

Applications of Stripline and Cavity Beam Position Monitors in Low-Latency, High-Precision, Intra-Train Feedback Systems

M.R. Davis, D.R. Bett, P.N. Burrows, N. Blaskovic Kraljevic, G.B. Christian, Y.I. Kim, C. Perry John Adams Institute, Oxford University, UK

- Motivation for research is beam stabilisation single pass beam line facilities (for example the ILC)
- Aim to stabilise nm beams for collision at IP
 - Misaligned beams at IP cause a beam-beam deflection
 - Measure one of the outgoing beams
 - Kick the next bunch of the other incoming beam
 - Key issue at a collider: latency

The ATF2 Project

- ATF2 Scaled down mock up of the ILC FF system
- Goals:
 - 1. Demonstrate 37 nm vertical spot at the focal point (IP)
 - 2. Demonstrate nanometre level stability

ATF2 beam line (Jan.2009~)

Photo-cathode RF gun (electron source)

FONT

- Feedback On Nanosecond Timescales (FONT)
- Bunch by bunch feedback system
- Previously demonstrated a system meeting ILC latency, BPM resolution and beam kick requirements
- Extended ILC system for use at ATF2
- Aim to stabilise beam at the nanometer level

Beam

- 3 Stripline BPMs (P1, P2 and P3)
- 12 cm long strips
- 12 mm radius
- Mounted on a X Y mover system

Analogue Front-end

BPM processor

FPGA-based digital

processor

Analogue Front-end BPM processor

Beam

- In-house designed and built
- 9 analogue input channels
- 400 MS/s ADCs

٠

- 2 Analogue output channels
- DACs clocked at 210 MHz
- AT ATF clocked at 357 MHz
- Uses a Xilinx Virtex 5 FPGA

- Difference over sum method
- Top and bottom signals:
 - Added using resistive coupler (Σ)
 - Subtracted using a hybrid (Δ)

$$-pos \propto \frac{\Delta}{\Sigma}$$

Adams Institute

- Signals then band pass filtered
- Down-mixed using DR 714 MHz
- Best achieved resolution 330nm
- Latency of 13ns

- 2 Cavity BPMs (IPA and IPB)
- C-band (6.4 GHz)
- Low-Q (30 ns)
- Inside IP chamber

Beam

Cavity BPM

Interaction Point System

Analogue Front-end BPM processor

Beam

Cavity BPM

Interaction Point System

Analogue Front-end BPM processor

FPGA-based digital processor

Kicker drive amplifier

Beam

Cavity BPM

Interaction Point System

Analogue Front-end BPM processor

FPGA-based digital processor

Kicker drive amplifier

Cavity BPM

Beam

- Designed in house
- 12.5 cm stripline kicker
- Based on ATF stripline BPMs

Strip-line kicker

Mikey Davis

IP BPM Processors

- Two stage down-mixing process
- 1st stage:
 - 6.4 GHz to 714 MHz
- 2nd stage:
 - 714 MHz to baseband

- 714 MHz generated using upstream reference cavity
- Achieved resolution ~100 nm
- See also:
 - These proceedings TUPC22
 - Y. I. Kim, PhD, Kyungpook National University, 2012

Experimental Modes

- Measure bunch $1 \rightarrow$ correct bunch 2 (274 ns)
- Three experimental modes:
 - Upstream feedback 1.
 - **Upstream** -> IP feedforward 2.
 - 3. IP feedback
- All 3 modes aimed at stabilising the beam at IPB

Upstream Feedback

Feedforward

Feedforward Results

Incoming Beam Pos. Scan

Mikey Davis

18 September 2013

IP Feedback

IP Feedback Results

IP Feedback Results

IP Feedback Results

Incoming Beam Pos. Scan

Mikey Davis

18 September 2013

Scan Waist Through IPB

Mikey Davis

18 September 2013

- Demonstrated single pass, low-latency, high-precision, intra-train feedback systems
- Single pass stripline BPM resolution of 330 nm
- Low latency FBs suitable for ILC
- Achieved beam stabilisation at the ATF IP in 3 modes
 - Upstream feedback ~300nm
 - Feedforward ~100nm
 - IP feedback ~100nm
- Further beam tests to follow in 2013/14

Thanks