A low-latency sub-micron resolution stripline beam position monitoring system for single-pass beamlines

P.N. Burrows, D. R. Bett, N. Blaskovic Kraljevic, G.B. Christian, M. R. Davis, C. Perry, John Adams Institute for Accelerator Science, Oxford, UK R. J. Apsimon, B. Constance, A. Gerbershagen, CERN, Geneva, Switzerland J. Resta López, IFIC, Valencia, Spain

Abstract

A low-latency, sub-micron resolution stripline beam position monitoring system has been developed for use in single-stage RF down-mixer and is combined with an FPGAbased system for digitisation and further signal processing. The system has been deployed and tested with beam at the Accelerator Test Facility at KEK. Performance results are presented on the calibration, resolution and stability of the system. A detailed simulation has been developed that is able to account for the measured performance.

Stripline BPMs

FONT5 digital board

returned per beam extraction.

Position Determination

The three BPMs are assumed to have the same resolution. The positions in two of the BPMs are then used to predict

Comparison between real (blue) and simulated (red) outputs of the sum (left) and difference (right) outputs of the processor module.

BPM	Phase sensitivity
	(microns per degree)
FONTP1	-7.0
FONTP2	-0.3
FONTP3	0.1
MQD14X	-1.6
MQF15X	0.6
MFB1FF	-1.0

offset. Parameters obtained by fitting

[6] R. J. Apsimon, DPhil thesis, University of Oxford [7] B. Constance, DPhil thesis, University of Oxford