## **Design and Initial Results of a Turn-by-Turn Beam Position Monitoring System for Multiple Bunch Operation of the ATF Damping Ring**



G.B. Christian, R. Apsimon, D. Bett, P.N. Burrows, M. Davis, A. Gerbershagen, C. Perry John Adams Institute for Accelerator Science, University of Oxford, UK. B. Constance, CERN, Geneva, Switzerland J. Resta-Lopez, IFIC (CSIC-UV), Valencia, Spain



## Abstract

An FPGA-based monitoring system has been developed to study multi-bunch beam instabilities in the damping ring (DR) of the KEK Accelerator Test Facility (ATF), utilising a stripline beam position monitor (BPM) and existing BPM processor hardware. The system is designed to record the horizontal and/or vertical positions of up to three bunches in the DR in single-bunch multi-train mode or the head bunch of up to three trains in multi-bunch mode, with a bunch spacing of 5.6 ns. The FPGA firmware and data acquisition software were modified to record turn-by-turn data for up to six channels and 1-3 bunches in the DR. An overview of the system and initial results will be presented.





FONT5 FPGA-based digital processor Used for DAQ for DR monitoring system. FPGA firmware and DAQ software modified for turn-

by-turn operation

## **Initial Results**





- Circumference: 138 m

Two stripline

BPMs in DR

- •Up to 3 trains injected per cycle
- •Store time per cycle: ~10<sup>6</sup> turns
- •Up to 10 bunches per train @5.6 ns bunch spacing



FONT5 digital processor board Unmodified from extraction line feedback system - differential

attenuation added to measure large position offsets in DR





Schematic overview of the FPGA firmware for turn-by-turn monitoring

## **Key Design Features:**

•Re-uses existing hardware with modified firmware/DAQ software

 Records turn-by-turn data for up to three bunches per turn

•Record data from up to 6 channels (2 **BPMs** – horizontal and vertical difference. & sum)

• Single large FIFO memory stores 131071 samples (Maximum of ~15 % of store time for consecutive turns single bunch, single channel)

•Can vary time window and time resolution to record every *n* turns in *m*.

 Data returned in ~4s – can record data from every 1 in 3 machine cycles in multi-train mode.

