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This thesis presents neutron scattering studies of three correlated electron
systems, each of which exhibit different competing interactions. These include charge
order, magnetic order and lattice degrees of freedom. The main focus is on magnetic
excitations within the systems. In all cases the experimental data have been analysed
through comparison with theoretical models.

Chapter 3 presents an investigation into the Jahn-Teller effect in the rare
earth oxide PrO2, through inelastic neutron scattering studies of the crystal field
transitions above and below a static structural distortion temperature. The data are
compared with a point-charge model of the crystal field levels. We conclude that the
observed temperature evolution of the crystal field levels originates from the structural
distortion due to the Jahn-Teller effect.

Chapter 4 describes studies of magnetic excitations in the layered charge-ordered
transition-metal oxide La1.5Sr0.5CoO4 through inelastic neutron scattering studies,
and subsequent comparison with spin-wave dispersion models. It was found that the
spin-wave excitations were decoupled from the charge order. Inclusion of the strong
crystal anisotropy was necessary in order to successfully describe the data.

Chapters 5 and 6 present studies of the magnetically ordered phase of NaxCoO2

with x ∼ 0.75, a metallic layered transition-metal oxide. Chapter 5 describes
investigations into the magnetic excitations in the compound, which were successfully
modelled by linear spin-wave theory, including terms for the anisotropy. The
excitations were found to be highly three dimensional despite the layered nature of
the crystal structure. Chapter 6 presents a diffraction study of a spin-flop transition
in an applied magnetic field, which confirmed the magnetic order. The transition field
was found to be in excellent agreement with the exchange and anisotropy parameters
extracted in chapter 5.
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Chapter 1

Introduction to Correlated
Electron Systems

In this thesis various complex behaviours in strongly correlated metal oxides are
studied using neutron scattering techniques and complementary theoretical modelling.
Traditionally, many compounds in condensed matter physics have been successfully
modelled by ignoring interactions between electrons. In many metals the electrons
can be treated as fully delocalized and electrons are ‘nearly-free’ while, at the opposite
extreme, in many insulators the electrons can be modelled as tightly bound to the
ions, and again interactions between them are neglected [1]. The behaviours of these
compounds are relatively simple to understand. When the electrons in a system
are instead highly correlated, complex phenomena are observed, sometimes including
strongly enhanced physical properties.

Materials in which the electrons are strongly correlated provide some of the most
challenging and exciting problems in condensed matter physics today. The discovery
in 1986 of high critical temperature (high–Tc) superconductivity in layered copper
oxides [2] took the physics community by surprise, and triggered a massive surge of
interest in the field. Since then a whole host of new compounds have been discovered
which exhibit fundamentally new behaviour that cannot be described by conventional
ideas of metals and insulators, and many new theories have been put forward to model
them.

In strongly correlated electron systems the interactions between electrons
are significant relative to the kinetic energy of the electrons, and no model
based on the idea of free electrons can successfully describe their physical
properties. Experimentally, the collective electronic behaviour results in a broad
range of interesting pheneomena, ranging from superconductivity to colossal
magnetoresistance (CMR) and heavy-fermion effects. While great progress has been
made in understanding these phenomena, there remain a large number of unanswered
questions. The mechanism of high-Tc superconductivity, for example, is still under
debate twenty years on. One important idea that has emerged is that these exciting
physical properties are a result of competition, or synergy, between several coexisting
types of order, including magnetic, charge and orbital order, as well as lattice effects.
The interplay between these states is thought to be crucial to understanding the
complex phase diagrams of strongly correlated electron systems. In the following
sections we will describe the types of order relevant to the work in this thesis.
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1.1 Ordered States

1.1.1 Superconductivity

Superconducting materials can be divided into two classes: conventional super-
conductors, which can be described by the Bardeen-Cooper-Schrieffer (BCS) theory
[3], and unconventional superconductors, which cannot. The term unconventional
superconductor covers several families of compounds, all of which display unusual
properties, and are prime examples of correlated electron systems. We concentrate
here on superconducting transition metal oxides, a category dominated by cuprate
materials, which are described briefly below.

High-temperature superconductors: the cuprates

Since the unexpected discovery of high-temperature superconductivity in a
cuprate material in 1986 [2] hundreds of high-Tc compounds have been discovered,
and all share a layered structure made up of one or more copper-oxygen planes. The
parent compound is an antiferromagnetic insulator, La2CuO4, which is shown in fig.
1.1b. One method of producing a superconducting state is by doping excess holes into
the material by replacing some of the trivalent La by divalent Sr ions 1. The resulting
compound La2−xSrxCuO4 has x holes added to the Cu–O plane, and by tuning the

1There are many other hole-doped cuprate superconductors with slightly different layered
structures, such as YBa2Cu3O6+y (YBCO), and it is also possible to achieve superconductivity
by electron-doping [4].

Figure 1.1: (a) General cuprate phase diagram. AFM denotes the antifer-
romagnetically ordered phase. (b) The structure of the parent
compound La2CuO4: layers of CuO2 spaced by La ions.
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value of x a superconducting state can be achieved [5]. Figure 1.1a shows a generic
phase diagram for the cuprate superconductors. The superconducting region is dome-
shaped, and ranges from x ≈ 0.06 to 0.25 in La2−xSrxCuO4. At an optimal doping
level x0 the superconducting critical temperature is highest, approximately 40 K in
La2−xSrxCuO4, but up to 93 K and higher in other cuprates 2. Tc drops at higher
and lower values of x within the superconducting region, and the superconductor is
said to be overdoped or underdoped respectively.

There is still much theoretical debate over the nature of superconductivity in the
cuprates, and we will not go into it here. A recent review can be found in reference [4].
Mounting evidence suggests that the pairing is spin singlet, and d-wave 3. From the
phase diagram (fig. 1.1a) it is clear that there are a rich variety of other phases present
in these compounds, and physicists agree that understanding the phase diagram as a
whole is key to understanding the superconducting region.

Sodium cobaltate

After the discovery of high-Tc superconductivity in the layered cuprates, many
searches were made for superconductivity in other transition metal oxides. Success
came in 1994 with the discovery of the superconducting state of strontium ruthenate,
Sr2RuO4. Although the Tc is much lower, Sr2RuO4 has an almost identical structure
to the cuprates, and was hoped to shed further light on the superconductivity
mechanism in these layered compounds. However, it was soon discovered that the
superconductivity in Sr2RuO4 is very different from the cuprates, exhibiting p-wave
triplet pairing, and is in fact much more similar to the superfluidity in 3He [7].

The next breakthrough came in 2003 when Takada et al. succeeded in
synthesising a superconducting layered cobaltate, with a Tc of about 5 K [8], triggering
an explosion of research activity. The compound, NaxCoO2·yH2O (x ≈ 0.35, y ≈ 1.3),
consists of two dimensional layers of CoO2 which are separated by thick layers of
sodium ions and water molecules. Figure 1.2 shows the structure of NaxCoO2 (b)
before and (c) after intercalation with water. Hydrating the compound increases the
spacing between the CoO2 layers, almost doubling the c–axis lattice constant.

There are clearly similarities between NaxCoO2 · yH2O and the cuprate
superconductors. Like the cuprates, sodium cobaltate is a layered transition metal
oxide, with the layers consisting of CoO2 rather than CuO2. Similarly, these layers are
separated by insulating spacer layers. However, in the cuprates the CuO2 layers have
a square lattice, and in sodium cobaltate the CoO2 layers are hexagonal, as shown in
fig. 1.2b. A drawing of the phase diagram of sodium cobaltate is shown in fig. 1.2a,
plotted as a function of sodium doping x. Clearly the superconducting region is much
smaller than in the cuprates: superconductivity is achieved in a small region around
x ≈ 0.3, and only when the compound is also hydrated. As in the cuprates, and
in contrast to the ruthenates, the superconductivity arises out of a highly complex
normal state. There are magnetically ordered phases close to the superconducting

2Such as YBa2Cu3O6+y (YBCO) and Ba2Sr2CaCu2O8+y (Bi-2212) [4].
3This means that the Cooper pairs are in a spin-singlet state with l = 2 [6].
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Figure 1.2: (a) The phase diagram of NaxCoO2. (b) The hexagonal
structure of non-superconducting sodium cobaltate. (c) The
superconducting compound NaxCoO2 · yH2O, after hydration.

phase: at x ≈ 0.5 there is a spin-charge-ordered state [9], and above x ≈ 0.7 there is
an antiferromagnetically ordered state, with a ordering temperature of ∼ 22 K [10].

1.1.2 Magnetic Order

Magnetic order is an important degree of freedom to understand: magnetically
ordered phases are present in high-Tc compounds and their presence is thought to
be intimately connected with the superconductivity. The majority of this thesis is
devoted to studying magnetic order and excitations. This section briefly describes
the mechanisms of magnetic order, which are often connected to charge order, orbital
order and crystal lattice effects. These are discussed in the following sections.

Magnetic moments

There are two types of magnetic moment: in a diamagnetic substance the
application of a magnetic field induces a magnetic moment which opposes the field
that caused it, while in a paramagnetic substance the applied magnetic field induces
a magnetic moment which aligns parallel with the field.

The paramagnetic moment of an ion comes from the spin s (where |s| = 1/2)
and orbital angular momentum l of the electrons in unfilled electronic shells. The
total spin and orbital angular momentum are calculated from the vector sums over
all individual electrons: S =

∑
i si and L =

∑
i li. Over one full shell these sum

to zero because of spherical symmetry so electrons in filled shells do not contribute
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to the paramagnetic moment. The electrons in partially filled shells do contribute,
and the resulting spin S and orbital angular L momentum can combine together in
(2L + 1)(2S + 1) ways to give the total angular momentum J . In an isolated ion
the ground state, the most energetically favourable state, is calculated by Hund’s
rules, which say that S and L must be maximised in order to minimise the Coulomb
repulsion between electrons [11]. In this case the magnetic moment is calculated from
the spin-orbit interaction, and we can write an effective moment

µeff = gJµB

√
J(J + 1) , (1.1)

where µB is the Bohr magneton and gJ is the Landé g-value given by

gJ =
3

2
+

S(S + 1)− L(L + 1)

2J(J + 1)
. (1.2)

However, in a crystal lattice the crystal field may alter the ground state, as will
be discussed later. In 3d ions the crystal field often serves to quench the orbital
angular momentum, and allows the ion to be modelled with a pure spin magnetic
moment

µeff = gµB

√
S(S + 1) , (1.3)

where g = 2 for pure spin. The spin-orbit interaction can be included as a weak
perturbation by altering the value of g.

Exchange interactions

Magnetic order occurs in a compound when interactions between the moments
of neighbouring magnetic ions are such that it is energetically favourable for them to
order in a periodic arrangement. Possible interactions include the magnetic dipolar
interaction and magnetic exchange interactions. The magnetic dipolar interaction
is generally too weak to account for the ordering of magnetic materials [11], and in
systems such as those studied in this thesis the magnetic order is determined by the
exchange couplings between ions.

The exchange interaction between two ions originates from differences in the
electrostatic energy of possible relative orientations of the magnetic moments of the
ions such that an energy gain can be made by choosing a certain configuration over
others. As an example we consider the simple case of the exchange interaction between
two electrons at positions r1 and r2. Either electron can be in a spatial state ψa or
ψb, so that the joint wave function contains the terms ψa(r1)ψb(r2) and ψa(r2)ψb(r1).
The Pauli exclusion principle requires the overall wavefunction Ψ to be antisymmetric,
and by including both spin and spatial states this can be achieved in two ways: an
antisymmetric (singlet) spin state χS (S=0) with a symmetric spatial state, or a
symmetric (triplet) spin state χT (S=1) with an antisymmetric spatial state. The
total wavefunction for the singlet (ΨS) or triplet (ΨT ) case is then

ΨS =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)] χS (1.4)

ΨT =
1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)] χT .
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By assuming that the spin parts of the wavefunction are normalized we can write the
difference in energies between the singlet and triplet state as

J = ET − ES =

∫
Ψ∗

THΨT dr1dr2 −
∫

Ψ∗
SHΨS dr1dr2 (1.5)

= −2

∫
ψ∗a(r1)ψ

∗
b (r2) H ψa(r2)ψb(r1) dr1dr2 .

and this defines the exchange constant (or exchange integral), J . It is straightforward
to show that we can write an effective spin Hamiltonian [11]

H = (ET − ES)S1 · S2 = JS1 · S2 , (1.6)

so J is a measure of the interaction between the two spins. If J < 0, ET < ES and
the triplet state S = 1 is favoured; if J > 0, ET > ES and the singlet state S = 0 is
favoured.

Generalizing these ideas to a many-body system is a complicated problem, but
it was recognised early on by Heisenberg that equation 1.6 could be generalized to
provide a good description of the interactions between magnetic moments on all
neighbouring ions in a compound. The result is known as the Heisenberg Hamiltonian:

H =
∑
i,j

JijSi · Sj , (1.7)

where the sum is over all pairs of spins i, j (each pair is counted only once), and Jij

is the exchange constant describing the interaction between i and j. In this notation
J > 0 favours antiparallel alignment of moments (antiferromagnetic alignment) and
J < 0 favours parallel alignment of moments (ferromagnetic alignment).

When electrons on neighbouring ions interact directly, with no intermediary, the
exchange interaction is known as direct exchange. The strength of this interaction
is strongly dependent on the overlap of the electron shells of the two ions. There
is often insufficient overlap for a strong direct exchange interaction, either because
the wavefunctions lie very close to the nucleus (e.g. in rare earth 4f electrons),
or because the ions are too far apart (e.g. in transition metal oxides where
the magnetic ions are separated by oxygen). In these cases an indirect exchange
interaction may be important. In ionic solids the most important interaction is known
as superexchange, an indirect exchange interaction between two non-neighbouring
magnetic ions which is mediated by a non-magnetic ion between them. Figure 1.3
represents the superexchange interaction in a magnetic oxide between two magnetic
ions M mediated by an oxygen ion. The M ions are represented by one type of
d orbital, and vertical arrows represent the spins of electrons distributed over the
bond in the antiferromagnetic and ferromagnetic interactions. The antiferromagnetic
arrangement is more favourable to electron hopping, and therefore allows the electrons
to become delocalized over the structure, lowering the kinetic energy. Superexchange
therefore generally favours an antiferromagnetic alignment, with J > 0.4

4Ferromagnetic superexchange is possible, see ref. [11], but the interaction is weaker and less
common.
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Figure 1.3: Superexchange in a magnetic oxide over the M–O–M bond. The
M ions are represented by one type of d orbital. Vertical arrows
represent the spins of electrons distributed over the bond, while
thin arrows represent electron hopping. It is clear that the
antiferromagnetic arrangement is more favourable to electron
hopping.

Figure 1.4: Schematic diagram showing the spin directions in an ordered
ferromagnet and A-type, C-type and G-type antiferromagnets.

Antiferromagnetism

The sign of the exchange constant J determines whether the exchange interaction
favours parallel or antiparallel alignments of the magnetic moments in a compound.
When J is negative the lowest energy is achieved by aligning all spins in parallel
resulting in ferromagnetism, as shown in fig. 1.4. However, in magnetic oxides,
which are the focus of this thesis, interactions often favour antiparallel alignment
of spins, leading to antiferromagnetic ground states. Figure 1.4 shows some types
of layered antiferromagnets: A-type, where alignment is ferromagnetic within layers
and antiferromagnetic between them; C-type, where alignment is antiferromagnetic
within layers and ferromagnetic between them; G-type, where all interactions are
antiferromagnetic.
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Figure 1.5: The effect of an external applied field on an antiferromagnet. (a)
No applied field. (b) Field B perpendicular to ordered moments.
(c) Weak field parallel to ordered moments. (d) Strong field B
parallel to ordered moments (Spin-flop).

In general an antiferromagnet can usually be considered as two interlocking
sublattices of spins: one of ‘up’ spins and one of ‘down’ spins. In zero field the
magnetic moments of the two sublattices cancel so the net magnetization is zero. To
make a measurement of the magnetization a small magnetic field is applied along
a particular direction. If the field is applied perpendicular to the ordered moment
direction (see fig. 1.5b) then both ‘up’ and ‘down’ spins tilt slightly towards the
field and a component of magnetization is measured along the field direction. If the
small field is applied parallel to the ordered moment direction of one sublattice, and
antiparallel to the other (see fig. 1.5c), the net effect on the two sublattices is zero
and no magnetization component is measured. This gives rise to large anisotropies
in magnetization measurements of antiferromagnets in the ordered phase.

If a strong magnetic field is applied perpendicular to the moment direction the
spins tilt in the same way, see fig. 1.5b. As the field increases φ decreases until
the spins are finally parallel. However, if a strong magnetic field is applied parallel
to the ordered moments the effect is more interesting. As the field is increased the
spins remain as shown in fig. 1.5c until at a critical field they suddenly flip into the
configuration shown in fig. 1.5d. This is known as a spin-flop transition.

1.1.3 Charge Order

In a doped material, the replacement of one ion by another ion of different valence
introduces excess holes (or electrons) into the material. At high temperatures the
excess holes are generally randomly distributed, but on cooling they may form a
periodic arrangement due to the repulsive Coulomb interaction between them. This
ordered state of localized charge is known as charge order (CO).

Charge ordering occurs in slightly different ways in different layered materials,
but the pattern of ordering is highly dependent on doping level. As an example we
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Figure 1.6: Top row: Example 2D charge ordering (CO) patterns on a
square lattice for three values of doping. Dark circles show
positions of extra holes. Bottom row: Effect of charge ordering on
antiferromagnetic spin ordering (SO) in the case when an extra
hole on a magnetic ion changes the valence so that it no longer
has a moment, or does not order. Red dashed boxes mark unit
cells.

can consider materials with a layered structure, such as La2−xSrxMO4 (M=metal,
Cu, Mn, Ni, Co), where the holes reside on the conduction layers (MO2). The metal
ions M in the conduction layers form a square lattice. In a ‘half-doped’ material with
x = 1/2 there is one extra hole per two M ions, and charge ordering naturally forms
a checkerboard pattern consisting of two different M valences , see fig. 1.6. When
x 6= 1/2, charges often order instead into periodically spaced lines of charge known
as ‘stripes’. An example striped arrangement for x = 1/3, as seen in the nickelates,
is also shown in fig. 1.6. Charge stripes have come into focus recently because of
their effect on high-Tc superconductivity. Static charge order is thought to destroy
superconductivity, while many theories suggest that dynamic charge stripes are in
fact essential components in the superconducting phase [12].

Charge ordering is often accompanied by slight lattice distortions, which alter
the lattice periodicity and allow direct observation of charge ordering. Its effects can
also be detected by transport and magnetic susceptibility measurements, because the
transfer of conduction holes is disturbed by the ordered pattern. In antiferromagnetic
materials the presence of charge ordering has a dramatic effect on the magnetic
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ordering pattern. This is demonstrated in the lower row of fig. 1.6 which shows
antiferromagnetic order on a square lattice with three different charge orders (red
dashed boxes show the magnetic unit cells). Although these diagrams illustrate charge
and magnetic order that is commensurate with the crystal lattice, incommensurate
charge order is also observed. The incommensurability can be due to charge
density waves, wave-like modulations in the charge which can have a periodicity
incommensurate with the lattice, or due to discommensurations in the charge order.

1.1.4 Orbital Order and Lattice Effects

Magnetic ions in strongly correlated electron systems are often transition metals
or rare earths with valence electrons in the 3d or 4f shells. These orbitals are not
spherically symmetric so the symmetry of the local environment of the magnetic ion
can determine which orbitals are favoured as the ground-state, and can affect the
orientation of the orbitals within the crystal structure.

As an example, figure 1.7 shows a magnetic 3d ion in an octahedral environment
of surrounding oxygen ions. We consider the two d-orbitals with four-fold angular
dependence in the xy plane: dxy and dx2+y2 , shown in fig. 1.7(b, c). It is clear that
the dxy orbital has a much lower overlap with the p orbitals of the neighbouring
oxygen ions than the dx2+y2 orbital, and hence will have lower energy. This leads to
a splitting between the levels known as t2g (which include dxy, dxz and dyz), and the
eg levels (dz2 and dx2+y2).

Effects like these can lead to the orbitals aligning into a periodic pattern in the
crystal lattice in order to minimize the energy of the configuration: this is known
as orbital ordering. One example is the manganate compound La1−xSr1+xMnO4,
which is isostructural to the high-Tc cuprates discussed earlier. The phase diagram
of La1−xSr1+xMnO4 is shown in fig. 1.8a [13]. At half doping (x = 0.5) the
compound exhibits charge, magnetic and orbital ordering within the layers, as shown

Figure 1.7: (a) A magnetic ion surrounded by oxygen ions forming an
octahedron. (b) dxy orbital of the magnetic ion surrounded by
the p orbitals of the oxygens. The dxy orbital is lower in energy
than the dx2+y2 orbital (c). (d) The resulting splitting in energy
levels.
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Figure 1.8: (a) The phase diagram of the manganate La1−xSr1+xMnO4 [13].
(b) At x = 0.5 there is orbital ordering in the layers [14, 15].

in fig. 1.8b. At this doping level the orbitals order to produce zig-zag chains [14],
followed at low temperature by magnetic order along the chains [15]. Orbitals are
fundamental in determining the nature of magnetic exchange interactions between
ions, as discussed above, and so orbital order strongly affects the magnetic ordering
in a compound. The Goodenough-Kanamori rules [16] specify how the ions’ orbitals,
and the bond directions, determine whether interactions between ions are likely to be
antiferromagnetic or ferromagnetic.

The crystal field

The concept of a crystal field has long been used to describe the effect of
neighbouring ions (ligands) on the properties of a central magnetic ion [17], with
varying degrees of sophistication, and varying degrees of success. In its simplest form
crystal field theory calculates the orbital splittings of energy levels of the magnetic ion
due to the electrostatic potential exerted by the ligands through Coulomb repulsion.
The resulting energy levels, such as those shown in figure 1.7d, are known as crystal
field levels.

Crystal field perturbations are found to be roughly two orders of magnitude
greater for the d–electrons of the transition ions than for the f–electrons of the
lanthanide ions. This is because f orbitals are close to the nucleus, and are partially
shielded from the effect of the crystal field by s and p shells that lie further out.
The relative importance of the crystal field in comparison to the spin-orbit coupling,
for instance, determines how the calculations are performed. Crystal field theory is
discussed further in chapter 4.

The Jahn-Teller effect

The Jahn-Teller theorem states that a high symmetry state with orbitally
degenerate levels is unstable with respect to a spontaneous distortion, which lifts the
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degeneracy and therefore lowers the energy of the ground state. This spontaneous
distortion is known as the Jahn-Teller effect. The lifting of degeneracy is limited
only by Kramers’ theorem which states that in an ion with an odd number of valence
electrons two-fold spin-degeneracy must remain in the absence of a magnetic field.

In a periodic lattice the distortion can occur throughout the structure, leading
to a structural phase transition to a reduced symmetry state (cooperative Jahn-Teller
effect). The lowering of symmetry, and therefore orbital degeneracy, implies an
occupation of particular orbitals, simultaneous with orbital ordering. In some cases
at higher temperatures the distortion can switch back and forth from one axis to
another, and this is known as the dynamic Jahn-Teller effect.
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1.2 Excitations

In an ordered array of atoms, i.e. a crystal lattice, the order can be disrupted
by thermally excited lattice vibrations. These are quantized as phonons and their
behaviour is described by a dispersion relation, which determines the relationship
between the energy of the phonon and wavevector (or momentum). In a magnetically
ordered compound the ordered spins can similarly be disrupted by excitations called
spin waves which are quantized as magnons. These can be conceptualized as flipped
spins that propagate through the material like a wave. Their behaviour is similarly
described by a dispersion relation.

The measurement of excitations in a system is useful as it provides information
on the interatomic forces within the system. Often it can be experimentally difficult
to distinguish spin-wave scattering from scattering due to phonons.

Spin-wave dispersion relations

Mapping out spin-wave dispersion relations is valuable as it gives quantitative
information on the exchange interactions in the compound. As a simple example we
consider the case of a one dimensional spin-1/2 ferromagnet, with a ground state
containing N spins all pointing ‘up’. This is represented as state |0 〉 shown in fig.
1.9. The Hamiltonian for the Heisenberg model (eqn. 1.7) can be written:

H = J
∑

i

Si · Si+1 = J
∑ [

Sz
i S

z
i+1 +

1

2

(
S+

i S−i+1 + S−i S+
i+1

)]
, (1.8)

where J is negative for a ferromagnet and Si is the spin-operator acting on a site
i. S−i and S+

i are operators that create or destroy a flipped spin on site i. The
Hamiltonian acting on the ground state |0 〉 defines the ground state energy E0 by
H|0 〉 = E0|0 〉, and we find E0 = NS2J . An excitation is created by flipping one of
the spins, say spin j, to give an excited state |j 〉 = S−j |0 〉, also depicted in fig. 1.9.
Applying the Hamiltonian to the excited state |j 〉 gives:

H|j 〉 = (NS2J − 2SJ)|j 〉+ SJ |j + 1 〉+ SJ |j − 1 〉 , (1.9)

Figure 1.9: Left: ground state |0 〉 and excited state |j 〉 of a 1D S=1/2
ferromagnet. Right: Spin-wave dispersion of the system.
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which can be diagonalized using the Fourier transform |q 〉 =
∑

j exp(iqrj)|j 〉, where
rj is the position of spin j. This gives

H|q 〉 = (E0 + ~ω)|q 〉 = NS2J − 2JS(1− cos(qa)) , (1.10)

where a is the spacing between spins in the chain. The dispersion relation for the 1D
ferromagnet is therefore given by the expression ~ω = −2JS(1 − cos(qa)). This is
plotted in fig. 1.9 for J = −1. It is clear that by fitting the dispersion to data the
exchange constant J can be extracted.

The calculation above is for a very simple problem, with an easy solution to
diagonalizing the Hamiltonian. For more complicated problems, such as 2D or 3D
antiferromagnets, linear spin-wave theory is used, employing the operator technique
first proposed by Holstein and Primakoff [18]. This technique will be explained further
within this thesis, but a general description of the method is found in reference [19].

Crystal field excitations

Another type of magnetic excitation that will be studied in this thesis are
excitations between crystal field levels. Crystal field excitations are local excitations,
as opposed to spin waves, which propagate through the lattice. Excitations from
the ground state to excited crystal field levels are observed as peaks in the energy
spectrum of an inelastic neutron scattering measurement, and these peaks give an
accurate picture of the crystal field splitting. Changes in the crystal field, due to
lattice distortions for example, alter the crystal field splittings and this is detected
as movement of peak positions in the energy spectrum or changes in the number of
peaks observed.
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1.3 Scope of this Thesis

Within this thesis three different correlated electron systems have been studied,
each of which display a different combination of the competing types of order described
in section 1.1. A large part of the thesis is dedicated to experimental measurements
of magnetic excitations in these compounds, and the development of theoretical
models which describe the data. Neutron scattering is a valuable tool for probing
correlated electron systems, especially the spin correlations and excitations [20], and
the majority of the experimental measurements reported in this thesis were made
using neutrons. Chapter 2 presents the theoretical basis and experimental techniques
of neutron scatting. The following four results chapters each focus on one of the three
compounds studied:

Chapter 3: PrO2

The first system, PrO2, is a rare-earth oxide which exhibits magnetic order-
ing. The main interest here, however, is the competition between orbital and
lattice degrees of freedom which results in an interesting type of cooperative
Jahn-Teller distortion. In chapter 3 we present measurements of the crystal
field excitations above and below the static Jahn-Teller distortion temperature,
which probe the splittings of the crystal field levels due to the lattice distortion.
The experimental observations are interpreted with the help of a simple point-
charge model to simulate the effect of the Jahn-Teller distortion on the crystal
field at the Pr site, and hence on the energy levels in the system.

Chapter 4: La1.5Sr0.5CoO4

The second system studied is the doped transition metal oxide La1.5Sr0.5CoO4.
This compound is an insulator which exhibits stable charge ordering. At low
temperatures the charge order coexists with magnetic ordering within the two-
dimensional CoO2 layers. Chapter 4 presents a characterization of the magnetic
excitations in La1.5Sr0.5CoO4, which are highly two-dimensional. Through com-
parison with models of the excitations we investigate the magnetic interactions
and the anisotropy in the compound, and ask whether the magnetic and charge
degrees of freedom are coupled. We find that it is necessary to include the effect
of the crystal-field and spin-orbit interactions on the ground state in order to
model the system successfully.

Chapters 5 and 6: NaxCoO2

The subject of chapters 5 and 6 is the magnetic phase of NaxCoO2 with x ≈ 0.75.
In this unhydrated phase there is no superconductivity, and the compound is
good metal. Chapter 5 investigates the magnetic excitations in Na0.75CoO2,
which are found to be highly three-dimensional despite the layered structure
of the compound. Evidence for itinerant effects is discussed. In chapter 6 we
present a study of the spin-flop transition in Na0.8CoO2, which confirms the
magnetic ordering pattern with spins lying along the c axis, and gives further
information on the magnetic interactions in the system.
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Finally, in chapter 7, we present the main conclusions of the results chapters, and
discuss further work that might be undertaken to extend the studies presented in this
thesis.



Chapter 1. Introduction to Correlated Electron Systems 17

1.4 Publications

A number of publications have arisen from the work presented in this thesis, and
these are listed below.

Chapter 3:

Influence of static Jahn-Teller distortion on the magnetic excitation spectrum of PrO2,
C. H. Webster, L. M. Helme, A. T. Boothroyd, D. F. McMorrow, S. B. Wilkins, C.
Detlefs, B. Janous̆ová, and M. J. McKelvy, in preparation.

Chapter 4:

Magnetic excitations in La1.5Sr0.5CoO4,
L.M. Helme, A.T. Boothroyd, D. Prabhakaran, F.R. Wondre, C.D. Frost and J.
Kulda, Physica B 350, e273 (2004).

Chapters 5 and 6:

Spin gaps and magnetic structure of NaxCoO2,
L. M. Helme, A. T. Boothroyd, R. Coldea, D. Prabhakaran, A. Stunault, G. J.
McIntyre and N. Kernavanois, Phys. Rev. B 73, 054405 (2006).

Three-Dimensional Spin Fluctuations in Na0.75CoO2,
L. M. Helme, A. T. Boothroyd, R. Coldea, D. Prabhakaran, D. A. Tennant, A. Hiess,
and J. Kulda, Phys. Rev. Lett. 94, 157206 (2005).

Ferromagnetic In-Plane Spin Fluctuations in NaxCoO2 Observed by Neutron Inelastic
Scattering,
A.T. Boothroyd, R. Coldea, D. A. Tennant, D. Prabhakaran, L.M. Helme and C. D.
Frost, Phys. Rev. Lett. 92, 197201 (2004).
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Chapter 2

Neutron Scattering

2.1 Introduction

Neutron scattering is a versatile technique that is particularly well suited to
studying the properties of strongly correlated electron systems, described in the last
chapter. This is due in large part to the basic properties of the neutron, combined
with technology that allows production of high neutron fluxes, and instumentation
designed specifically for the study of condensed matter systems.

The de Broglie wavelength of thermal neutrons is very similar to interatomic
spacings in solids (∼ Å), allowing diffraction measurements to be performed to study
the structure of solids. In addition, the energy spectrum of neutrons produced by
research sources is of the same order as that of many excitations in condensed matter
systems. Inelastic neutron scattering processes which create excitations therefore
cause a large relative change in the neutron’s energy, and so are an accurate method
of measuring the excitations in a system.

There are several important differences between neutrons and x-rays, which are
similarly used to study condensed matter. One major advantage of neutrons over
x-rays is that neutrons possess a magnetic moment and so can interact with magnetic
dipole moments, allowing neutron scattering to directly probe magnetic order and
excitations in condensed matter systems. Secondly, the strength of neutron scattering
from an atom varies randomly across the periodic table, while x-ray scattering
depends solely on the number of electrons. Neutrons therefore have the advantage
that they can ‘see’ light atoms in solids that also contain heavy atoms. Finally,
neutrons scatter weakly, so they can penetrate several centimeters into a material
and therefore probe the bulk of the sample, rather than the surface properties.
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2.2 Neutron scattering theory

Neutron scattering is a well established technique, and the theory of neutron
scattering is covered in detail in textbooks [1, 2]. The following sections briefly
present the main concepts and results that will be used within this thesis.

In a neutron scattering experiment a collimated (usually monochromatic) beam
of neutrons is incident on a target sample, scatters through some interaction with
the sample, and the energy spectrum of the scattered neutrons is measured using
detectors in one or a range of directions.

We first consider a neutron with an initial wavevector ki incident on a sample
and which is then scattered by the sample into a state with a final wavevector kf .
The angle between ki and kf through which the neutron is scattered is labelled 2θ.
This event is shown in figure 2.1. The transfer of momentum to the sample is then
~Q, where Q is known as the scattering vector and is defined as

Q = ki − kf . (2.1)

These three vectors (ki, kf , Q) together form the scattering triangle, also shown in
fig. 2.1. In an inelastic scattering event the neutron loses (or gains) energy during
the process, and the energy transfer is given by

ET = ~ω = Ei − Ef =
~2

2mn

(k2
i − k2

f ) , (2.2)

where Ei and Ef are the initial and final energies of the neutron, and mn is the mass
of the neutron.

In an experiment a neutron is detected if it hits the detector, which subtends
a solid angle ∆Ω, and has an energy within the acceptable range ∆Ef around the

Figure 2.1: Schematic diagram of the geometry of a neutron scattering
experiment. Incident neutrons with wavevector ki are scattered
by the sample into a final state kf . The scattering triangle defines
the scattering wavevector Q = ki − kf . dΩ is the unit of solid
angle subtended by the detector.
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nominal value Ef . If the incident neutron flux is Φ0 and the detector has an efficiency
η then the neutron count rate is

η Φ0
d2σ

dΩdEf

∆Ω ∆Ef . (2.3)

The quantity d2σ/dΩdEf is the partial differential cross-section. This is the basic
quantity measured during a neutron scattering experiment and depends on the details
of the interaction between the neutron and the sample, and it is this quantity which
can be related to theoretical models. Since the neutron can interact with either the
nuclei within the sample, or with unpaired electrons in magnetic atoms we examine
the form of the cross section for both nuclear and magnetic scattering in the following
sections.

2.2.1 Neutron Scattering Cross-Section

First we define what is meant by the term cross section. The total scattering
cross-section, counting neutrons scattered in any direction, is defined by the equation

σtot = (total number of neutrons scattered per second)/Φ0 , (2.4)

where Φ0 is the flux of the incident neutrons, as before. The differential cross-section
is then the number of neutrons that are scattered into a certain direction per second,
and can be defined as

dσ

dΩ
=

(
number of neutrons scattered per second into

the solid angle dΩ in the direction θ, φ

)

Φ dΩ
, (2.5)

where dΩ is the unit of solid angle as shown in fig. 2.1 and (θ, φ) are polar coordinates
defining the direction of the scattered beam. The partial or double differential cross-
section is the number of neutrons that are scattered per second into a certain direction
with a certain range of energy values, and corresponds to the probability of the
collision having a certain range of outcomes defined by these values. The partial
differential cross-section is defined as

d2σ

dΩ dEf

=

(
number of neutrons scattered per second into

the solid angle dΩ in the direction θ, φ
with final energy between Ef and Ef + dEf

)

Φ dΩ dEf

. (2.6)

To obtain an expression for the partial differential cross-section we consider the
probability of a transition of the neutron-target system from an initial state λi to a
final state λf . Since neutron scattering is shown experimentally to be a very weak
process the interacting potential between neutron and target can be treated as a
perturbation and Fermi’s Golden Rule can be applied to calculate the transition
probability. In scattering theory this is equivalent to the Born approximation which
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assumes that both the incoming and scattered beam are plane waves. The neutron is
described by a plane wave state characterized by its wavevector λ, and the scattering
cross section between λi and λf can be written in the Born approximation as

(
d2σ

dΩ dEf

)λi

λf

=
kf

ki

( mn

2π~2

)2

|〈λf |V (Q)|λi〉|2δ(Eλf
− Eλi

− ~ω) , (2.7)

where V (Q) is the Fourier transform of the neutron-matter interaction potential V (r):

V (Q) =

∫
V (r) exp(iQ · r)d3r . (2.8)

The scattering cross-section for whole process is a sum of equation 2.7 over all
possible initial and final states of the system, and over all possible initial and final
spin-states of the neutron:

d2σ

dΩ dEf

=
kf

ki

( mn

2π~2

)2 ∑
σi,σf

pσi

∑

λi,λf

pλi
|〈σfλf |V (Q)|σiλi〉|2 δ(Eλf

−Eλi
−~ω) , (2.9)

where pλi
is the probability distribution for initial states λi and pσi

is the probability
distribution for the initial spin-states of the neutron σi. The spin-states of the neutron
are considered again in section 2.2.4 when we discuss polarized neutron scattering.

The scattering cross-section is therefore dependent on the type of interaction
between the neutron and the matter it scatters from, and hence the interaction
potential V (r) (eqn. 2.8). The derivations of this potential and the corresponding
scattering cross-sections for different interactions are covered in depth in texts by
Squires, Lovesey and others [1, 2, 3]. Here we will briefly discuss some results that
will be used later.

2.2.2 The Nuclear Interaction

In any neutron scattering experiment the dominant contribution to the total
scattering will come from nuclear elastic scattering which arises from the neutron
interacting with nuclei in the sample through the strong nuclear force. Neutrons
interact with nuclei j at positions rj through an interaction potential which can be
approximated by

VN(r) =
2π~2

mn

∑
j

b̄j δ(r − rj) , (2.10)

where b̄j are the scattering lengths of each atomic nucleus 1.
For unpolarized neutrons it is possible to express the partial differential cross-

section as a sum of a coherent and incoherent term:

d2σ

dΩ dEf

=
d2σcoh

dΩ dEf

+
d2σincoh

dΩ dEf

. (2.11)

1b̄j are determined experimentally and have been tabulated [4].
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The coherent scattering results from interference effects between the nuclei and in a
neutron scattering experiment is observed as elastic Bragg scattering and inelastic
phonon scattering. The incoherent scattering is observed as an isotropic background,
and is usually subtracted before analysis of the coherent scattering, so we neglect this
term.

Nuclear coherent elastic scattering cross-section

In crystalline samples the interference of neutrons scattering from periodic planes
of atoms in the lattice gives rise to Bragg peaks in the intensity of the elastically
scattered neutrons (Ei = Ef ). These occur when the scattering wavevector Q is
perpendicular to a set of crystal planes and is equal to one of the reciprocal lattice
vectors τ of the reciprocal nuclear unit cell. The scattering cross-section for nuclear
elastic scattering is given by

(
d2σ

dΩ dEf

)
nuclear
elastic

= δ(~ω)
dσN

dΩ
(Q) (2.12)

=
N(2π)3

V0

|FN(Q)|2 δ(Q− τ ) δ(~ω) ,

where
FN(Q) =

∑
j

b̄j exp(iQ · rj) exp(−Wj(Q, T )) (2.13)

is the nuclear structure factor and the sum over j extends over all nuclei at positions
rj within one unit cell. b̄j are the scattering lengths of each atom and the Debye-
Waller factor exp(−Wj(Q, T )) arises from the thermal motion of atoms about their
nominal positions.

2.2.3 The Magnetic Interaction

Magnetic scattering of neutrons occurs due to an interaction between the
magnetic dipole moment of the incident neutron and the electromagnetic field due
to the intrinsic spin and orbital momentum of unpaired electrons in magnetic ions in
the sample. The neutron magnetic moment is

µn = −γµNσ , (2.14)

where µN is the nuclear magneton, γ ≈ 1.913 is the gyromagnetic ratio and σ is the
Pauli spin operator with eigenvalues of ±1. The interaction potential for magnetic
scattering takes the form

VM(r) = −µn ·B(r) , (2.15)

where B represents the local magnetic flux density from the unpaired electrons
of the magnetic ions, due to both their intrinsic spin and orbital motion (angular
momentum). It is the Fourier transform of the interaction potential, VM(Q), that is
needed to determine the cross section. Using Maxwell’s equations, B can be related
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to the magnetization M , so that the Fourier transform of the interaction potential
can be written:

VM(Q) = −µn ·B(Q) = −µ0µn ·M⊥(Q) , (2.16)

where M⊥(Q) is the component of the magnetization perpendicular to the scattering
vector Q: 2

M⊥(Q) = Q̂× {M(Q)× Q̂} . (2.17)

The Dipole Approximation

The general expression for M⊥(Q) is complicated, and for most purposes it
is sufficient to use an approximation known as the dipole approximation. This is
employed in slightly different ways for 3d compounds (transition metals) and 4f
compounds (rare earths), as outlined below. More detail is given in references [2] and
[1].

For 3d ions J is not a good quantum number. The orbital angular momentum
L is often quenched, but the spin-orbit interaction can induce a small component of
L in a direction parallel or antiparallel to the spin S. In this case L is replaced by
(g − 2)S, and it can be shown that in the dipole approximation the magnetization
can be written

M (Q) = −gµBf(Q)S = f(Q)µ , (2.18)

where µ = −gµBS is the moment, f(Q) is the magnetic form factor, and can be
calculated from tables,3 and g is a function of spin and orbital angular momentum
(g = 2 for spin-only angular momentum; g 6= 2 if there is an orbital component).

4f ions in general have both spin and unquenched orbital angular momentum,
and J is a good quantum number. In this case it can be shown that the magnetization
can be written

M(Q) = −gJµBf(Q)J = f(Q)µ , (2.19)

where this time µ = −gJµBJ , f(Q) takes a different form for 4f ions (see [1]), and
gJ is the Landé splitting factor.

Using either 2.18 or 2.19 allows the cross section for magnetic scattering to be
written in various useful forms. In the following sections we present some results that
will be used within this thesis.

Magnetic elastic scattering cross-section

In ordered magnetic systems magnetic elastic scattering is observed as magnetic
Bragg peaks, in an analogous way to nuclear Bragg peaks. Magnetic Bragg peaks
arise from scattering from the average magnetic lattice, occurring when the scattering
vector Q coincides with a reciprocal magnetic lattice vector τM . For example, in

2Note that the two texts that we reference (Lovesey [2] and Squires [1]) define an interaction
vector Q which in the notation used here is equal to −M/(2µB). This is confusing since we use the
symbol Q for the scattering wavevector, so here we use the magnetization M throughout.

3For 3d ions the form factor can be caluclated in the dipole approximation (see [5]) or by using
an exact spin-only form when L = 0.
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a simple antiferromagnetically ordered structure, where the magnetic unit cell is
doubled compared to the nuclear unit cell, Bragg peaks would be observed at half-
integer wavevectors.

The scattering cross-section for magnetic elastic scattering in the dipole
approximation is given by

(
d2σ

dΩ dEf

)
magnetic
elastic

= δ(~ω)
dσM

dΩ
(Q) (2.20)

=
Nm(2π)3

V0m

(γr0

2

)2 ∑

αβ

〈(
δα,β − Q̂αQ̂β

)
Fα(Q)F β∗(Q)

〉

× δ(Q− τM) δ(~ω) ,

where τM is a reciprocal magnetic lattice vector and the sum is over α, β = x, y, z.
〈...〉 represents an average over domains, and the magnetic structure factor is given
by

Fα(Q = τM) =
∑

j

µα
j fj(Q) exp(iQ · rj) exp(−Wj(Q, T )) , (2.21)

where µα
j is the α-component of the magnetic moment of the jth ion, rj is its position

within the magnetic unit cell and fj is the magnetic form factor (see eqns. 2.18 and
2.19). exp(−Wj(Q, T )) is the Debye-Waller factor as before.

Magnetic inelastic scattering cross section

A large part of this thesis will concentrate on inelastic scattering measurements
made to observe magnetic excitations, such as crystal field transitions (chapter 4) and
spin waves (chapters 5, 6). The cross section for magnetic inelastic neutron scattering
can be written:

(
d2σ

dΩ dEf

)
magnetic
inelastic

=
(γr0

2

)2

f 2(Q) e−2W (Q,T ) kf

ki

S(Q, ω) , (2.22)

where S(Q, ω) is known as the response function, and is written as

S(Q, ω) =
∑

αβ

〈(
δα,β − Q̂αQ̂β

)
Sαβ(Q, ω)

〉
. (2.23)

Sαβ(Q, ω) are the space and time Fourier transforms of the time-dependent spin-spin
correlation functions:

Sαβ(Q, ω) =
1

2π~

∫ +∞

−∞

∑

j,j′
eiQ·(rj−rj′ )e−iωt

〈
Sα

j′(0)Sβ
j (t)

〉
dt , (2.24)

where Sβ
j (t) is the β-component of the spin at site j and at time t, and 〈...〉 denotes

a statistical average over the initial states of the system. A simplified expression
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for the correlation functions can be written for excitations measured at low (‘zero’)
temperatures, where only the ground state |0〉 with energy E0 is populated:

Sαα(Q, ω) =
∑

λ

|〈λ|Sα(Q)|0〉|2 δ(~ω + E0 − Eλ) , (2.25)

where the sum is over all eigenstates |λ〉 of the system with energy Eλ. Sα(Q) is the
of the Fourier transform of the α-component of the spin density, Sα

j .
The notation above assumes 3d ions, which are the focus of the spin-wave

calculations in this thesis. Chapter 3 presents studies of crystal field excitations
in a 4f material. In this case it is useful to write the response function, for localized
excitations, in the form:

S(Q, ω) =
∑
ij

ρi|〈j|µ̂⊥|i〉|2δ(Ei − Ej − ~ω) , (2.26)

where the excitations occur between states |MJ〉 = |i〉 and |j〉, ρi is the population of
|i〉 and µ̂⊥ is the component of the magnetic moment perpendicular to Q.

2.2.4 Polarized neutrons

The previous sections have concentrated on unpolarized neutrons, considering
only the scattering of neutrons from one momentum state to another. Polarized
neutron scattering makes use of the spin-states of the neutrons to gain further
information on the state of the system. We now consider the effect on the cross
section of using polarized neutrons. From equation 2.9 we see that the cross section
depends on the initial and final spin states of the neutron, σi and σf :

(
d2σ

dΩ dEf

)

λi→λf

∝ |〈σfλf |V (Q)|σiλi〉|2 . (2.27)

Previously we neglected the neutron spin-states for unpolarized neutron scattering,
but for polarized neutrons we need to take them into account.

Spin-states of the neutron

We will consider only longitudinal polarization analysis. A neutron is a spin-
1/2 fermion, and in a magnetic field the spin lies parallel (‘up’, | ↑ 〉, eigenvalue +1)
or antiparallel (‘down’, | ↓ 〉, eigenvalue -1) to the field, or polarization direction.
Neutrons polarized by a field can scatter in four possible scattering processes:

| ↑ 〉 → | ↑ 〉
| ↓ 〉 → | ↓ 〉

}
Non Spin Flip

(NSF)
(2.28)

| ↑ 〉 → | ↓ 〉
| ↓ 〉 → | ↑ 〉

}
Spin Flip

(SF)

In two processes the neutrons’ spin-state remains unchanged (non-spin-flip), while in
the other two the neutrons’ spin-state is ‘flipped’ (spin-flip processes).
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Nuclear coherent scattering

For nuclear coherent scattering the matrix elements in equation 2.27 can be
written

〈σf |VN(Q)|σi〉 = VN(Q)〈σf |σi〉 . (2.29)

For the four possible scattering processes we then get:

〈σf |σi〉 =





1

{ | ↑ 〉 → | ↑ 〉
| ↓ 〉 → | ↓ 〉

}
Non Spin Flip
(NSF)

0

{ | ↑ 〉 → | ↓ 〉
| ↓ 〉 → | ↑ 〉

}
Spin Flip
(SF)

(2.30)

This means that all coherent nuclear scattering is measured in the non-spin-flip
channel.

Magnetic scattering

The expression for the Fourier transform of the interaction potential for magnetic
neutron scattering given in equation 2.16:

VM(Q) = −γr0σ ·M⊥(Q) = −γr0

∑
α

σαMα
⊥(Q) , (2.31)

where σ is the Pauli spin operator (the spin of the neutron is sn = σ/2), and
Mα
⊥(Q) are the components of the Fourier transform of the sample magnetization

perpendicular to the scattering vector Q given by eqn. 2.17. With z as the neutron
spin quantization direction (polarization direction) the matrix elements of VM for the
four scattering processes are given by 4:

〈σf |VM(Q)|σi〉 = −γr0 ×





M z
⊥(Q)

−M z
⊥(Q)

Mx
⊥(Q) + iMy

⊥(Q)
Mx
⊥(Q)− iM y

⊥(Q)

| ↑ 〉 → | ↑ 〉
| ↓ 〉 → | ↓ 〉

}
(NSF)

| ↑ 〉 → | ↓ 〉
| ↓ 〉 → | ↑ 〉

}
(SF)

(2.32)

Considered together, equations 2.27, 2.31 and 2.32 allow us to conclude that:

• magnetic neutron scattering measures components of the magnetic moment
perpendicular to Q;

• the component of the magnetic moment perpendicular to the polarization
contributes to spin-flip scattering;

• the component of the magnetic moment parallel to the polarization P
contributes to non-spin-flip scattering.

4See for example Squires [1], chapter 9, section 9.3.
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Distinguishing magnetic scattering from non-magnetic scattering

Performing a neutron scattering experiment using polarized neutrons allows us
to determine whether or not a signal is magnetic. If the polarization direction is set
parallel to the scattering vector Q then all magnetic scattering will be spin-flip, and
all non-magnetic (all nuclear coherent) scattering will be non-spin-flip. A feature that
appears in the spin-flip channel only is then shown to be magnetic in origin. However,
we note that if the sample’s magnetic moment is also parallel to Q then the scattering
cannot be observed.

A description of using polarization analysis to determine the direction of ordered
moments is given in appendix A.

Flipping ratio

Although we will not go into the details of how to polarize a neutron beam here,
it is important to note that in practice a beam will never be 100% polarized either up
(| ↑〉) or down (| ↓〉). The flipping ratio, f , is introduced to allow polarized neutron
data to be corrected for the imperfect experimental polarization of the beam.

With the polarization parallel to the scattering wavevector (P ‖ Q), a
measurement of a nuclear Bragg peak should see all scattering in the non-spin-
flip (NSF) channel. Any scattering in the spin-flip channel is therefore due to the
imperfect polarization, and the flipping ratio can be defined as

f =
cNSF

cSF

, (2.33)

where cNSF, cSF are the counts measured experimentally in the non-spin-flip and
spin-flip channels respectively 5. f is determined experimentally in this way, and
both non-spin-flip and spin-flip measurements can be corrected:

ISF =
f

f − 1
cSF − 1

f − 1
cNSF and INSF =

f

f − 1
cNSF − 1

f − 1
cSF , (2.34)

where INSF and ISF are the corrected intensities. This correction is important when
accurate ratios of the intensities measured in each channel are needed (see appendix
A) but will not be applied in general for qualitative measurements using polarized
neutrons.

2.2.5 The Response Function S(Q, ω)

It is often convenient to express the cross section in general in terms of the
response function S(Q, ω), which depends only on Q and ω:

d2σ

dΩdEf

=
kf

ki

S(Q, ω) , (2.35)

5A magnetic Bragg peak can be used to define the flipping ratio in similar manner, only in this
case f = cSF/cNSF.
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where S(Q, ω) is defined so as to absorb all the factors that appear before it in eqn.
B.10, except for (kf/ki). The advantage of this is that it factorizes the cross section
into a part that depends on the setup of the experiment (kf/ki), and a function that
depends only on the properties of the system S(Q, ω).

The response function can therefore easily be compared with theory. In many
cases it is possible to calculate the response function directly from a model, using
the results in previous sections. However, in cases where the exact form of S(Q, ω)
is unknown it is useful to create an approximate function with which to fit the data.
This function must obey general properties of the response function, which can be
derived from linear response theory. We will simply state them below, but the proofs
can be found in textbooks by Squires [1] and Lovesey [2].

Principle of detailed balance

The principle of detailed balance states that for any neutron inelastic scattering
process a general property of the response function S(Q, ω) is that

S(Q, ω) = exp(~ω/kBT )× S(−Q,−ω) , (2.36)

i.e. the probability that the scattering process takes place through the system initially
being in the higher energy state and losing energy to the neutron is exp(~ω/kBT ) less
likely than the system initially being in the ground state and taking energy from the
neutron.

Fluctuation-dissipation theorem

The fluctuation dissipation theorem states that the dynamic part of the response
function (S̃(Q, ω)) can be related to the imaginary part of the susceptibility by

S̃(Q, ω) = {1 + n(ω)} 1

π
χ′′(Q, ω) , (2.37)

where χ′′ is the imaginary part of the generalized susceptibility χ(Q, ω) = χ′(Q, ω)−
iχ′′(Q, ω). n(ω) is known a the temperature factor or detailed balance factor, and is
given by

n(ω) =
1

exp(~ω/kBT )− 1
. (2.38)

The dynamic part of the response function can also be written in terms of the
spectral-weight function:

S̃(Q, ω) = ω {1 + n(ω)} 1

π
χ′(Q, 0)F (Q, ω) , (2.39)

where the spectral weight function is normalised to unity:
∫ ∞

−∞
F (Q, ω) dω = 1 . (2.40)

Since χ′(Q, 0) is independent of ω and F (Q, ω) is a function normalised to unity the
form of eqn. 2.39 can be used to construct lineshapes to fit energy spectra.
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2.3 Instrumentation

Neutron scattering measurements performed for this thesis were undertaken at
two neutron sources: the Institut Laue-Langevin (ILL) in Grenoble, France, which
is a reactor source, and at ISIS at the Rutherford Appleton Laboratory in the UK,
which is a spallation source.

A reactor source uses a controlled nuclear fission reaction to produce a steady flux
of neutrons. At a spallation source, on the other hand, proton pulses produced in
a synchrotron are fired into a heavy metal target, and this results in the emission
of pulses of neutrons. Both sources use a moderator to control the velocity of
the neutrons. The temperature of the moderator determines whether the resultant
neutron beam contains thermal neutrons (T ∼ 300 K), cold neutrons (T ∼ 25 K),
or hot neutrons (T ∼ 2400 K). The distribution of neutron energies in the beam is
related to temperature by En = kBT .

A wide range of instrumentation has been developed to apply neutron scattering
to various different problems. Here we describe briefly the types of instruments
employed within this thesis. Further information on the instruments used here can
be found on the ILL and ISIS websites [6], and a more comprehensive discussion of
neutron scattering using triple-axis spectrometers can be found in the textbook by
Shirane et al. [7]. The particular experimental setups for this thesis are covered in
more detail in the results chapters 3, 4, 5 and 6.

2.3.1 Triple-axis Spectrometers

The triple-axis spectrometer is one of the most versatile instruments for inelastic
studies, particularly well suited to studies of magnetic excitations and phonons. It
is also well suited to reactor sources, which have a constant neutron flux, and the
triple-axis spectrometers used in this thesis were at the ILL.

A schematic diagram of a triple-axis spectrometer is shown in figure 2.2. The
name ‘triple-axis’ refers to the three axes of the monochromator, sample and analyser
which can be rotated independently to fix the angles 2θM , 2θ and 2θA respectively.

The incoming polychromatic neutron beam is incident on a single crystal
monochromator which selects a narrow band of energies by Bragg reflection. Filters
may be placed in the beam after the monochromator to remove higher order harmonics
which also satisfy the Bragg condition of the monochromator, but which would
contaminate the measurements. The now monochromatic beam is incident on the
sample, and the neutrons are generally scattered by the sample in many directions.
The analyser is positioned to select scattering along a particular direction to be
measured. Varying the angle of Bragg reflection from the analyser allows neutrons
of a particular energy to hit the detector and be counted. Figure 2.2 also shows the
scattering vector Q in relation to the scattering angle 2θ. In effect, by varying the
three angles 2θM , 2θ and 2θA it is possible to choose ki, kf and 2θ, and therefore
to specify the scattering vector Q and energy transfer E of a particular point to be
measured.
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Figure 2.2: Schematic diagram of a triple-axis spectrometer. FC show the
positions of flipper coils if the spectrometer is set up to use
polarized neutrons; these are not present for normal unpolarized
measurements. The inset shows the scattering triangle for this
configuration.

Scans are usually made by choosing a series of (Q,E) points along one particular
direction, usually either along a direction in Q at one fixed energy, or along the
energy axis at a fixed point in Q. We refer to these as constant-E and constant-
Q scans respectively. In a standard setup as shown in fig. 2.2 all components of
the spectrometer lie in the horizontal plane, so it is only possible to choose scattering
wavevectors Q that lie in the horizontal plane. The sample must therefore be mounted
to place the wavevectors of interest within the horizontal scattering plane.

In practice scans are made with either a fixed incident wavevector ki or a fixed
final wavevector kf , while varying the other. With fixed ki the monochromator axis
(2θM) is fixed, so the sample position is unchanged throughout the scan: the angles
2θ and 2θA move to perform the scan. Working with fixed kf requires all components
of the instrument to move during the scan. This second setup is more commonly
used.

2.3.2 Triple-axis Spectrometers with Polarized Neutrons

When the triple-axis spectrometer is used with polarized neutrons the setup is
similar to the unpolarized setup shown in fig. 2.2. The same process is used to
choose the Q–E points to measure, and to perform scans. However, to include one-
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dimensional polarization analysis there are some important differences.
The main difference is the addition of two flipper coils (the positions of which

are marked ‘FC’ in fig. 2.2), an electromagnetic guide field around the sample
position and the replacement of both monochromator and analyser by Heusler crystals
(Cu2MnAl). The Heusler monochromator both monochromates the neutron beam
and polarizes it. This is achieved by magnetizing the Heusler crystal in the direction of
the required polarization. The Heusler crystal has a cross-section such that neutrons
of one polarization (say, | ↑ 〉) are preferentially Bragg scattered, while the cross-
section for the other polarization (| ↓ 〉) is almost zero. The polarization direction
is maintained through the experiment using the guide field. On scattering within
the sample, a combination of spin-flip and non-spin-flip processes will occur, so that
the beam reaching the analyser will contain a combination of the two polarizations,
the proportion of which gives information about the sample (see section 2.2.4). The
Heusler analyser again preferentially Bragg scatters one of these polarizations (say,
|↑ 〉), and the number of neutrons with this polarization is measured by the detector.
In order to measure the other polarization (| ↓ 〉) the flipper coils must be used.
These flip the polarization of all the neutrons in the beam, and by turning one
or both flippers on it is possible to measure all four processes described in section
2.2.4. Specifically, it is possible to measure the scattering from processes that flip
the neutrons’ spins (spin-flip processes) separately from the scattering from processes
that do not (non-spin-flip processes).

2.3.3 Time-of-Flight Chopper Spectrometers

Time-of-flight chopper spectrometers are also used to probe excitations using
inelastic neutron scattering. While triple-axis spectrometers measure one point in
Q-E space at a time, time-of-flight chopper spectrometers allow a large coverage of
Q-E space to be studied in a single measurement.

In a chopper spectrometer a chopper is used to monochromate the beam, rather
than a single crystal monochromator. The Fermi chopper is a rotating drum made,
for example, of curved layers of alternating aluminium (transparent to neutrons) and
boron (a neutron absorber). A pulse of incident neutrons spreads out in time as
it travels, and the fastest (highest energy) neutrons reach the chopper first. As it
rotates the chopper allows through a section of the pulse containing neutrons with
the desired energy; faster or slower neutrons are blocked by the absorbing strips. The
energy range and width is determined by the phase and frequency of the chopper
rotation. Chopper spectrometers can be used at steady-flux reactor sources, but the
beam must be chopped into pulses before it reaches the Fermi chopper, and this
wastes a large proportion of flux. Chopper spectrometers are therefore ideally suited
to pulsed spallation sources, and the experiments performed on chopper spectrometers
for this thesis were all performed at ISIS.

Figure 2.3 (top) shows a schematic diagram of a time-of-flight chopper spectrom-
eter. Before the Fermi chopper is a background chopper which reduces background
contamination by cutting away the edges of the pulse. The monochromatic pulse of
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Figure 2.3: Top: schematic diagram of a time-of-flight chopper spectrometer.
Bottom left: scattering triangle showing that the scattering vector
Q varies with time-of-flight. Bottom right: the MAPS chopper
spectrometer at ISIS, showing the large pixelated detector bank.

neutrons scatters from the sample in a range of directions, and neutrons hit the large
pixellated detector bank. The detectors record both the neutrons’ position and the
time at which they are counted. From the time-of-flight, and accurate measurements
of the distance travelled, it is possible to calculate how fast the neutrons travelled
from the sample, and from this the energy transfer during scattering (see below). One
measurement therefore records a large area of Q-space over a range of energies.

Time-of-flight analysis

We first consider the calculation of the energy transfer, given in any neutron
scattering process by

E = ~ω = Ei − Ef , (2.41)

where Ei and Ef are the incident and final energies. In a time-of-flight experiment Ei

is chosen by the chopper frequency and phase. Instead of directly measuring Ef the
time-of-flight of the neutrons from sample to detector, t, is recorded. Substituting
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the equations Ef = mnv
2/2 and v = D/t, where mn is the mass of the neutron, v is

its velocity and D is the distance from sample to detectors, into eqn. 2.41 leads to
an expression for the energy transfer:

E = ~ω = Ei − mnD
2

2t2
. (2.42)

The initial wavevector ki is known, and the scattered wavevector kf is now fully
defined by Ef and the position the neutron hit the detector. The scattering vector
Q can be calculated from ki and kf using the standard scattering triangle, shown in
the bottom left corner of fig. 2.3. Q is shown to be dependent on the time-of-flight,
and is therefore coupled to the energy transfer.

The chopper experiments reported in this thesis were performed on two
spectrometers called MAPS and HET at ISIS. On these instruments the data set
is recorded in time-position binning, and a program called Homer [8] converts the
data into an array in Q-E space. The Homer program also converts the data to
absolute units using the sample mass, and by comparing the data measured to similar
measurements made on a standard vanadium sample. The final intensities are

Intensity =
ki

kf

d2σ

dΩdEf

in mb sr−1meV−1f.u.−1 , (2.43)

where f.u. stands for one formula unit of the sample. These units are referred to as
absolute units when presenting time-of-flight data taken on MAPS and HET.

Interpreting MAPS data

Two experiments in this thesis were performed on single crystals using the MAPS
chopper spectrometer at ISIS, a diagram of which is shown in the bottom right of fig.
2.3. MAPS has a large detector banks approximately perpendicular to the incident
beam. This makes it ideally suited to the study of compounds with two-dimensional
excitations. When the scattering of interest shows no dependence on one Q–direction,
say l, this direction is placed parallel to the incoming beam. Data is recorded over
a large range of Q in the ab plane, but the value of l varies both over the detector
bank, and with energy. However, since the scattering has no l-dependence the data
may be projected into the ab plane with no loss of information. Interpreting data
from three-dimensional compounds is more complicated, involving careful choice of
crystal orientation and incident energy to make the wavevector of interest coincide
with the energy of interest.

2.3.4 Powder Diffractometers

Powder diffractometers are used for accurate structure determination. Figure 2.4
shows a schematic diagram of a constant angle powder diffractometer. This type of
instrument uses the whole polychromatic (‘white’) neutron beam, and is usually used
at pulsed sources. The polychromatic beam scatters from the sample and neutrons
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Figure 2.4: Schematic diagram of a constant angle diffractometer, based on
the diffractometer GEM at ISIS.

are detected in detector banks at specific angles covering a large range of 2θ. Time-
of-flight analysis is used to convert the neutron arrival time to lattice spacing. The
spectra recorded in the data banks show a large number of peaks over a wide range
of lattice spacing, and the structure is refined using Rietveld refinement on these
spectra. The resolution of the instrument is best at large scattering angles, so often
only banks at large 2θ are included in the refinement.

2.3.5 Single Crystal Diffractometers

Single crystal diffractometers are also used for accurate structure determination,
for both crystallographic and magnetic structures. A standard double axis
diffractometer looks much like the triple-axis spectrometer shown in fig. 2.2, but
without the analyser, and is used in much the same way, but for elastic scattering
only.
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Chapter 3

Jahn-Teller Effect in PrO2

3.1 Introduction

This chapter presents calculations of the crystal-field energy levels in PrO2 using
a simple point-charge model. These calculations were motivated by recent studies
that revealed evidence of a low-temperature static structural distortion below a Jahn-
Teller distortion temperature TD. The calculations described in section 3.2 predict
splitting of the orbitally degenerate ground state in the distorted phase. Neutron
inelastic-scattering measurements are presented in section 3.3. These studies reveal
the temperature dependence of the crystal-field levels, in particular confirming the
splitting of the ground-state below TD. The results are discussed with reference to
the calculations.

At room temperature PrO2 is paramagnetic, and forms the cubic fluorite
structure shown in figure 3.1, with lattice spacing a = 5.392 Å. Each Pr4+ ion is
surrounded by a cube of eight oxygen ions. The Pr4+ 4f 1 configuration consists
of two Russell-Saunders terms: 2F5/2 and 2F7/2, of which the J = 5/2 multiplet is
lower. Group theory dictates that the cubic crystal field due to the surrounding
oxygen ions would split the ground state into a four-fold degenerate Γ8 and doublet
Γ7 state. Furthermore, both phenomenological point-charge calculations for a cubic
crystal field, and susceptibility measurements point to a Γ8 ground-state [1] (see fig.
3.1, right).

Early neutron measurements on powder samples by Kern et al. revealed that
below a temperature of TN ≈ 14 K the Pr spins order antiferromagnetically [2]. They
also measured the Γ8–Γ7 crystal-field splitting at 30 K to be ≈ 130 meV within the
J = 5/2 ground state manifold. However, the ordered magnetic moment per Pr ion
was measured to be 0.6± 0.1µB, far too small to agree with calculated moments for
a Γ8 ground-state. This lead Kern et al. to propose a dynamic Jahn-Teller effect in
PrO2, which would allow lifting of the ground-state degeneracy and reduction of the
calculated moment.

Recent work by Boothroyd et al. has provided further evidence for a
dynamic Jahn-Teller effect in the Γ8 electronic ground state [3]. Neutron inelastic
measurements on a polycrystalline sample of PrO2 revealed two distinct features in
the low-temperature energy spectrum: (1) sharp peaks above 100 meV characteristic
of crystal-field transitions between the 4f 1 states of Pr, both within the J = 5/2
multiplet and intermultiplet transitions between 2F5/2 and 2F7/2, and (2) a broad
band of scattering between approximately 10–100 meV. Some of these results are
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reproduced in figure 3.2, measured with incident neutron energies between 30 and
1200 meV.

Figure 3.2a clearly shows the Γ8–Γ7 crystal-field transition at 131 meV previously
reported by Kern et al., and the broad band of scattering centred on ∼ 30 meV
but extending from 10 to 100 meV. Figures 3.2b and c show peaks interpreted as
intermultiplet transitions between crystal field levels with J = 5/2 and J = 7/2.
In fig. 3.2a we also observe a peak centred at 3 meV, which was found to shift to
lower energies as the temperature was increased, becoming quasielastic above the
magnetic ordering temperature (TN ≈ 14 K), and which was therefore attributed to
splitting of the ground-state multiplet due to the static exchange field present in the
antiferromagnetically ordered phase.

Although the sharp peaks at higher energies were readily explained as crystal-field
levels, the broad scattering feature does not fit into the same scheme. Boothroyd et
al. proposed that the effects were the result of strong coupling between 4f 1 electronic
states and local lattice distortions, leading to the dynamic Jahn-Teller effect (DJTE).
To investigate this coupling between electronic and vibrational degrees of freedom
they proposed a model with a vibronic Hamiltonian, based on the cubic crystal-
field splittings but coupling a single phonon mode to the lowest crystal-field levels.
Although simplistic, calculations with this model produced vibronic levels in the right
region of the spectrum [3], supporting the above interpretation of the data.

Following these measurements on the energy spectrum of PrO2 further studies
were made of the structure by Gardiner et al. [4]. Neutron diffraction data on a single
crystal of PrO2 revealed a cooperative Jahn-Teller distortion at TD = 120±2 K. Below
this temperature the existence of half-integer reflections gave evidence for a doubling
of the unit cell along one crystallographic direction. These reflections satisfied the
selection rules h = n + 1/2, k = odd, l = even, where n, k and l are integers, and
h, k and l can be permuted. Reflections with l = 0 were only present below T = 20
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Figure 3.1: Left: The face-centred cubic fluorite structure of PrO2 at high
temperature. Right: Schematic diagram of the splitting of the
free ion multiplets for the Pr4+ ion in a cubic crystal electric field.
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Figure 3.2: Low-temperature neutron inelastic data on PrO2 and CeO2

measured by Boothroyd et al. [3]. (a) PrO2 spectrum corrected
for the non-magnetic background by subtraction of CeO2 data.
(b, c) Intermultiplet (2F5/2–2F7/2) transitions in PrO2.

Figure 3.3: Temperature dependences of the (a) (1/2, 1, 4) and (b) (1/2, 1, 0)
peaks from Gardiner et al. [4]. Solid lines are fits of the form
I ∝ (Tα − T )2β, where Tα is TD or TN as indicated.
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K. The temperature dependence of two such reflections are shown in fig. 3.3. Figure
3.3a shows a structural reflection with l 6= 0, from which TD was determined. Figure
3.3b is an example of a reflection with l = 0, which shows the intensity falling to zero
within experimental error at TN = 13.5 K, the same ordering temperature found for
stronger integer magnetic order reflections. Gardiner et al. therefore concluded that
the half-integer reflections with l = 0 belong to the magnetic phase, revealing that a
component of the magnetic unit cell is also doubled along one crystal axis, i.e. the
displacement of oxygen ions due to the Jahn-Teller distortion affects the magnetic
ordering of the Pr sublattice.

Gardiner et al. performed detailed analysis of the intensities of a set of integer
and half-integer structural and magnetic reflections at low temperatures in order to
identify the structure produced by the Jahn-Teller distortion below TD = 120± 2 K,
and the refined magnetic structure. The analysis gave two possible patterns of oxygen
displacements, displayed in figures 3.4 b and c. Blue arrows represent the direction
of the oxygen ion displacements, calculated to be d = 0.07 Å for either structure.
In the first structure, labelled the sheared structure (fig. 3.4b), oxygen cubes in the
two halves of the doubled unit cell are sheared in opposite directions. In the second
structure (fig. 3.4c) the two sides of each cube are sheared in rotated directions,
and we label this the chiral structure 1. After averaging over domains it proved
impossible to distinguish between the two possibilities for the doubled structural unit
cell. However, consideration of both crystal-field and Jahn-Teller energies found the
chiral structure to be more energetically favourable [5]. Possibilities for the doubled
magnetic structure are given in reference [4], but again could not be definitively
distinguished between using the neutron data.

Very recent x-ray diffraction measurements made by Gardiner et al. [6] have in
fact ruled out the sheared structure, and confirmed the chiral displacement of oxygen
ions as the correct structure below the Jahn-Teller distortion (TD = 120 K). Since
previous analysis of the energy spectra by Boothroyd et al. and others has assumed a
cubic crystal field, and resulting four-fold orbitally degenerate Γ8 ground state, there
is clearly scope for further modelling. The newly confirmed chiral structure lowers the
crystal-field symmetry at the Pr site, and must therefore split the Γ8 ground state.
With accurate measurements of the oxygen displacements in the chiral structure it is
valuable to calculate the effect of the crystal-field on the energy levels, and to see if
the ground state splitting might contribute to the intensity around 30 meV shown in
fig. 3.2a. Detailed measurements of the spectra in this region at higher temperatures
are needed to establish whether this level disappears above TD = 120 K. Since these
calculations also model the effect of the Jahn-Teller distortion on the Γ7 excitation at
130 meV there is motivation to perform measurements of the temperature dependence
of this level.

The rest of this chapter presents the results of a first-principles simple point-
charge calculation of the crystal field levels in PrO2. This is followed by a report
on further neutron scattering measurements of the energy spectrum of PrO2 made

1This structure is not truly chiral because the sense of rotation of the displacement vector is
mirrored in the two halves of the unit cell, but we use the label for convenience.
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Figure 3.4: The structure of PrO2 showing oxygen ions only. (a) Fluorite
structure at high temperatures, as in fig. 3.1. Possible
distorted structures are shown in (b) Sheared structure and (c)
Chiral structure, with arrows showing the direction oxygen ion
displacements. Both (b) and (c) double the unit cell in one
direction.

to study the crystal-field levels in more detail, and in particular their temperature
dependence. The results of the neutron scattering experiments are discussed in
comparison with those of the crystal field calculation.



Chapter 3. Jahn-Teller Effect in PrO2 43

3.2 Crystal Field Calculation

3.2.1 Crystal Field Theory versus Ligand Field Theory

The concept of a crystal field was first developed by Bethe in 1929 to study the
effect of surrounding ions on the electron distribution of a single magnetic ion on a
lattice. The ion and its surrounding neighbouring ions (ligands) were modelled as
uniform spheres, their charges located at a point in the centre, with no overlapping
of the charge distributions. The crystal field was then defined as the effect of those
charges on the central ion, calculated solely from the Coulomb interaction between
the central and surrounding ions, and crystal field theory the method of calculating
its effect on physical properties of the system.

Many effects are neglected in this simple theory. A more general model of the
field due to the surrounding ions might include, among other things, covalency effects,
spatial distribution of charge allowing for charge distribution overlap, and ligand bond
strengths. The term ligand field theory has been coined to describe the manner in
which the physical properties of an ion in a compound are influenced by all effects of
the surrounding ions. Crystal field theory is then a limiting case of ligand field theory
which considers only electrostatic interactions.

3.2.2 Point-Charge Model

Many attempts have been made to improve calculations of the crystal field by
introducing more of these effects, with limited success [7]. In fact it has been found
that many results of ligand field theory depend largely on the symmetry of the
distribution of the ligand surrounding the central ions, and far less on the details
of the model. Useful information can therefore be obtained from a simple point-
charge model using crystal field theory which, although neglecting many effects, does
include all the information on the symmetry of the surrounding ligands. Including
only the electrostatic interaction between the central and nearest-neighbouring ions
has the advantage that the effect of the crystal field on the energy spectrum of the ion
in question can be calculated from first principles. This is the approach we take for
PrO2. However, because it disregards the overlap between charge distributions the
point-charge model is known to underestimate the crystal field splittings of energy
levels.

If we assume that the crystal electric field effects are small 2 they can be calculated
as a perturbation on the free-ion wavefunctions and energy levels of the Pr ions. The
problem then becomes one of finding the perturbing Hamiltonian and its matrix
elements between free-ion states of the Pr ions. This matrix can then be diagonalized
to find the energy levels and eigenfunctions of the Pr ion in the crystal electric field.

2This is a valid approximation for 4f electrons which are shielded from the crystal field by outer
s and p shells.
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3.2.3 Determining the Perturbing Hamiltonian

We consider the effect on the Pr ion due to its immediate surroundings: each
nearest-neighbouring oxygen ion (ligand) is modelled as a point charge, and affects
the electrons of the Pr ion via the Coulomb interaction. The electrostatic potential
at a point (r, θ, φ) near the origin at the Pr ion is then given by:

V (r, θ, φ) =
1

4πε0

∑
j

qj

|(Rj − r)| , (3.1)

where qj is the charge at the jth neighboring ion, a distance Rj from the origin. We
make the approximation that the crystal electric field affects only electrons in unfilled
shells of the Pr ion, since closed shells would be affected only in a higher order of
perturbation. If the Pr ion has i electrons in unfilled shells at positions (ri, θi, φi), and
with charges −|e|, then classically the perturbing potential energy due to the crystal
electric field (CEF) can be written:

WCEF =
∑

i

−|e|Vi =
1

4πε0

∑
i

∑
j

−|e| qj

|(Rj − ri)| . (3.2)

The crystal electric field (CEF) perturbing Hamiltonian operator HCEF is effectively
this classical potential energy rewritten in terms of operators, i.e.

HCEF = WCEF =
∑

i

−|e|V (ri, θi, φi) . (3.3)

3.2.4 Tensor Operators

In order to facilitate the calculation we make use of operator equivalents. The
calculation of the matrix elements of these operators is discussed in the literature 3.
Standard tensor operators Cq

k are defined as:

Cm
n =

(
4π

2n + 1

) 1
2

Yn
m , (3.4)

where Yn
m are spherical harmonic functions [9]. We then introduce Crystal Field

Parameters, Bnm, in order to write a generalised CEF Hamiltonian in terms of the

3The tensor operators used here are fully described by Wybourne [8], although some errors are
contained within the text. For a simple explanation of the method of calculation, which uses the
same point-charge set-up but a different operator technique (Stevens’ operators), see Hutchings [9].
This technique was not followed since the use of Stevens’ operators restricts the basis states to those
in the lowest J multiplet. We note that the crystal field parameters are defined slightly differently
in the two operator methods, with a simple conversion between the two notations [10], although the
final eigenvalues and eigenvectors will differ because of the truncation of basis states in the Stevens’
operator method.
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tensor operators 4:

HCEF =
∑

n

Bn0C0
n +

∑
n

n∑
m=1

Bc
nm [C−m

n + (−1)mCm
n] (3.5)

+
∑

n

n∑
m=1

iBs
nm [−C−m

n + (−1)mCm
n] ,

Since the matrix elements of the tensor operators Cm
n are known, the energy levels

and eigenvectors are easily found by calculating the crystal field parameters Bnm.
Expressions for these are derived by equating the generalised Hamiltonian above with
that derived from the point charge model (eqn. 3.3).

In order to simplify the calculations that follow by avoiding imaginary quantities
it is useful to introduce tesseral harmonic functions (Znm), which are related to the
spherical harmonics Yn

m:

Zn0 = Yn
0 (3.6)

Zc
nm = (1/

√
2)[Yn

−m + (−1)mYn
m]

Zs
nm = (i/

√
2)[Yn

−m − (−1)mYn
m]

}
m > 0 .

Using the definition of the tensor operators (eqn. 3.4) along with eqn. 3.6 we can
rewrite the tensor operators in terms of tesseral harmonics. The expression for the
generalised CEF Hamiltonian (eqn. 3.5) then becomes:

HCEF =
∑

n

Bn0

(
4π

2n + 1

) 1
2

Zn0 (3.7)

+
∑

n

n∑
m=1

Bc
nm

√
2

(
4π

2n + 1

) 1
2

Zc
nm

−
∑

n

n∑
m=1

Bs
nm

√
2

(
4π

2n + 1

) 1
2

Zs
nm .

3.2.5 Crystal Field Parameters, Bnm

It can be shown (see reference [9]) that

1

|(Rj − r)| =
∞∑

n=0

rn

R(n+1)

[∑
α

4π

(2n + 1)
Znα(θj, φj)Znα(θ, φ)

]
, (3.8)

where the sum over α includes m = 0 and both c and s terms for all m 6= 0 (i.e. Zn0

as well as Zc
nm and Zs

nm for all m). Inserting this into eqn. 3.1, and using eqn. 3.3

4The superscripts c and s on the Bnm refer to the operator functions they multiply: when
written out fully in terms of Legendre functions Bc and Bs coefficients multiply functions of the
form cos(mφ) and sin(mφ), respectively.
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we can rewrite the CEF Hamiltonian due to the surrounding point charges as:

HCEF = − |e|
4πε0

∑
j

qj

∑
n

rn

R
(n+1)
j

4π

(2n + 1)
Zn0(θj, φj)Zn0(θ, φ) (3.9)

− |e|
4πε0

∑
j

qj

∑
n

∑
m

rn

R
(n+1)
j

4π

(2n + 1)
Zc

nm(θj, φj)Z
c
nm(θ, φ)

− |e|
4πε0

∑
j

qj

∑
n

∑
m

rn

R
(n+1)
j

4π

(2n + 1)
Zs

nm(θj, φj)Z
s
nm(θ, φ)

By directly comparing this expression for the Hamiltonian derived from the point-
charge model (eqn. 3.9) with the expression defining the crystal field parameters (eqn.
3.7) we find expressions for the crystal field parameters in the point-charge model:

Bn0 = − |e|
4πε0

〈rn〉
(

4π

2n + 1

) 1
2 ∑

j

qj

Rj
(n+1)

Zn0(θj, φj) (3.10)

Bc
nm = − |e|

4πε0

〈rn〉√
2

(
4π

2n + 1

) 1
2 ∑

j

qj

Rj
(n+1)

Zc
nm(θj, φj)

Bs
nm = +

|e|
4πε0

〈rn〉√
2

(
4π

2n + 1

) 1
2 ∑

j

qj

Rj
(n+1)

Zs
nm(θj, φj) ,

where the sum over j is over the nearest-neighbouring ions. 〈rn〉 is the nth radial
moment of the charge distribution 5.

The crystal field parameters derived above fully define the perturbing Hamil-
tonian in the point-charge model and, with eqn. 3.5, allow easy calculation of the
matrix elements of HCEF and subsequent diagonalization to find energy levels and
eigenvectors. These last steps were performed using the program SPECTRE [11].

3.2.6 Matrix Elements

Matrix elements of the crystal field Hamiltonian are calculated between basis
states of the free Pr4+ ion. A full set of 14 basis states of the two multiplets 2F5/2 and
2F7/2 is included, with states labelled |ψ〉 = |J,M〉, where M = −J · · · J . The initial
splitting between the six-fold degenerate |5

2
, M〉 and eight-fold degenerate |7

2
,M〉 levels

is given by the spin-orbit splitting ζ for a free Pr ion.
The perturbing Hamiltonian, HCEF is diagonalized in this basis to give the

eigenfunctions and eigenvalues of the new crystal electric field energy levels. The
CEF eigenfunctions are then used to calculate the matrix elements between the new

5The radial moments 〈rn〉 are tabulated by Freeman and Desclaux [12]. However, the values
for Pr4+ are not tabulated, were taken from an older and less reliable source [13], and scaled. The
scaling factors were calculated by comparing values for the radial functions of Ce3+ which appear
in both sources.
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ground state and excited levels in the dipole approximation:

|〈j|µ̂⊥|i〉|2 (3.11)

where |i〉 and |j〉 are the initial and final CEF eigenfunctions (having corresponding
eigenvalues Ei, Ej), and µ̂⊥ is the component of the magnetic moment operator
perpendicular to Q. If we assume that the energy levels are sharp, we can write the
response function, S(Q, ω) (see chapter 2, section 2.2.3):

S(Q, ω) =
∑
i,j

ρi|〈j|µ̂⊥|i〉|2δ(Ei − Ej − ~ω) , (3.12)

where ρi is the thermal population factor of the initial state. S(Q, ω) can be directly
compared to neutron scattering data.

3.2.7 Results

Figure 3.5 shows the Pr ions and their nearest-neighbouring oxygen ions, in the
cubic and ‘chiral’ structures (as defined in fig. 3.4(b,c) ). In the chiral structure
the oxygen octahedra are distorted by small displacements of the oxygen ions in the
directions marked by the arrows, measured by Gardiner et al. to be 0.07Å [4].

Using equation 3.10 the crystal field parameters were calculated for the Pr sites
in both the cubic structure and distorted chiral structure. The parameters are given
in table 3.1. The displacements of the oxygen ions in the distorted structures lower
the symmetry of the Pr site, and therefore the symmetry of the crystal electric field,
so more Bnm parameters are needed to define the CEF Hamiltonian. In particular we
see that the cubic structure (which has four-fold symmetry) needs only Bnm where
n,m are multiples of four, while the chiral structure (which has two-fold rotational
symmetry only) includes other n,m, restricted only to multiples of two.

a/2 a/2

(a) (b)

Cubic Structure Chiral Structure

a

b

c

Pr

O

Figure 3.5: Pr environments in the (a) cubic and (b) chiral structures: nearest
neighbouring oxygen ion positions only. Blue arrows indicate the
displacement directions of oxygen ions in the distorted structure.
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Cubic B20 = 0 Bc
22 = 0 Bs

22 = 0
B40 = −197.16 Bc

42 = 0 Bs
42 = 0

B60 = 20.87 Bc
44 = −117.82 Bs

44 = 0
Bc

62 = 0 Bs
62 = 0

Bc
64 = −39.04 Bs

64 = 0
Bc

66 = 0 Bs
66 = 0

Chiral B20 = 5.18 Bc
22 = 0 Bs

22 = 69.45
B40 = −197.92 Bc

42 = 0 Bs
42 = 23.11

B60 = 20.69 Bc
44 = −117.18 Bs

44 = 0
Bc

62 = 0 Bs
62 = −1.83

Bc
64 = −39.08 Bs

64 = 0
Bc

66 = 0 Bs
66 = −0.90

Table 3.1: Crystal field parameters for the two structures, in meV.

Calculation of the matrix elements of the crystal field Hamiltonian and
subsequent diagonalization were performed using SPECTRE to give the energy levels
and eigenfunctions of the new crystal field states. The results are given in figure
3.6 and table 3.2, which displays the lowest calculated energy levels, largest two
components of each associated eigenvector, and

∑ |〈j|µ̂⊥|i〉|2 (eqn. 3.11) which
indicates the relative intensities of the levels.

We see that for the cubic structure the point-charge model predicts a four-fold
orbitally degenerate ground-state (Γ8), and a doublet at 52.0 meV (Γ7), in agreement
with the experimental evidence discussed in the introduction. As discussed earlier,
the point charge model is known to underestimate energy levels, so the 52.0 meV
level predicted here corresponds to the peak at ≈ 130 meV measured by neutron
scattering. In the chiral structure the calculations predict a further splitting of the
ground state, resulting in a crystal field level 8.9 meV above the new ground state.
Assuming a similar re-scaling of the energy levels this splitting might be expected to
be ∼ 20 meV in reality. The chiral distortion also shifts the 52.0 meV level up to
71.7 meV, and as well as moving to higher energies this level is predicted to reduce
in intensity in the chiral phase: table 3.2 shows a reduction in

∑ |〈j|µ̂⊥|0〉|2 of 42%.
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Structure j Energy Ej Eigenvector |J,M〉 ∑ |〈j|µ̂⊥|0〉|2

Cubic
0

0.0 meV 1.00|5
2
, +1

2
〉 − 0.04|7

2
,−7

2
〉 . . .

2.5460.0 meV 1.00|5
2
,−1

2
〉+ 0.04|7

2
, +7

2
〉 . . .

0.0 meV 0.88|5
2
, +5

2
〉+ 0.40|5

2
,−3

2
〉 . . .

0.0 meV 0.88|5
2
,−5

2
〉+ 0.40|5

2
, +3

2
〉 . . .

1
52.0 meV 0.91|5

2
,−3

2
〉 − 0.41|5

2
, +5

2
〉 . . .

1.615
52.0 meV 0.91|5

2
, +3

2
〉 − 0.41|5

2
,−5

2
〉 . . .

Chiral

0
0.0 meV 0.92|5

2
, +1

2
〉+ 0.03|7

2
, +1

2
〉 . . .

2.618
0.0 meV 0.92|5

2
,−1

2
〉 − 0.03|7

2
,−1

2
〉 . . .

1
8.9 meV 0.89|5

2
,−5

2
〉+ 0.44|5

2
, +3

2
〉 . . .

0.619
8.9 meV 0.89|5

2
, +5

2
〉+ 0.44|5

2
,−3

2
〉 . . .

2
71.7 meV 0.84|5

2
,−3

2
〉 − 0.37|5

2
, +5

2
〉 . . .

0.939
71.7 meV 0.84|5

2
, +3

2
〉 − 0.37|5

2
,−5

2
〉 . . .

Table 3.2: Lower crystal field levels for the two structures, calculated using
the crystal field parameters in table 3.1: energy levels and largest
components of eigenvectors. Also listed are the sum of the squares
of matrix elements between each level and the ground state,∑ |〈j|µ̂⊥|0〉|2, see eqn. 3.11.
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Figure 3.6: Results of the point-charge crystal-field calculation for PrO2:
energy levels of free-ions split by the spin-orbit interaction;
splitting of these levels in the cubic structure; splitting of the
same levels in the chiral structure.
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3.3 Neutron Scattering Measurements

3.3.1 Experimental Details

Neutron scattering measurements were made on a powder sample of PrO2 using
the HET (High Energy Transfer) spectrometer at the ISIS facility at the Rutherford
Appleton Laboratory. HET is a time-of-flight spectrometer optimised for studies of
high-energy magnetic excitations. An outline of time-of-flight spectrometers is given
in chapter 2. The banks of detectors surrounding the sample, and 2.5 m away, are
almost continuous at low angles (φ = 2θ = 9.31 − 28.69◦), with an additional bank
at higher angles (φ = 2θ = 125.44− 138.72◦) 6.

In order to estimate the background scattering due to non-magnetic processes,
such as phonon scattering or multiple-scattering events, measurements were also
made on a sample of CeO2. CeO2 was chosen as it is isostructural to PrO2 at room
temperature, it has a very similar lattice constant (5.411 Å compared to 5.3856 Å
for PrO2), and Pr and Ce have very similar nuclear scattering lengths [14]. For these
reasons the non-magnetic scattering from CeO2 has been shown to be very similar to
that from PrO2 [3], but because the Ce4+ ion is non-magnetic there is no magnetic
scattering from CeO2.

Sample Preparation

The sample of polycrystalline PrO2 was prepared by oxidation of a starting
material of commercially available Pr6O11 by D. Prabhakaran. The Pr6O11 was
first baked in air at 1020oC for 10 hours in order to remove any excess oxygen or
moisture absorbed from the atmosphere. The pure Pr6O11 powder was then cooled
to 280oC and annealed at this temperature under oxygen flow for a week with daily
regrinding in order to produce PrO2. The CeO2 powder sample was prepared from
commercially available CeO2 by baking at ∼ 1000oC for approximately 10 hours to
remove any moisture absorbed from the atmosphere.

For this experiment a sample of PrO2 of mass 25.83 g was sealed in an aluminium
foil packet measuring approximately 4.0 by 3.8 cm with a depth of 0.8 cm. A sample
of CeO2 of mass 25.98 g was prepared in a similar way. Each sample was mounted in
a top-loading closed-cycle-refrigerator (CCR) by clamping the top of the foil packet
with an aluminium fixture, and positioned with the incident beam centred on and
perpendicular to the largest face of the packet.

3.3.2 Measurements

The spectrum was measured at 7 K, 50 K, 80 K 100 K, 110 K, 115 K, 120 K, 130
K, 165 K and 200 K, using two different incident energies at each temperature: Ei =
80 meV (chopper frequency 350 Hz) and Ei = 250 meV (chopper frequency 500 Hz)7.

6There are also banks at 4 m from the sample which were neglected in this experiment.
7The measurements at 165 K were made only with Ei = 250 meV
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An identical set of measurements were made on the sample of CeO2, at a reduced set
of temperatures (7 K, 80 K, 120 K and 165 K).

Vanadium spectra were used to calibrate the detectors. The Homer program [15]
was used to do this, and to convert the intensities into absolute units (see chapter 2):

Intensity =
ki

kf

d2σ

dΩdEf

in mb sr−1meV−1Pr−1 . (3.13)

These units are referred to as absolute units hereafter. Any magnetic signal is
strongest at low angles in φ = 2θ (small Q), while the non-magnetic background
intensity due to phonons will be strongest at high angles (large Q). We therefore
averaged data over two regions of interest for each measurement:

Low angle bank (LA) : 9.31◦ ≤ φ ≤ 19.31◦ 〈φ〉 = 〈2θ〉 = 14.31◦ (3.14)

High angle bank (HA) : 125.44◦ ≤ φ ≤ 138.72◦ 〈φ〉 = 〈2θ〉 = 132.08◦ .

3.3.3 Absorption and self-shielding corrections

Absorption and self-shielding corrections compensate for absorption of neutrons
by the sample and neutrons that scatter more than once and thus miss the detector.
Both processes lower the total transmission of neutrons and a correction is applied
to the raw detector count to account for this. The following correction is valid for
small-angle scattering only.

The total correction cross-section σ is given by the sum of the absorption and
self-shielding cross-sections:

σ(E) = σa(E) + σss . (3.15)

Figure 3.7 shows the experimental setup, with neutrons incident perpendicular to the
largest face of the foil package, which has width x0. We consider a single scattering
event taking place over a distance dx at a distance x into the sample, changing the
neutron energy from Ei to Ef . The transmission T is then given by the integral:

T =
1

x0

∫ x0

0

exp (−nσ(Ei)x)× exp (−nσ(Ef )(x0 − x)) dx (3.16)

= exp (−n [σa(Ef ) + σss] x0)

[
1− exp (−n [σa(Ei)− σa(Ef )] x0)

n [σa(Ei)− σa(Ef )] x0

]
,

where n is the number of scattering units per unit volume, x and x0 are defined in
figure 3.7 and σa and σss are the absorption and self-shielding cross-sections.

The coherent and incoherent scattering cross-sections (σcoh, σincoh) for Pr and
Ce are tabulated, as are the absorption cross-sections for incident neutrons with
Ei = 25 meV [16]. For large incident energies σss ' σincoh + σcoh, and by making the
assumption that the absorption cross-section is inversely proportional to the neutron
velocity, and therefore proportional to 1/

√
(E), the transmission was evaluated for

the incident energies Ei = 80, 250 meV. The data was corrected accordingly. Average
values for the transmission were 91% and 92% for Ei = 80 and 250 meV respectively.
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Figure 3.7: The experimental setup for powder neutron inelastic scattering.
Neutrons of incident energy Ei enter the sample. They are
assumed to travel for a distance x with this energy, then scatter
once within a distance dx, and travel the remaining distance until
exiting the sample with an energy Ef . These quantities are used
to define the sample transmission (eqn. 3.16).

3.3.4 Results

Figure 3.8 shows the data from measurements made at low temperature (7 K)
using each of the two incident energies (Ei = 80, 250 meV) on both the PrO2 and
CeO2 samples. Data are shown as a function of energy, averaged over either the low
angle (LA) or high angle (HA) detector banks, as described previously.

To study the magnetic features we look at the low-angle (LA) PrO2 spectra
at both incident energies. The data clearly show the features reported previously
by Boothroyd et al. [3], and reproduced in figure 3.2. There is a sharp peak at
approximately 130 meV shown in the low-angle PrO2 data measured at Ei = 250
meV (fig. 3.8ai). This spectrum also shows the broad band of scattering between
about 10–100 meV, which is measured in more detail with Ei = 80 meV (fig. 3.8bi).
The fact that the intensity in these features is present in the PrO2 measurements but
not in the corresponding CeO2 spectra confirms that they are magnetic in origin.

The high-angle (HA) data give information on the non-magnetic signals in both
compounds, from phonons and multiple-scattering processes. Looking at figures 3.8aii
and bii we see that generally the same features are present in both the PrO2 and
CeO2 spectra. This validates the use of CeO2 as a good measure of the non-magnetic
scattering for PrO2.
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Figure 3.8: Energy spectra of PrO2 and CeO2 measured at 7 K on HET: raw
data averaged over low-angle (LA) and high-angle (HA) detector
banks, measured using two incident energies (Ei = 80 meV and
250 meV as marked).

3.3.5 Background Subtraction

In the data with Ei = 250 meV there are no background features in the region
of interest around 120 meV. Above 100 meV both the PrO2 and CeO2 high-angle
spectra, as well as the CeO2 low-angle spectrum, show a smooth gradient. It is
therefore unnecessary to subtract the non-magnetic background in order to analyse
the data.

However, the high-angle data measured with Ei = 80 meV show a series of
features that are associated with the phonon density of states. The low-angle CeO2

data measured with Ei = 80 meV contains small features that correspond to the
features of the high-angle spectrum. In order to isolate the magnetic signal in PrO2

it was therefore necessary to subtract the non-magnetic background from the low-
angle PrO2 spectrum.

Two methods of subtraction are presented. The first is a simple subtraction of
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Figure 3.9: PrO2 low-angle spectra at 7K measured with Ei = 80 meV.
The non-magnetic background has been subtracted using (a) the
simple subtraction (eqn. 3.17), and (b) the weighted subtraction
(eqn. 3.18).

the low-angle CeO2 spectra from the low-angle PrO2 spectra:

I ′PrO2(LA) = IPrO2(LA) − ICeO2(LA) , (3.17)

where I represents the intensity in each original spectrum, and I ′ is the magnetic
intensity after background subtraction.

Since the phonon peaks in PrO2 and CeO2 (fig. 3.8bii) occur in slightly different
positions a second method was also used (labelled the weighted subtraction for
reference):

I ′PrO2(LA) = IPrO2(LA) −
IPrO2(HA)

ICeO2(HA)

× ICeO2(LA) . (3.18)

Both subtraction methods were employed for Ei = 80 meV data at all temperatures.
Linear interpolation was used to generate CeO2 spectra for those temperatures
not measured, and standard error analysis was used to generate error bars for the
subtracted data.

Figure 3.9 shows results of the two subtraction methods for 7 K data. Both
spectra show the same features, but the error bars are greatly increased by using
the second method of subtraction. We therefore employed simple subtraction of the
low-angle spectra for the following analysis.

3.3.6 Analysis of Ei = 250 meV Data

Figure 3.10a shows data averaged over the low-angle bank measured with an
incident energy of 250 meV on PrO2 at 10 temperatures between 7 and 200 K.
The data have been corrected for absorption and self-shielding effects. Data taken
at different temperatures have been offset vertically by 2 meV from each previous
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Figure 3.10: (a) Low-angle PrO2 data, showing the crystal field transition to
the Γ7 excited state. Data taken at different temperatures have
been offset vertically by 2 meV from the previous temperature.
Black lines are fits to the data using a Lorentzian profile on
a sloping background. (b-d) Variation of the peak centre, full
width at half maximum (FWHM) and integrated intensity with
temperature.

temperature for clarity. There is a clear peak at each temperature, corresponding
to the crystal field transition from the ground state to the Γ7 excited state. As
the temperature increases the intensity of the peak increases, and the peak centre is
seen to move lower in energy. To analyse this trend quantitatively the data at each
temperature were fitted with a Lorentzian lineshape on a background, represented
as solid lines in figure 3.10a. The background was modelled as the tail of a second
Lorentzian, the centre and width of which were fixed to the value fitted at 7 K for
all other fits, but the amplitude of which was allowed to vary. The background
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contribution is marked on 3.10a as a dashed line for each temperature. Data between
40 meV and 200 meV were included in each fit. Parameters from these fits are shown
in fig.s 3.10(b–d).

Figure 3.10b shows the centre of the Γ7 peak as a function of temperature. As
the temperature increases from 7 K to 200 K the peak centre moves from 132.1± 0.1
meV to 121.9 ± 0.3 meV. The points follow an order parameter shape, suggesting
a transition at ∼ 120 K. This is consistent with the known Jahn-Teller distortion
temperature at TD = 120 ± 2 K [4]. The width of the Γ7 peak increases as the
temperature increases, with a distinct change in gradient around TD = 120±2 K (fig.
3.10c).

Comparison to the Point Charge Calculation

The point-charge crystal field calculation presented in section 3.2 estimated a
value of 52.0 meV for the Γ7 doublet at high-temperature, rising to 71.7 meV in
the low-temperature distorted temperature. This amounts to a 38% increase in
energy of the crystal field level as the structure distorts. The neutron-scattering data
show clearly that there is an increase in the Γ7 energy accompanying the structural
distortion, but the percentage increase between 200 K and 7 K is in fact only 9%. The
calculation also estimated a 42% reduction in intensity of this level going from the
cubic to the chiral structure. Again, the data show that the intensity does decrease
when the distortion occurs, by approximately 40%.

3.3.7 Analysis of Ei = 80 meV Data

The Ei = 80 meV spectra contain detailed information on the broad band of
vibronic scattering, and the possible splitting of the ground-state Γ8 quartet. Figure
3.11 shows the PrO2 spectra at the nine temperatures measured, after correction for
absorption and self-shielding effects and subtraction of the non-magnetic background.
The spectrum at 7 K contains a peak centred close to zero energy 8, the broad band
of intensity previously attributed to vibronic scattering, and a small peak on top of
this broad feature. As the temperature increases the region above 30 meV varies
very little, but below 30 meV the spectra are highly temperature dependent: the
low-energy peak becomes quasielastic above TN = 13.5 K and decreases in intensity
as the temperature increases, the dip in intensity around 10 meV begins to fill up,
and the small peak shifts toward lower energies.

Comparison to the Point Charge Calculation

The above analysis of the Γ7 doublet has confirmed that the energy levels are
underestimated by the point-charge calculation. In order to compare the model to
the data we therefore linearly scale the calculated levels so that the Γ7 peaks in

8In fact the peak peak at 7 K is shifted to 3 meV because of the magnetic splitting (below
TN = 13.5 K) described in section 3.1. However, in the analysis presented here we neglect this shift,
which is small compared to the instrumental resolution.
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Figure 3.11: Data points are PrO2 data from the low-angle detector banks
measured with Ei = 80 meV, and corrected for phonons and
multiple-scattering by simple subtraction of low-angle CeO2

data. Data are presented for the nine temperatures measured
between 7 K and 200 K. Solid black lines depict fits to the model
described in the text. Red circles mark data points including in
the fitting, while green squares show data points excluded from
the fits. Blue arrows mark the centre of the peak labelled B in
fig. 3.13.

the cubic and chiral crystal fields match the values measured at 200 K and 7 K
respectively. These levels are plotted in figure 3.12, with Lorentzian lineshapes of
relative height calculated from eqn. 3.12 to aid comparison with the neutron spectra.
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Figure 3.12: (a) Point charge model for the fluorite crystal structure above
120 K. (b) Point charge model for the chiral structure. Different
scaling factors are used for the two models to ensure agreement
between model and data.

With this scaling the cubic crystal field is estimated to split the ground state quartet
by approximately 16 meV. This is sufficiently close to the observed small peak (at
approximately 25 meV at 7 K) to justify modelling the peak as the result of this
crystal-field splitting.

Model lineshape

We model the system as a three-level system of sharp levels, shown in figure
3.13a. Here levels |0〉 and |1〉 are intended to represent the ground state split by the
chiral crystal field, as in fig. 3.12b, and level |2〉 is the vibronic continuum. Since
the ground-state splitting goes to zero above TD = 120 K we expect the position of
level |1〉 to be temperature dependent. In this approximation the vibronic level is
modelled as a sharp magnetic level, with broadening introduced later. The Γ7 crystal
field level lies outside the energy range of the data measured with Ei = 80 meV, and
since its thermal population does not vary within this temperature range there is no
need to include it in the system.

The lineshape was artificially constructed to describe transitions between these
levels, including the correct temperature dependence while satisfying the principle
of detailed balance. Since we consider only excitations from the ground level to an
excited state we can write the response function S̃(E) as a sum of that for each of
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Figure 3.13: (a) Three level system: |0〉 and |1〉 represent the first two doublet
crystal field levels, while |2〉 is included to model the vibronic
states. (b) Lineshape resulting from the three-level system, using
underlying symmetrized Gaussians. (c) Lineshape shown in (b),
but with a symmetrized Lorentzian function added (blue dashed
line marked L), as described in the text.

the three levels:
S̃(E) = S̃0(E) + S̃1(E) + S̃2(E) , (3.19)

with S̃n(E):
S̃n(E) = ρ0 E [1 + n(E)] Dn Gn(E) , (3.20)

where ρ0 = e−E0/kBT

Z
is the thermal population factor of the ground state 9. The

justification for constructing eqn. 3.20 in this form is discussed in chapter 2, section
2.2.5. The factor [1 + n(E)] = (1 − e−E/kBT )−1 in eqn. 3.20 is the detailed balance
factor. We take Gn(E) to be a symmetrized Gaussian function 10:

Gn(E) = An

{
exp

(
−(E − E0n)2

2σ2
n

)
+ exp

(
−(E + E0n)2

2σ2
n

)}
, (3.21)

9Z =
∑2

n=0 e−E0n/kBT is the partition function.
10A Gaussian function was chosen since it gave a better fit to the data than a Lorentzian function.
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Figure 3.14: Parameters of the fits depicted in figure 3.11. (a) Centre of the
peak labelled B in fig. 3.13, and marked with blue arrows in
fig. 3.11. (b) Amplitude of the Lorentzian centred on 5.6 meV.
Dashed line is a guide to the eye.

with amplitude An, width σn and centred on E0n, the energy between levels |0〉 and
|n〉 11.

The lineshape described by this function at low temperature is shown in fig. 3.13,
and has a good shape to fit the data at 7 K. However in order to achieve a good fit
to the data at higher temperatures it was necessary to introduce another lineshape,
a symmetrized Lorentzian multiplied by the detailed balance factor [1 + n(E)] (see
fig. 3.13c). This fits the increase in intensity around ∼ 10 meV as the temperature
increases above 7 K which could not be replicated using the temperature dependence
factors in the above equations alone.

Fitting the data

Data at all nine temperatures were fitted simultaneously. The width of the
peak labelled B was fixed by fitting the model to the 7 K data only, prior to fitting all
temperatures. The only parameters allowed to vary with temperature were the centre
of the peak labelled B in figure 3.13(b,c), and the amplitude of the the Lorentzian.
All other changes in the lineshape with temperature derive from the temperature
factors included in eqn. 3.19. The fitting was achieved using the MFit package for
Matlab [17]. Figure 3.11 shows the results of the fitting plotted as solid black lines
over the data at all nine temperatures 12. The fits describe the data well. Blue

11In this case the factor Dn is then given by Dn = (1−e−βE0n )
E0n

.
12At each temperature the subtraction of two large elastic peaks in the background subtraction

routine has resulted in unphysical data points around zero energy transfer. These points were
excluded from the fitting and are plotted as green squares to distinguish them from data included.
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arrows mark the centre of the small peak (labelled B) which was allowed to move
with temperature. The peak moves lower in energy as the temperature is increased.
The peak centre is plotted in fig. 3.14a, showing an order-parameter-like decrease in
energy from 28.1 ± 0.9 meV at 7 K to 9.1 ± 0.9 meV at 130 K. At 200 K a better
fit to the data was achieved by omitting the peak altogether. The curve agrees well
with a transition temperature of T ≈ 120 K, the Jahn-Teller distortion temperature.
Figure 3.14b shows the increase in amplitude of the added Lorentzian peak, which
was centred at 5.6 meV.
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3.4 Discussion and Conclusions

In this chapter we have presented neutron inelastic scattering measurements
on polycrystalline PrO2 which provide insights into the effect of a static distortion
on a system with a large dynamic Jahn-Teller effect. Accompanying crystal field
calculations aided the interpretation of the neutron data.

Making use of precise measurements of the positions of oxygen ions in the cubic
and distorted crystal structures in PrO2 above and below TD we have calculated
the positions of the crystal field levels estimated by a simple point charge model.
Although the point-charge model grossly underestimates the absolute values of the
crystal field splittings as expected, the essential features of the energy spectra were
reproduced. These are as follows:

1. The ground state in the cubic structure is the four-fold degenerate Γ8 level.

2. In the cubic field the first excited state is the Γ7 doublet. After the chiral
distortion this level is predicted by the point-charge model to increase in energy,
while decreasing in intensity.

3. The chiral distortion is predicted to split the ground-state Γ8 level, by
approximately 15% of the Γ8-Γ7 cubic splitting.

Neutron inelastic scattering measurements on the temperature dependence of the
crystal field level at ≈ 130 K have confirmed that it does increase in energy as the
temperature is lowered below TD = 120 K, i.e. as the symmetry distorts from cubic
to chiral. In fact, the centre of the peak follows an order parameter-like curve, in
strong agreement with the Jahn-Teller transition temperature (see. fig 3.10b), from
121.9± 0.3 meV at high temperature to 132.1± 0.1 meV at low temperature.

Of particular interest is the predicted splitting of the cubic Γ8 ground-state by
the chiral distortion. Neutron scattering measurements revealed a small peak at
low temperatures at 27 meV, approximately 20% of the Γ8-Γ7 splitting. The point-
charge calculations allowed us to confidently ascribe this peak to the chiral distortion
splitting of the cubic ground-state. A simple three-level model of the system allowed
us to fit the temperature dependence of this level, which showed an order parameter-
like decrease in energy towards the Jahn-Teller distortion temperature, TD = 120
K.

At 7 K then, our three-level model including the two crystal-field levels and
vibronic scattering provided a good fit to the data. However, at higher temperatures
a Lorentzian lineshape was introduced to account for extra intensity around 10 meV.
The temperature dependence of the Lorentzian intensity is shown in fig. 3.14b. The
explanation for this extra intensity requires some thought. It is possible that there is
a phonon mode around 10 to 20 meV, and in fact evidence to support this is given
by a peak in the high-angle data shown in fig. 3.8bii. Extra intensity may result
from imperfect alignment of the phonons in CeO2 and PrO2, allowing intensity from
phonons to appear in the subtracted data sets. However, the weighted background
subtraction method should account for misalignment of the phonons, and no difference
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was seen when using this method over simple subtraction. Another possibility is that
the broad vibronic mode does not have the temperature dependence of our model,
which assumes a magnetic temperature dependence for all three levels. If the vibronic
mode has a more phonon-like character the increase in intensity with temperature
may be explained. A more complicated model would be required to investigate this
possibility.

Finally we comment on the presence of the broad vibronic scattering both above
and below the Jahn-Teller distortion temperature, TD = 120 K. This mode was first
reported by Boothroyd et al. [3], before the chiral distortion had been observed.
The explanation given by them for the presence of vibronic excited modes relies on
the presence of a highly orbitally-degenerate ground-state, as in a cubic crystal field.
Although the ground state is split by the crystal field at low temperatures, since the
energy scale of the splitting is small compared to that of the vibronic continuum the
vibronic mode is still present. In other words, the dynamic Jahn-Teller effect exists
at low temperature despite the existence of a static Jahn-Teller distortion.
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Chapter 4

Magnetic Excitations in Charge
Ordered La1.5Sr0.5CoO4

4.1 Introduction

La2−xSrxCoO4 is a typical doped transition metal oxide, with a tetragonal unit
cell consisting of two-dimensional conduction layers of CoO2 separated by lanthanum
and strontium spacer layers, as shown in fig. 4.1a. This is the same structure as the
so called LSCO cuprate superconductors which are discussed in chapter 1. In order to
understand the unique properties of the superconducting compounds it is essential to
understand the interactions in isostructural compounds containing transition metals
other than Cu, and to this end many studies of La2−xSrxTO4 have been made with
T=Mn, Ni and Co. All of these compounds, as well as the cuprates, exhibit forms of
spin and charge order.

Figure 4.1: (a) Crystal structure of La2−xSrxCoO4. (b) Checkerboard charge
ordering within the ab planes of the x = 0.5 compound. The low
temperature lattice parameters are a = b = 3.83Å and c = 12.5Å
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Figure 4.2: (a) Effective magnetic moments µeff per Co site, estimated from
susceptibility measurements. (b) Temperature dependence of
the in-plane component of the susceptibility (χ = M/H) of
La1.5Sr0.5CoO4 single crystals. Data measured after cooling to
5 K in zero-field (ZFC) and after cooling in a field of µ0H = 10
mT (FC). (c) Anisotropy of the susceptibility of La1.5Sr0.5CoO4.
Data taken from Moritomo et al. [4].

This chapter is concerned with investigating the magnetic excitations of
the charge-ordered half-doped cobaltate, La1.5Sr0.5CoO4. The parent compound,
La2CoO4 is an insulator with cobalt ions in the Co2+ S = 3/2 (HS) spin-state,
and exhibits antiferromagnetic order below 275 K [22]. Replacing one lanthanum
ion in the structure with strontium introduces one excess hole into the material, and
the holes reside on the CoO2 layers. At half-doping (x = 0.5) Coulomb repulsion
between holes is minimized when the holes lose mobility and form a checkerboard
lattice on the Co sites, resulting in a charge ordered state of Co2+ and Co3+ ions
[2, 3]. Figure 4.1b shows the checkerboard charge ordering in the ab plane in
La1.5Sr0.5CoO4, as determined by Zaliznyak et al. using neutron diffraction [2, 3].
The checkerboard ordering is accompanied by breathing-type distortions of the oxygen
octahedra surrounding the Co ions, as shown in fig. 4.4(b, c). Neutron diffraction
measurements of this effect over a wide temperature range have allowed the charge
ordering transition temperature to be estimated as TCO ≈ 825 K [3].

Magnetic susceptibility measurements on La1.5Sr0.5CoO4 by Moritomo et al. [4],
shown in fig. 4.2(b, c), revealed a broad maximum at ∼ 60 K suggestive of a build-
up of magnetic correlations. Figure 4.2c compares the in-plane (χab) and out-of-
plane (χc) susceptibilities. The large difference in magnitude between the two curves
reveals significant anisotropy in the system, with the ab plane as the easy direction
for spins. Subsequent neutron diffraction measurements confirmed the presence of
magnetic order below TSO ≈ 30 K [2]. Magnetic Bragg peaks were observed at
slightly incommensurate positions such as Qab = (0.258, 0.258) in the a∗b∗ plane.
Neglecting the slight incommensuration, the observation of a magnetic Bragg peak
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Figure 4.3: Magnetic order in checkerboard charge-ordered compounds. (a)
Antiferromagnetic order in La1.5Sr0.5CoO4 proposed by Zaliznyak
et al. [2]. (b) Magnetic order in La0.5Sr1.5MnO4, from Senff et al.
[10]. Grey boxes mark the magnetic unit cells in each.

at Qab = (0.25, 0.25) signifies a doubling of the charge-ordering unit cell in the
(a, b) = (1, 1) direction, as shown by the grey box in fig. 4.3. Zaliznyak et al.
concluded that the Co2+ ions have S = 3/2 and align antiferromagnetically below
TSO, while the the Co3+ ions have effectively no moment and do not contribute to the
magnetic Bragg scattering. This ordering pattern is shown in fig. 4.3a. Bragg peaks
at positions such as Qab = (0.75, 0.25) were also observed, indicating a doubling
of the charge-ordered unit cell in the (a, b) = (1,−1) direction. This implies that
the compound is twinned, with the second set of Bragg peaks corresponding to an
ordering pattern rotated by 90◦ from that shown in fig. 4.3a.

As well as La1.5Sr0.5CoO4, checkerboard charge ordering has also been observed in
La0.5Sr1.5MnO4 [5] and La1.5Sr0.5NiO4 [6], and a comparison of the order in the three
compounds is given in ref. [7]. In all three compounds magnetic order (SO) follows
the charge order (CO) at a lower temperature, but the temperatures at which CO and
SO occur vary greatly, reflecting the different relative strengths of the magnetic and
Coulomb interactions. In the nickelate compound the Ni2+ and Ni3+ ions order into
a commensurate checkerboard at TCO ≈ 480 K, but there is a transition to slightly
incommensurate charge order at TICO ≈ 180 K. The Ni2+ spins carry S = 1 and
order antiferromagnetically at TSO ≈ 80 K. Like the charge order, the magnetic order
is also slightly incommensurate. The S = 1/2 Ni3+ spins do not appear to order
[8]. In La0.5Sr1.5MnO4 commensurate checkerboard ordering of Mn3+ and Mn4+

occurs at TCO ≈ 240 K. In this compound orbital ordering (OO) develops at the
same temperature as the charge ordering, accompanied by Jahn-Teller distortions [9].
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Magnetic ordering follows at TSO ≈ 110 K, involving spins on both the Mn3+ and
Mn4+ sites, in a more complicated ordering pattern than the nickelate [10] (see fig.
4.3b).

Magnetic excitations have been studied in both La1.5Sr0.5NiO4 [8] and
La0.5Sr1.5MnO4 [10]. The charge and orbital ordering strongly influence the mag-
netic excitations. In La1.5Sr0.5NiO4 features are observed which are not predicted
by standard spin-wave theory, and appear to be explained by discommensurations in
the charge ordering. In both compounds the excitations are highly two-dimensional,
reflecting the layered structure of the crystal lattice. We know of no measurements
of the magnetic excitations in La1.5Sr0.5CoO4 prior to those reported in this chapter.

In La1.5Sr0.5CoO4 checkerboard charge ordering occurs at a very high tempera-
ture, TCO ≈ 825 K, and the charges are very well localized. Magnetic ordering on
the other hand does not occur until TSO ≈ 30 K [2, 3]. There is currently no experi-
mental evidence of orbital ordering. The huge difference between the two transition
temperatures, and the lack of any CO anomaly at the SO temperature, suggests that
the magnetic and charge ordering degrees of freedom may be effectively decoupled.
This should make it a good compound in which to study the magnetic excitations in
a CO system, without the necessity of considering competing degrees of freedom.

As in LaCoO3 [11] and other cobaltate compounds, there has been some debate
over the Co spin-state in La2−xSrxCoO4. The magnetization study by Moritomo et
al. estimated the effective magnetic moment of La2−xSrxCoO4 from susceptibility
measurements 1 over the doping range 0.4 ≤ x ≤ 1.0, and the results are shown
in fig. 4.2a [4]. For 0.4 ≤ x ≤ 0.6 there is a large effective moment (3.5-4.2µB

per Co), but this drops to around 2.6µB per Co between x = 0.7 − 0.8. Assuming
that the Co2+ spin remains in the high-spin (HS) state (S = 3/2) as in the parent
compound, and neglecting the orbital moment, Moritomo et al. concluded that it is
not possible to produce such a large moment unless the Co3+ spins are also magnetic.
They interpreted the reduction in magnetic moment at x = 0.7− 0.8 as a spin-state
transition of the Co3+ ions from the high-spin state (HS, S = 2) to an intermediate-
spin state (IS, S = 1). Subsequent NMR measurements observed a large change in
the hyperfine coupling constant in the same region, x = 0.7− 0.8 [12].

As discussed above, neutron diffraction measurements of the magnetic order in
La1.5Sr0.5CoO4 [2] at low temperatures found antiferromagnetic order consistent with
ordered Co2+ S = 3/2 spins and unordered Co3+. Zaliznyak et al. argued that the
Co3+ could be in either the high (S = 2), intermediate (S = 1) or low (S = 0) spin-
state, but that the strong planar anisotropy in the compound would lead to quenching
of the orbital angular momentum and freezing of any integer spin in a singlet state
[2]. For this reason they assumed that the Co3+ ions could be modelled as effectively
non-magnetic. However, there are in fact three magnetic ordering scenarios that are
consistent with the observed magnetic Bragg positions:

1The effective magnetic moment can be estimated from the susceptibility χ using the Curie-Weiss
law: χ = C/(T − θ), where θ is the Curie temperature and C is the Curie constant, which is related
to the effective magnetic moment µeff by C = µ2

effµ2
Bg2. By fitting a straight line to 1/χ against T

it is possible to extract C and therefore µeff . Moritomo et al. assumed a spin-only moment so g = 2.
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1. Antiferromagnetically ordered Co2+ (S = 3/2) spins, with no moment on the
Co3+ ions, which are either (a) in the low-spin state S = 0, or (b) in a singlet
state with S = 1 or 2 and MS = 0. The latter is assumed in references [2, 3]
(fig. 4.3a).

2. Antiferromagnetically ordered Co2+ (S = 3/2) spins, while the Co3+ spins have
a moment which is paramagnetic 2.

3. Antiferromagnetically ordered Co2+ and Co3+ sublattices, ordered with the
same ordering wavevector.

One ordering scenario that can be ruled out immediately is the pattern observed
in La0.5Sr1.5MnO4 (fig. 4.3b). This structure has a different periodicity from that
observed in La1.5Sr0.5CoO4, and would not be consistent with experimental data 3.
However, the above options show that the question of the Co3+ spin-state is still open.

In order to gain a better understanding of the magnetic ground states of the ions
we have performed a simple point-charge calculation of the effect of the crystal field
on the energy levels of the Co2+ and Co3+ ions, in a similar manner to the calculation
described in the previous chapter for PrO2. Crystal field parameters were calculated
in the manner described in section 3.2, using the positions of oxygen in the distorted
octahedra reported by Zaliznyak et al. [3]. These breathing-type distortions are
shown in fig. 4.4(b,c). The subsequent calculation of energy levels and eigenvectors
was performed by A. T. Boothroyd using a modified version of the SPECTRE program
described in section 3.2 4. The spin-orbit interaction was included using a value of
λ = −20 meV 5.

First we consider the point-charge calculation for Co2+ ions (L = 3, S = 3/2),
the results of which are presented in fig. 4.4a. Including only the crystal field,
the ground state is four-fold spin-degenerate, with ML = 0. However, with the
inclusion of the spin-orbit interaction the ground-state splits into two doublet states
of mixed spin and orbital angular momentum. The lowest doublet is found to be
predominantly MS = ±3/2. For this ground state (marked ∗) we find that the g values
parallel and perpendicular to the ab planes are g‖ ≈ 5.9 and g⊥ ≈ 2.1 respectively6.
The value of g‖ À 2 shows that there is a significant orbital angular momentum

2This is analagous to the ordering in La1.5Sr0.5NiO4 which has similar magnetic Bragg positions,
and where the Ni2+ (S = 1) sublattice orders, while the Ni3+ (S = 1/2) sublattice does not [8].

3As well as the magnetic Bragg positions Qab = (0.25, 0.25), La0.5Sr1.5MnO4 also has magnetic
Bragg peaks at positions Qab = (0.5, 0) etc. [10]. These reflections are not observed in
La1.5Sr0.5CoO4.

4For PrO2 tensor operators were used to include both J multiplets, while here Stevens’ operators
were sufficient. In the Stevens’ operator method only the lowest LSJ term is included, but higher
terms are well separated in energy so can be neglected [13].

5The spin-orbit parameter λ is defined by the spin-orbit interaction term in the Hamiltonian:
HSO = λL ·S. For a free ion the value is given by Abragam and Bleaney as λ ≈ −180 cm−1 ≈ −20
meV [13].

6The g factor is defined by the Zeeman Hamiltonian HZ = gµBB · J . g‖ and g⊥ are calculated
by applying a field B (parallel or perpendicular to the ab planes respectively) and the calculated
Zeeman splittings ∆E = gµBB allow g to be extracted.
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Figure 4.4: (a) Co2+ levels in La1.5Sr0.5CoO4 calculated using a simple point-
charge calculation for L = 3, S = 3/2. The spin-orbit interaction
is also included. Numbers label the spin degeneracy of the levels.
(b) Distortion of the oxygen octahedra surrounding the Co2+ ions
[3], and (c) a view of the distortions in the ab plane.

component in the ground state. In addition, the large difference between g‖ and g⊥ is
evidence for a strong magnetic anisotropy, consistent with the magnetization data (fig.
4.2c). Furthermore, the calculated magnetic moment for the ground state doublet is
µeff = 6.7µB per Co2+ ion, including both spin and orbital angular momentum 7.
This equates to 3.3µB per Co ion in La1.5Sr0.5CoO4, which is a significant proportion
of the effective moment found experimentally by Moritomo et al. (see fig. 4.2a) [4].
It is possible then that little or no contribution to the magnetic moment comes from
the Co3+ sites, and hence that they could either be in the low-spin state S = 0, or in
a spin singlet state (MS = 0) with S = 1 or 2.

Secondly, we investigated the proposal by Zaliznyak et al. that the Co3+ ions
are in a spin-state with S 6= 0, but that the strong planar anisotropy leads to a state
in which both orbital angular momentum and spin angular momentum are quenched,
so that Co3+ has effectively no moment at low temperatures. In this scenario the
crystal-field split Co3+ levels must have a singlet ground state well separated from

7This is in contrast to µeff = g
√

S(S + 2)µB = 3.87µB per Co2+ (or 1.94µB per Co) for spin
only S = 3/2.
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the nearest excited states. This was not found to be the case in the point-charge
calculations. Starting with the Hund’s rule state of Co3+ (L = 2, S = 2), the
point charge calculations predict many levels very close to the ground state singlet,
each with a large orbital angular momentum. Since there are many levels in close
proximity it is very unlikely that the Co3+ ions would have quenched spin, even at low
temperatures. Also, the large orbital angular momentum of the lowest levels suggests
that if the Co3+ ions are in the high-spin state they would give a large contribution to
the effective magnetic moment. Since most of the experimentally observed moment
can be explained by the contribution from Co2+ (spin and orbital angular momentum
contributions) this is evidence for Co3+ being in the low-spin ground state (S = 0).

The problem of what happens to the Co3+ ions in the magnetic ordered state will
be addressed further in the discussion. However, following the points made above,
the Co3+ ions will be assumed not to contribute to the magnetic order or low energy
spin excitations for the analysis presented in the rest of this chapter.

The next section reports magnetization measurements on La1.5Sr0.5CoO4,
followed by neutron diffraction measurements to refine the structure, and further
elastic neutron scattering studies to characterize the charge and magnetic order. In
section 4.5 we present inelastic neutron scattering studies of the magnetic excitations
in La1.5Sr0.5CoO4, which are the main result of this chapter. This is followed by
analysis of the inelastic neutron data through comparison with spin-wave models in
section 4.6.
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4.2 Magnetization Measurements

As a preliminary study of La1.5Sr0.5CoO4, magnetization measurements were
made using a Superconducting QUantum Interference Device (SQUID) magnetome-
ter. The bulk magnetic properties were studied in order to check consistency with
previous measurements [4], and to give an idea of regions of interest for later study
with neutrons.

A small single crystal of La1.5Sr0.5CoO4 was cleaved from a rod prepared using
the floating zone technique in Oxford to give a sample of mass 0.135 g. X-ray Laue
photographs were used to find the orientation of the crystal axes. The sample was
then mounted in a plastic capsule, secured in position by cotton wool 8, and mounted
in the centre of a plastic straw designed to fit the SQUID sample rod. The straw
containing the sample was then mounted in the SQUID magnetometer, with the ab
plane (or c-axis) parallel to the field direction (vertical).

4.2.1 SQUID Magnetometer

The SQUID magnetometer used here has a sample environment consisting of
a cryostat with base temperature 1.8 K and maximum temperature 350 K, and
a superconducting magnet capable of producing a vertical field up to 7 T (70000
Oe). Operation and data acquisition are controlled by computer. To measure the
magnetization of a sample a field must be applied to induce a net magnetic moment
in the sample. The moment induces a current in the SQUID’s detector coils, and the
output voltage is directly proportional to the current induced by the magnetization
9. Two techniques were used to measure the sample magnetization:

Field-cooled measurements At room temperature a measuring field, typically of
about 100 Oe, was applied to the sample, which was then cooled to the base
temperature. Measurements were made at increasing temperatures from 1.8 K
to 350 K.

Zero-field-cooled measurements The sample was cooled from room temperature
to base temperature with no applied field. At 1.8 K a measuring field was
applied, and measurements were again made at increasing temperatures up to
350 K.

The resulting magnetization measurements (M) were converted to units of emu/mol,
for ease of comparison with previous data. Measurements to discover the hysteresis of
the compound were made in fields up to 10000 Oe (1 T), but no evidence of hysteresis
was found.

8Cotton wool has a small diamagnetic signal, but this signal is not temperature dependent over
the range studied here [14].

9For all measurements within this thesis the ‘D.C.’ technique was used to take measurements. In
this method the sample is moved through the detector coils in steps, measuring the induced voltage
at each point. The points are fitted with a theoretical curve, the amplitude of which is recorded as
the final reading.
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4.2.2 Results

Figure 4.5 depicts the temperature variation of the in-plane FC and ZFC
magnetizations, with the inset showing data up to 350 K. Our results agree generally
with those of Moritomo et al. [4], with a broad maximum in the magnetization centred
at about 60 K. However, in addition we see a definite splitting between the ZFC and
FC data at low temperatures indicating a glassy ground-state, and an abrupt change
in slope at ≈ 30 K.

The inset of fig. 4.5 shows measurements made with H ‖ ab and H ‖ c. The
difference between them is roughly a factor of two, which shows that there is a large
anisotropy in the system. The H ‖ c curve shows a larger temperature dependence
than that of Moritomo et al [4] (see figure 4.2c), but this is likely to be due to a
small misalignment of the sample allowing some of the moment parallel to ab to be
measured, since the crystal alignment in our experiment was only accurate to ∼ 10◦.

The broad maximum at 60 K suggests that the magnetic ordering in
La1.5Sr0.5CoO4 has a gradual onset rather than a sharp transition temperature, and
we will see from neutron scattering measurements presented later that this is the case.
Prompted by the magnetization measurements, the possibility of a reorientation of
the spins in the ab plane at ≈ 30 K was also investigated with neutrons, and this is
presented in section 4.4.3.
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Figure 4.5: Temperature dependence of the susceptibility (χ = M/H) of
La1.5Sr0.5CoO4 with H ‖ ab. Measurements were made measuring
upward in temperature. Red circles and blue squares show data
from field-cooled (FC) and zero-field-cooled (ZFC) measurements
respectively. Inset: Data up to T = 350 K, showing data with
both H ‖ ab and H ‖ c.
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4.3 Structure Refinement

The samples of La1.5Sr0.5CoO4 which were studied in this chapter are what are
known as ‘strontium-doped’ samples. This is because strontium is used to replace
some of the lanthanum in the parent compound La2CoO4 to introduce holes into the
system. Each lanthanum position that is replaced by a strontium ion adds one hole
into the cobalt–oxygen layers, and the ratio of La to Sr determines the ratio of Co2+

to Co3+ ions. However, La2CoO4 can also be doped by adding extra oxygen to the
system [16]. If both methods of doping are used the Co2+/Co3+ balance is given by

La2−xSrxCo2+
1−zCo3+

z O4+δ z = x + 2δ . (4.1)

The properties of compounds such as these are strongly dependent on doping, and it
was important to determine the oxygen content of the samples to ascertain whether
the nominal doping value x did represent the holes added to the cobalt layer. The
oxygen content was therefore determined by refining the crystal structure using
Rietveld refinement of neutron diffraction data.

4.3.1 Neutron Powder Diffraction

Neutron powder diffraction measurements were performed on the GEM diffrac-
tometer at ISIS at the Rutherford Appleton Laboratory. GEM is a high-resolution
powder diffractometer equipped with detector banks covering 1 to 170◦ in scatter-
ing angle. This makes it ideal for structural studies of crystalline powders. A brief
description of powder diffractometers is given in chapter 2.

Sample Preparation

The polycrystalline sample of La1.5Sr0.5CoO4+δ was prepared by grinding small
single crystals of the compounds the day before the experiment. The single crystals
were grown in the Clarendon Laboratory image furnace by D. Prabhakaran. The
sample comprised of about 6 g of powder, packed into an aluminium can of 8 mm in
diameter to a depth of approximately 33 mm. The can was sealed with a screw cap
and mounted vertically in a cryostat fitted to the instrument.

Measurements

Each measurement was made by counting for approximately half an hour. For
the structural refinement it was important to choose a low temperature to reduce
the thermal motion of the oxygen atoms and so improve the refinement. 60 K was
chosen as a low temperature that lies just above the magnetic ordering temperature for
La1.5Sr0.5CoO4 to avoid the need to consider the magnetic structure in the refinement.
However, the measurement was also repeated at 2, 100, 150, 200 and 300 K 10.

10These measurements were performed in the following order: 2 K, 60 K, 150 K, 300 K, 200 K,
100 K.
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4.3.2 Refinement of Powder Diffraction Data

The data collected on GEM were analysed using GSAS [15], a set of programs
designed for Rietveld refinement of neutron or X-ray diffraction data. For each
measurement, data in the three highest scattering-angle detector banks (4, 5 and
6) were refined simultaneously. High angle banks were used because the resolution of
the powder diffractometer is best at high angles of 2θ.

The structure was refined in the tetragonal I4/mmm space group whose unit cell
is shown in figure 4.1. Some studies of La2−xSrxCoO4 have assumed an orthorhombic
unit cell, with the a and b axes at 45◦ to those of the tetragonal unit cell used here
[2, 3, 16]. However, refinements of our data within the orthorhombic Fmmm space
group revealed no orthorhombic distortion 11. As well as the atoms shown in fig. 4.1 an
interstitial oxygen position was included in the refinement, at (x, y, z) = (0.5, 0, 0.25)
in the unit cell. Excess oxygen is known to reside in this site in both La2CoO4+δ

[16] and La2NiO4+δ [17]. In order to achieve convergence in the refinement it was
necessary to fix the thermal parameter (Uiso) of this third oxygen site to be the same
as that of the second oxygen site.

Figure 4.6 shows a typical refined profile. The data shown were taken with the
La1.5Sr0.5CoO4+δ sample at 60 K, and are averaged over the backscattering detector
bank (bank 6, 〈2θ〉 = 154.5◦), although banks 4 and 5 were also included in the fitting.
The line through the data points is the calculated profile, and the difference between
this curve and the data points is plotted below. Tick marks show allowed reflections.
The parameters of this refinement, as well as those of the other temperatures at which
La1.5Sr0.5CoO4+δ was measured are given in table 4.2. They are defined as follows

a = b, c lattice constants of the tetragonal unit cell;
V volume of unit cell V = a× b× c;
x, y, z ion position within tetragonal unit cell in lattice units;
n occupancy, or number of ions per formula unit;
Uiso isotropic thermal parameter, which defines the Debye-Waller factor

[15], and quantifies the thermal fluctuations of each ion;
δ total excess oxygen;
Rwp average weighted profile R values, a measure of the goodness of fit

[15];
χ2 the standard χ2 value for the fit, for 39 parameters.

At all temperatures the refinements show that δ ≈ 0 to within errors, so there
is no excess oxygen in the sample of La1.5Sr0.5CoO4. The refinements are well fitted,
although the data at 100 K have a higher value of χ2 than the others. The reason
for this is not known. Values for the lattice constants and atom positions are in good
agreement with previously reported values [3]. Values for the ratio of La to Sr differ

11We note that in using the single tetragonal unit cell shown in figure 4.1 it is not possible to
refine breathing type distortions reported by Zaliznyak et al due to charge ordering [3]. However,
no peak splittings were observed to suggest that these distortions could be refined, and this was not
the aim of our study.
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Figure 4.6: Portion of the Rietveld refinement for tetragonal La1.5Sr0.5CoO4+δ

at 60 K. Circles are data measured in the backscattering detector
bank (〈2θ〉 = 154.5◦) on GEM at ISIS. The solid (red) line
shows the calculated profile fit using GSAS. Tick marks show the
positions of allowed reflections, and the solid (blue) line below the
data shows the difference between observed data and calculation.
The background fitted in the refinement was subtracted prior to
plotting. The fit parameters are given in table 4.2.

slightly from the nominal doping level of x = 0.5. However, La and Sr have very
similar scattering lengths and we do not expect to be able to accurately refine this
ratio by neutron powder diffraction.
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La1.5Sr0.5CoO4+δ

T (K) 2 60 100 150 200 300

a = b (Å) 3.83495(2) 3.83537(2) 3.83665(2) 3.83693(2) 3.83959(2) 3.84080(2)
c (Å) 12.5235(1) 12.5239(1) 12.5277(1) 12.5287(1) 12.5413(1) 12.5481(1)
V (Å3) 184.181(2) 184.227(2) 184.406(2) 184.448(2) 184.890(2) 185.107(2)

La/Sr x = y 0 0 0 0 0 0
z 0.36216(2) 0.36214(2) 0.36216(2) 0.36215(2) 0.36217(3) 0.36216(3)
nLa 1.55(7) 1.59(7) 1.52(7) 1.51(7) 1.49(7) 1.47(7)
nSr 0.45(7) 0.41(7) 0.48(7) 0.49(7) 0.51(7) 0.53(7)
Uiso 0.219(7) 0.244(7) 0.300(7) 0.307(7) 0.419(8) 0.480(8)

Co x = y 0 0 0 0 0 0
z 0 0 0 0 0 0
n 1 1 1 1 1 1
Uiso 0.24(3) 0.24(3) 0.30(3) 0.29(3) 0.42(3) 0.43(4)

O(1) x 0.5 0.5 0.5 0.5 0.5 0.5
y 0 0 0 0 0 0
z 0 0 0 0 0 0
n 2.01(1) 2.01(1) 2.00(1) 2.00(1) 2.00(1) 1.99(1)
Uiso 0.50(1) 0.52(1) 0.56(1) 0.57(1) 0.70(1) 0.75(1)

O(2) x = y 0 0 0 0 0 0
z 0.16967(4) 0.16968(4) 0.16968(3) 0.16967(4) 0.16977(4) 0.16981(4)
n 1.98(1) 1.99(1) 1.98(1) 1.98(1) 1.98(1) 1.97(1)
Uiso 1.02(1) 1.06(1) 1.11(1) 1.12(1) 1.29(1) 1.37(2)

O(3) x 0.5 0.5 0.5 0.5 0.5 0.5
y 0 0 0 0 0 0
z 0.25 0.25 0.25 0.25 0.25 0.25
n 0.012(2) 0.008(2) 0.008(2) 0.006(2) 0.004(2) 0.004(2)
Uiso 1.02(1) 1.06(1) 1.11(1) 1.12(1) 1.29(1) 1.37(2)

δ 0.00(2) 0.00(2) -0.01(2) -0.02(2) -0.02(2) -0.03(2)

Rwp (%) 3.11 3.04 2.85 2.96 2.88 2.85

χ2 9.31 8.89 41.04 8.33 7.76 7.47

Table 4.2: Refined structural parameters for La1.5Sr0.5CoO4+δ at tempera-
tures between 2 K and 300 K. The data are refined in the tetrago-
nal space group I4/mmm. Where no error is given in brackets the
value was not refined. x, y, z are ion positions in lattice units, n
are the number of each ion per formula unit, Uiso are the isotropic
temperature factors (as percentages). The number of La/Sr ions
were constrained such that nLa + nSr = 1. Rwp is the weighted
profile residual function [15], a measure of how well the data was
fitted with these parameters.
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4.4 Elastic Neutron Scattering Measurements on
La1.5Sr0.5CoO4 Single Crystals

The main focus of this chapter is on the inelastic neutron scattering studies made
to investigate the magnetic excitations in La1.5Sr0.5CoO4. Within these experiments
some elastic measurements were also made, and these are descibed in this section.
The experimental details for both elastic and inelastic measurements are therefore
presented together here.

4.4.1 Experimental Details

Two sets of neutron scattering measurements were made on single crystals of
La1.5Sr0.5CoO4. Firstly, an inelastic neutron scattering study was made on the MAPS
spectrometer at the ISIS facility at the Rutherford Appleton Laboratory. MAPS is a
time-of-flight chopper spectrometer with a very large pixelated detector bank, and is
particularly well suited to studies of two-dimensional systems. Chopper spectrometers
are described in chapter 2. The large detector bank allowed us to survey a large area
of reciprocal space in a single measurement, including both elastic and inelastic data
in a single data set.

Secondly, a series of measurements were made on the triple-axis spectrometers
IN20 and IN22 at the Institut Laue-Langevin. For these measurements polarized
neutrons were employed, which allowed us to verify the magnetic nature of the features
observed on MAPS. Polarization analysis also enabled a temperature dependent study
of the direction of the ordered moments.

Sample Preparation

Crystals of La1.5Sr0.5CoO4 were prepared using the floating-zone method in an
image furnace in Oxford by D. Prabhakaran [18]. Sections of the zone-melted rods
were cut to give cylindrical single crystals, with the growth direction approximately
along the [110] direction.

MAPS Measurements

For the time-of-flight experiment a crystal of mass 35.5 g and length 12 80 mm was
mounted on a goniometer using an aluminium bracket, and adjusted so that the (001)
and (110) reciprocal lattice vectors defined the horizontal scattering plane (this left
the crystal rod approximately vertical). Cadmium was used to shield the goniometer
and an aluminium foil bag was placed over the sample as a heat shield. The sample
was then mounted in a closed cycle refrigerator situated within the vacuum chamber
containing the detector banks.

Measurements were performed at room temperature and 9.5 K. The incident
energy employed was 50 meV, and counting times were approximately 30 hours at an

12The beam size on MAPS is 55 mm and so the mass of crystal in the beam was estimated to be
24.4 g.
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Figure 4.7: The mount for two La1.5Sr0.5CoO4 crystals used for the experi-
ment on IN20, showing the two possible experimental orientations.

average proton current of 170 µA. Vanadium spectra collected with a white beam and
with Ei = 50 meV were used to calibrate the detectors, and to convert the intensities
to absolute units (see chapter 2).

Triple-axis Measurements

For the polarized neutron experiment on the triple-axis spectrometer IN20 two
smaller rod-like crystals of masses 6.5 g and 5.5 g were coaligned using x-rays and
mounted on an aluminium mount as shown in fig. 4.7. The mount was designed to
allow two experimental configurations with the horizontal scattering plane defined by
the reciprocal lattice vectors (A) (100) and (010), or (B) (110) and (001). Further
measurements on IN22 were made on the larger of the two crystals, aligned on a new
mount in the same orientation as fig. 4.7b. In both triple-axis experiments the base
of the mount was shielded with cadmium, and the sample was mounted in a standard
helium cryostat.

On both triple-axis instruments we used curved Heusler (111) as both
monochromator and analyser and worked with a fixed final energy Ef = 14.7
meV, and on both instruments PG (002) filters were used to suppress higher order
harmonics. In this section we consider only the elastic measurements, i.e. those made
with Ei = Ef = 14.7 meV. Inelastic measurements are discussed in section 4.5.
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Figure 4.8: Elastic neutron scattering measurements on La1.5Sr0.5CoO4 made
on MAPS with Ei = 50 meV. (a) Elastic scattering projected into
the (h, k) plane, measured at room temperature. Spots of intensity
at (n/2, m/2), where n, m are integers, are charge order Bragg
peaks. (b) The same measurement at T = 9.5 K. There are now
additional spots of intensity at (n/2±{0.25−δ}, m/2±{0.25−δ}).
These are magnetic Bragg peaks. Colourbar shows the intensity
of scattering in absolute units (sr−1meV−1Co−1). Within (a,b)
l varies from zero at the origin to 1.1 r.l.u at the corners. (c,d)
Elastic cuts through both MAPS data sets along the directions X
(through the charge peak) and Y (through the magnetic peaks)
respectively.

4.4.2 Results

Figure 4.8 is an overview of the elastic neutron scattering measurements made on
the MAPS spectrometer. Figure 4.8(a, b) show data measured at (a) 300 K and (b)
9.5 K, averaged over the elastic peak and projected into the (h, k) reciprocal lattice
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plane. The colour bar represents intensity in absolute units. Within these plots l
varies from zero at the origin to 1.1 r.l.u. at the corners. Figure 4.8(c,d) show cuts
through the two sets of data shown in fig. 4.8(a, b) in the directions marked X and
Y. The figures confirm the existence of charge ordering Bragg peaks at half integer
positions which do not change in intensity between 300 K and 9.5 K, in agreement
with previous studies of the compound [2, 3]. At T = 9.5 K magnetic order Bragg
peaks are also observed at approximately quarter-integer positions, and these are not
present in the 300 K data. The magnetic Bragg peaks are in fact found to be slightly
incommensurate, occurring at positions (h, k) = (n/2±{0.25− δ}, m/2±{0.25− δ})
with δ = 0.005, where n,m are integers, as reported previously 13.

The difference in intensity between the peaks at (0.255, 0.255) and (0.745, 0.255)
shown in fig. 4.8d is due to their l dependence, and this was further investigated
using the triple-axis spectrometer IN20. Some elastic measurements made on IN20
are presented in figure 4.9. Figure 4.9a is a schematic diagram of the magnetic Bragg
peak positions (circles) surrounding the charge order Bragg peak at (h, k) = (0.5, 0.5)
(crossed circle, A). White and grey circles represent magnetic Bragg peaks from two
different domains: white circles from the domain shown in fig. 4.3a; grey circles
from the domain with ordering at 90◦ to this. Figures 4.9(b-e) show both spin-flip
(SF) and non-spin-flip (NSF) channels of elastic scans along various Q directions. In
scans through the charge order Bragg peak the intensity appears in the non-spin-flip
channel, confirming that the peak is structural in origin, whereas in the scans through
the magnetic Bragg peaks the intensity appears in the spin-flip channel, as expected
for magnetic scattering.

Figures 4.9(bi,bii) and (ci,cii) are (h, h, 0) and (h,−h, 0) scans through the
magnetic Bragg peaks marked B (0.745,0.745,0) and C (0.745, 0.255, 0) respectively.
In these scans, made at l = 0, the magnetic Bragg peak C is roughly ten times as
intense as that marked B. The l dependence of the magnetic Bragg peak B is shown
in fig. 4.9e, and displays peaked intensity at odd values of l. This fits with the
low intensity seen in the (h, h) scans at l = 0, and we deduce that the magnetic
Bragg peak marked C must have the opposite l-dependence, with intensity peaked
at even values of l. The two pairs of magnetic Bragg peaks from the two domains,
denoted by white and grey circles, therefore have opposite l dependence, as is found
in the nickelate compounds [20]. The l-dependence of the magnetic Bragg peaks gives
information on the stacking pattern of the antiferromagnetically ordered cobalt layers
[19].

Figure 4.9d shows the l-dependence of the intensity of the charge ordering peak
(A): the intensity peaks at l = 7, as reported previously [2].

4.4.3 Polarization Analysis

The results presented above characterize the La1.5Sr0.5CoO4 samples, and show
good agreement with previous measurements on the compound. This section
describes measurements made to determine the direction of the ordered moments

13Zaliznyak et al found δ = 0.008 [7].
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Figure 4.9: (a) Diagram of the magnetic Bragg peaks (two twins, filled and
unfilled circles) around the charge order Bragg peak at (h, k)=(0.5,
0.5) (crossed circle, A). (b-e) Polarized neutron elastic scans made
on IN20 with P ‖ Q: Spin-flip (filled blue circles) channel
and non-spin-flip (open red squares) are both shown. (b, c)
(h, h, 0) and (h,−h, 0) scans through magnetic Bragg peaks B
and C as labelled. (d) l-dependence of the intensity of the charge
ordering peak (A) between l = 6–7.5. (e) l-dependence of the
intensity of the magnetic Bragg peak B, peaking at odd values of l.
Shaded grey regions contain points contaminated with aluminium
scattering.

in La1.5Sr0.5CoO4, which has not previously been reported. The polarization analysis
reveals a spin-reorientation within the ab planes.

The theory of how polarization analysis can be used to determine the relative
components of the ordered moments, and from this their direction, is covered in
appendix A. The measurement involves recording the spin-flip and non-spin-flip
signals at two magnetic Bragg positions using three orthogonal polarization directions.
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Figure 4.10: (a) The components of the ordered magnetic moment µ: the axes
are defined such that µx = µ110, µy = µ11̄0 and µc = µ001. α is
the in-plane angle measured from (11̄0) and β is the out-of-plane
angle as shown. (b) Antiferromagnetic ordering of Co2+ spins in
La1.5Sr0.5CoO4, also showing the in-plane angle α.

These six measurements allow direct comparison of the squares of the components of
the ordered magnetic moment µ: µ2

x, µ2
y and µ2

c . These components are shown in fig.
4.10, defined such that µx = µ110, µy = µ11̄0 and µc = µ001. The in-plane (α) and
out-of-plane (β) angles are also marked in fig. fig. 4.10. Defined in this way for a
single domain they are related to the moment components by:

α = arctan

(√
µ2

x

µ2
y

)
and β = arctan

(√
µ2

c

(µ2
x + µ2

y)

)
. (4.2)

The six polarization-SF combinations were measured at temperatures between
1.5 and 55 K, using either IN20 or IN22. Figure 4.11a shows the relative size of
the squares of the moments calculated from the results (see appendix A) 14. At all
temperatures there is almost no component of the magnetic moment out of the plane
(µc), and we find β = 0 ± 5◦ (eqn. 4.2). At low temperatures the ratio µ2

x/µ
2
y

is approximately 0.4. At T ≈ 30 K this ratio rises until µ2
x ≈ µ2

y around 50 K.
This indicates that there is a spin-reorientation in La1.5Sr0.5CoO4, as is found in the
isostructural nickelate compounds [20]. The dashed vertical line in 4.11 marks the
feature found in the magnetization data at T ≈ 31 K (fig. 4.5), and it now seems
that this feature does signify a spin-reorientation. For comparison, the temperature

14Measuring all polarization directions at both magnetic Bragg peaks, QA = (0.25, 0.25, 7) and
QB = (1.25, 1.25, 1) allowed both µ2

x/µ2
y (and therefore α) and µ2

c/(µ2
x +µ2

y) to be calculated. When
only QA was measured an approximation was made to allow calculation of µ2

x/µ2
y (and therefore α).

This had negligible effect on the result, as shown in fig. 4.11.
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Figure 4.11: (a, b) Results of elastic polarization analysis on La1.5Sr0.5CoO4.
(a) Temperature dependence of two ratios of the squared
components of the ordered magnetic moment µ: (µ2

x)/(µ2
y) and

(µ2
c)/(µ2

x +µ2
y). (b) The in-plane angle α, as defined in fig. 4.10.

(Note that µx is the component of µ in the (110) direction, µy is
the component of µ in the (11̄0) direction, see appendix A.) (c)
Temperature dependence of the intensity of the magnetic Bragg
peak Q = (0.74, 0.74, 1) measured with polarized neutrons, with
polarization parallel to Q (spin-flip channel). The dashed grey
line shows the position of the kink at 31 K in the magnetization
data (see fig. 4.5).

dependence of a magnetic Bragg peak, Q = (0.74, 0.74, 1) is plotted in fig. 4.11c.
This gives an indication of the broad magnetic ordering temperature, and the very
low intensity above 60 K explains why polarization analysis measurements could not
be continued to higher temperatures 15 .

15It is worth commenting on the very gradual increase in intensity of the magnetic Bragg peak
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Figure 4.12: (a-c) Three possible domains with the same ordering wavevector.

The interpretation of this reorientation in terms of the in-plane angle α depends
on assumptions made about domains in the crystal. For a single domain eqn. 4.2 can
be used to calculate α, and this angle is shown in fig. 4.11b. At low temperatures the
spins lie at ∼ 33◦ to the (11̄0) direction. At T ≈ 30 K the spins start to rotate away
from this direction, reaching ∼ 44◦ at 50 K. This is approximately along the Co–O
bond direction.

If we consider more than one domain in the crystal the calculation is more
complicated (see appendix A). Since the measurements were made at one type of
the magnetic Bragg reflections shown in fig. 4.9, we only probe the angles of spins
aligned in the domain with ordering wavevector shown in fig. 4.12. However, we
cannot rule out the possibility that there are other domains with the same ordering
wavevector but spins at different angles within the compound. One possibility is a
domain with spins at −α to the diagonal, rather than +α to the diagonal, as shown
in fig. 4.12b. Since polarization probes the squares of the magnetic moments it is
not possible to distinguish between these two. However, if the spins are aligned 90◦

away, at (90 + α) to the diagonal, the contribution to the measured components of
the magnetic moment is different. Appendix A shows that for two domains at 90◦

it is in fact not possible to extract both the angle α, and the percentage of spins in
each domain, from the measurements.

in La1.5Sr0.5CoO4 as the temperature is lowered through the ordering temperature (fig. 4.5c). In
La2CuO4, which is also an antiferromagnet with spins lying in the ab plane, the magnetic Bragg peak
intensity shows a much sharper increase at the ordering temperature, with the order parameter fitting
a simple power law [21]. The order parameter of La2CoO4, the parent compound of La1.5Sr0.5CoO4,
similarly follows a power law, with only very slight rounding at the transition temperature. The
ordering observed in La1.5Sr0.5CoO4 is shown to be different from these similar systems.
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4.5 Inelastic Neutron Scattering Measurements on
La1.5Sr0.5CoO4 Single Crystals

This section describes inelastic neutron scattering measurements made as a
continuation of the elastic measurements described in the last section. The
measurements were therefore performed on single crystals of La1.5Sr0.5CoO4 on the
MAPS time-of-flight spectrometer and on the triple-axis spectrometers IN20 and
IN22. The experimental details were exactly as described previously in section 4.4.1.

4.5.1 Spin-wave Dispersion

The main feature of the inelastic spectrum of La1.5Sr0.5CoO4 is a strong spin-wave
dispersion arising from the magnetic Bragg positions. Figure 4.13 shows slices taken
in various directions through the MAPS data set to illustrate the characteristics of
the dispersion. On the left hand side (a–c) are three constant energy slices at 〈E〉 = 7,
11 and 17 meV. The intensities have been projected into the (h, k) plane. We see
that spots of intensity marking the magnetic Bragg peaks in the elastic data broaden
into rings of scattering as the energy increases to 7 and then to 11 meV. By E = 17
meV the sharp features in the scattering have disappeared. On the right hand side
of figure 4.13 are displayed three energy–Q slices taken along different Q directions
in the (h, k) plane. There is clearly a dispersive mode coming out of the magnetic
Bragg positions and turning over at the magnetic zone boundaries, with a maximum
energy of approximately 15 meV.

In order to interpret the inelastic data we have projected the intensities into
the (h, k, 0) plane, ignoring any l dependence of the excitations. This is justified
because La1.5Sr0.5CoO4 is a strongly two dimensional compound, and the excitations
are therefore expected to show little l-dependence. Figure 4.14 shows a series of
measurements made on the triple-axis spectrometer IN20 to check this assertion: figs.
4.14(a–c) show l-scans through a magnetic Bragg position with three different energy
transfers: (a) 0 meV, (b) 2 meV and (c) 4meV. Magnetic correlations along (0, 0, l)
are evident in the elastic data (a). At 2 meV weak correlations are still present, but by
4 meV there is no longer any l dependence to the magnetic scattering. It is therefore
valid to neglect the l-dependence in the analysis of the inelastic data measured on
MAPS for energies above 4 meV.

To facilitate comparison with models, cuts through the MAPS data set were
taken along several symmetry directions in the (h, k) plane and fitted to extract data
points describing the dispersion. Figures 4.15a and b show typical examples of the
two different types of cut taken: (a) constant-energy cut, and (b) constant-Q cut.
The cuts were fitted with Lorentzian (or two Lorentzian) lineshapes, and the peak
centres of fits such as these provide data points characterizing the dispersion, for
example along (0.255, k) (shown in fig. 4.15c).

No information on the dispersion could be gained from the MAPS data below
5 meV due to the width of the elastic peak. However, the position of points around
the magnetic zone centre in fig. 4.15c suggested that the excitation might be gapped.
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Figure 4.13: Inelastic neutron scattering measurements made at T = 9.5 K on
La1.5Sr0.5CoO4 on the MAPS spectrometer: Colour bars show
intensity in absolute units (sr−1meV−1Co−1). (a–c) Constant
energy slices at energies labelled; data have been projected onto
the (h, k) plane. (c–e) Q-energy slices: (c) diagonally through
the magnetic zone centres; (d) through the magnetic zone centres
in the h direction; (e) in between the magnetic zone centres in
the h direction.
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Figure 4.14: Inelastic scans along (0.74, 0.74, l) at T = 1.5 K, with energy
transfers (a) 0 meV, (b) 2 meV and (c) 4meV. Polarization
parallel to Q; both spin-flip (SF) and non-spin-flip (NSF)
channels shown, as labelled.
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Figure 4.15: (a, b) Example cuts through the MAPS data set taken at T =
9.5 K. (a) Constant-energy cut at 〈E〉 = 6.5 meV, fitted with a
double Lorentzian lineshape. (b) Constant-Q cut at Q= (0.255,
0.025), fitted with a Lorentzian on a sloping background. (c)
Data points show the dispersion relation derived from fits such
as those in (a) and (b). The solid curve is a guide to the eye;
dashed lines mark the Brillouin zone boundaries; arrows show the
directions of the example cuts shown in (a) and (b) as labelled.

Further measurements were therefore made on IN20 to investigate this possibility.
Figure 4.16 shows an energy scan made with polarized neutrons at the magnetic
zone centre Q=(0.75, 0.25, 0). As the energy is lowered from 10 meV the non-spin-
flip (NSF) scattering is relatively flat until about 1.5 meV when the intensity rises
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Figure 4.16: Gap at the magnetic zone centre (0.75,0.25,0) measured with
polarized neutrons on IN20. Both spin-flip (SF) and non-spin-
flip (NSF) channels are plotted (P ‖ Q).

sharply into the incoherent elastic peak. In the spin-flip (SF) spectrum, the intensity
rises as the energy decreases from 10 meV. This increase in magnetic scattering is
due to the resolution ellipsoid moving down into the spin-wave dispersion. For an
ungapped mode the intensity would continue to rise until it reached the incoherent
peak. Here, however, the intensity peaks at approximately 3 meV, and the intensity
drops again before rising sharply below 1.5 meV into the incoherent peak. The spin-
wave dispersion in La1.5Sr0.5CoO4 is therefore gapped at the magnetic zone centre,
with a gap of approximately 3 meV.

4.5.2 Higher Mode

The spin-wave dispersion described above has a maximum energy of approxi-
mately 15 meV, above which there is a region where the magnetic scattering disap-
pears (see for example fig. 4.13c). However, above this energy the magnetic scattering
is observed to increase again, indicating a higher magnetic mode between approxi-
mately 20 and 32 meV.

Figure 4.17 displays some plots made to characterize this feature. The scattering
is very diffuse in comparison to the lower mode, but does appear to show some
dispersion. Figure 4.17a is a slice through the top of the scattering, showing peaked
intensity at (h, k) positions (0, 0), (0.5, 0), (0, 0.5) etc. Figure 4.17b shows the feature
in comparison with the lower dispersion: the higher mode is far less intense than the
lower dispersion. In order to display the higher mode scattering it is necessary to shift
the intensity scale such that the features of the lower mode cannot be seen. Figures
4.17(c,d) present cuts through the top region of the higher mode (27–30 meV), and
reveal the Q-dependence of the scattering in this region. Identical cuts made at
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Figure 4.17: Evidence for a magnetic mode in La1.5Sr0.5CoO4 between
approximately 20 and 32 meV. (a,b) Slices through the MAPS
data set measured at T = 9.5 K. (a) Scattering at a constant
energy of 〈E〉 = 30 meV projected into the (h, k) plane. (b) An
energy–Q slice perpendicular to that in (a), and cutting through
the direction marked X. (c,d) Cuts though the data set in the
directions marked X and Y respectively, at constant energies 〈E〉
as labelled. Identical cuts made through the T = 300 K data set
are also plotted.
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Energy ET (∆µx)
2/(∆µy)

2 (∆µc)
2/(∆µy)

2

2 meV 1.19± 0.07 −0.04± 0.06
4 meV 1.00± 0.05 −0.02± 0.04

Table 4.3: Ratios of components of fluctuations of the ordered magnetic
moments, µ, at 2 meV and 4 meV, determined by inelastic
polarization analysis at T = 1.5 K.

300 K are overplotted, and show no features, indicating that the scattering at 9.5
K is magnetic in origin. We also note that cuts through the higher mode in the
region 20–25 meV (not shown) do not display any obvious Q-dependence, just diffuse
scattering.

4.5.3 Inelastic Neutron Polarization Analysis

Inelastic polarization analysis can be performed in a similar way to the elastic
polarization analysis described in section 4.4.3, but the inelastic measurements probe
the components of the fluctuations of the moments, rather than their magnitude. The
technique of using inelastic polarization analysis to characterize the fluctuations of
the moments, ∆µ is described in appendix A (section A.2). Measurements were made
using the same six polarization-spin-flip combinations as for the elastic measurements,
at the same two wavevectors, but with energy transfers of 2 meV and 4 meV. These
two energy transfers were chosen as points above and below the gap (see fig. 4.16).
Due to the long counting times needed for the inelastic measurements they were
only performed at low temperature (T = 1.5 K). Defining the components of the
fluctuations as ∆µx = ∆µ110, ∆µy = ∆µ11̄0 and ∆µc, their relative amplitudes can
be extracted (see section A.2).

The ratios (∆µx)
2/(∆µy)

2 and (∆µc)
2/(∆µy)

2 for the two energy transfers are
shown in table 4.3. Within errors there is no c component to the fluctuations, so the
excitations are in-plane, both below and above the gap. The ratio (∆µx)

2/(∆µy)
2

varies from approximately 1.2 to 1.0 between ET = 2 meV and 4 meV. Assuming
isotropic fluctuations within the ab plane, and taking α = 33◦ as the angle of moments
within the ab plane (from section 4.4.3), the ratio (∆µx)

2/(∆µy)
2 is expected to be

(tan2 α)−1 = 2.37.16 This is not in agreement with the experimental results, but the
reason for this is unclear 17.

16This expression assumes isotropic fluctuations perpendicular to the moment direction, i.e. the
assumption is made that the moments do not fluctuate in length, see section 4.4.3.

17It is possible that the data at 2 meV may be contaminated by Bragg scattering (see fig. 4.16),
which might explain the discrepancy between the 2 meV and 4 meV results.
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4.6 Spin-wave Analysis

To understand the magnetic excitations in La1.5Sr0.5CoO4 observed by inelastic
neutron scattering it is informative to compare the data with a model that describes
the main features. This enables us to gain information on the interactions in the
system. To do so we assume that the excitation spectrum can be modelled with a
spin-only Hamiltonian.

As a first approximation we attempt to model the results as a spin-1/2 system
using a simple Heisenberg model, presented in section 4.6.1. We will see that the
simple Heisenberg model fails to describe the system adequately, and a more complete
model which includes the full spin-3/2 physics is considered in section 4.6.2. We will
refer to this model as the exciton model, to distinguish it from the Heisenberg model.

Throughout the analysis presented in this section we will assume that the Co2+

ions carry spin, while the Co3+ ions are non-magnetic, and therefore do not contribute
to the excitations, as has previously been assumed in the literature (see section 4.1).
This issue was discussed in the introduction. The possibility that the Co3+ sublattice
might play a part in the excitation spectrum will be addressed in the discussion. Since
no Ql-dependence was found in the excitations we consider only the ab planes in the
models.

4.6.1 Simple Heisenberg Model

In this model we assume that the exchange interactions between Co2+ ions
are isotropic Heisenberg couplings, that exchange interactions between layers are
negligible, and that the spins lie along an in-plane axis (a). The Heisenberg
Hamiltonian can be written in terms of the sum of the exchange interactions as

H =
∑

〈ij〉
Jij Si · Sj =

∑

〈ij〉
Jij

(
Sx

i Sx
j + Sy

i Sy
j + Sz

i S
z
j

)
, (4.3)

where i, j are pairs of spins interacting with exchange constant Jij (each pair is
counted only once).

Figure 4.18 shows the antiferromagnetic ordering in the a–b plane. The dashed
grey box represents the magnetic unit cell which contains one spin pointing along the
positive a axis (spin ‘up’, marked A) and one pointing along the negative a axis (spin
‘down’, marked B). The up and down spins can be considered as two sublattices, A
and B. The most likely possible exchange paths are marked J , J1 and J2. J and J1

are inter-sublattice interactions, while J2 acts between spins in the same sublattice.
We expect the strongest coupling to be J because this interaction occurs through
superexchange along straight bonds Co–O–Co–O–Co.

Equation 4.3 can now be rewritten explicitly in terms of these exchange
parameters, summing over all nearest-neighbouring pairs linked by the three
exchanges J , J1 and J2. ∆, ∆1 and ∆2, the vectors along which the three exchanges
act respectively, are ∆={(2,0,0), (0,2,0), (-2,0,0), (0,-2,0)}, ∆1={(1,1,0), (-1,-1,0)}
and ∆2={(1,-1,0), (-1,1,0)}, as shown in fig. 4.18.
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Figure 4.18: Schematic diagram of the magnetic ordering and exchange
interactions (J , J1 and J2) in La1.5Sr0.5CoO4. Spins are modelled
as lying directly along an inplane axis. A and B label the two
sublattices of ‘up’ and ‘down’ spins, and the grey dashed box
indicates the magnetic unit cell.

Linear spin-wave theory was used to calculate the excitation spectrum of this
model. First, the Holstein-Primakoff transformations are used to write the spin
operator components for the two sublattices in terms of Bose operators, with the
quantization direction along the y axis:

Sy
i = S − a†iai Sy

j = −(S − b†jbj) (4.4)

Sz
i =

√
S/2

(
ai + a†i

)
Sz

j =
√

S/2
(
b†j + bj

)

Sx
i =

1

i

√
S/2

(
ai − a†i

)
Sx

j =
1

i

√
S/2

(
b†j − bj

)
,

where a†i (b†j) creates a spin deviation on site i (j) of sublattice A (B). The Hamiltonian
(eqn. 4.3) is then rewritten, first in terms of the Bose operators, retaining only terms
to second order in the operators, and then in terms of their Fourier transforms:

aQ =
1√
N

∑
i

e−iQ.riai a†Q =
1√
N

∑
i

e+iQ.ria†i (4.5)

bQ =
1√
N

∑
i

e+iQ.ribi b†Q =
1√
N

∑
i

e−iQ.rib†i .

The result is an expression for the Heisenberg Hamiltonian for the system in terms
of 2nd order products of the operators aQ, a†Q, bQ and b†Q which can be written in
matrix form:

H = H0 +
∑
Q

X†
QHQXQ , (4.6)
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where X is the column vector (aQ, bQ, a†Q, b†Q), and the matrix HQ is written in general
form as:

HQ =
1

2




AQ BQ CQ DQ

BQ AQ DQ CQ

CQ DQ AQ BQ

DQ CQ BQ AQ


 . (4.7)

The general method for deriving the dispersion relations and scattering function from
eqn. 4.6 is detailed in Appendix B. For this simple Heisenberg model we have (with
Q = (h, k, l)):

AQ = 4JS + 2J1S + 2J2S + 2J2S cos(2π(h− k)) (4.8)

DQ = 2JS[cos(4πh) + cos(4πk)] + 2J1S cos(2π(h + k))

BQ = CQ = 0 .

The AQ and DQ terms originate directly from the Fourier transforms of the exchange
couplings J , J1 and J2. Diagonalization of the bilinear form of the Bose operators (as
described in Appendix B) gives a doubly degenerate mode with dispersion relation:

~ω(Q) = (A2
Q −D2

Q)1/2 , (4.9)

and the intensities are proportional to the terms Szz(Q, ω) and Sxx(Q, ω)18.
The dispersion in the (h, h) direction calculated with the simple Heisenberg model

is plotted in the left hand column of fig. 4.19, along with Szz(Q, ω) and Sxx(Q, ω).
We see that the doubly degenerate modes have identical intensities: one mode has
intensity resulting from Szz(Q, ω) and the other from Sxx(Q, ω). The intensities peak
at the magnetic zone centre positions (0.25, 0.25) etc., as observed experimentally.
However, the periodicity of the modes is double that observed experimentally. In
the equivalent direction through the data (fig. 4.13d) the dispersion clearly peaks
at positions (0.5, 0.5) etc. This position is a minimum in the calculated Heisenberg
dispersion.

Anisotropy Terms

The system is known to exhibit strong anisotropy, with moments favouring the
ab plane. This is seen in both the magnetization data (fig. 4.5) and the polarization
analysis measurements made to study the ordered moment direction (section 4.4.3).
We therefore add to the Heisenberg Hamiltonian an out-of-plane anisotropy term,
identical for both sublattices:

∑
i

D(Sz
i )

2 +
∑

j

D(Sz
j )

2 , (4.11)

18From appendix B the intensity of each mode is proportional to
∑

αβ

〈(
δα,β − Q̂αQ̂β

)
Sαβ(Q, ω)

〉
. (4.10)

For this model, terms with α 6= β are zero, and Syy(Q, ω) is zero since the spins lie in the y direction.
The intensity is therefore proportional to

〈(
1− Q̂zQ̂z

)
Szz(Q, ω) +

(
1− Q̂xQ̂x

)
Sxx(Q, ω)

〉
.
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Figure 4.19: Spin-wave dispersions calculated using the simple Heisenberg
model, with S = 3/2, exchange parameter J = 1 (J1 = J2 = 0)
and three values of anisotropy parameter D, as labelled. The
lower plots show Szz(Q, ω) and Sxx(Q, ω) for each mode, dashed
line for one mode and solid line for the second.

This term forces the spins to lie preferentially within the ab plane, as has been
experimentally observed using polarization analysis (see section 4.4.3). With the
addition of this term the Hamiltonian can still be expressed in the general form given
in eqn. 4.24, with Ak, Ck and Dk modified to give

AQ = 4JS + 2J1S + 2J2S + 2J2S cos(2π(h− k)) + DS (4.12)

BQ = 0

CQ = DS

DQ = 2JS[cos(4πh) + cos(4πk)] + 2J1S cos(2π(h + k)) .

With the anisotropy term included the two spin-wave modes are no longer degenerate,
and their dispersion relations are given by

~ω(Q) =
[
A2

Q − (CQ ±DQ)2
]1/2

, (4.13)

The centre and right hand columns of fig. 4.19 show the dispersion modes calculated
with two different values for the anisotropy parameter D, along with Szz(Q, ω) and
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Figure 4.20: Left: Energy levels of Co2+ ions split by the crystal field and
exchange interactions. Right: Lower dispersion should arise from
excitations to first excited state; excitations to levels |2 〉 or |3 〉
may generate a higher mode.

Sxx(Q, ω). Increasing D from zero produces gaps at the magnetic zone boundaries
((h, k)=(0.5, 0.5) etc.) in one mode, and at the magnetic zone centres ((h, k)=(0.25,
0.25) etc.) in the other mode. As D increases, the intensity of the second mode falls,
and the first mode begins to resemble the dispersion observed in the data.

However, in order to reproduce the shape of the dispersion observed experimen-
tally, with dispersion maxima at the magnetic zone boundaries ((h, k)=(0.5, 0.5) etc.)
and intensity peaked at the magnetic zone centres ((h, k)=(0.25, 0.25) etc.), the value
of the anisotropy parameter D must be much larger than the exchange parameter J .
An anisotropy parameter this large represents a significant crystal field, and this
would cause splitting of the four-fold spin-3/2 manifold assumed for the Heisenberg
model, and mixing of the Ms states. The exchange interaction would further split the
levels, as shown in figure 4.20, and the mixed nature of the final levels would allow
transitions to higher levels not allowed in the Heisenberg model, providing a possible
explanation for the observed higher mode. Together this suggests that it is necessary
to include the full spin-3/2 physics of the system, and we do so in the next section.

4.6.2 Exciton Model

In La1.5Sr0.5CoO4 the Co2+ ions are in the free-ion state 3d7, with spin T = 3/2
(we use T to distinguish from the Heisenberg spin operators S used in the last section).
The point charge calculation presented in section 4.1 predicts that the crystal field at
the Co2+ should produce a significant splitting of the ground state. In this model we
include the effects of both the crystal field and the exchange interaction in a mean
field Hamiltonian which allows a self-consistent calculation of the basis states of the
Co2+ ions. These states will be mixtures of the S = 3/2 states |−3

2
〉, |+3

2
〉, |−1

2
〉
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and |+1
2
〉. The spin-wave dispersion emerging from the magnetic zone centres (0.25,

0.25) etc. then corresponds to excitations from the new ground state to the first
excited level, as shown in fig. 4.20. The higher mode of excitations observed in the
data (section 4.5.2) may then be modelled by excitations to higher levels (second and
third excited states).

Calculating basis states using the mean field Hamiltonian

The first stage of the calculation is performed to find the basis states, which can
be written in general form as

|n,A〉 = aA
n |−1

2
〉+ bA

n |+1
2
〉+ cA

n |+3
2
〉+ dA

n |−3
2
〉 , (4.14)

for sublattice A where n =1–4, and similarly for sublattice B. This is achieved by
diagonalizing the mean field Hamiltonians for each sublattice iteratively to reach a
self-consistent solution.

We start with a Hamiltonian containing the exchange interaction J , which is
defined as before (see fig. 4.18), and the out-of-plane anisotropy parameter D as in
the simple Heisenberg Hamiltonian. We also include an in-plane anisotropy term,
with parameter E.19 Although the calculation was initially performed including the
two other exchange interactions J1 and J2 defined by fig. 4.18, these were not found
to be necessary to describe the data, and we omit them from this description for
simplicity. Again considering the two sublattices A (spin ‘up’) and B (spin ‘down’)
(as shown in fig. 4.18), the total Hamiltonian is given by

H =
∑

i

{∑
∆

J
2
T A

i · T B
i+∆ + D(TA

z (i))2 − E
[
(TA

y (i))2 − (TA
x (i))2

]}
(4.15)

+
∑

i

{∑
∆

J
2
T B

i · T A
i+∆ + D(TB

z (i))2 − E
[
(TB

y (i))2 − (TB
x (i))2

]}
,

including only nearest neighbour interactions with exchange parameter J , and ∆ =
{(2, 0, 0), (0, 2, 0), (−2, 0, 0), (0,−2, 0)} as before. To solve this Hamiltonian in the
mean field approximation we replace the exchange couplings with local mean field
terms. The mean field Hamiltonians for the two sublattices can then be written

HA
mf = D(TA

z )2 − E[(TA
y )2 − (TA

x )2] + z0J〈T B
00〉 · T A (4.16)

HB
mf = D(TB

z )2 − E[(TB
y )2 − (TB

x )2] + z0J〈T A
00〉 · T B ,

where z0 = 4 is the coordination number for the exchange J . The mean field
spin terms 〈T A,B

00 〉 are solved self-consistently by fixing them to the ground state
expectation values of the spin-operators, i.e.

〈T A
nm〉 = 〈nA|T A|mA〉 =



〈nA|TA

x |mA〉
〈nA|TA

y |mA〉
〈nA|TA

z |mA〉


 , (4.17)

19The results of the inelastic polarization analysis at the magnetic zone centres presented in section
4.5.3 show that the moments fluctuate in-plane both above and below the gap. This suggests that
the small gap at the magnetic zone centres is an in-plane anisotropy gap, while the out-of-plane
term serves to raise produce the large gap at the magnetic zone boundaries.
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with n = m = 0, and similarly for B. The mean field Hamiltonians for sublattices A
and B are written in matrix form:

ĤA,B
mf =




〈−1
2
|HA,B

mf |−1
2
〉 〈−1

2
|HA,B

mf |+1
2
〉 . . . 〈−1

2
|HA,B

mf |−3
2
〉

〈+1
2
|HA,B

mf |−1
2
〉 ...

...
...

〈−3
2
|HA,B

mf |−1
2
〉 · · · · · · 〈−3

2
|HA,B

mf |−3
2
〉




(4.18)

Evaluating the determinant |ĤA
mf − εA

n Î| = 0 gives eigenvalues εA
n and eigenvectors

vA
n = (aA

n , bA
n , cA

n , dA
n ). Similarly, diagonalization of the matrix ĤB

mf generates εB
n and

vB
n . These values specify the states |nA,B 〉, as shown in equation 4.14. The new ground

states are used to recalculate the mean field spin terms 〈T A,B
00 〉, and the process is

repeated iteratively until there is convergence of all the spin terms 〈T A,B〉 to within
5%.

Calculating spin-wave excitations in the exciton model

Having determined the basis states split by the crystal field and exchange
interaction, the spin-wave excitations between the four levels can be calculated
using linear spin-wave theory. Pseudo-boson operators are defined that create (or
annihilate) local excitations from the new ground state |0 〉 to the excited states
|1 〉, |2 〉 and |3 〉. Excitations are created on the A sublattice by the pseudo-boson
operators a†n and and on the B sublattice by b†n. In matrix form the creation and
annihilation operators a†i,n and ai,n can be represented as

a†i,1 =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ai,1 =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 etc. , (4.19)

and b†i,n and bi,n can be written similarly. The spin-operators can be expressed in
terms of these operators in a general form [23]: 20

T A
i =〈T A

00〉+
3∑

n=1

[〈T A
nn〉 − 〈T A

00〉
]
a†i,nai,n +

3∑
n=1

[
〈T A

n0〉a†i,n + 〈T A
0n〉ai,n

]
(4.20)

T B
i =〈T B

00〉+
3∑

n=1

[〈T B
nn〉 − 〈T B

00〉
]
b†i,nbi,n +

3∑
n=1

[
〈T B

n0〉b†i,n + 〈T B
0n〉bi,n

]
,

where the matrix elements 〈T A,B
nm 〉 are defined by eqn. 4.17.

The mean field Hamiltonians have been solved to give energy levels εA
n and εB

n ,
and we can now write

∑
i

{HA
mf (i) +HB

mf (i)
}

=
∑

i

3∑
n=0

εA
n a†i,nai,n + εB

n b†i,nbi,n , (4.21)

20This expression is approximate, and neglects excitations from levels other than the ground-state.
It is justified if the ground state is significantly separated from other levels.
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in terms of the pseudo-boson operators a†n and b†n that create excitations to energy
levels εA

n or εB
n respectively. By substituting this expression into the original

Hamiltonian (eqn. 4.15) we can rewrite it as

H =
∑

i

{ ∑3
n=0 εA

n a†i,nai,n + εB
n b†i,nbi,n (4.22)

+
∑

∆
J
2

(
T A

i · T B
i+∆ + T B

i · T A
i+∆

)

−z0J〈T B
00〉 · T A

i − z0J〈T A
00〉 · T B

i

}
.

The Hamiltonian above is then rewritten in terms of Bose operators using eqn. 4.20,
neglecting terms higher than second order. Solving this full Hamiltonian would require
diagonalization of a 16 × 16 matrix. In order to reduce the problem to a 4 × 4
matrix we neglect terms that mix different excited states (products of Bose operators
such as a†i,nai,m with n 6= m). This is justified if the ground state is significantly
separated from higher levels. Making this approximation allows each excitation to be
calculated independently, by writing the Hamiltonian as a sum of three Hamiltonians
for excitations to each of the three excited states:

H =
3∑

n=1

Hn =
3∑

n=1

∑
Q

X†
n(Q)Hn(Q)Xn(Q) , (4.23)

where X†
n is the column vector (aQ, bQ, a†−Q, b†−Q), and the matrices Hn(Q) can each

be written in the general form as before:

Hn(Q) =
1

2




An(Q) Bn(Q) Cn(Q) Dn(Q)
Bn(Q) An(Q) Dn(Q) Cn(Q)
Cn(Q) Dn(Q) An(Q) Bn(Q)
Dn(Q) Cn(Q) Bn(Q) An(Q)


 . (4.24)

In the exciton model the elements of this matrix are given by

An(Q) = (εA
n − εA

0 ) = (εB
n − εB

0 ) (4.25)

Bn(Q) = 2J [cos(4πh) + cos(4πk)]〈T A
n0〉〈T B

0n〉
Cn(Q) = 0

Dn(Q) = 2J [cos(4πh) + cos(4πk)]〈T A
n0〉〈T B

n0〉 ,

where Q = (h, k, l). The solution for the Hamiltonian in this form is outlined in
appendix B, and leads to two non-degenerate modes for excitations to each level n:

~ωn(Q) =
[
(An(Q)±Bn(Q))2 − (Dn(Q))2

]1/2
(4.26)

The intensities of each mode are calculated as described in appendix B, with the
element Sαα defined in terms of the true spin operators T :

Sαα
n (Q, ω) =

∑

Q′

∣∣〈λn,Q′|T α
n (Q)|0〉

∣∣2 δ(~ω − ~ωn,Q′) . (4.27)
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Figure 4.21: Spin-wave dispersion calculated from exciton model with param-
eters J and D as marked. The top row shows excitations from
the ground state to levels |1〉, |2〉 and |3〉 from left to right. The
two modes given by eqn. 4.26 are shown as solid and dashed
lines. Sxx(Q, ω), Syy(Q, ω) and Szz(Q, ω) are plotted below for
each mode (solid or dashed relating to the mode with the same
line-style).

Figure 4.21 shows the results of the exciton model calculation, with example
parameter values of J = 1.5 and D = 6. Excitations from the ground-state |0 〉 to
the three excited levels |1 〉, |2 〉 and |3 〉 are shown from left to right. The two modes
of the dispersion relation given by eqn. 4.26 are plotted as solid and dashed lines,
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with the Sxx(Q, ω), Syy(Q, ω) and Szz(Q, ω) functions plotted below in the linestyle
corresponding to each mode.

We first consider the lower modes. The two lower modes show the right
periodicity, with most of the intensity in the mode arising from the zone centres
at (0.25, 0.25) etc., and we note that to achieve this it is still necessary to use a
large value of D, the out-of-plane anisotropy parameter. We should also point out
that these plots have the in-plane anisotropy parameter E set to zero. The effect of
increasing E is to raise the solid mode at the zone centres ((0.25, 0.25) etc.), and
the dashed mode at the zone boundaries ((0.5, 0.5) etc.). With E set to zero we
expect the modes to be gappless at these points, since gaps at these points should
not be generated from the out-of-plane anisotropy term, but this is shown not to be
the case. One possible explanation is that the gap is generated from the omission
of terms mixing between excited states, but this is not certain, and the full 16 × 16
Hamiltonian would need to be solved to check this.

The excitations to levels |2 〉 and |3 〉, shown in the centre and right hand columns
of fig. 4.21 produce modes in the right region to describe the upper mode seen in the
data (see section 4.5.2). In both cases only one of the two modes has intensity, and
the intensities of these higher modes are relatively flat over the Brillouin zone, and
are approximately two orders of magnitude lower than that of the lower dispersion at
the zone centre.

Fitting the exciton model to the observed dispersion

To achieve a better comparison between the model and data the lower mode of
the dispersion calculated from the exciton model was fitted to data points taken from
fits of constant-energy and constant-Q cuts through MAPS data, as shown in figure
4.15, along several symmetry directions simultaneously. Only the lower mode was
fitted, since the higher mode in the data is too diffuse to extract points in the same
manner, and only the dispersion relation was fitted (not the intensities). The fitting
was performed by iteratively recalculating the basis states, as described above, each
time the parameters J and D were varied, to find the best fit. The final values were
J = 1.41± 0.02 meV and D = 7.3± 0.4 meV. It was not possible to fit the value for
the in-plane anisotropy E since the model with E = 0 already produces gaps at the
magnetic zone centres, as discussed earlier.

The basis states corresponding to the final J and D values are shown in table
4.4, bottom row (for comparison we also show basis states achieved for exchange
interaction only (D = 0), and for crystal-field only (J = 0).) The ground state for
the fitted values of J = 1.4 meV and D = 7.3 meV is mostly | + 3

2
〉 21 but, there is

some mixing. Figure 4.22 shows the results of the fit with these parameters, plotted
along three symmetry directions within the first Brillouin zone, along with data points
extracted from fits of constant-energy and constant-Q cuts through the MAPS data.
Below this is a plot of the intensities calculated with these fitted values 22, scaled to

21In fact the ground state is mostly | + 3
2 〉 for sublattice A and | − 3

2 〉 for sublattice B since the
spins point in opposite directions on the two sublattices.

22These intensities are simply the sum of Sxx, Syy and Szz. The full formula for the intensity
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J D n εn |n,A〉 |n,B〉
(meV) (meV) (meV)

1 0

0 0 |+3
2
〉 |−3

2
〉

1 6.0 |+1
2
〉 |−1

2
〉

2 12.0 |−1
2
〉 |+1

2
〉

3 18.0 |−3
2
〉 |+3

2
〉

0 1
0,1 0

+
√

3
2
|+3

2
〉 − 1

2
|−1

2
〉 +

√
3

2
|+3

2
〉 − 1

2
|−1

2
〉

−
√

3
2
|−3

2
〉+ 1

2
|+1

2
〉 −

√
3

2
|−3

2
〉+ 1

2
|+1

2
〉

2,3 2
+
√

3
2
|+1

2
〉+ 1

2
|−3

2
〉 +

√
3

2
|+1

2
〉+ 1

2
|−3

2
〉

−
√

3
2
|−1

2
〉 − 1

2
|+3

2
〉 −

√
3

2
|−1

2
〉 − 1

2
|+3

2
〉

1.41 7.33

0 0 +0.97|+3
2
〉 − 0.25|−1

2
〉 −0.97|−3

2
〉+ 0.25|+1

2
〉

1 13.2 +0.88|+1
2
〉 − 0.48|−3

2
〉 −0.88|−1

2
〉+ 0.48|+3

2
〉

2 20.1 −0.97|−1
2
〉 − 0.25|+3

2
〉 +0.97|+1

2
〉+ 0.25|−3

2
〉

3 26.3 +0.88|−3
2
〉+ 0.48|+1

2
〉 −0.88|+3

2
〉 − 0.48|−1

2
〉

Table 4.4: Basis states calculated as described in section 4.6.2, for three sets
of J,D values.

match the data points. The fitted dispersion provides a good description of the lower
mode, including the Q-dependence of the intensities.

Although the higher mode was not including in the fit, fixing the values of J
and D from the lower mode fit fully specifies the upper mode dispersions, and the
intensities of all modes. These are also plotted in fig. 4.22. It is clear that this model
can produce a mode in the right region in Q–energy space. Since the upper mode
in the data is very diffuse and much weaker than the lower mode it is difficult to
compare the dispersions.

As a further comparison between model and data the intensity for each point in
the MAPS data set was calculated, including the magnetic form factor, orientation
factor and twinned domains, using the fitted values J = 1.41 meV and D = 7.3
meV. This resulted in a simulated MAPS data set from which slices could be taken
to compare directly with slices through the experimental data. In the simulation
broadening was simulated using a Gaussian broadening of the dispersion relation in
energy, with width set to 2 meV to give agreement with the lower mode.

(see appendix B), including form factor and orientation factor is employed for the simulations in fig.
4.23 and fig. 4.24.
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Figure 4.23 displays slices through the simulated data set which can be compared
directly with the slices though the experimental data set shown in fig. 4.13.
These slices compare the lower mode simulated using the model with the measured
intensities. The model gives good agreement with the experimental data. Figure 4.24
plots two slices though the simulated data set displaying the higher mode, which can
be compared directly with fig. 4.17(a,b). The slice through the top of the mode (fig.
4.23a) does show intensity with the correct wavevector dependence. However, the
simulated upper mode (which is calculated from excitations to both levels |2〉 and |3〉
in the model) is much sharper than the observed scattering. This suggests that there
is some broadening mechanism that has not been considered in this model, or that
some or all of the observed scattering has a different origin. For instance it is possible
that there is non-magnetic scattering contaminating the magnetic signal.
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Figure 4.22: Top: Spin-wave dispersion fitted with the exciton model
described in section 4.6.2, with J = 1.4 meV, D = 7.3 meV and
E = 0 meV. Solid circles and open squares are data points taken
from fits of constant-energy and constant-Q cuts through MAPS
data along the symmetry directions marked, as shown in fig.
4.15. Bottom: Intensities calculated with the above parameters,
scaled to match the intensity of the lower mode. Data points are
extracted from the same fits of constant-energy and constant-Q
cuts.
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Figure 4.23: Slices through the simulated inelastic neutron scattering data
set calculated with the exciton model, with J = 1.41 meV and
D = 7.3 meV. (a–f) Slices showing the lower mode, directly
comparable to slices through the experimental data set shown in
fig. 4.13.
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Figure 4.24: Slices through the simulated inelastic neutron scattering data
set calculated with the exciton model, with J = 1.41 meV and
D = 7.3 meV. (a,b) Slices showing the upper mode, directly
comparable to slices through the experimental data set shown in
fig. 4.17(a,b).
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4.7 Discussion and Conclusions

In this chapter we have reported elastic neutron scattering measurements of
the charge and magnetic order in single crystals of La1.5Sr0.5CoO4, consistent with
previous measurements. Using polarized neutron analysis we have confirmed that the
magnetic moments lie within the ab plane, and revealed a spin-reorientation between
30 K and 50 K, which corresponds to a rotation of spins from 33◦ to 44◦ away from
the (11̄0) direction in a single domain model.

The inelastic neutron scattering measurements reported in this chapter have
characterized the spin-wave dispersions in La1.5Sr0.5CoO4. We have shown that there
is a two dimensional dispersive mode with a maximum energy of ∼ 15 meV arising
from the magnetic Bragg positions, and that this mode is gapped at the magnetic zone
centres. Both above and below the gap the spin fluctuations seem to be restricted
to the ab planes. Above this mode there is further magnetic scattering, between
approximately 20 and 32 meV. This higher mode is much more diffuse than the lower
one, but is shown to have some wavevector dependence.

To model the dispersions we first employed a simple Heisenberg Hamiltonian,
based on nearest neighbouring interactions between antiferromagnetically aligned
Co2+ ions, assuming a S = 3/2 ground-state. It is not possible to obtain a higher
mode with this simple model. Furthermore, the periodicity of the lower mode can
only be reproduced by including a large out-of-plane anisotropy term. We concluded
that it is necessary to include the full spin-3/2 physics of the system, with crystal-
field splitting of the ground state, in order to model the system correctly. This was
achieved using a self-consistent calculation of the ground-state energy levels, including
the exchange interaction as well as in-plane and out-of-plane anisotropy terms. In this
model the S = 3/2 levels split into four levels of mixed MS values, allowing neutron
induced excitations to all three excited states. Excitations to the first excited state
were found to reproduce the lower mode of the dispersion very well, and by fitting the
model to the experimentally obtained dispersion relation for this mode the exchange
and out-of-plane anisotropy parameters were obtained as J = 1.41 ± 0.02 meV and
D = 7.3±0.4 meV. Other possible exchange parameters were found to be unnecessary.

The parameters extracted by fitting the lower mode fully determine the upper
mode dispersions in this model. We found that the modes resulting from transitions
to the second and third excited states occurred at approximately the right energy,
although quantitative comparisons were difficult because of the diffuse nature of the
observed higher mode. The higher mode is much more diffuse than expected from
simulations, which assume the same energy broadening on all modes. It is possible
that there is a reason for this extra broadening within the current model, or that
the extra scattering has a different origin, possibly non-magnetic. Further polarized
neutron measurements are needed to investigate this.

One inconsistency in the model is that a gap is generated at the magnetic zone
centres without the need to include the in-plane anisotropy term. By including only
the exchange and out-of-plane anisotropy the lower mode should be gapless at the
magnetic zone centre (a Goldstone mode). Inelastic polarization analysis performed
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at this point above and below the gap confirmed that the gap is not an out-of-plane
anisotropy gap. We do not know why the gap is generated in this model, but speculate
that it stems from terms neglected in the calculation. In order to check this it would
be necessary to repeat the calculation keeping the entire 16×16 matrix Hamiltonian,
and avoiding the approximations. We note that the presence of a gap when only J
and D are included has prevented us from fitting a value for the in-plane anisotropy
parameter E, but that in-plane anisotropy clearly exists in the compound.

Although this inconsistency needs addressing, we have successfully shown that
both the lower and higher mode can be generated by considering only excitations of
the antiferromagnetically aligned Co2+ lattice. This brings us back to the question
of the Co3+ spin state in La1.5Sr0.5CoO4. In the introduction we discussed three
possibilities for the Co3+ ions that would be consistent with the observed magnetic
ordering. Point-charge calculations favoured the low-spin S = 0 state for Co3+. We
now consider whether the magnetic excitations can give any more clues as to the Co3+

spin-state. If the Co3+ ions carry ordered moments we would expect to see excitations
arising from this sublattice. This was not the case. The only possibility for ordered
Co3+ moments consistent with both the observed magnetic Bragg positions and the
excitation spectrum is that the Co3+ sublattice orders with the same wavevector
as the Co2+ sublattice, but without interactions between the two sublattices. As
well as this, the exchange and anisotropy parameters for the two sublattices would
have to be identical to generate the sharp lower dispersion mode that is observed.
This seems unlikely. Another possibility is that the Co3+ ions have moments, but
that the Co3+ sublattice is paramagnetic. The point-charge model described in the
introduction suggests that in this scenario there would be many energy levels close
to the Co3+ ground state. In this case we would expect to see a large amount of
quasi-elastic scattering in the neutron scattering measurements, but again this was
not seen. Although not conclusive, the excitation spectrum of La1.5Sr0.5CoO4 does
appear to be consistent with a low spin-state for Co3+.

The main conclusion for this chapter is that the excitation spectrum of
La1.5Sr0.5CoO4 can be successfully modelled with a spin-only Hamiltonian for the
Co2+ sublattice. The spin and charge ordering degrees of freedom appear to be
uncoupled. As discussed in the introduction, this is not the case for other similar
transition metal oxides. The isostructural nickelate compounds exhibit features
that cannot be explained without coupling of spin and charge order, and complex
excitation modes are observed in the cuprate compounds. La1.5Sr0.5CoO4 is therefore
an ideal system for studying uncoupled magnetic excitations. It would be interesting
to investigate other compounds in the La2−xSrxCoO4 family to see if this behaviour
extends to other doping levels or is a feature of the stability of the checkerboard
charge ordering.
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Chapter 5

Magnetic Excitations in Metallic
NaxCoO2

5.1 Introduction

NaxCoO2 is a layered transition metal oxide which is composed of layers of
CoO2 spaced with layers of sodium, see fig. 5.1. The crystal structure is hexagonal,
so the cobalt ions form a two-dimensional triangular lattice within the ab planes,
each surrounded by an octahedron of oxygen atoms. NaxCoO2 is metallic [1], and
the metallic behaviour is achieved by doping the Mott-insulating CoO2 layers with
electrons donated by sodium atoms. The exception is at x = 0.5 where an insulating
state exists. Each cobalt ion has an average charge Co(4−x)+, and in an ionic picture
this corresponds to x non-magnetic Co3+ ions (with S = 0) in a background of Co4+

ions carrying spin S = 1/2. The sodium ions are mobile, and for many doping
levels they order into ion-vacancy superlattices at around room temperature [2]. A
current unresolved issue is whether the ordering of the Na+ ions causes a spatial

Figure 5.1: (a) Crystal structure of NaxCoO2 : CoO2 layers are spaced by
Na. (b) The hexagonal lattice of Co in the a–b planes, showing
the orientation of the oxygen tetrahedron around the central Co
ion. (c) The phase diagram of NaxCoO2.
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Figure 5.2: Temperature dependences of bulk properties of polycrystalline
Na0.75CoO2 measured by Motohashi et al. [12]. (a) Specific
heat (Cp), (b) magnetic susceptibility (χ = M/H), (c) inverse
susceptibility (χ−1). The solid line shows the best fit to the Curie-
Weiss law above Tm = 22 K.

disproportionation of charge on the Co layer, i.e. whether it drives ordering of
the Co3+/Co4+ charges through the Coulomb interaction. Density function (LDA)
calculations for 0.3 ≤ x ≤ 0.7 found that the electronic structure is highly two-
dimensional, and suggested a weak itinerant ferromagnetic ground state [3].

In chapter 2 we discussed the renewed interest in sodium cobaltate precipitated
by the recent discovery of superconductivity in the hydrated compound (NaxCoO2 ·
yH2O, x ≈ 0.3, y ≈ 1.3) [4]. Much of the discussion is focussed on the mechanism of
superconductivity. There is strong support from both experiment [5] and theory [6, 7]
for an unconventional pairing state, the origin of which derives from the triangular
geometry of the Co lattice and the existence of strong spin and charge fluctuations.

Before the discovery of a superconducting phase, the unhydrated parent
compound NaxCoO2 was already attracting interest due to its large thermopower
coupled with low resistivity, making it a promising candidate for technological
applications [8]. The large thermoelectric effect has been observed in the sodium
doping range 0.5 ≤ x ≤ 0.9 [8, 9]. Both the thermopower and resistivity were found
to be highly dependent on the doping level [10], with thermopower increasing at higher
values of x. A recent investigation into the enhanced thermopower found evidence to
show that it originates from a large spin-entropy due to strong electron correlations
in the CoO2 layers [11].

The importance of the spin degrees of freedom, both to explain the large
thermoelectric effect, and to aid discrimination between proposed mechanisms of
superconductivity, provides a strong incentive for characterizing the magnetic order
and excitations of NaxCoO2. This chapter and the following chapter are concerned



Chapter 5. Magnetic Excitations in Metallic NaxCoO2 114

with the weakly magnetic phase found for x ≈ 0.7−0.95. Although the sodium doping
value x in this region is very different from the superconducting value (x ∼ 0.3),
there is experimental evidence to suggest that the Co valence in the hydrated
superconductor in fact corresponds to x ≈ 0.6 - 0.75, due to the presence of H3O

+

ions. The magnetic phase studied here may therefore represent the true ‘parent’ of the
superconducting phase, and the magnetic order in this phase may have real relevance
to the mechanism of superconductivity.

In the x ≈ 0.7 − 0.95 region, the susceptibility data shows a sharp magnetic
transition which occurs at Tm ≈ 22 K [12, 13], first observed in Na0.75CoO2 by
Motohashi et al. whose data is reproduced in figure 5.2. The magnetic transition
is seen as an upturn in the low temperature susceptibility, and a sharp jump in
the specific heat data. A Curie-Weiss fit to the high temperature susceptibility
(fig. 5.2c) gives a negative value for the Curie-Weiss constant, which is indicative
of antiferromagnetic interactions. Further information is gained from magnetization
measurements of single crystals. Figure 5.3 shows magnetization measurements made
by D. Prabhakaran on a single crystal of Na0.7CoO2 [13], and we note the main

Figure 5.3: Temperature dependence of the dc magnetization of a single
crystal of Na0.7CoO2 measured with H ‖ ab and H ‖ c, and
both zero-field cooled (ZFC) and field cooled (FC). There are
transitions at Tm ≈ 22 K and around room temperature (270K
and 320K). The inset illustrates the sharp transition at 22 K, and
the steep rise below 8 K. Data measured by D. Prabhakaran [13].
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features:

• The H ‖ ab magnetizations are consistently larger than H ‖ c, until the curves
cross over below ∼ 7 K. This suggests that the ab plane is the easy direction
for magnetic moments for T > 7 K.

• The features at T ∼ 300 K correspond to sodium ordering temperatures,
revealing that the sodium order does have some effect on the magnetic order.

• The magnetic transition at Tm ≈ 22 K is marked by a dramatic change in
gradient in the magnetization parallel to c. This suggests that the magnetic
ordering below Tm has ordered moments along c.

There is a conflict between the first and last points made above. Measurements
performed using µSR also revealed static order below Tm ≈ 22 K in Na0.75CoO2

[14], and estimated a magnetic moment of ∼ 0.18µB per Co at 2.5 K. The µSR
measurements also concluded that the magnetic moments point along the c-axis in
the ordered phase [15], in conflict with the single crystal magnetization measurements.

In order to consolidate these pieces of experimental evidence, to determine the
magnetic ground state below Tm and to gain information on the magnetic correlations,
the most direct experimental method is neutron scattering. This chapter presents
inelastic neutron scattering measurements made on single crystals of NaxCoO2

with x ≈ 0.75. The magnetic excitations observed are consistent with an A-type
antiferromagnetically ordered ground state, with ferromagnetic alignment within
the ab plane and antiferromagnetic alignment between planes. By modelling the
excitations with a linear spin-wave model we go on to extract magnetic exchange
parameters, and to gain information on the anisotropy in the compound.

Sample characterization

Before presenting the results we briefly discuss the samples that were studied,
both in this chapter and in chapter 6. All the neutron scattering measurements
were made on single crystals of NaxCoO2, which are notoriously difficult to grow.
They were grown by D. Prabhakaran, as described in reference [13]. The crystals
studied in this chapter were nominally x = 0.75, while the one studied in chapter 6
was nominally x = 0.85. The nominal values are those calculated from the starting
materials, which should give a good indication of the final doping. The samples were
characterized by magnetization studies, and the presence of the Tm ∼ 22 K transition
confirmed that they lie in the x ≈ 0.7− 0.95 phase.

Recent electron probe micro-analysis (EPMA) measurements on one of the
x = 0.75 samples, and the x = 0.85 sample, gave values of xE = 0.79 ± 0.03 and
xE = 0.80 ± 0.03 respectively, where the errors are calculated from variation of
the result between measurements over an area of the sample surface.1 There may

1The measurements were made on small single crystals taken from the same zone-melted rods
from which the neutron scattering samples were cleaved.
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therefore not be as much difference between the samples studied in the two chapters
as is suggested by the nominal doping values. However, EPMA is a surface probe,
and there may be differences in sodium doping on the surface, so we do not rely too
heavily on these values of x. We therefore use the nominal values of x when referring
to NaxCoO2 samples throughout the thesis.

The EPMA measurements were performed by N. R. Charnley, and a description
of the method is given in reference [13].
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5.2 Measurement of Excitations in Na0.75CoO2

In this section we describe inelastic neutron scattering measurements made
to characterize the spin excitations in single crystals of Na0.75CoO2. Usually the
magnetic structure of a system is established before embarking on measurements of
its magnetic excitations, giving a good indication of where to look for excitations in
reciprocal space. However, the magnetic structure of sodium cobaltate was not known
when we began investigations into the magnetic excitations of Na0.75CoO2. For this
reason the first measurements were made on the MAPS spectrometer at the ISIS
facility. The MAPS spectrometer is a time-of-flight instrument equipped with a large
pixellated detector, and provided a good overview of a large area of reciprocal space in
one measurement. Having determined the wavevectors of the excitations, this study
was followed up by measurements made on the triple-axis spectrometers IN8 and IN20
at the Institut Laue-Langevin (ILL), which allowed more precise characterization of
the excitations perpendicular to the ab-planes. Details of the instruments are given
in chapter 2.

The MAPS results were first published in reference [16], and the preliminary
analysis presented there was performed by R. Coldea. Subsequent analysis performed
as part of this thesis, including analysis of the triple-axis data and further analysis of
the MAPS data, has been published in references [17] and [18].

5.2.1 MAPS Measurements

Experimental details

A single crystal of Na0.75CoO2 was grown by the floating-zone method in the
Clarendon laboratory image furnace by D. Prabhakaran [13]. A crystal of size
∼ 10 × 8 × 3 mm3 and mass 1.25 g was cleaved from the zone-melted rod. Samples
were taken from adjacent parts of the same rod for magnetization and powder X-ray
diffraction measurements and showed no impurity phases within the detectable limit
of ∼ 2%.

The crystal was attached to a copper rod using a small amount of G.E. varnish,
copper foil and copper wire, so that the (001) and (100) reciprocal lattice vectors
defined the horizontal scattering plane, see fig. 5.4. The top of the copper rod was
painted with gadolinium paint, which shields against neutrons, to reduce background
scattering from the copper. The sample was then mounted on a closed-cycle cooler
to allow measurements to be performed at temperatures between 6 K and room
temperature. Counting times were typically ∼ 36 hours at an average proton current
of 170 µA. An initial examination by neutron Laue diffraction showed that the crystal
contained several grains with an overall mosaic spread of ∼ 10◦.

MAPS is a time-of-flight chopper spectrometer equipped with a large pixellated
detector array covering 20 m2. Chopper spectrometers are described in chapter 3,
where there is also a drawing of the MAPS spectrometer (fig. 2.3). To maintain
good Q resolution relatively low incident energies (Ei = 40 meV and 60 meV) were
employed, and the measurements were restricted to small scattering angles.
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Figure 5.4: Diagram of the Na0.75CoO2 sample mounted for the experiment
on MAPS. The c axis is perpendicular to the face shown on the
left (‘Front’).

Measurements and results

It was initially assumed that the magnetic correlations between the CoO2

layers would be weak, given the highly two-dimensional (2D) physical properties of
NaxCoO2, and so likely that the magnetic scattering would be relatively insensitive
to the component of Q parallel to the crystal c axis. Therefore, for an initial
survey, the crystal was aligned with the c axis parallel to the incident neutron
beam. In this configuration the area detector recorded the energy spectrum over
a large region of 2D reciprocal space (defined by the a∗ and b∗ reciprocal lattice
basis vectors of the triangular lattice in the CoO2 plane). Measurements were made
in this orientation with an incident energy of 40 meV at two temperatures, room
temperature and 6 K. By taking a series of constant energy slices of the 6 K data we
made a search of (Q2D, E) space, where Q2D = ha∗ + kb∗ ≡ (h, k) is the in-plane
component of the scattering vector. The only signal we found that was clearly in
excess of the background in this energy range was distributed symmetrically around
the unscattered beam, i.e. Q2D = (0, 0). In particular there was no observable signal
at wave vectors corresponding to antiferromagnetic correlations between adjacent Co
sites. The signal seen at 6 K was found not to be present in the room temperature
measurement, indicating that it is magnetic in origin.

Figure 5.5 shows the signal at 6 K. The intensity has been averaged over the
energy range 8-12 meV and projected onto the a∗b∗ plane. The crystal orientation
with c parallel to ki means that the region of interest around Q2D = (0, 0) lies along
the direction of the unscattered beam, where there is a gap in the detector bank.
In this orientation much of the signal is lost in the gap, and there is the possibility
that the scattering is a detector-edge effect and not real. Therefore, to investigate
the signal further, the crystal was rotated by 30◦ so that more of the scattering
would be recorded in the detector bank adjacent to the unscattered beam. Again,
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Figure 5.5: Neutron inelastic scattering from Na0.75CoO2 recorded in the
MAPS spectrometer pixellated detector with ki ‖ c and Ei =
40 meV at T = 6 K. This slice shows scattering with 〈E〉 = 10
meV projected into the ab plane, and intensity is in absolute
units of mb sr−1 meV−1 f.u.−1. The dashed hexagon shows the
2D Brillouin zone boundaries.

measurements were taken at two temperatures: 6 K and 200 K.
Figure 5.6 shows the neutron intensity averaged over the energy range 8-12 meV

and projected onto the a∗b∗ plane, for both (a) T = 6 K and (b) T = 200 K. The
unscattered beam passes through the blank rectangle where there are no detectors. At
6 K the map shows an enhanced signal roughly twice the background, again centred
on Q2D = (0, 0), but this time shifted right into the detector bank due to the rotation
of the crystal. At 200 K there is no evidence of the signal.

In order to look at the energy dependence of the signal, cuts were made through
the data set, averaging over the rectangular boxes marked A and B in figure 5.6. The
cut averaged over A shows the energy dependence of the signal of interest, and the
cut averaged over B represents a background signal for comparison, both plotted in
fig. 5.7. The signal around Q2D = (0, 0) is high at low energies, and decreases in
intensity around 12 meV. There is a further small peak in the intensity around 20
meV, but comparisons of this signal in the high and low temperature data showed an
increase in intensity at high temperature, suggesting that the 20 meV feature is due
to an optic phonon (see ref. [16]). Conversely, the low energy feature disappears at
high temperature, as shown in fig. 5.6, which implies a magnetic origin.

The fact that the scattering is localized around Q2D = (0, 0) suggests that the
spin correlations within the ab plane are ferromagnetic (see chapter 1). In order to
investigate the dispersion of this signal, constant-cuts were taken through the 6 K
MAPS data along a symmetry direction within the ab plane, marked X in fig. 5.6.
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Figure 5.6: Neutron inelastic scattering from Na0.75CoO2 recorded in the
MAPS spectrometer pixellated detector with Ei = 60 meV at
(a) T = 6 K and (b) T = 200 K (ki 30◦ from c). Each image is
a plot of intensity averaged between energies of 10 ± 2 meV and
projected into the (h, k) plane in reciprocal space. The dashed
hexagonal grid shows the 2D Brillouin zone boundaries.

Figure 5.8 shows three such cuts with average energies 〈E〉 = 6.5, 10 and 14 meV.
The horizontal bar indicates the instrumental resolution 2. The 6.5 meV cut shows a
single peak centred at (0, 0), but at higher energies the peak broadens and decreases
in amplitude. The shape off the peaks at 10 and 14 meV suggests that these cuts
are through two almost-resolved peaks on either side of (0, 0). At higher energies the
signal is weak, and but it is highly dispersive, and extends into the range where the
optic phonon contaminates the scattering (around 20 meV) 3.

2This estimate of the resolution was made by calculating the spread in Q due to beam divergence
∆θ using ∆Q = ki∆θ. We note that it does not take into account the way in which the resolution
ellipsoid scans through the dispersion curve.

3We note that the cuts shown in fig. 5.8 are not truly cuts through the dispersion in the ab plane,
since l varies with energy, as shown in the top axis of fig. 5.7. This prevents us being able to directly
extract the in-plane exchange parameters, as was done in chapter 4 for La1.5Sr0.5CoO4.
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Figure 5.7: Energy dependence of the signal measured on MAPS at 6K. Open
circles are data averaged over the box marked A in fig. 5.6 centred
on Q2D = (0, 0). Filled circles show the background signal,
estimated from the region marked B in fig. 5.6. The out-of-
plane wave vector component lc∗ is marked on the upper axis
in reciprocal lattice units for scan A. The peak marked ‘O.P.’ is
probably an optic phonon.

5.2.2 Triple-axis Measurements

The measurements made on MAPS showed conclusively that strong ferromag-
netic in-plane correlations exist in Na0.75CoO2. However, the measurements did not
probe the (0, 0, l) direction, and at this point the full nature of the magnetic order was
not established. Full 3D ferromagnetic order was excluded by the magnetization data
[12]. However, a spin-density-wave (SDW) order along the c-axis would be compati-
ble with the MAPS data, one example being an A-type antiferromagnetic structure
(with in-plane ferromagnetic order and antiferromagnetic stacking along the c axis).
In order to probe the magnetic fluctuations perpendicular to the ab planes, and to
investigate the nature of the magnetic order below Tm, further measurements were
made using triple-axis spectrometers at the Institut Laue-Langevin.

Experimental details

The triple-axis measurements were made on a single crystal of Na0.75CoO2 grown
in Oxford by the floating-zone method, as before [13]. For the neutron studies a crystal
of mass ∼1.5 g was cleaved from a zone-melted rod. Smaller crystals from the same
rod were examined by x-ray diffraction, magnetometry and electron microscopy. The
analysis revealed the presence of small inclusions of cobalt oxides (CoO and Co3O4)
consistent with previous reports for melt-grown crystals [19]. These impurity phases,
which amounted to a few per cent of the total, were found by neutron diffraction to
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Figure 5.8: Constant energy cuts taken along the line marked X in fig. 5.6.
Filled circles show neutron data points: the 10 meV and 14 meV
data have been displaced vertically by 3 and 6 units, respectively.
The horizontal bar indicates the instrumental resolution.

grow epitaxially on the host lattice. Once the orientation of the impurity crystallites
had been determined it was straightforward to distinguish the impurity signal from
that of the host. The anisotropic magnetic susceptibility of the crystals exhibited
an anomaly at Tm ≈ 22K for fields applied parallel to the c axis, consistent with
the magnetic transition observed previously [12]. The crystal was mounted on a
copper bracket using a small amount of G.E. varnish, copper foil and copper wire,
and attached to an aluminium mount. Different aluminium pieces allowed several
orientations of the crystal, but the majority of the measurements were made with the
horizontal plane defined by (100) − (001), as shown in fig. 5.9. Cadmium shielding
was wrapped around the aluminium mount to reduce background scattering, and the
crystal was mounted in a standard helium cryostat.

Unpolarized- and polarized-neutron scattering measurements were performed
on the thermal triple-axis spectrometers IN8 and IN20, respectively. On IN8 we
employed a Si (111) monochromator and a pyrolytic graphite (002) analyser, and
worked with a fixed final energy Ef = 14.7meV. To increase the count rate both
monochromator and analyser were curved horizontally and vertically for optimum
focussing. For the polarized-neutron measurements on IN20 we used curved Heusler
(111) as both monochromator and analyser, and Ef = 34.8meV. On both instruments
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a graphite filter was placed in the scattered beam to suppress higher order harmonics.

Measurements and results

To probe the out-of-plane wave-vector of the magnetic fluctuations two types of
scan were performed, as shown in fig. 5.10 (right): constant-energy scans parallel to
the (00l) direction, and constant-Q scans at points along (00l). Figure 5.10a shows an
example scan parallel to the (00l) direction performed on IN8 at a fixed energy transfer
of 7meV. Two peaks can be seen symmetrically either side of l = 3. Figure 5.10b
displays the same scan but this time performed on IN20 with the neutron polarization
maintained parallel to the scattering vector during the scan. In this configuration the
spin-flip (SF) scattering is purely magnetic, and the non-spin-flip scattering is non-
magnetic. The two peaks are clearly present in the SF channel and absent from the
NSF channel. The peaks are essentially resolution-limited, as indicated, but are less
well resolved in fig. 5.10b than in fig. 5.10a because of the larger neutron energy used
on IN20. We conclude that the peaks arise from magnetic excitations.

The scan shown in fig. 5.10a was repeated for different fixed energies between
3 meV and 10 meV. Each scan contained two peaks symmetric about (003), with the
peak separation increasing with increasing energy. In addition, energy scans were
made at several fixed points along the line (00l). Figure 5.10c shows one such scan,
made at l = 2.5, the zone boundary in the out-of-plane direction. The scan was
performed at 1.5K and then repeated at 70 K. The prominent peak at ∼12meV in
the low temperature scan has disappeared by 70 K. This again confirms the magnetic

Figure 5.9: A single crystal of Na0.75CoO2 mounted for the experiment on
IN20 with the horizontal scattering plane defined as (001)-(100).
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Figure 5.10: Triple-axis measurements of the magnetic scattering from
Na0.75CoO2. Right: Diagram showing directions of the scans
made to map out the dispersion in the (0, 0, l) direction. Left:
(a) constant-energy scan at 7 meV along (0, 0, l) measured
with unpolarized neutrons on IN8; (b) the same scan made
on IN20 with polarized neutrons (spin-flip (SF) and non-spin-
flip (NSF) channels measured with the polarization P ‖ Q
are both plotted); (c) constant-Ql scan made at the Brillouin
zone boundary l = 2.5 with unpolarized neutrons at two
temperatures. In (a, b) the horizontal bar represents the
experimental resolution.

origin of the scattering since magnetic correlations are destroyed with increasing
temperature.

By fitting Gaussian functions to the peaks in both types of scan we constructed
the magnon dispersion relation. This is displayed later in fig. 5.12. There is clearly a
mode dispersing from (003) with a maximum energy of approximately 12 meV. The
crystal structure of NaxCoO2 is such that no structural Bragg peaks are allowed for
positions (00l) with odd l. As expected, therefore, no structural Bragg peak was
observed at (003), but scans made at different temperatures revealed no magnetic
Bragg peak at this point either 4.

4Magnetic Bragg peaks could not be observed at other expected positions either, but these were
contaminated with relatively strong nuclear elastic scattering which probably swamped the weak
magnetic Bragg scattering.
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5.3 Spin-wave Analysis

In order to extract quantitative information on the magnetic correlations it was
necessary to fit the data with a theoretical model of the excitations. This section
presents a simple spin-wave model which allows the exchange parameters to be
extracted. Linear spin-wave theory assumes localized spins coupled through isotropic
Heisenberg exchange interactions, although we note that the system is actually
metallic, and the true magnetic couplings may be more complex. Nevertheless, our
model provides an estimate of the strength of the inter-plane and intra-plane coupling.

5.3.1 Model

The simplest spin arrangement consistent with the observations described above
is the A-type antiferromagnet shown in fig. 5.11, in which the spins are ordered
ferromagnetically within the layers and the layers are coupled antiferromagnetically
along the c axis. Each cobalt ion is taken to have the same spin. For no magnetic
Bragg peak to appear at (003) the spins must be parallel or antiparallel to the c axis,
since neutrons do not couple to spin components parallel to the scattering vector.

To analyze the three-dimensional dispersion in more detail we compare the
experimental results with a spin-wave model containing the minimum number of
exchange parameters. The Heisenberg Hamiltonian is

Figure 5.11: (a) The A-type antiferromagnetic structure on which the spin-
wave model is based, showing the two exchange constants Jab and
Jc. (b) The a–b planes, showing the orientation of the oxygen
tetrahedron around a central Co ion.
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H = Jab

∑

〈i,i′〉
Si · Si′ + Jc

∑

〈i,j〉
Si · Sj, (5.1)

where Jab and Jc are intra- and inter-layer exchange parameters, respectively, as
indicated in fig. 5.11. Only nearest-neighbour interactions are included in the
summations, and 〈i, i′〉 and 〈i, j〉 denote spin pairs within the same layer and on
adjacent layers, respectively.

To derive the spin-wave dispersion and scattering cross-section standard linear
spin-wave theory was used. As in the La1.5Sr0.5CoO4 calculation (chapter 4), we
consider the system as two sublattices A and B containing the ‘up’ and ‘down’ spins
respectively. Holstein-Primakoff transformations are used to write the spin operator
components for the two sublattices in terms of Bose operators, with the quantization
direction along the z-axis (parallel to the crystal c axis):

Sz
i = S − a†iai Sz

j = −(S − b†jbj) (5.2)

Sx
i =

√
S/2

(
ai + a†i

)
Sx

j =
√

S/2
(
b†j + bj

)

Sy
i =

1

i

√
S/2

(
ai − a†i

)
Sy

j =
1

i

√
S/2

(
b†j − bj

)
,

where a†i (b
†
j) creates a spin deviation on site i(j) of sublattice A(B), and we take

S = 1/2. The Hamiltonian (eqn. 5.1) is then rewritten in terms the Fourier transforms
of these operators:

aQ =
1√
N

∑
i

e−iQ.riai a†Q =
1√
N

∑
i

e+iQ.ria†i (5.3)

bQ =
1√
N

∑
i

e+iQ.ribi b†Q =
1√
N

∑
i

e−iQ.rib†i .

In this way the Hamiltonian is expressed in terms of the 2nd order products of the
operators aQ, a†Q, bQ and b†Q, and can be written in the general matrix form:

H = H0 +
∑
Q

X†
QHQXQ , (5.4)

where X is the column vector (aQ, bQ, a†Q, b†Q). The matrix HQ is written in general
form as:

HQ =
1

2




AQ BQ CQ DQ

BQ AQ DQ CQ

CQ DQ AQ BQ

DQ CQ BQ AQ


 , (5.5)

and the method for solving this form of the Hamiltonian is given in appendix B. For
the Hamiltonian above the matrix elements of eqn. 5.5 are

AQ = 2JabS [cos(2πh) + cos(2πk) + cos(2π(h + k))− 3] + 2JcS (5.6)

DQ = 2JcS cos(πl)

BQ = CQ = 0 ,
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where Q = (h, k, l). The method of calculating the dispersion relation is given in
appendix B, and we find one doubly degenerate mode described by

~ωQ = (A2
Q −D2

Q)1/2 . (5.7)

5.3.2 Fitting the Interlayer Exchange Parameter, Jc

Along the direction Q = (0, 0, l) the expression for the dispersion relation can be
simplified to

~ωQ=(0,0,l) = 2JcS |sin(πl)| . (5.8)

The dispersion relation along the (0, 0, l) direction does not depend on Jab, so by
comparing the spin-wave dispersion to the data in fig. 5.12 we can immediately obtain
a value for Jc. The best fit is shown by the solid curve on fig. 5.12, which is calculated
with Jc = 12.2meV. At low energies the data points lie systematically above the fitted
curve, suggesting the presence of a small gap of 1–2meV. Apart from this, the model
provides a good description of the data.

5.3.3 Fitting the In-plane Dispersion

The analysis described so far characterises only the inter-plane correlations. To
continue the analysis and gain quantitative information on correlations within the
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Figure 5.12: The magnon dispersion of Na0.75CoO2 parallel to (00l). Data
points are derived from fits of scans such as those shown in
fig. 5.10: filled circles from constant-E scans and open squares
from constant-Q scans. The solid curve is calculated from
the spin-wave dispersion eqn. 5.8 with exchange constant Jc =
12.2meV. Dotted lines show the Brillouin zone boundaries.
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planes we apply the model to the results obtained using MAPS. As described in
chapter 2, on MAPS the energy transfer is coupled to the component of wavevector
perpendicular to the detector bank. For a system with two-dimensional excitations,
such as La1.5Sr0.5CoO4, there is no dependence on one component of wavevector, and
it is possible to take cuts through the data set to map out the dispersion relation, as
described in section 4.5. For three-dimensional excitations this is not possible, and
the analysis is more complicated. A MAPS-style data set was simulated from the
model to allow direct comparison with the MAPS data. The MAPS data set is an
intensity array in (Q, E) space, so for each data point in this space the simulated
intensity was calculated, including the magnetic form-factor and orientation factor
[20]. For the calculation, Jc was fixed to the value 12.2meV determined from the
inter-layer dispersion, while Jab was varied until good agreement between simulation
and experiment was achieved.

Following this procedure we determined that Jab = −6 ± 2meV. Figure 5.13a
shows the central section of the MAPS data at T = 6K presented earlier in fig. 5.6.
Figure 5.13b shows a similar slice through the simulated data for Jab = −6meV and
Jc = 12.2meV to give direct comparison with fig. 5.13a. The distribution of scattering
within the plane is well reproduced by the model. Figure 5.13c shows constant-energy
cuts through both real and simulated data sets along the line marked X in fig. 5.13(a,
b), at three different energies. To fit the data each mode was broadened in energy by a
Gaussian function with σ = 1.7 meV.5 The model does not include the variation of the
background with energy, so a flat background was fitted for each energy independently.
In addition, the overall scattering amplitude had to be systematically reduced with
increasing energy to fit the data satisfactorily. This reduction, which was nearly a
factor of 2 over the energy range 6.5meV to 14meV, is not predicted by the spin
wave model.

5This corresponds to a full width at half maximum of 4 meV.
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Figure 5.13: (a) Neutron inelastic scattering from Na0.75CoO2 recorded on the
MAPS spectrometer at 6 K with an incident energy of 60 meV.
The map contains data averaged over energy transfers of 8–
12 meV, and is projected onto the (h, k) reciprocal lattice plane of
the crystal. (b) Simulated intensity using the model described in
the text with Jab = −6meV and Jc = 12.2meV. The axis labels
correspond to the hexagonal reciprocal axes drawn in the figure.
(c) Constant energy cuts taken along the line marked X in (a,b).
Open circles show neutron data points, while the solid lines are
from the simulation. The 10meV and 14 meV data have been
displaced vertically by 3 and 6 units, respectively. The horizontal
bar indicates an estimate of the instrumental resolution.
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5.4 Characterising the Spin Gap

The measurements and analysis described above have established that the
magnetic order and dynamics in Na0.75CoO2 are consistent with an A-type
antiferromagnetic structure, and that the magnetic interactions are three-dimensional
despite the two-dimensional character of the crystal lattice and electronic structure.
The measured c-axis dispersion, shown in fig. 5.12, found evidence of a small excitation
gap at the antiferromagnetic zone centre. To investigate the nature of this possible gap
we decided to perform further measurements to investigate the spin-wave dispersion
in Na0.75CoO2 at lower energies. The motivation for this was to gain important
information on the magnetic ground state of Na0.75CoO2, such as whether itinerant
effects are important.

5.4.1 Low-energy Measurements

Experimental details

Inelastic neutron measurements were performed on the cold-neutron triple-axis
spectrometer IN14 at the Institut Laue-Langevin. This instrument was chosen to
allow investigation of the excitations in Na0.75CoO2 at lower energies than previously
studied. We employed a pyrolytic graphite (PG) (002) monochromator and a
PG (002) analyzer, which were curved vertically and horizontally respectively, to
maximize the count rate. The majority of measurements were made with a fixed
final energy of Ef = 4 meV. A Beryllium filter was placed in the scattered beam to
suppress higher-order harmonics.

The inelastic neutron measurements were performed on the same crystal of
Na0.75CoO2 as used for our previous triple-axis experiments, see fig. 5.9. The single
crystal of mass ∼ 1.5 g was mounted on a copper mount and aligned to allow
measurements to be made within the (100)–(001) scattering plane.

Since the previous measurements above revealed strong spin-wave scattering
around (0,0,1) and (0,0,3), the inelastic measurements here concentrate on spin waves
dispersing from the magnetic zone center at (0,0,1), where the inelastic scattering is
most intense.

Measurements and results

Figures 5.14 and 5.15 present examples of inelastic neutron scattering data
collected on IN14. Each scan was performed by measuring the intensity of scattered
neutrons as a function of energy transfer up to ∼ 3 meV at the wavevector Q =
(0, 0, 1). Scans were made at ten temperatures between 1.5 K and 24.4 K.

Figure 5.14a shows measurements made of the energy spectrum at low
temperature (T = 1.5 K). The spectrum consists of an intense peak due to incoherent
nuclear elastic scattering centered on E = 0 meV, and a broad signal centered around
2 meV which is attributed to magnetic scattering as the scan cuts through the spin-
wave dispersion. There is clearly a gap where the intensity falls to background below
∼ 1 meV, revealing that the magnetic excitations in Na0.75CoO2 are separated from
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the ordered ground state by a clean gap. To determine the non-magnetic scattering
an energy scan was also made at Q = (0, 0, 1.25). The scan, which is plotted
in fig. 5.14a, contains the nuclear incoherent peak together with a small constant
background signal.

Figure 5.14b displays Ql scans performed at three constant energy transfers
of ET = 0.5, 1.0 and 1.6 meV. The peak present at higher energies has clearly
disappeared at 0.5 meV, confirming that the intensity of the spin-wave dispersion
really does fall to background in the ‘gap’, and the remaining intensity at this point
seen in fig. 5.14a is simply due to the tail of the incoherent peak.

Figure 5.15 shows the scan in fig. 5.14a along with the same scan at the remaining

Figure 5.14: Neutron inelastic scattering from Na0.75CoO2 measured at T =
1.5 K. (a) Energy scan at constant Q = (0, 0, 1), compared with
the same scan at a background position Q = (0, 0, 1.25). The
dashed curve represents the contribution of the incoherent peak
and background, fitted to the data at Q = (0, 0, 1.25). The
shaded peak shows the incoherent peak contribution scaled down
by a factor of 100, as an indication of the instrumental resolution.
(b) Ql scans with constant energy transfers of 0.5 meV, 1.0 meV
and 1.6 meV. Data at 1.0 meV and 1.6 meV have been shifted
up by 100 and 200 counts respectively for clarity.
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Figure 5.15: (a)-(j) Energy scans at Q = (0, 0, 1) at temperatures between
T = 1.5 K and 24.4 K. Solid curves represent the best fit of
the model described in the text, plus an incoherent peak to the
data. The dashed line shows the contribution of the incoherent
peak and background, while the pink (dash-dotted) and green
(dotted) curves represent the intensities of each mode.

temperatures we measured, below and above the magnetic transition temperature
Tm ≈ 22 K. It appears that the magnetic scattering intensity moves lower in energy
as the temperature increases. Somewhere above 20 K the gap seems to disappear,
moving into the incoherent peak.
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5.4.2 Extension of Spin-wave Model

To determine whether the gap is in fact decreasing with temperature, or whether
what we see is simply the mode broadening and decreasing in intensity, we compare
the experimental results with a model of the excitations. The spectrum observed
at 1.5 K (fig. 5.14a) is suggestive of a two-peak lineshape. In order to extend the
spin-wave model introduced in eqn. 5.1 to allow two non-degenerate gapped modes
at Q = (0, 0, 1) we include two anisotropy terms. The Hamiltonian of this refined
model is then:

H = Jab

∑

〈i,i′〉
Si · Si′ + Jc

∑

〈i,j〉
Si · Sj

−D
∑

i

(Sz
i )

2 − E
∑

i

[(Sx
i )2 − (Sy

i )2] , (5.9)

where Jab and Jc are intra- and inter-layer exchange parameters, respectively, as before
(see fig. 5.11). The anisotropy constant D quantifies the tendency of the spins to lie
along the c axis 6, while the term E

∑
i[(S

x
i )2 − (Sy

i )2], which has two-fold symmetry
in the plane, is the simplest way to introduce in-plane anisotropy. The inclusion of
this term is discussed in section 5.5. We define x parallel to a, z parallel to c, and y
perpendicular to x and z so as to make a right-handed set.

The spin-wave dispersion resulting from this Hamiltonian can be calculated using
the same notation as before (see appendix B) to give two modes:

~ω±Q =
√

A2
Q − (CQ ±DQ)2 , (5.10)

where ~ω is the energy transfer, S is the spin (here assumed to be S = 1/2),
Q = (h, k, l) is the wavevector, and the elements AQ, CQ and DQ are redefined
for this Hamiltonian as

AQ = 2S {Jab [cos(2πh) + cos(2πk) + cos(2π(h + k))− 3] + Jc + D} (5.11)

CQ = −2SE

DQ = 2SJc cos(πl) .

Note that D (the anisotropy parameter) is not the same as DQ. The magnitudes of
the gaps at the magnetic zone center are then related to the exchange and anisotropy
parameters as follows:

~ω±gap = 2S
√

(Jc + D)2 − (Jc ± E)2 . (5.12)

Note that if E = 0 only one gap results.

6We should note that Bayrakci et al. introduced a similar term −D
∑

i(S
z
i ) (with the sign of D

alternating from layer to layer) to describe a single anisotropy gap, in their paper on Na0.82CoO2.
However they were unable to determine definitively the existence of the gap, fitting a value for |D|
of 0.05± 0.05. [21]
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For the case when Q lies parallel to the ordered moment direction, such as at Q =
(0, 0, 1) here, the inelastic neutron intensity is proportional to Sxx(Q, ω) + Syy(Q, ω)
[20], where

Sxx(Q, ω) = 2S2{AQ − (CQ −DQ)}
~ω−Q

G−(ω − ω−Q)f 2(Q)[n(ω) + 1] (5.13)

Syy(Q, ω) = 2S2{AQ − (CQ + DQ)}
~ω+

Q

G+(ω − ω+
Q)f 2(Q)[n(ω) + 1] , (5.14)

where [n(ω) + 1] is the Bose factor, and f(Q) is the form factor (which is a constant
here since all our energy scans were made at one fixed value of Q). G(ω − ω±Q)
are normalized Gaussian functions which replace the usual Delta functions to allow
inclusion of intrinsic broadening of the two modes.

The triple-axis spectrometer has a three-dimensional ellipsoid-shaped resolution,
and therefore does not probe the dispersion relation at an infinitely sharp point in
reciprocal space. In order to fit the spin-wave model to the experimental data it
was therefore necessary to convolute the calculated spectrum (eqns. 5.13 and 5.14)
with the IN14 spectrometer resolution. This was achieved using RESCAL, a set
of programs integrated into Matlab which calculates the resolution function of the
neutron triple-axis spectrometer [22]. It allows simulation of scans using a 4D Monte-
Carlo convolution of the resolution function with the specified spectrum, and the
simulation can then be fitted to the data in order to extract the parameters.

In this way the anisotropy parameters were extracted, while fixing the exchange
parameters Jab and Jc to the values obtained previously in section 5.3 (−6 meV and
12.2 meV respectively). This assumption is valid if D and E are small compared
to Jab and Jc, which is later shown to be the case. The relative amplitudes of the
two modes were fixed by the spin-wave model, with an overall amplitude fitted, and
the values for the intrinsic widths of the dispersion modes were fitted independently.
The incoherent peak and background were included as a fixed Voigtian peak plus a
constant.

At T = 1.5 K the values for D and E were found to be 0.096 ± 0.005 and
0.059 ± 0.005 meV, corresponding to two modes with gaps of 0.95 ± 0.15 and
1.95±0.15 meV. To achieve a good fit the intrinsic widths of the two modes were found
to be different: 0.37 and 0.74 meV for the lower and higher modes. The fitted curve is
displayed on fig. 5.16a, with the two lower curves representing the contribution of each
of the gapped modes. The dashed line shows the contribution of the incoherent peak,
which is also plotted scaled down by a factor of 100 (shaded peak) as an indication
of the instrumental resolution.

The model appears to fit the data well. For comparison fig. 5.16b shows the same
data fitted with a ‘one-mode’ dispersion, by fixing the value of E to zero. In this fit
the value of D was found to be 0.082±0.015 meV (E = 0), and the intrinsic width of
the mode is much larger than before (1.21 meV). It is clear that the model with two
modes fits the data better than that with one, yielding a value of χ2=1.2 compared
to χ2=3.7 with E = 0. In fig. 5.17 we plot the two dispersion modes parallel to Ql
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D = 0.096 meV, E = 0.059 meV,  χ 
2
 = 1.2

D = 0.082 meV, E = 0 meV,  χ 
2
 = 3.7

Figure 5.16: Fits to the neutron inelastic scattering from Na0.75CoO2 mea-
sured at T = 1.5 K, as shown in fig. 5.14a: an energy scan at
constant Q = (0, 0, 1). Fitted (solid line) with (a) a two-mode
dispersion, and (b) one mode only (with E = 0), as described in
the text. The two peaks (dotted, dash-dotted) under the data
in (a) show the contribution of each mode to the total intensity.
Dashed curves in both (a) and (b) represent the contribution of
the incoherent peak and background; shaded peaks show the in-
coherent peak contribution scaled down by a factor of 100, as an
indication of the instrumental resolution.

(calculated from eqn. 5.10 using the fitted parameters for D and E), together with
the data previously measured around Q = (0, 0, 3) (from fig. 5.12). The fitted modes
are also in good agreement with the experimental data in the Ql direction.

The fitting procedure was repeated for data at all temperatures, restricted only
by fixing the intrinsic widths of the two modes to the values at 1.5 K. We also
assumed that the incoherent peak and background are temperature independent.
Figures 5.15a–j are overplotted with fits to each data set, with the contributions
from each mode as solid lines underneath, and the contribution from the incoherent
peak denoted by the dashed line. The fitted lines provide a reasonable description of
the data, reproducing the shift of the intensity towards zero energy with increasing
temperature, although clearly the lineshapes fit less well as the temperature increases.
The gap energies extracted from these fits are plotted as a function of temperature in
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Figure 5.18: The magnitudes of the two gaps as a function of temperature.
Data points calculated from eqn. 5.12 using the values of Jc,
D and E derived from fits shown in fig. 5.15. Solid and dashed
curves are guides for the eye. Error bars were estimated by
varying the two gap energies separately until the fit was no longer
acceptable.
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fig. 5.18. Both gaps decrease with temperature, falling to near zero at ≈ 20 K. Above
20 K the fitted gaps are relatively constant and close to zero.

Attempts were made to fit the spectra with the ‘one-mode’ dispersion (E = 0),
but up to 20 K a better fit was achieved with the two-mode lineshape (E 6= 0),
although improvement was marginal for several of the scans.
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5.5 Discussion and Conclusions

In this chapter we have reported measurements and calculations which reveal
that the magnetic correlations in Na0.75CoO2 are of a three-dimensional (3D) nature,
despite its highly 2D physical properties. In fact, the inter-plane exchange constant
Jc is found to be roughly double the intra-plane constant Jab. The spin wave
modes propagating along the c-axis are found to be relatively sharp, indicating a
well correlated ground state. The in-plane modes exhibit broadening greater than
instrumental resolution, as indicated on fig. 5.13c.

Comparisons have been made between NaxCoO2 and other layered supercon-
ducting families, such as the copper oxides. The strong 2D nature of the cuprates
is thought to be important for their superconductivity, and contrasts with the 3D
magnetic interactions found here for Na0.75CoO2. It is likely that the c-axis magnetic
coupling is weakened in hydrated NaxCoO2, due to the large inter-layer spacing, and
it is tempting to speculate that this coupling actually inhibits superconductivity. This
possibility is especially pertinent given evidence for the presence of H3O

+ ions in the
hydrated compound, which would make Co valence for superconductivity similar to
that in Na0.75CoO2 [23].

Since publication of our results, the three-dimensionality of the magnetism in
NaxCoO2 has been discussed by Johannes et al., in conjunction with theoretical
models of the exchange paths [24]. In this paper, first principles calculations were
used to analyse the exchange mechanisms. Many different paths between Co ions on
adjacent layers were identified by considering hopping mechanisms, both along Co-O-
Na-O-Co and Co-O-O-Co paths. By including both nearest and next-nearest Co ions
on adjacent planes they concluded that the individual exchange interactions along c
should be scaled down by a factor of nine compared to those fitted with our model,
i.e. J ′c = Jc/9. In this scenario, J ′c ¿ Jab and the individual exchange paths reflect
the two-dimensional nature of the layered compound. However, three-dimensional
magnetism is observed because of the multiple exchange paths along the c axis.

We have seen that the spin-wave dispersion in Na0.75CoO2 is clearly gapped,
and our analysis indicates that there are probably two gaps. The analysis we
have presented in section 5.4 has been performed with a Hamiltonian including two
anisotropy terms. While including a term to describe a uniaxial anisotropy (D) seems
logical given that the spins do lie along the c axis, the need to introduce also an in-
plane anisotropy term, with two-fold symmetry, deserves some comment. Taking into
account only the nearest-neighboring oxygen ions, the Co environment has 3-fold
symmetry within the planes, as shown in fig. 5.11b. With the quantization direction
parallel to the c axis, an anisotropy term with 3-fold symmetry does not lift the
two-fold degeneracy of the spin-wave dispersion, so such a term would not generate
an in-plane gap. 7 The existence of such a gap therefore implies a lowering of the
symmetry in plane.

One possible mechanism by which the 3-fold symmetry within the plane could

7In fact any term containing only products of Sx and Sy higher than order two will not generate
a gap when the spins lie along the z-direction.
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be broken is from the distribution of Na atoms. The Na atoms are known to order in
various patterns dependent on doping level x, many of which break the 3-fold in-plane
symmetry [2]. The distribution of Na atoms could influence the magnetic anisotropy
either through the crystal field or through exchange anisotropy. Another possibility
is charge disproportionation on Co atoms [25]. At present there is no direct evidence
for this, except at x = 0.5, but Co charge ordering could also generate crystal or
exchange anisotropy.

By fitting the same model to data measured at various temperatures up to 24.4 K
we have shown that both gaps vanish within experimental error at approximately
20 K. From the proximity of this temperature to the bulk magnetic transition at
Tm ≈ 22 K found in magnetization studies we infer that the spin waves have the
same origin as the Tm transition. This may seem obvious, but the strength of the
spin-wave scattering in comparison to the small size of the ordered moment made it
important to confirm that the observed spin excitations were really associated with
the magnetic order.

There is in fact another possible way of generating two gaps at the magnetic zone
centre. The same energy spectrum might be observed if there were two domains in
the crystal, each with a slightly different value for the easy-axis anisotropy parameter
D, and negligible in-plane anisotropy. While this seems unlikely, it is possible to
distinguish between the two scenarios using polarized neutrons. If there are two
modes from in-plane and out-of-plane anisotropy gaps the intensity in one mode
will come from one component of S(Q, ω) (Sxx(Q, ω)), while the intensity in the
other mode will come from Syy(Q, ω). Using the right polarization setup it would
be possible to ‘turn off’ one mode while measuring the other, and therefore verify
that they have different origins. If instead, both observed modes stem from an out-
of-plane anisotropy gap, but with slightly different anisotropy parameters, it would
not be possible to separate the intensities of the two. This would be a worthwhile
extension to the work presented in this chapter.

The spin excitation spectrum observed here is not easily reconciled with the
usual picture of localized Co4+ and Co3+ ions carrying spins S = 1/2 and S = 0,
respectively. If localized Co4+ spins were distributed at random then a very broad
magnetic excitation spectrum would be expected, unlike the sharp modes observed
experimentally. One possibility is that there is a phase separation into ferromagnetic
in-plane clusters of Co4+ ions in a matrix of non-magnetic Co3+. However, the
Coulomb penalty would be considerable, and to obtain consistency with the observed
sharp spin modes along the c-axis these clusters would have to be aligned vertically
above each other over many layers. There is also evidence that NaxCoO2 is a good
metal, which would suggest that an itinerant picture might be more appropriate [26].
A weakly itinerant ground state with strong spin fluctuations would be consistent
with both the small ordered moment (≤ 0.2µB) and the fact that the energy scale of
the magnetic excitations is much greater than the magnetic ordering temperature.

In this vein, the clean gap we have observed in the spin-wave dispersion points
towards a system of local moments with a small symmetry-breaking anisotropy field,
which is supported by our successful description of the data using a simple spin-
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wave model based on localized Co spins. However, the large intrinsic widths are not
consistent with a model of purely localized Co ions, and can be taken as evidence
of more metallic behavior. These features of the magnetism of NaxCoO2 need to be
taken into consideration when assessing theories of the metallic state of this material.

A similar study of excitations was made by Bayrakci et al. on Na0.82CoO2, at the
same time as our investigations into Na0.75CoO2. They employed a similar spin-wave
model to extract exchange parameters, although a factor of two exists between the
exchange parameter definitions in their model compared to ours. In our notation
their exchange parameters for Na0.82CoO2 are Jab = −9± 0.6 meV and Jc = 6.6± 0.6
meV, compared to our values of Jab = −6 ± 2 meV and Jc = 12.2 ± 0.5 meV for
Na0.75CoO2. Figure 5.19 shows a comparison between the two dispersions. The in-
plane exchange parameters are fairly good agreement in the two studies, considering
that measurements of the dispersion relation in this direction have not reached the
zone boundary in either compound. However, in the c direction there is almost a factor
of two difference between the energies of the dispersions at the zone boundary, and
hence in the extracted exchange parameter Jc. As yet we have no clear explanation
for this discrepancy. One possibility is that there is a different pattern of sodium
ordering in the two compounds. Theoretical calculations suggest that the Na exchange
pathways are important in determining the magnitude of the interlayer coupling [24].

Figure 5.19: Comparison between the dispersions in NaxCoO2 for x = 0.75
(determined in this chapter, and reported in ref. [17]), and for
x = 0.82 (measured by Bayrakci et. al [21]). Solid curves show
fitted dispersion relations with exchange parameters Jab=-6 meV
and Jc =12.2 meV for x = 0.75 and Jab=-9 meV and Jc=6.6 meV
for x = 0.82 in our notation.



Chapter 5. Magnetic Excitations in Metallic NaxCoO2 141

Another possibility is that charge disproportionation, which has been observed in this
doping region by NMR studies [27], might alter the magnetic ordering and affect the
excitations. It is important to note that the sodium contents of both samples are not
known very precisely. To investigate the c-axis dispersion further, measurements at
other doping levels would be informative, and accurate determination of the sodium
content is crucial.

Finally, we comment on some of the remaining puzzles in the bulk magnetization
measurements of NaxCoO2 with x ≈0.75–0.85. The magnetic excitation spectrum
is clearly consistent with a magnetically ordered A-type antiferromagnetic structure,
with spins pointing along the c-axis. However, magnetization measurements on single
crystals show that the magnetization M parallel to ab is larger than M ‖ c, which
would make the ab plane the easy direction. The observation that M ‖ c and M ‖ ab
cross over at low temperatures, below ∼ 7 K is also still unexplained. As well as
this, Curie Weiss fits to the susceptibility give negative values for ΘW , which indicate
dominant antiferromagnetic interactions within the compounds, while the sum of the
exchange interactions derived from the magnetic excitation spectrum shows that the
ferromagnetic interactions are dominant.
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Chapter 6

Spin-flop Transition in NaxCoO2

6.1 Introduction

In this chapter we present a way to investigate the magnetic structure of NaxCoO2

(x ≈ 0.7−0.95) and also to gain information about spin anisotropy in the compound.
In the accepted A-type antiferromagnetic structure (fig. 6.1a) the moments are

ferromagnetically aligned within the layers and stacked antiferromagnetically along
the c axis. [1, 2]. The ordering wavevector for this structure is (0, 0, 1). We saw
in the previous chapter that strong spin-wave scattering is observed emerging from
(0, 0, l) positions with odd l, which are zone centres for the A-type antiferromagnetic
order, but no magnetic Bragg peaks have been observed at these positions using

Figure 6.1: (a) The accepted A-type antiferromagnetic ground state of
NaxCoO2 with x ∼ 0.7−0.9. (b) Polarized neutron measurements
of a magnetic Bragg peak in Na0.82CoO2 measured by Bayrakci
et al [2]. Normalized intensity (equal to spin-flip intensity divided
by non-spin-flip intensity) as a function of temperature measured
with polarization P ‖ Q at two reciprocal lattice points: Q =
(1, 0, 1) and Q = (1, 0, 0).
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neutrons 1. On this basis it was deduced that the ordered moments point along the
c direction since neutrons scatter from the component of the moments perpendicular
to the scattering vector. This moment direction is consistent with what has been
inferred from the uniform susceptibility and from µSR data [3]. Moreover, Bayrakci
et al. did succeed recently in observing magnetic Bragg reflections at a few (h, k, l)
positions with h, k 6= 0 and odd l using polarized neutrons [2]. Figure 6.1b shows
polarized neutron measurements made at the position Q = (1, 0, 1) compared with
the same measurements at the forbidden reflection Q = (1, 0, 0). Again, these are
consistent with the accepted magnetic structure. Polarized neutrons were required
because the ordered moment is small and strong non-magnetic scattering is observed
at all positions where magnetic Bragg peaks are expected. Up to now no magnetic
Bragg peaks have been observed with unpolarized neutrons.

The experiment we describe here was originally designed to confirm the proposed
magnetic structure by a method that employs unpolarized neutrons but avoids the
problem of having to separate the weak magnetic scattering from the strong non-
magnetic background signal. Our approach was motivated by measurements of the
magnetization of Na0.85CoO2 in applied fields up to 14 T by Luo et al. [4]. These
measurements are reproduced in figure 6.2. The magnetization data with H ‖ c show a
clear anomaly at 8 T at low temperatures, with no such transition seen for H ⊥ c. The
authors interpreted this as a spin-flop transition in which the ordered moments rotate
by ∼90 degrees while preserving the A-type antiferromagnetic arrangement. After
the transition the spins lie approximately in the hexagonal plane, but the magnetic
structure has a small ferromagnetic component along the c axis. Assuming this
explanation to be correct we induced the spin-flop transition in a neutron diffraction
experiment and searched for magnetic Bragg peaks along Q = (0, 0, l), since now the
ordered moment should be perpendicular to the scattering wavevector and should
scatter neutrons. Our experimental results are in excellent accord with the predicted
behavior. Encouraged by this, we go on to show that the size of the spin gap in the
magnetic excitation spectrum is in agreement with the observed spin-flop field. This
quantitative analysis provides the link between the static magnetic properties studied
in this chapter and dynamic magnetic properties explored in the previous chapter.

1There is strong spin-wave scattering around Q = (0, 0, l) with l = odd because the spin
fluctuations are perpendicular to Q.
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Figure 6.2: (a) The magnetization M versus field H of Na0.85CoO2 at H ‖ c
and H ‖ ab for various temperatures 2 ≤ T ≤ 20 K as marked. (b)
dM/dH versus H at 5, 10, 15, and 20 K for H ‖ c. (c) The phase
diagram of Na0.85CoO2 determined from susceptibility (open
circle), specific heat (solid circle), and magnetoresistance (open
square) measurements. CW, AF, and FM represent a Curie-Weiss,
an antiferromagnetically ordered and a spin ferromagnetically
polarized state, respectively. All figures from Luo et al. [4].
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6.2 Diffraction Studies of Na0.85CoO2

6.2.1 Experimental Details

Neutron diffraction measurements were performed on the hot-neutron diffrac-
tometer D3 at the Institut Laue-Langevin. The instrument was used in unpolarized-
neutron mode with a neutron wavelength of 0.84 Å. The single crystal of Na0.85CoO2

used for these measurements was cleaved from a rod grown in Oxford by the floating-
zone method [5]. The crystal had a mass of 0.3 g and a mosaic spread of ∼ 2 degrees.

In the introduction to chapter 5 we discussed the sodium content of the NaxCoO2

studied in this thesis. EPMA measurements on the Na0.85CoO2 crystal studied here
suggest that the sodium level is nearer to x = 0.80. EPMA is a surface probe, so the
accuracy of this measurement as a characterization of the whole sample is not known,
and we refer to the sample using the nominal value throughout the chapter.

The crystal was pre-aligned on the neutron Laue diffractometer Orient Express
at the ILL and mounted on an aluminium pin using ceramic glue, as shown in fig. 6.3.
The ideal setup for this experiment would be to align the c axis vertically, applying
a vertical field, with the incident and scattered beams inclined at the Bragg angle to
the horizontal in order to access the (0, 0, 3) reflection. An alternative setup, with
a fixed horizontal incident beam, would require the cryomagnet holding the sample
to be tilted by the Bragg angle (θB), with the detector lifted out of the plane (by
2θB), allowing access to the (0, 0, 3) reflection while still applying the field directly
along the c axis. However, on D3 we were restricted to using a horizontal incident
beam (ruling out the first setup), and also unable to tilt the cryomagnet (ruling out
the second). In order to access the (0, 0, 3) reflection we tilted the crystal c axis
7 degrees away from vertical, corresponding to the (0, 0, 3) Bragg angle for 0.84 Å
neutrons, and lifted the detector out of the horizontal plane by 14 deg. The 10 Tesla

Figure 6.3: Single crystal of Na0.85CoO2 (0.3 g) mounted for measurements
on D3.
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vertical-field cryomagnet in which the crystal was mounted then allowed application
of a field almost parallel to the c axis (though actually 7 degrees away from it). The
field-induced (0,0,1) magnetic Bragg peak is expected to be larger than that at (0,0,3)
due to the magnetic form factor, but with 0.84 Å neutrons the scattering angle for
(0,0,1) was too small to access with our setup.

6.2.2 Measurements and Results

Figure 6.4 shows the main results of the diffraction studies of Na0.85CoO2. All
the measurements were made by scanning either field or temperature with the other
external variable fixed. For ideal NaxCoO2 no structural Bragg peak is allowed at
this position and no magnetic Bragg peak is allowed if the moments point along the
c axis.

Figure 6.4a shows three field scans at Q = (0, 0, 3), performed at constant
temperatures of T = 1.8, 10 and 30 K. The data at 10 K and 1.8 K have been
shifted up by 500 and 1000 counts respectively for clarity.

At T = 1.8 K there is a large increase in the intensity of scattering at (0, 0, 3)
between ∼6 T and 9 T as the field increases, with the intensity appearing to flatten
off between 9 and 10 T. At T = 10 K the increase in intensity has shifted up in
field to start at ∼8 T, and at T = 30 K the intensity remains constant with field.

Figure 6.4: Diffraction studies of Na0.85CoO2. (a) Field scans at Q = (0, 0, 3)
at constant temperatures of T = 1.8, 10 and 30 K. Data at
T = 10 K and 30 K are shifted up by 500 and 1000 counts
respectively. (b) Temperature scans at Q = (0, 0, 3), with zero
applied field (open circles), and with H =9.6 T applied at 7
degrees to the c-axis (filled circles).



Chapter 6. Spin-flop Transition in NaxCoO2 149

The increase in intensity with field at 1.8 K is consistent with the expected spin-flop
transition because once the spins have rotated away from the c direction magnetic
Bragg scattering is allowed at (0, 0, 3), provided that the ordering wavevector remains
(0, 0, 1).

With increasing temperature two effects are at work: (1) the field at which the
spin-flop transition occurs shifts up slowly with T [4], and (2) the ordered magnetic
moment µ decreases with T . Both effects would result in the reduction of intensity
with increasing temperature. However, the effect of (1) is too small to explain the
disappearance of the signal by 30 K (see Luo et al. [4]), so we deduce that the signal
disappears due to the reduction of the ordered magnetic moment to zero above the
magnetic ordering temperature Tm.

In fig. 6.4b we plot the temperature dependence of the scattering at Q = (0, 0, 3),
in both zero applied field and 9.6 T. We confirm that the signal induced by application
of the magnetic field decreases to zero as the temperature is raised to ∼ 20 K.
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6.3 Analysis of the Spin-Flop Transition

Figure 6.5 shows the magnetic structure of the low-field A-type antiferromagnetic
(AF) phase (a), along with that of the spin-flop (SF) phase (b). As discussed above,
the large increase in Bragg intensity at Q = (0, 0, 3) that occurs between ∼ 6 T and
9 T (fig. 6.4a) appears to support the idea that a phase transition from an AF to a
SF phase occurs at this field. In order to further investigate this interpretation of the
data it is constructive to compare the observed spin-flop transition field with that
calculated from a model based on the exchange and anisotropy parameters extracted
in the previous chapter.

6.3.1 Spin-wave Analysis

To model the spin-flop transition we extend the spin-wave model to include an
external magnetic field applied along the c axis. We begin by calculating the effect

Figure 6.5: (a) The ordered A-type antiferromagnetic structure in the a–
c plane, with an external magnetic field B applied parallel to
the spins. (b) Above a critical field Bsf the system undergoes
a spin-flop transition, to a phase with spins at an angle θ to
the c-axis. We take the spins to lie in the xz plane. A and B
label the two sublattices of the antiferromagnet in both cases.
(c) Transformation of coordinates for the A and B sublattices in
the spin-flop phase, from (x, y, z) to (xA, y, zA) and (xB, y, zB)
respectively.
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of the field on the spin-wave modes of the AF phase. This enables us to calculate
the critical field at which a phase transition would be expected to occur. A term is
added to the original Hamiltonian (eqn. 5.9) to represent a vertical applied magnetic
field, giving a new Hamiltonian:

H′ =H + gµBB
∑

i

Sz
i (6.1)

=Jab

∑

〈i,i′〉
Si · Si′ + Jc

∑

〈i,j〉
Si · Sj

−D
∑

i

(Sz
i )

2 − E
∑

i

[(Sx
i )2 − (Sy

i )2] + gµBB
∑

i

Sz
i , (6.2)

where B is the magnitude of the applied magnetic field, we take the spin as S = 1/2
and we assume g = 2.

The spin-wave dispersion was derived from H′ using the method described in the
previous chapter. The Hamiltonian can again be written to second order in the form

H2nd order =
∑
Q

X†
QHQXQ , (6.3)

where X is the column vector (aQ, bQ, a†Q, b†Q). However, in the AF phase the applied
field B alters the symmetry of the matrix HQ, which can be expressed slightly
differently to the general form in appendix B:

HQ =
1

2




AQ + ∆Q 0 CQ DQ

0 AQ −∆Q DQ CQ

CQ DQ AQ + ∆Q 0
DQ CQ 0 AQ −∆Q


 , (6.4)

where

AQ = 2JabS [cos(2πh) + cos(2πk) + cos(2π(h + k))− 3] + 2JcS + 2DS (6.5)

∆Q = gµBB

CQ = −2ES

DQ = 2JcS cos(πl) .

The diagonalization of this matrix gives two modes:

~ω±Q =

[
(A2

Q + ∆2
Q)− (C2

Q + D2
Q)± 2

√
(AQ∆Q)2 − (∆QCQ)2 + (CQDQ)2

]1/2

(6.6)
In zero applied magnetic field ∆Q = 0, and eqn. 6.6 reduces to the expression

derived in chapter 6, eqn. 5.10. Applying a field further splits the two modes, i.e.
the lower mode moves down in energy, and the higher mode moves up in energy, as
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the field is increased. The magnitude of the gaps at the magnetic zone center as a
function of field, B, are then given by

~ω±gap(B) = 2S
[
β2 + (2JcD + D2 − E2)± 2

√
β2D(2Jc + D) + J2

c E2
] 1

2
, (6.7)

where β = gµBB/2S.
As the field is increased to a critical field, Bc1, a local instability occurs when the

energy of the lower mode falls to zero and then becomes imaginary, and the system
can no longer remain in the low-field AF phase (fig. 6.5a) [6]. Figure 6.6a shows the
evolution of the gap energies of the two modes with increasing field (solid lines) for the
exchange and anisotropy values derived in chapter 6. The critical field is determined
by setting ~ωgap(Bc1) = 0 for the lower mode, resulting in the expression

Bc1 =
2S

gµB

√
(D − E)(2Jc + D − E) . (6.8)

Bc1 is the critical field at which we would expect the system to ‘flop’ out of the A-type
antiferromagnetic phase (fig. 6.5a) into the spin-flop phase (fig. 6.5b) based on the
closing of the gap with increasing field.

A similar calculation can be performed by considering the spin-wave modes in
the SF phase. In this phase there are two modes at high field, and as the field is
decreased there exists a critical field Bc2 at which the lower mode vanishes and the
SF phase is no longer stable. At this field, Bc2, the system returns to the AF phase.

In order to carry out the spin-wave calculation in the SF phase it is necessary
to transform the coordinate system for the two sublattices as shown in fig. 6.5c, so
that the spin quantization directions for the two sublattices A and B lie along zA and
zB respectively. The Holstein-Primakoff transformations used to transform the spin
operators to Bose operators (see eqn. 5.2, chapter 6) can then be written as

SzA
i = S − a†iai SzB

j = −(S − b†jbj) (6.9)

SxA
i =

√
S/2

(
ai + a†i

)
SxB

j =
√

S/2
(
b†j + bj

)

Sy
i =

1

i

√
S/2

(
ai − a†i

)
Sy

j =
1

i

√
S/2

(
b†j − bj

)
,

where a†i (b
†
j) creates a spin deviation on site i(j) of sublattice A(B), and we take

S = 1/2 as before. The Hamiltonian (eqn. 6.1) is rewritten first in the new coordinate
systems using the transformations

Sz
i = SzA

i cos θ − SxA
i sin θ Sz

j = SzB
i cos θ + SxB

i sin θ (6.10)

Sx
i = SxA

i cos θ + SzA
i sin θ Sx

j = SxB
i cos θ − SzB

i sin θ ,

and then in terms of the Bose operators using eqns. 6.9. All terms greater than second
order in the Bose operators a†, a, b†, b are neglected, so we obtain a Hamiltonian
involving only zero, first and second order terms in the Bose operators:

H = H0 +H1st order +H2nd order . (6.11)
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Figure 6.6: Calculated gap energies at antiferromagnetic zone centre of the
two modes as a function of applied field B. Jc=12.2, Jab=6 and
(a) D=0.096 and E=0.059, (b) D=0.082 and E=0. Solid lines
show two modes as field increases from ‘AF’ structure (fig. 6.5a);
dashed lines show two modes as field decreases from ‘SF’ structure
(fig. 6.5b). Insets: close-ups of region around the critical field.

H0 does not contribute to the excitations and is neglected. The spin-flop angle θ,
defined by figure 6.5b, is determined by the condition that the first order terms in
the Hamiltonian vanish, i.e. H1st order ≡ 0 [6]. From this condition we derive the
expression

θ = arccos

(
gµBB

2S(2Jc −D + E)

)
. (6.12)
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The second order terms in the Hamiltonian describe the spin-wave excitations, and
using Fourier transforms (as given in eqn. 5.3), H2nd order can be written in the
standard form (see appendix B):

H2nd order =
∑
Q

X†
QHQXQ , (6.13)

where X is the column vector (aQ, bQ, a†Q, b†Q). The matrix HQ is written in general
form as:

HQ =
1

2




AQ BQ CQ DQ

BQ AQ DQ CQ

CQ DQ AQ BQ

DQ CQ BQ AQ


 , (6.14)

and here the matrix elements are given by

AQ = 2JabS [cos(2πh) + cos(2πk) + cos(2π(h + k))− 3]− 2JcS cos(2θ) (6.15)

+ DS(2 cos2 θ − sin2 θ) + ES(2 sin2 θ − cos2 θ) + gµBB cos θ

BQ = 2JcS cos(πl) cos2 θ

CQ = −DS sin2 θ − ES cos2 θ

DQ = −2JcS cos(πl) sin2 θ ,

where Jab, Jc, D and E are again the exchange and anisotropy parameters derived in
the previous chapter, B is the applied magnetic field and S = 1/2. θ is the spin-flop
angle, given by eqn. 6.12. The dispersion is calculated as in appendix B, giving two
modes:

~ω±Q =
[
(AQ ±BQ)2 − (CQ ±DQ)2

]1/2
(6.16)

The energies of the two modes at the magnetic zone centre (Q = (0, 0, 1) etc.) are
plotted in fig. 6.6a (dashed lines) as a function of field. At high fields the system is
in the spin-flop (SF) phase. As the field decreases the critical field Bc2 occurs when
the lower of the two modes vanishes, and using this condition we find an expression
for Bc2:

Bc2 =
2S

gµB

√
(D − E)(2Jc −D − E)2

(2Jc + D − 3E)
. (6.17)

This is the field at which the SF (spin-flop) phase is no longer stable when the field
is decreased from high fields, and the spins flip into the AF phase.

We now evaluate the expressions for Bc1 and Bc2 to compare these values with
the field at which the spin-flop transition is observed to occur in Na0.85CoO2. The
values of the parameters Jc, D and E have not been measured for this sample, so
we use values obtained in the previous chapter from Na0.75CoO2 (see fig. 5.16a).
These are Jc = 12.2 meV, D = 0.096 meV and E = 0.059 meV, and with these we
obtain Bc1 = 8.19 ± 1.1 T and Bc2 = 8.15 ± 1.1 T (hereafter written together as
Bc = 8.2 ± 1.1 T) (see fig. 6.6a). These values are in strong agreement with the
spin-flop transition field obtained experimentally (fig. 6.4a and by Luo et al. [4]).
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When the spins ‘flop’ into the SF phase we calculate θ = 87.8 ± 0.5 degrees (from
eqn. 6.12), so the spins lie almost antiferromagnetically perpendicular to the applied
magnetic field.

We note that it is likely that Jc, D and E do vary with doping x. The level of
agreement of the spin-flop transition observed with that calculated above is greater
than can reasonably be expected, given the assumptions made. Figure 6.6b shows
the field dependence of modes calculated with parameter values obtained in the ‘one-
mode’ fit shown in fig. 5.16b. In this fit the in-plane anisotropy parameter is set
to zero so that the two modes of the dispersion are degenerate in zero field. The
parameters for this fit are Jc = 12.2 meV, D = 0.082 meV and E = 0, and with these
we obtain Bc = 12.2±1.1 T, which is also in reasonable agreement with the observed
transition.

6.3.2 Mean-field Approximation

The calculated and experimental values for the transition field are in strong
agreement, supporting the interpretation of the data as a spin-flop transition.
However, the spin-wave calculation makes the assumption that the magnetic field
is applied parallel to the c axis, although experimentally the field was tilted slightly,
at 7◦ to the c axis. In order to check that this tilt does not make a large difference to
the above calculation we now calculate the critical field and angle with a mean-field
approximation. In this simple calculation it is straightforward to include the field tilt
angle. The mean field energies are calculated from the Hamiltonian eqn. 6.1, but
since the field is no longer parallel to z we replace the last term with +gµB

∑
i B ·Si.

The mean field energy for the two spin magnetic unit cell (containing one spin on
sublattice A and one on sublattice B) is then given by:

εMeanfield =
Jab

2
(6SA · SA + 6SB · SB) +

Jc

2
(2SA · SB + 2SB · SA) (6.18)

−D
[
(Sz

A)2 + (Sz
B)2

]− E
[
(Sx

A)2 + (Sx
B)2

]

+ gµB (B · SA + B · SB) ,

where we assume spins lie in the x–z plane so that Sy
A = Sy

B = 0.
We again begin with the low-field AF phase. When a field B is applied at

an angle β to the vertical (c-axis), the component of the field perpendicular to c
causes the vertically aligned spins to tilt slightly, so that they are no longer perfectly
antiferromagnetic aligned. This is shown in fig. 6.7a (left). The two sublattices of
‘up’ (A) and ‘down’ (B) spins are tilted away from the c axis by an angle γ in different
directions (see fig. 6.7a, right). From eqn. 6.18 the mean-field energy in the AF phase
is given by

εAF =6JabS
2 − 2JcS

2 cos(2γ)− 2DS2 cos2(γ)− 2ES2 sin2(γ) (6.19)

− gµBBS [cos(β − γ)− cos(β + γ)] .
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Figure 6.7: (a) AF and (b) SF phases in a magnetic field B applied at an
angle β to the vertical (c-axis). Right: spins on each sublattice A
and B. In the AF phase spins lie at an angle γ to the c-axis. In
the SF phase spins on the A and B sublattices lie at φ and θ to
the vertical respectively, with φ 6= θ (both at α to the field).

The angle γ is dependent on the field, and is calculated by minimizing the energy,
i.e. setting (dεAF/dγ) = 0. This results in an expression for γ:

γ = arcsin

(
gµBB sin(β)

2S [2Jc + (D − E)]

)
. (6.20)

Next we consider the energy of the spin-flop (SF) phase in the tilted field, which
occurs as shown in fig. 6.7b. The spins make an angle α to the magnetic field, but
the angle of spins from the vertical differs between layers (θ for sublattice A and φ for
sublattice B). From eqn. 6.18 the mean-field energy in the SF phase can be written

εSF =6JabS
2 + 2JcS

2 cos(2α)−DS2
[
cos2(α− β) + cos2(α + β)

]
(6.21)

− ES2
[
sin2(α− β) + sin2(α + β)

]− 2gµBBS cos(α) .

The angle α is calculated by minimizing the energy, as for γ, resulting in the expression

α = arccos

(
gµBB

2S [2Jc − (D − E) cos(2β)]

)
. (6.22)
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At zero field εAF < εSF so it is more energetically favourable for the system to
be in the AF phase. At high fields εAF > εSF so the system is in the spin-flop phase.
To find the crossover point, or critical field, we equate εAF and εAF and solve for
Bc = B(εAF = εSF):

Bc =
2S

gµB

√
(D − E)(2Jc + (D − E))(2Jc − (D − E) cos(2β))

2(2Jc + (D − E))− (2Jc + (D − E) cos(2β))
. (6.23)

Evaluating this expression with zero angle β using the parameters fitted in chapter 6,
we find that for the ‘two mode’ parameters (Jc = 12.2± 0.5 meV, D = 0.096± 0.005
meV, E = 0.059 ± 0.005 meV) the critical field Bc(β = 0) = 8.2 ± 1.3 T, and for
the ‘one mode’ parameters (Jc = 12.2 ± 0.5 meV, D = 0.082 ± 0.015 meV, E = 0)
the critical field Bc(β = 0) = 12.2 ± 1.4 T. These values are in strong agreement
with the values obtained by spin-wave analysis. When β is set to 7◦, as in the
experimental setup, Bc rises, but the change is negligible compared to the errors due
to the parameter errors, and we get the same values: Bc(β = 7◦) = 8.2±1.3 T for the
‘two mode’ parameters and Bc(β = 7◦) = 12.2±1.4 T for the ‘one mode’ parameters.
We conclude that the tilt of the applied magnetic field away from the c axis by 7◦

does not make a difference to the critical field.
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6.4 Discussion and Conclusions

We have successfully observed the magnetic Bragg peak at Q = (0, 0, 3) in
Na0.85CoO2 with unpolarized neutrons by inducing a spin-flop transition in a large
vertical magnetic field. The transition occurred at a field of Bsf ≈ 8 T, but was
broad, with a width of approximately 3 T. It is possible that the broadening of the
transition may be due to disorder in the structure, which would lead to a spread of
values of the interlayer exchange constant Jc and in turn lead to a range of values for
Bsf .

We have presented a simple calculation of the spin-flop transition field that would
be expected based on the anisotropy parameters derived from the measurement of the
spin gap in Na0.75CoO2 in the previous chapter. The calculated value for this critical
field of 8.2± 1.1 T is in strong agreement with the observed value for Na0.85CoO2 of
Bsf ≈ 8 T. A mean-field approximation to the calculation, including the tilt of the
applied magnetic field away from vertical, also gives very good agreement.

We caution, however, that the calculation has assumed Jc, D and E to be the
same for the nominal doping levels x = 0.75 and x = 0.85, which is unlikely to be
the case. 2 The agreement is therefore better than can reasonably be expected, given
the assumptions made. It is possible that the real sodium contents of the x = 0.75
and x = 0.85 samples are in fact very close to the same value, which would explain
the excellent agreement between the observed and calculated Bsf . This is supported
by the EPMA measurements reported in the introduction to the previous chapter.
We stress, however, that these measurements are in no way conclusive. With more
time, we would like to repeat the measurements of both the magnetic excitations and
spin-flop transition on one single crystal of known sodium content.

2At present the exchange parameters have only been measured for x = 0.75 (presented in this
work), and x = 0.82 by Bayrakci et al. [2]. A factor of two exists between our notation for the
exchange parameters Jab and Jc and that of Bayrakci et al. In our notation their parameters for
Na0.82CoO2 are Jab = −9 meV and Jc = 6.6 meV, compared to our values of Jab = −6 meV and
Jc = 12.2 meV for Na0.75CoO2.
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Chapter 7

Conclusions and Further Work

In this thesis three correlated electron systems, each exhibiting different forms
of complex behaviour, were investigated though neutron scattering studies and
modelling of the results. The experimental work highlights the diversity of neutron
scattering techniques currently available for the study of condensed matter systems,
and the importance of selecting the right instrument to investigate each problem.

The study of magnetic excitations in La1.5Sr0.5CoO4, for example, was ideally
suited to the MAPS time of flight spectrometer. For two-dimensional excitations
MAPS allows measurements of a large area of reciprocal space over a wide range
of energy transfers, and we were therefore able to map out the whole dispersion
in one measurement, including the diffuse upper mode which has very low intensity.
Had a triple-axis spectrometer been employed for the first measurements instead, it is
unlikely that we would have found the upper mode. Conversely, in Na0.75CoO2, where
the magnetic excitations are unexpectedly three-dimensional, the interdependence of
wavevector and energy on MAPS makes it difficult to interpret the signal. Triple-axis
measurements offer the most straightforward way to characterize a three-dimensional
dispersion, and in this way the dispersion along c in Na0.75CoO2 was followed up to the
Brillouin zone boundaries. Furthermore, choosing the IN14 cold neutron spectrometer
allowed low energy measurements of the anisotropy gap.

Polarized neutron scattering is another important technique, and is fast becoming
more powerful as neutron fluxes increase. It is invaluable in separating magnetic and
nuclear scattering, and we have shown how it can be used to directly probe the
orientation of ordered moments, and the components of their fluctuations.

Each of the results chapters 3–6 contains a section of discussion and conclusions,
but here we will reiterate some of the more important and interesting points made,
and discuss further work that might be undertaken.

The investigations into PrO2 reported in chapter 3 were motivated by new
measurements of a Jahn-Teller structural distortion below TD ∼ 120 K. It was hoped
that the distortion might help to explain a broad feature in the low-temperature
inelastic neutron scattering spectrum centred at ∼ 30 meV. To this end, point charge
calculations were performed to estimate the ground state splitting expected from the
Jahn-Teller distortion. At the same time, inelastic neutron scattering spectra were
measured at temperatures above and below TD. A feature in the low temperature
data at ∼ 25 meV was identified as the right order of magnitude to correspond
to the ground-state splitting. By fitting the evolution of this peak’s position
with temperature we confirmed that it showed an order-parameter-like behaviour
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consistent with TD. However, the crystal field splitting did not account for all the
intensity in the broad feature at low temperature. In fact, vibronic scattering was
present both above and below the distortion temperature TD. This suggests that,
even when the static Jahn-Teller distortion splits the crystal field levels, the dynamic
Jahn-Teller effect is still present.

Chapter 4 reported experimental measurements and modelling of the magnetic
order and excitations in charge-ordered La1.5Sr0.5CoO4. Overall, a good description
of the whole excitation spectrum was achieved with a spin-wave model containing
only Co2+ ions, and a spin-only Hamiltonian (although the anisotropic crystal field
and the exchange interaction were taken into account in calculating the basis states).
It was not necessary to include interactions between the spins and charge order,
and we concluded that the spin and charge degrees of freedom are uncoupled in
La1.5Sr0.5CoO4. Still assuming that only the Co2+ ions order, polarization analysis
revealed a spin-reorientation corresponding to a rotation within the ab plane.

Two puzzles remain after these analyses. Firstly, the direction of the ordered
moments calculated using elastic polarization analysis is inconsistent with the
components of the fluctuating moment derived from inelastic polarization analysis.
There is also the issue of whether domains with different spin orientations exist in the
same sample, and we cannot resolve this using the existing measurements. It would
be interesting to see whether performing polarization analysis in another scattering
plane would allow the domains to be distinguished. The second puzzle is the issue of
the spin-state of the Co3+ ions, which remains unresolved. No evidence for an ordered
Co3+ moment was observed in the excitation spectrum of La1.5Sr0.5CoO4, but further
work needs to be done to definitively identify the spin-state. One option would be
to use a local probe such as NMR, which should be able to distinguish the Co2+ and
Co3+ sites, and determine the moment on each.

To further the studies of La1.5Sr0.5CoO4 it would also be informative to
perform neutron scattering measurements on La2−xSrxCoO4 with different doping
levels. Although bulk measurements of La2−xSrxCoO4 at various dopings have been
published, we are not aware of any neutron scattering studies for x 6= 0.5, and there
has been no measurement of charge or magnetic ordering patterns for other values
of x. In the isostructural nickelate compounds, La2−xSrxNiO4, a number of doping
levels have been characterized, and anomalous behaviour has been discovered in some
compounds, such as the resonance peak found in the x ≈ 1/3 excitation spectrum.
It would be interesting to discover whether similar effects are present in third-doped
La2−xSrxCoO4. By measuring magnetic excitations in doping levels with different
charge ordering patterns it would be possible to investigate whether the decoupling
of charge and spin is a feature of this family of cobaltates, or due to the particular
stability of the checkerboard charge ordering in La1.5Sr0.5CoO4.

Chapters 5 and 6 present investigations of the magnetic order and excitations
in NaxCoO2 (x ∼ 0.75). The magnetic excitations were found to be highly three-
dimensional, despite the two-dimensional layered lattice structure, and were well
modelled with a spin-wave Hamiltonian assuming spin-1/2 on every Co site. The
spin-flop transition reported in chapter 6 confirmed the A-type antiferromagnetic
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magnetic ordering with spins lying along the c direction.
These results leave some remaining ambiguities. Firstly, the neutron scattering

measurements show that the spins lie along c, while bulk magnetization measurements
are consistent with an easy axis lying in the ab plane. Secondly, the spin-wave analysis
assumes that all Co sites have localized spins (S = 1/2) and are ordered. For a doping
level of x = 0.75, in an ionic picture, only 25% of the cobalt sites are Co4+ (S = 1/2),
while the remaining 75% are Co3+. The magnetic ordering pattern is not consistent
with localized spins on only a quarter of the Co sites, in a charge ordered picture,
or with an ordering pattern involving two very different sized spins. Also, the large
intrinsic widths of the dispersion modes at the zone centre indicate an itinerant nature,
consistent with the bulk metallic behaviour. It is important to resolve the issue of
whether charge disproportionation is present in these samples, and it is possible that
this might be achieved through resonant x-ray studies.

To extend the study of NaxCoO2 it is crucial that we have better samples,
in particular larger single crystals with better mosaics, and accurately determined
doping levels. Especially in the low x region, and hydrated phase, progress is being
severely hindered by the lack of samples. Solving this problem would allow many
more neutron scattering measurements to be undertaken. Firstly, we would like to
continue the measurements of the in-plane dispersion relation up to the magnetic zone
boundary. This would give more detailed information on the exchange interactions
and itinerant effects. Currently measurements only reach 16 meV, while the top of
the dispersion is estimated at ∼ 40 meV. Secondly, it would be interesting to study
other doping levels using neutron scattering. Some neutron scattering measurements
have already been carried out on magnetic excitations in the x = 0.5 compound, but
for the relevance to superconductivity it is important to extend measurements of the
magnetic order and excitations to x = 0.3, and ideally to the hydrated compound.
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Appendix A

Polarization Analysis

A.1 Elastic Measurements:
Direction of the Ordered Moments

The elastic neutron scattering data collected using the six different polarization
and spin-flip configurations (described in chapter 4) were used to perform an analysis
of the direction of the spins of the ordered Co2+ ions in La1.5Sr0.5CoO4.

Measurements were made at two magnetic reflections in the (hh0)− (00l) plane,
QA and QB, which are shown in figure A.1a. Wavevectors QA = (0.25, 0.25, 7) and
QB = (1.25, 1.25, 1) were chosen to make the angles θA and θB small.

Expressions for the relative intensities of measurements at each Q point for each
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Figure A.1: (a) Diagram of the (hh0)−(00l) plane in reciprocal space, showing
the two wavevectors QA and QB at which measurements were
made for polarization analysis. The orthogonal axes (110) and
(11̄0) have been labelled as x and y for ease of reference. (b)
The ordered moment µ with respect to the crystallographic axes,
showing the angle out of the horizontal plane (β), and the angle
within the plane (α, measured from the diagonal (11̄0)).
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configuration were derived using three facts about neutron scattering from spins:

• magnetic neutron scattering measures components of the magnetic moment ~µ
perpendicular to Q;

• the component of ~µ perpendicular to the polarization P contributes to spin-flip
scattering;

• the component of ~µ parallel to the polarization P contributes to non-spin-flip
scattering.

These expressions are given in table A.1, in terms of the components of the ordered
moment µ, as shown in figure A.1, and the angles θA,B defined by figure A.1 as:

θA = arctan

(√
h2

A + k2
A × (2π/a)

lA × (2π/c)

)
and θB = arctan

(
lB × (2π/c)√

h2
B + k2

B × (2π/a)

)
,

(A.1)
where QA = (hA, kA, lA) and QB = (hB, kB, lB), and a and c are the lattice constants
for La1.5Sr0.5CoO4.

P QA: intensity proportional to QB: intensity proportional to

I1 ‖ Q SF µ2
x cos2 θA + µ2

y + µ2
c sin2 θA µ2

x sin2 θB + µ2
y + µ2

c cos2 θB

+BA
SF +BB

SF

I2 ‖ Q NSF BA
NSF BB

NSF

I3 ⊥ Q SF µ2
y + BA

SF µ2
y + BB

SF

I4 ⊥ Q NSF µ2
x cos2 θA + µ2

c sin2 θA + BA
NSF µ2

x sin2 θB + µ2
c cos2 θB + BB

NSF

I5 ‖ ~y SF µ2
x cos2 θA + µ2

c sin2 θA + BA
SF µ2

x sin2 θB + µ2
c cos2 θB + BB

SF

I6 ‖ ~y NSF µ2
y + BA

NSF µ2
y + BB

NSF

Table A.1: Expressions for the scattering intensities at the two wavevectors
QA and QB with the six different polarization and spin-flip
configurations. µx, µy and µc are components of the magnetic
moment (as shown in fig. A.1a), and BA,B

SF and BA,B
NSF represent the

background scattering in the spin-flip and non-spin-flip channels.
(BA,B

NSF includes all non-magnetic scattering).

From figure A.1(b) we can write expressions for the angle of the ordered moment
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out of the plane (β) and in the plane (α), in terms of its components (µc, µx, µy):

α = arctan

(
µx

µy

)
= arctan

(√
µ2

x

µ2
y

)
, (A.2)

β = arctan

(
µc√

µ2
x + µ2

y

)
= arctan

(√
µ2

c/µ
2
y(

µ2
x/µ

2
y + 1

)
)

.

Expressions for ratios of the squares of the ordered moment components in the x,
y and c directions are then written in terms of the intensities in each configuration
measured (Ii) by rearranging the expressions in table A.1. These expressions are:

µ2
x

µ2
y

=
1

T

{
cos2 θB

(
IA
1 − IA

3

)

(IA
1 − IA

5 )
− sin2 θA

(
IB
1 − IB

3

)

(IB
1 − IB

5 )

}
, (A.3)

µ2
c

µ2
y

=
1

T

{
cos2 θA

(
IB
1 − IB

3

)

(IB
1 − IB

5 )
− sin2 θB

(
IA
1 − IA

3

)

(IA
1 − IA

5 )

}
,

where T = cos(θA + θB) cos(θA − θB) 1. Since θA and θB are chosen to be small
angles (here θA = 9.4o and θB = 9.8o), and

(
IB
1 − IB

3

)
is also small 2 we can make the

approximation:
µ2

x

µ2
y

≈ 1

cos2 θA

(
IA
1 − IA

3

)

(IA
1 − IA

5 )
. (A.4)

A.1.1 Flipping Ratio Correction

Due to the finite flipping ratio of the polarized neutron spectrometer a correction
must be made to the neutron counts measured in each configuration before applying
the formulae above. This corrects for a small leaking of spin-flip neutrons into
the non-spin-flip measurements and vice versa. If ci represent the actual counts
measured for each configuration shown in table A.1, and Ii are the corrected intensities
corresponding to the expressions in the same table:

Ii =
f

f − 1
ci − 1

f − 1
cj and Ij =

f

f − 1
cj − 1

f − 1
ci , (A.5)

where (i, j) are pairs of indices (1,2), (3,4) or (5,6), and f is the flipping ratio.

Error analysis

To calculate the errors on the angles, full error analysis was performed to take
into account the errors on neutron counts in each channel (cA,B

1−6) and the error on the
flipping ratio. Details of the method are given in reference [1].

1We note that equations A.3 are written here in terms of the spin-flip intensities (I1, I3, I5), but
can equally be written in terms of the non-spin-flip intensities (I2, I4, I6) simply by substituting
1 → 2, 3 → 4, 5 → 6 throughout.

2This is true when the spins lie approximately in the a–b plane, as is found to be the case here.
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A.1.2 Two Domains

The scattering intensities measure the squares of the components of the magnetic
moment (table A.1). It is therefore not possible to distinguish between positive and
negative angles either within (α) or out of (β) the a–b plane. However, two domains
at 90◦ to each other within the plane would produce a different result, and we briefly
consider the this case (in plane angle only).

Figure A.2 shows the possible setup. We consider a proportion ζ of the
spins to be in the first domain and (1 − ζ) to be in the second domain. The
magnitudes of components of the ordered moments in the two domains are related:
|µx|domain1 = |µy|domain2, |µy|domain1 = |µx|domain2 and |µc|domain1 = |µc|domain2. Is is

Figure A.2: Two possible spin domains: (a) as assumed for a single domain,
and (b) with spins at 90◦ to those in the first domain.
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straightforward to rewrite the equations for the scattering intensities measured at
QA given in table A.1. For example:

IA
1 ∝ ζ

{
µ2

x cos2 θA + µ2
y + µ2

c sin2 θA

}
(A.6)

+(1− ζ)
{
µ2

y cos2 θA + µ2
x + µ2

c sin2 θA

}
+ BA

SF .

Since there are now two unknowns, the ratio of spins in two domains ζ and the
angle of spins in the domains α, we can rearrange for either ζ or α, using the same
approximations as made to reach eqn. A.4:

ζ =

(
IA
1 − IA

5

)
cos2 θA − tan2 α

(1− tan2 α) [(IA
1 − IA

5 ) cos2 θA + (IA
1 − IA

3 )]
, (A.7)

α = arctan

(√
(1− ζ) (IA

1 − IA
5 ) cos2 θA − ζ (IA

1 − IA
3 )

(1− ζ) (IA
1 − IA

3 )− ζ (IA
1 − IA

5 ) cos2 θA

)
. (A.8)

This shows that the polarization measurements made may be interpreted using a
model with two domains, which would give a different in-plane angle α. However, to
determine the angle it is necessary to know the proportion of spins in each domain,
and equally it is possible to determine the proportion of spins in each domain if their
direction is known.

A.2 Inelastic Measurements:
Relative Components of the Spin Fluctuations

Inelastic measurements were also made using the six polarization and spin-flip
configurations shown in table A.1. In the case of inelastic scattering, polarization
analysis can be used to calculate the relative components of the fluctuations of the
moments, and it is therefore an important tool in identifying anisotropy gaps.

The equations which describe the scattering intensity in each of the six
configurations are analogous to those for elastic scattering shown in table A.1 but
the components of the moments (µx, µy, µc) are replaced by components of the
fluctuations of the moments (∆µx, ∆µy, ∆µc). We can therefore write expressions
for the components in an analogous way to eqn. A.3:

(∆µx)
2

(∆µy)2
=

1

T

{
cos2 θB

(
IA
1 − IA

3

)

(IA
1 − IA

5 )
− sin2 θA

(
IB
1 − IB

3

)

(IB
1 − IB

5 )

}
, (A.9)

(∆µc)
2

(∆µy)2
=

1

T

{
cos2 θA

(
IB
1 − IB

3

)

(IB
1 − IB

5 )
− sin2 θB

(
IA
1 − IA

3

)

(IA
1 − IA

5 )

}
,

where T = cos(θA + θB) cos(θA − θB), θA,B are the angles of the positions QA,B, as
defined in fig. A.1, and IA,B

n are the intensities measured at these scattering vectors
(with the same polarization-spin-flip configurations as defined in table A.1, but with
a fixed non-zero energy transfer).
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Figure A.3: Components of the fluctuations of the magnetic moment µ: ∆µ‖,
∆µ⊥ and ∆µc.

Although ∆µx, ∆µy and ∆µc are the components of the fluctuations probed by
the measurements made in this configuration it is conceptually easier to consider the
components of the fluctuations parallel and perpendicular to the ordered moment
direction. If we consider only ordered moments within the ab plane, i.e. with angle
β = 0, we can write ∆µ‖ as the fluctuation of the moment along the ordered moment
direction, ∆µ⊥ as the component of the fluctuation perpendicular to the ordered
moment within the ab plane, and the component of the fluctuation along c (∆µc) is
also perpendicular to the ordered moment direction. This is shown in fig. A.3. In
this case we can write:

(∆µx)
2

(∆µy)2
=

(∆µ‖)
2 sin2 α + (∆µ⊥)2 cos2 α− 2∆µ‖∆µ⊥ sin α cos α

(∆µ‖)
2 cos2 α + (∆µ⊥)2 sin2 α + 2∆µ‖∆µ⊥ cos α sin α

(A.10)

(∆µx)
2

(∆µy)2
=

(∆µc)
2

(∆µ‖)
2 cos2 α + (∆µ⊥)2 sin2 α + 2∆µ‖∆µ⊥ cos α sin α

If we assume that the spins do not have fluctuating lengths then ∆µ‖ = 0 and these
equations reduce to

(∆µx)
2

(∆µy)2
=

1

tan2 α
(A.11)

(∆µx)
2

(∆µy)2
=

1

sin2 α

(∆µc)
2

(∆µ⊥)2 ,

which are easily compared to the measured components give in equation A.9. If the
moment fluctuations are isotropic (but with no length change) then ∆µc = ∆µ⊥, and
(∆µc)

2/(∆µy)
2 = 1/ sin2 α. If the moments fluctuate solely within the ab plane then

∆µc = 0, and (∆µc)
2/(∆µy)

2 = 0.
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Appendix B

Diagonalization of the Spin-wave
Hamiltonian

This appendix outlines the method of diagonalizing a general spin-wave
Hamiltonian written in bilinear Bose operators to calculate the magnon dispersion
relations. The method of calculating the intensities of the modes is also covered
briefly.

B.1 Calculating Dispersion Relations

Any Hamiltonian which is quadratic in Bose operators can be expressed in matrix
form as

H =
∑
Q

X†
QHQXQ , (B.1)

where X is the column vector whose components are Bose operators, and X† is the
transposed Hermitian adjoint of X. For the problems encountered in this thesis it
is possible to write X as a vector of magnon creation and annihilation operators for
two sublattices, and the matrix HQ in a general form, i.e.

XQ =




aQ

bQ

a†Q
b†Q


 with HQ =

1

2




AQ BQ CQ DQ

BQ AQ DQ CQ

CQ DQ AQ BQ

DQ CQ BQ AQ


 . (B.2)

Diagonalizing the Hamiltonian H consists of rewriting eqn. B.1 in a new basis, so
that

H =
∑
Q

X ′ †
QH ′

QX ′
Q , (B.3)

where X ′ is a column vector of the normal mode operators, and H ′ is the diagonalized
matrix:

X ′
Q =




αQ

βQ

α†Q
β†Q


 with H ′

Q =
1

2




Ω1(Q) 0 0 0
0 Ω2(Q) 0 0
0 0 Ω3(Q) 0
0 0 0 Ω4(Q)


 . (B.4)

The transformation from the old basis to the new basis is given by

X = SX ′ , (B.5)



Appendix B. Diagonalization of the Spin-wave Hamiltonian 171

where S is a transformation matrix, and is usually nonunitary. The operators
contained in X obey Bose commutation relations, and their operator nature may
be specified by the commutator

[
X, X†] ≡ X(X∗)T − (X∗XT )T = g where g =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (B.6)

It can be shown, see for example the paper by White et al. [1], that the transformation
matrix S is found by solving the eigenvalue problem

gHS = SgH ′ , (B.7)

where the eigenvalues of the matrix gH are the elements of the diagonal matrix
gH ′, and the columns of S are the corresponding eigenvectors. The normalization
condition for S is derived from the condition that the transformation must preserve
the commutation relations between operators, i.e. the condition given for X in eqn.
B.6 also holds for X ′. This leads to the normalization condition

SgS† = g . (B.8)

For H and H ′ defined as above we find expressions for the diagonal elements of H ′:

Ω1(Q) = Ω3(Q) =
1

2

[
(AQ + BQ)2 − (CQ + DQ)2

]1/2
(B.9)

Ω2(Q) = Ω4(Q) =
1

2

[
(AQ −Bk)2 − (CQ −DQ)2

]1/2
.

This means there are two modes, with spin-wave dispersion relations given by
~ω1 = 2Ω1, and ~ω2 = 2Ω2.

B.2 Calculating Intensities of the Magnon Modes

From chapter 3, section 3.2.3, we know that the intensity measured in magnetic
inelastic scattering can be written:

Intensity ∝ f 2(Q)
kf

ki

∑

αβ

〈(
δα,β − Q̂αQ̂β

)
Sαβ(Q, ω)

〉
, (B.10)

where Q = ki−kf , f 2(Q) is the magnetic form factor. Often only terms with α = β
are needed, and then Sαα(Q, ω) can be written

Sαα(Q, ω) =
∑

Q′

∣∣〈λQ′|Sα(Q)|0〉
∣∣2 δ(~ω − ~ωQ′) , (B.11)

where α is x, y, z. The spin operators Sx, Sy and Sz are defined in terms of the
original Bose operators that make up X. The state |λQ〉 corresponds to the creation
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of one excitation, and is defined in terms of the normal mode operators that make up
X ′: |λQ〉 = α†Q| 0〉 for one mode and |λQ〉 = β†Q| 0〉 for the second. Using eqn. B.5 to
convert between the original operators (a, b) and the normal mode operators (α, β)
allows the evaluation of eqn. B.11 and therefore the calculation of the intensities for
each mode.
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