have been studied. In this paper, we will review the IP feedback simulations for the 380 GeV machine for two L^* configurations, and compare luminosity recovery performance with that of the original L^* configuration in the 3 TeV machine.

Introduction

- Current plans for CLIC involve phased commissioning with lower-energy lattice for 380 GeV collision energy.
- Previous studies focused on a BDS lattice designed for a 3 TeV collision energy.
- New BDS designs have two L^* configurations: 4.3 m, 6 m.
- Previous ground motion (GM) studies of 3 TeV machine performed for both 380 GeV designs.
- Intratrain IP feedback system used to correct perturbations from GM.

Previous Study

- Last study (Resta-López, 2010) focused on 4 GM models; A, B, C, and K.
 - Only model C plots shown.
 - PLACET and GUINEA-PIG used for simulation studies.
 - 3 TeV collision energy.
 - Train length = 156 ns.
 - Gain scan performed using 100 random seeds of GM.
 - Luminosity recovery plotted for single seed using best gain value.

Current Study

- Focused on 5 GM models; A, B, C, D (also called B10), and K.
 - Only model C plots shown.
 - LinSim framework of PLACET and GUINEA-PIG used for simulation studies.
 - 380 GeV collision energy.
 - Train length = 176 ns.
 - Gain scan performed using 100 random seeds of GM.
 - Luminosity recovery plotted for average luminosity from 100 random seeds using the best gain value.
 - Shaded error bands represent the error on the mean.

Results and Future Work

- Initial studies completed for all 5 GM models.
 - Model C plots shown.
 - All results summarized in table below.
- For $L^* = 4.3$ m, luminosity recovery same or better for 380 GeV.
- For $L^* = 6$ m, luminosity recovery similar to 3 TeV study results.
 - 380 GeV achieves as good or better results than 3 TeV.
 - Appears to be best overall results for all GM models.
- Simulation occasionally overcorrects, causing slight reduction in luminosity.
 - Looking for solutions to stop corrections at maximum luminosity.
- For future:
 - Looking at more complex systems, including more errors.
 - Applying ground motion to two independent beamlines.
 - Alternative algorithms for the IP feedback system.
- Please see proceedings for references.

<table>
<thead>
<tr>
<th>GM Model</th>
<th>L^* = 4.3 m (2010)</th>
<th>380 GeV</th>
<th>380 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L*</td>
<td>$\Delta L/L$</td>
<td>$\Delta L/L$</td>
</tr>
<tr>
<td>A</td>
<td>4.3 m</td>
<td>≤ 0.11</td>
<td>≤ 0.11</td>
</tr>
<tr>
<td>B</td>
<td>4.3 m</td>
<td>≤ 0.3</td>
<td>≤ 0.3</td>
</tr>
<tr>
<td>C</td>
<td>4.3 m</td>
<td>≤ 0.45</td>
<td>≤ 0.42</td>
</tr>
<tr>
<td>D</td>
<td>6 m</td>
<td>≤ 0.9</td>
<td>≤ 0.6</td>
</tr>
<tr>
<td>K</td>
<td>35 %</td>
<td>≤ 20</td>
<td>≤ 18</td>
</tr>
</tbody>
</table>