

R. Apsimon, D. Bett, P.N. Burrows, G.B. Christian, B. Constance, H. Dabiri Khah, C. Perry, J. Resta Lopez, C. Swinson (John Adams Institute, Oxford University, UK)

Linear Collider intra-train IP feedback concept:

Detect position offset of incoming bunches early in train. Calculate correction and apply with kicker to later bunches

FONT5 digital prototype beam feedback at KEK ATF2:

Development of a fast, single-pass, micron-resolution beam position monitor signal processor: beam test results from ATF2

ATF2 extraction line:

Multibunch time resolution:

Example sum (red) and difference (blue) signals showing 3 bunches, for a near zero position in BPM P2.

Example BPM calibration: ratio of digitised difference and sum signals vs. position (microns) determined using a corrector (arbitrary zero)

BPM resolution (microns) vs. bunch charge (ADC counts). 100 counts is equivalent to approximately 1x10^9 electrons.

Position calibration:

Position resolution:

Distribution of vertical beam position at P2 for bunch 2 without (blue) and with (red) feedback. A rolling average is subtracted from each bunch position to remove the effects of position drift from the jitter distributions.