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Abstract

Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems
Russell A. Ewings, Linacre College, Oxford
DPhil Thesis, Hilary Term 2008

In this thesis results of x-ray scattering and neutron scattering experiments on several
strongly correlated transition metal oxides are presented. The prototypical charge ordered
cuprate La1.48Nd0.4Sr0.12CuO4 was investigated using polarised neutron scattering. The re-
sults show that several proposed schemes for the magnetic order in this class of materials
may be ruled out, however the data are consistent with one-dimensional stripe-like magnetic
order. X-ray diffraction was used to show that the charge order is insensitive to an applied
magnetic field, but might be affected by the existence of superconductivity. The magnetic
excitations were also studied, and at low energies a gap in the magnetic fluctuations was
observed and there is tentative evidence that this is related to magnetic anisotropy. The spin
state transition in LaCoO3 was investigated using neutron inelastic scattering, and excita-
tions reminiscent of those observed in ferromagnets above their critical temperatures were
observed. The debate surrounding the nature of the excited spin state, S = 1 or S = 2,
could not be resolved, however. The nature of the spin excitations in La0.82Sr0.18CoO3 was
investigated using polarised neutrons and it was found that at low energies the excitations
take the form of spin-waves. At higher energies this mode becomes heavily damped, and sev-
eral possible damping mechanisms for this are discussed. Finally, the multiferroic material
DyMn2O5 was studied using x-ray resonant scattering. A complex, temperature dependent,
magnetic structure was found using a Dy resonance, which reflects an underlying order of
the Mn ions. The measurements were in agreement with a theory of multiferroics based on
acentric spin-density waves.
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Chapter 1

Introduction

In this thesis strongly correlated electron systems are examined using neutron and x-ray
scattering, together with complementary bulk measurements. Many different phenomena
are covered by the term ‘correlated electron systems’. At one end of the spectrum of elec-
tronic interactions lie metals, in which the electrons may be considered to be virtually non-
interacting, whereas at the other end of the spectrum there are insulators in which the
electrons are strongly localised, bound to ion cores and also essentially devoid of interactions
[1]. In between these two extremes lie many interesting and varied effects which arise due to
interactions between electrons, and it is some of these phenomena which will be examined
in this thesis.

Strong electron correlations are important because they lead directly to several physical
phenomena which either are, or have the potential to be, of technological importance. For in-
stance, high temperature superconductivity in cuprates is due to strong electron correlations,
as is the phenomenon of colossal magnetoresistance.

Strongly correlated electron systems have proved to be rather difficult to understand,
however. For example, so far no-one has been able to put forward a complete theory of high
temperature superconductivity. Indeed, many phenomena associated with strong electron
correlations have proved difficult to explain, in large part due to the fact that there are often
several competing degrees of freedom in many of the technologically important classes of
materials. The competition between different interactions can lead to quite complex phase
diagrams, and any successful theory must be able to explain the physical properties of the
system in all of these phases.

Faced with such a complicated set of problems physicists have sought to find model sys-
tems in which one kind of interaction dominates over the others. By gathering experimental
data on such systems, and devising theoretical models to explain their behaviour, it is hoped
that the understanding of more complicated materials can be improved upon iteratively.

In this chapter I will consider some of the interactions that are observed in solids. To
begin, I will discuss the interactions of single ions, and will then move on to consider some
of the plethora of ordered states that arise in multi-ion systems, such as different kinds
of magnetic order, superconductivity, and multiferroicity. Some of the excitations of these
ordered states will be considered, and finally the rest of the thesis will be outlined.
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2 Chapter 1. Introduction

1.1 Single-Ion Interactions

To begin, let us recall that electrons are fermions and therefore obey the Pauli exclusion
principle. This means that when electrons are placed in the potential well of a nucleus
they cannot all have the same energy, but rather they occupy ‘shells’ for which there is a
well defined angular momentum and energy. Each shell can accommodate a fixed number
of electrons, so any further electrons added to the system must go into a shell with higher
energy. Electrons in filled shells do not in general interact with the atom’s surroundings, so
the electrons in unfilled shells will usually be discussed here.

1.1.1 Crystal Fields

When considering the properties of a magnetic ion in a solid, the crystalline environment
of that ion will determine some of its properties. Of particular importance is the effect of
Coulomb repulsion between the electron wavefunctions of the ion and its nearest neighbours.
This interaction gives rise to eigenstates with different energy levels which depend on the
symmetry of these wavefunctions and the symmetry of the crystalline environment. The ef-
fects of crystal fields are strong for d-electrons because their wavefunctions extend a relatively
long way from the nucleus towards the surrounding ions, whereas f -electron wavefunctions
are smaller and are partly shielded from Coulomb interactions with the surroundings by the
s- and p-electrons in filled levels.

The crystal field levels in a material can be measured using several techniques. Neutron
inelastic scattering can be used, whereby neutrons transfer energy to electrons in lower
lying levels and excite them into the higher energy states. Such scattering is wavevector
independent. Alternatively photons can be used to excite electrons between levels, with, for
example, peaks in the infra-red absorption occurring at wavelengths corresponding to energy
gaps between levels.

Figure 1.1: A magnetic ion (purple sphere) in an octahedral crystalline environment of
oxygen ions (red spheres).

As an example, consider the octahedral environment MO6, shown in figure 1.1, in which
the magnetic ion M has six nearest neighbour oxygen ions, with their p-electron wavefunc-
tions extending towards M along the bonds. Figure 1.2 shows as an example the overlap
between these p-orbitals, the dxy orbitals and the dx2−y2 . There is more overlap between the
oxygen electron wavefunctions in the latter compared to the former, resulting in an energy
difference. In an octahedral environment the dxy, dxz and dyz (t2g) states will have lower
energy than the dx2−y2 and dz2 (eg) states.
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Figure 1.2: a) Overlap of magnetic dxy orbitals (blue) with oxygen p orbitals (white) in an
octahedral environment, b) Overlap of dx2−y2 (blue) orbitals with p orbitals (white) in an
octahedral environment.

Jahn-Teller Effect

There are six t2g states and four eg states, separated by an energy gap, that can be occu-
pied in a 3d ion. The t2g states are orbitally degenerate, as are the eg states1. In certain
circumstances when these states are partially filled it may be energetically favourable for
the lattice to distort spontaneously, thus lowering the degeneracy. This is known as the
Jahn-Teller effect, and occurs because the energy gained by the system due to elastic strain
may be outweighed by the energy lost by a lowering of the energy of the occupied orbitals.
An illustration of this effect in a Mn3+O6 environment is shown in figure 1.3, where the
distortion is a stretching of the octahedron along the z-axis.

Figure 1.3: The 3d energy levels of Mn3+O6 in an octahedral environment before (left) and
after (right) a Jahn-Teller distortion

1.2 Collective Interactions

1.2.1 Magnetism

Examples of magnetic phenomena have been known for many centuries. Thales of Miletus
(625 to 547BC) is the first person known to have considered magnetism, an account of which

1Degeneracy is a requirement for the Jahn-Teller effect.
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appears in Aristotle’s De Anima [2]. Science has progressed somewhat in the intervening
years, however fundamental magnetic phenomena are still providing a means for us to test
the limits of our knowledge.

Diamagnetism, Paramagnetism, and Hund’s Rules

Diamagnetism is a ubiquitous effect, although its strength is material dependent. It occurs
only when a magnetic field is applied to the material, and acts to oppose the applied field,
i.e. the magnetisation is antiparallel to the applied field. The diamagnetic susceptibility of
an assembly of N identical ions in a volume V , each with Z electrons of mass me, is given
by

χ = −N

V

e2µ0

6me

Z∑
i=1

〈r2
i 〉, (1.1)

where ri are the radii or electron orbitals in the material.

Paramagnetism also occurs only when a magnetic field is applied to a material, however
the paramagnetic magnetisation will be parallel to the applied field. It arises due to the
non-zero angular momentum (spin S and/or orbital L) of the electrons in unfilled shells in a
material, and is due to an interaction between individual ions and the applied field. There
are assumed to be no interactions between the ions. For a material in which the total angular
momentum, J , of each ion is given by J = 1/2 the paramagnetic magnetisation, M , is given
by

M = NµB tanh

(
µBB

kBT

)
, (1.2)

where N is the number of magnetic ions. In the general case, where J 6= 0,

M = NgJµBJ BJ(y), (1.3)

where gJ is the Landé g-factor, y = gJµBJ
kBT

, and BJ(y) is the Brillouin function, which is given
by

BJ(y) =
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

( y

2J

)
. (1.4)

A set of empirical rules, known as Hund’s rules, can be used to determine the angular
momentum quantum numbers of the ground state of a magnetic system. They deal with
the case where the energy of Coulomb repulsion is greater than that arising from spin-orbit
interactions, i.e. the LS-coupling regime. Note that they only apply to the ground state –
they cannot be used for excited states. The rules are as follows:

1. Maximise the spin. This means that, if we consider adding electrons to the shell, every
electron added will increase S by 1/2 until the shell is half-filled. Thereafter each
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electron added will reduce S by 1/2.

2. Maximise the orbital angular momentum, subject to the first rule. Suppose l = 2
(d-electrons), then as we add electrons to the shell the first one will have ml = 2, the
next ml = 1, until we reach half-filling, where the ml will have all cancelled out, and
then we start the process again.

3. J = |L− S| if the shell is less than half-full, and J = |L + S| if the shell is more than
half full.

Exchange Interactions

So far we have not considered any inter-site interaction terms in the Hamiltonian of the
magnetic ions, and although this is a good approximation for a lot of materials, there are
also many where the magnetic ions do interact. The exchange interaction arises due to
Coulomb interactions arising from the overlap of electron wavefunctions in a material [3].
The Heisenberg Hamiltonian, H, for exchange interaction terms is given by

H = −
∑
ij

JijSi · Sj, (1.5)

where Jij is the exchange constant between the ith and jth spins, with positive J corresponding
to ferromagnetism and negative J corresponding to antiferromagnetism.

In a ferromagnet adjacent magnetic moments are aligned parallel, whereas in an antifer-
romagnet they are antiparallel along one or more directions. The periodicity of ferromagnetic
order is equal to the separation of the magnetic moments, whereas for antiferromagnetic or-
der the repeat period is doubled. There are many other magnetic structures that can arise,
for a variety of reasons, where the periodicity is different. For example the magnetic mo-
ments may be helically ordered so that along a particular direction neighbouring moments
are rotated by a fixed angle relative to their neighbours. Such order can be commensurate,
where the period of the magnetic order is equal to an integer number of lattice units, or
incommensurate where it is not.

The simplest case of exchange is direct exchange, where the amount of direct overlap be-
tween wavefunctions of neighbouring magnetic ions, and the resulting Coulomb energy, gives
rise to the exchange interaction. More usually, and particularly in transition metal oxides, a
non-magnetic ion such as oxygen is situated between pairs of magnetic ions whose wavefunc-
tions do not directly overlap. In such cases interaction occurs through superexchange, where
each magnetic ion wavefunction overlaps with the wavefunction of a mediating non-magnetic
ion. It is usually, although not exclusively, an antiferromagnetic interaction. Considering an
M–O–M bond, where M is a magnetic ion and O is non-magnetic, excited states can mix with
the ground state for antiferromagnetic interactions, whereas for ferromagnetic interactions
they cannot. In the antiferromagnetic case, then, the kinetic energy of the system is lowered
and it is stable, whereas in the ferromagnetic case it is not.

The Goodenough-Kanamori-Anderson (GKA) rules are a set of guidelines for estimating
the sign and relative magnitudes of superexchange interactions [4], and can be summarised
as follows
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1. Generally interactions in magnetic oxides will be antiferromagnetic.

2. The exchange between eg electrons on different ions connected by a 180◦ bond is
stronger than that between the t2g electrons.

3. A small ferromagnetic coupling can occur for interaction between t2g electrons sepa-
rated by a 90◦ bond, or by eg and t2g electrons separated by a 180◦ bond.

4. Completely filled shells with an equal number of up and down spins do not contribute
to the superexchange interaction.

Double exchange is in some respects similar to superexchange, but results in a ferromag-
netic system. For example, consider a system containing Mn3+ (3d4) and Mn4+ (3d3) ions.
In such a system eg electrons can hop from site to site, however there are some constraints
imposed by energy considerations of such a process. Crystal field splitting (discussed in
section 1.1.1) will result in t2g electrons lying at lower energies than the eg states, and due
to the first of Hund’s rules the t2g electrons will have parallel spins for both Mn3+ and Mn4+

ions. Any eg electron that hops on to a neighbouring site must, for the same reason, have
its spin aligned with the t2g electrons of the site where it is hopping to, since a spin-flip in
the hopping process costs energy. The eg electron must also have been aligned parallel to
the t2g electrons on the site where it hopped from. In order to minimise the kinetic energy
of the hopping process the ions must be ferromagnetically coupled.

Another kind of interaction, the Dzyaloshinskii-Moriya (DM) or anisotropic exchange
interaction, arises due to spin-orbit coupling. In the case of superexchange there is a mixing
of the ground state and excited state of the system due to the presence of a non-magnetic
ion such as oxygen, whereas here the spin-orbit interaction can lead to the ground state of
one magnetic ion interacting with the spin-orbit excited state of the other magnetic ion. The
form of the DM Hamiltonian is:

HDM = D · (Si × Sj) (1.6)

when acting between the ith and jth spins. The vector D is non-zero provided that the
crystal field acting on the two spins does not have an inversion symmetry at the half-way
point of the vector joining the two spins. The effect of the DM interaction is for the spins
to lie preferentially at right angles to one another, in a plane perpendicular to D. If there
are other interactions acting on the system then such a situation may not be realised, and
instead the DM interaction may result, for example, in spins lying in the same plane and
rotating slightly from site to site.

Itinerant Electron Magnetism

The descriptions of magnetic interactions have so far assumed that all of the magnetic ions
were localised and therefore at fixed distances from each other. It is possible to envisage
quite easily a situation in which this assumption is not valid, namely in a metal. Pauli
paramagnetism is the paramagnetic response of an electron gas (i.e. a metal) to an applied
magnetic field. Its physical origin is distinct from paramagnetism in ionic solids, discussed
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above, in that it comes about due to splitting of bands with different spin state2 in an applied
magnetic field. The Pauli paramagnetic susceptibility is given by:

χP =
M

H
≈ µ0M

B
= µ0µ

2
Bg(EF)

=
3Nµ0µ

2
B

2EF

. (1.7)

It is also possible for spontaneous ferromagnetism to occur in metals under certain con-
ditions. If electrons from one spin band are moved into another then in order to obey the
Pauli exclusion principle they must gain kinetic energy, hence this is an unfavourable process.
However the magnetisation caused by such a move gives rise to an effective magnetic field in
the material. This effective field will be strong if there are strong Coulomb interaction in the
metal, and it turns out that if the product of the density of states at the Fermi level and the
Coulomb interaction energy is greater than unity, the system is unstable to ferromagnetism.
This instability criterion is known as the Stoner criterion [5].

1.2.2 Superconductivity

Superconductivity below about 4K was first observed experimentally in mercury in 1911
by Kamerlingh Onnes [6]. There are a number of physical properties that are necessary
conditions for a material to be said to be a superconductor, and which distinguish such a
material from a perfect conductor. The most obvious property of a superconductor is that
below a critical temperature, Tc, the material has zero electrical resistance. This does not,
however, distinguish it from a perfect conductor. A superconductor additionally exhibits the
Meissner effect, whereby magnetic flux is completely excluded from the material’s interior3

and it becomes a perfect diamagnet, provided any applied magnetic field is not above the
material’s critical field Hc.

BCS Superconductivity

Following Onnes’ initial discovery of superconductivity in mercury many more materials
were found to superconduct, though it was not until 1957 that a theoretical understanding
of the phenomenon was achieved, when Bardeen, Cooper, and Schrieffer [7] proposed what
has come to be known as BCS theory.

Put simply, in BCS theory electrons become bound together by exchange of virtual
phonons and form ‘Cooper-pairs’, decreasing their energy by doing so. These Cooper pairs
are bosons and therefore the Pauli exclusion principle does not apply, so if one pair of

2The conduction band of a metal can be considered to be made up of two separate bands, one for each
spin state.

3In fact magnetic flux does penetrate a short distance into the interior of a superconductor, although
the flux decays exponentially with the distance from the surface. This finite penetration of flux can be
phenomenologically explained using the London equations, which are themselves derived from Maxwell’s
equations. Note that the London equations do not encompass any microscopic information about the super-
conducting state.
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electrons can save energy by becoming bound together, then other electrons are likely to do
the same. Since Cooper pairs are Bosons there is no restriction on the number that exist in
any particular quantum state. The binding energy (reduction in energy of the electron pair)
is greatest if electrons with equal but opposite momentum become bound together.

Consider adding two electrons, with momenta k1 and k2 respectively, to a metal at zero
temperature. If electron 1 emits a phonon with wavevector q then k1 → k1 − q = k′1, and
k2 → k2 + q = k′2, and by conservation of momentum K = k1 + k2 = k′1 + k′2. Now the
phonon has an energy ∼ h̄ωDebye ¿ EF, and in addition, because of the Pauli exclusion
principle, kF ≤ k′1 and k′2 ≤ kF + q. The number of available states into which the electrons
can be scattered is a maximum for K = 0, i.e. k1 = −k2.

There are several physical properties exhibited by BCS superconductors which together
can be used to identify them. There is an energy gap associated with the Cooper pairs, the
energy saved by pair formation compared to the unpaired state, which can be probed using
infra-red absorption. The peak in energy of the absorption will correspond to the energy gap.
BCS theory predicts that the gap at zero temperature ∆(0), corresponding to the energy
required to break up a Cooper pair, is related to Tc by

∆(0)

kBTc

= 3.528. (1.8)

Furthermore, BCS theory also predicts the so-called ‘isotope effect’, in which the crit-
ical temperature is found to depend on the isotope mass of the superconducting material.
The fact that phonon modes are affected by isotope mass, and virtual phonon exchange
is responsible for the superconductivity, makes it relatively straightforward to understand
qualitatively why this is so.

Cuprate Superconductors

In 1986 Bednorz and Müller [8] made one of the most important discoveries in modern con-
densed matter physics when they found that La2CuO4 becomes superconducting when a
certain amount of Ba2+ is substituted for La3+. The unprecedentedly high critical tempera-
ture of the superconductivity was the most remarkable feature. This breakthrough quickly
led to the discovery of other ‘high-Tc’ cuprate superconductors such as YBa2Cu3O6+x [9].
The superconductivity in these cuprate compounds was found to be inconsistent with the
well established BCS theory, which correctly explained the properties of the non-cuprate
superconductors known at that point in time [10]. For example the critical temperatures
of the cuprates were much larger than those generally compatible with BCS theory. Also
the energy gaps observed in the cuprates suggested a moderate strength phonon interaction
within the BCS framework, which was inconsistent with the very strong interaction needed
to explain the high values of Tc. A new theoretical approach was therefore required to ex-
plain the physics of the cuprate superconductors, and in order for this to be formulated a
large body of experimental data was needed.

Putting together the evidence from a large number of experiments allowed the phase
diagrams relating the critical temperature to doping to be mapped out for many supercon-
ductors, and it has become clear that they display many similarities. Figure 1.4 shows a
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Figure 1.4: The generic phase diagram of a cuprate superconductor, showing the critical
temperature Tc vs hole doping x.

generic phase diagram for a hole-doped superconductor4.

Considering the phase diagram with increasing doping, starting with the undoped case, a
number of different phenomena occur. At the lowest doping the material is a Mott insulator
and the spins order antiferromagnetically [11]. As x is increased the Néel temperature
decreases, eventually reaching zero. If x is increased beyond this critical point the material
enters either what is known as the spin-glass phase, or the pseudogap phase, at lower and
higher temperatures respectively. The pseudogap phase is one in which certain physical
properties show behaviour indicative of the existence of an energy gap. It seems that electrons
are not totally forbidden from crossing the gap, however, and the symmetry of the gap has
been shown to be that of d-wave electrons [12].

Further increases in the doping eventually lead to the material entering the superconduct-
ing phase5. Within this phase the critical temperature gradually increases with increasing
x, until a maximum is reached whereupon Tc gradually reduces. A dip in Tc is also observed
at x = 1/8, however it is too narrow to be shown in figure 1.4.

Eventually the doping x is increased enough that the superconducting transition tem-
perature goes to zero. For higher doping than this critical level the material goes into the
so-called Fermi liquid state. At low energies and temperatures we can consider a Fermi liquid
state to consist of quasi-particles which separately contain the spin, charge and momentum
of the fermions6, and are weakly interacting. A final phase exists at higher temperatures for

4There also exist superconductors doped with electrons.
5For doping lower than this lower critical level the material is said to be ‘underdoped’. Likewise for

doping higher than the upper critical level the material is said to be ‘overdoped’.
6i.e. one set of quasi-particles contain the spin, another set the charge, and another set the momentum
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a wide range of doping, the so-called non-Fermi liquid phase. In this phase the physics of
a Fermi liquid appear to break down and the properties of the system cannot be explained
either by independent electrons, or quasiparticles. The precise nature of the non-Fermi liquid
phase is not yet understood.

1.2.3 Charge Ordering

Figure 1.5: Schematic of a charge checkerboard for a half-doped La2−xAxMO4 material, with
circles representing ions on a square lattice and the shading representing localised charge.

Layered compounds isostructural to some cuprate superconductors, such as La2−xAxMO4,
with A = Sr, Ca, Ba. . . (hole dopants), and M = Ni, Co,. . . [13] have been found to exhibit
charge order, i.e. the localisation of the doped holes into periodic structures in the MO2

planes. The spins of the M ions situated between the localised charges also tend to become
ordered in periodic structures at the same time.

The details of the charge order structures depend somewhat on M, but there are many
features common to all of the materials. Two models commonly used to describe the charge
order are the checkerboard model and the stripe model. In the former, a good example of
which is found in La1.5Sr0.5NiO4, the charge forms into the checkerboard like that shown in
figure 1.5 with alternate sites containing a hole, giving a periodicity of two lattice units. In
La5/3Sr1/3NiO4 the periodicity is three lattice units, and the charge structure is arranged
into quasi-1D rivers (stripes) which run diagonally [14]. The presence of charge order can
be detected directly using scanning tunnelling microscopy (STM) [15], or indirectly using
neutrons or x-rays to probe periodic structural distortions caused by Coulomb interactions
between the ordered charge and the ions in the lattice [20].

1.2.4 Orbital Ordering

As has already been mentioned in section 1.1, the electron wavefunctions in solids tend not
to be spherically symmetric and their orientation can therefore be affected by the symmetry
of the local crystalline environment. In some materials, then, the energy can be lowered by
the orbitals arranging themselves into a periodic structure – termed orbital ordering.

of the fermions.
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An example of a material in which orbital ordering occurs is La0.5Sr1.5MnO4, which is, as
with the charge ordered compounds discussed in section 1.2.3, isostructural to some cuprate
superconductors [17]. In this material the 3d3z2−r2 orbitals of the eg electrons on the Mn3+

sites form into zigzag chains in the ab-plane, shown schematically in figure 1.6. In general the
orientation of electron orbitals in a material has a strong effect on the magnetic properties,
because they affect the strength of the inter-atomic exchange. These effects are described
by the GKA rules, already discussed in section 1.2.1.

Figure 1.6: (After Wilkins et al [17], schematic of orbital order in La0.5Sr1.5MnO4.

1.2.5 Multiferroic Materials

A multiferroic material is one in which there exists simultaneously more than one type
of ‘ferroic’ order, such as magnetism, ferroelectricity, charge order, co-operative structural
distortions etc. The term multiferroic is usually applied to materials in which there is
a coupling or coexistence of magnetic and ferroelectric (FE) order, however. In recent
years there has been an upsurge in research into such materials, although examples of this
behaviour have been known for a long time [18]. The recent renaissance is due to discoveries
of compounds in which the magneto-electric coupling is strong. Most of the renewed interest
has centred around RMnO3 and RMn2O5 materials, where R is a member of the rare-earths7.

A common feature of the manganese oxide based compounds is a complex magnetic phase
diagram, including magnetic order that is in turn antiferromagnetic, incommensurate and/or
commensurate in wavevector [19]. Another common feature is the possibility to control FE
polarisation by the application of a moderate magnetic field. This control can take the form
of enhancing, creating, or switching the direction of the FE polarisation.

Several phenomenological theories, based on symmetry considerations, have been pro-
posed to explain such phenomena [20, 21]. In these theories the free energy, calculated

7Many other materials have been found to have multiferroic properties, but they will not be discussed
here.
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using Ginzburg-Landau type continuum field theory, is minimised with respect to the FE
polarisation. The coupling between FE polarisation P and magnetisation M is constrained
by considerations of the behaviour of these two quantities under time reversal and spatial
inversion. The physical origin of the magneto-electric coupling is not considered by these
theories, rather the existence of such a coupling is assumed and the implications of this are
then calculated. The main difference between the theory of Mostovoy [20] and that of Be-
touras et al [21] is that the former assumes a spatially homogeneous FE polarisation, whereas
the latter allows spatial variation of P within the material. However both theories predict
that cycloidal magnetic order can create a non-zero FE polarisation.

The precise nature of the magnetoelectric coupling is not yet understood, however one
possible candidate is the so-called ‘inverse Dzyaloshinskii-Moriya’ interaction [22, 23], where
a structural distortion lowers the energy of a spiral chain when there is a DM exchange
interaction between spins. The resulting FE polarisation has the form

P ∝ rij × (Si × Sj), (1.9)

where rij is the separation of spins i and j, which have spin Si and Sj respectively. This result
is strictly only valid for systems with just one magnetic ion per unit cell, and a magnetic
propagation vector that is parallel to a lattice vector. Nevertheless, the underlying physics
should be similar for more complicated systems. The same result is arrived at when spin
supercurrents8 are considered [22].

Very recently Hu has provided an alternative microscopic theory of magneto-electric
coupling in multiferroics [24], based on spin-orbit effects. The theory provides quantitative
predictions for the strength of the magneto-electric coupling, provided that the material is a
Mott insulator and the energy gap between the valence band and conduction band is known.

1.3 Excitations

1.3.1 Spin Waves in Localised Magnets

Spin waves are collective excitations of a system of ordered magnetic moments, and they
can be visualised as single spins flipped from their ground state propagating through the
system, which is parameterised by a dispersion relation. As a simple example consider a
one-dimensional Heisenberg ferromagnet, i.e. a chain where all the spins are localised and
parallel to the +z-direction in the ground state, which is described by the eigenfunction |0〉.

The Heisenberg Hamiltonian, given in equation 1.5 is re-written as

H = J
∑

i

[
Sz

i S
z
i+1 +

1

2
(S+

i S−i+1 + S−i S+
i+1)

]
, (1.10)

where Sα
i is the α-component of the spin Si on site i, S+

i and S−i are the annihilation and

8A spin supercurrent is the flow of electron spin through a material. It is time even (time reversal causes
a reversal of motion and spin polarisation), as opposed to the charge current which is time odd.
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creation operators for a flipped spin on site i, and J is the exchange constant (negative for
a ferromagnet). The ground state is defined so that H|0〉 = E0|0〉, with E0 = NS2J , where
N is the number of spins in the chain. An excitation in this ordered system is created by
flipping a spin at site j, i.e. the excited state |j〉 = S−j |0〉. Applying the Hamiltonian to this
excited state gives

H|j〉 = (NS2J − 2SJ )|j〉+ SJ |j + 1〉SJ |j − 1〉. (1.11)

Considering the Fourier transform |q〉 =
∑

j eiqrj |j〉 then gives

H|q〉 = (E0 + h̄ω)|q〉 = {NS2J − 2JS[1− cos(qa)]}|q〉, (1.12)

where a is the lattice spacing, and the dispersion of the excitation is given by the expression
h̄ω = −2JS[1− cos(qa)], recalling that J is negative for a ferromagnet. It can be shown [25]
that for a three dimensional ferromagnet with nearest neighbour interactions this becomes

h̄ω = 2JS[3− cos(qxa)− cos(qyb)− cos(qzc)], (1.13)

where qα is the α-component of the wavevector and a, b, c are the lattice vectors in the
directions specified by α. At small wavevectors (q, 0, 0), for the simple case of a cubic
system, this can be expanded in a Taylor series to give the spin-wave stiffness constant D

h̄ω = JSa2q2 = Dq2. (1.14)

1.3.2 Spin Excitations in Itinerant Magnets

As has already been discussed in section 1.2.1, there are many magnetic materials in which
the electrons are not localised, i.e. in which they are itinerant. The excitations in such
systems are somewhat different to the spin waves discussed in section 1.3.1, so I shall give a
brief outline of them here.

In an metallic (itinerant electron) ferromagnet there exist spin-split Stoner bands, sepa-
rated by a gap ∆. It is possible to excite an electron from one band to another provided that
its spin is flipped during the excitation process, shown in figure 1.7. This can be achieved
if the electron is excited using a neutron (neutron magnetic inelastic scattering), and the
resulting magnetic excitation spectrum, shown by the shaded area in figure 1.8 is diffuse and
isotropic.

There is also a line in figure 1.8 corresponding to dispersive excitations at energies and
wavevectors below the threshold of the Stoner continuum. Such localised excitations have
been observed in, for example iron [26], where outside the Stoner continuum spin-wave modes
can still propagate.
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Figure 1.7: The split spin bands in a Fermi gas (metal), showing a single particle spin-flip
excitation from one band to another. Arrows denote the spin state in each band.

Figure 1.8: The continuum of magnetic excitations resulting from the spin flip processes
shown in figure 1.7 (shaded area), and spin-wave modes that can still propagate below this
continuum (solid line).

1.4 Scope of this Thesis

Studies of four different materials which display strong electron correlation will be presented
in this thesis. Most of the work has been experimental, mainly utilising neutron scatter-
ing and x-ray scattering, with some bulk measurements. Neutron and x-ray scattering are
microscopic probes and can be used to determine the atomic-scale order parameters in cor-
related electron systems. Furthermore, neutron inelastic scattering is the best probe of the
fundamental excitations of such systems. In chapter 2 an introduction is given to the theory
underpinning neutron and x-ray scattering, as well as some details of the practicalities of
performing scattering measurements and bulk property measurements. In the following four
chapters results of measurements of different materials are presented in turn.
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Chapter 3: La1.48Nd0.4Sr0.12CuO4

La1.48Nd0.4Sr0.12CuO4 is a cuprate superconductor which is known to exhibit charge and
spin ordering, and there exist several different theories to explain the nature of this order.
Polarised neutron scattering was used to test these theories by probing the microscopic
magnetic order. Neutron inelastic scattering was used to measure the magnetic excitations
at low energies. Finally x-ray diffraction was used to study the charge order as a function
of temperature and applied magnetic field.

Chapter 4: LaCoO3

LaCoO3 displays a transition from a non-magnetic ground state to a magnetic excited state
when warmed to T ≥ 100K. The nature of this excited magnetic state is somewhat con-
troversial, since there is conflicting theoretical work and conflicting experimental evidence.
Polarised neutron inelastic scattering was used to measure the excitations of spins within
this excited magnetic state.

Chapter 5: La0.82Sr0.18CoO3

La0.82Sr0.18CoO3 is a ferromagnetic metal which displays colossal magnetoresistance effects.
Polarised neutron inelastic scattering was used to measure the dispersion of the ferromagnetic
excitations at low temperature so that comparison may be drawn with similar data on other
colossal magnetoresistive materials.

Chapter 6: DyMn2O5

DyMn2O5 is a multiferroic material where the microscopic magnetic order has been hard to
measure due to the large neutron absorption cross-section of dysprosium. X-ray resonant
magnetic diffraction was used to measure the static magnetic order in order to determine
which theoretical model of multiferroics is appropriate for this compound, and also to com-
pare the results with other rare-earth manganites.
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1.5 Publications

The following publications relate to work presented in this thesis.

• X-ray Resonant Scattering Study of Multiferroic DyMn2O5,
R. A. Ewings, A. T. Boothroyd, D. F. McMorrow, D. Mannix, H. C. Walker, and B.
M. R. Wanklyn, Phys. Rev. B 77, 104415 (2008).

• Nature of the Magnetic Order in the Charge-Ordered Cuprate La1.48Nd0.4Sr0.12CuO4,
N. B. Christensen, H. M. Rønnow, J. Mesot, R. A. Ewings, N. Momono, M. Oda, M.
Ido, M. Enderle, D. F. McMorrow, and A. T. Boothroyd, Phys. Rev. Lett. 98, 197003
(2007).

• X-ray Scattering Study of the Order Parameters in Multiferroic TbMnO3,
D. Mannix, D. F. McMorrow, R. A. Ewings, A. T. Boothroyd, D. Prabhakaran, Y.
Joly, B. Janousova, C. Mazzoli, L. Paolasini, and S. B. Wilkins, Phys. Rev. B 76,
184420 (2007).
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Chapter 2

Experimental Techniques

This chapter gives a basic introduction to the experimental methods that were used
for the measurements presented in the rest of this thesis. Section 2.1 outlines some
details specific to the theory of neutron production and scattering, descriptions of
neutron spectrometers, and a discussion of neutron polarisation analysis. Section
2.2 gives some background to the synchrotron x-ray source, details of the various
kinds of diffractometer used for the work presented in this thesis, and a brief ex-
planation of the technique of x-ray resonant scattering. Finally section 2.3 gives
an overview of the SQUID magnetometer and the Quantum Design PPMS heat
capacity measurement system.

2.1 Neutron Scattering

2.1.1 Neutron Sources

There are two methods currently employed to generate neutrons for use in scattering ex-
periments, each with its pros and cons. The first method is nuclear fission, occurring in a
traditional nuclear reactor with uranium as the fuel.

235U + n → 2.5 n + 200MeV + nuclei. (2.1)

A reactor at a neutron scattering facility would be designed to produce an excess of
neutrons beyond that required to maintain the chain reaction, and it is these excess neutrons
which are used for scattering. Before reaching the scattering instruments the neutrons pass
through a moderator which modifies their energy spectrum, the precise choice of moderator
material and temperature determining the resulting spectrum. After this the neutrons pass
through wave guides to the instruments. In order to avoid ‘fast’ (i.e. high energy) neutrons
irradiating the sample the waveguides are actually oriented tangentially to the reactor core.
Neutrons which undergo several scattering processes in the moderator tend to be more likely
to enter such waveguides than unscattered fast neutrons, which are radiated radially from
the reactor core. The main advantage of a reactor source is that it produces a high flux of
neutrons at a steady rate.

The other method of generating neutrons for scattering is with a spallation source. Ac-
celerated protons strike a heavy metal target, and the impact of the proton beam triggers a

19
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nuclear reaction. The spallation process is the excitation and neutron emission of the target
until it achieves a stable nuclear state. The spectrum of the neutrons is, as with a reactor
source, modified by moderators. Such a source typically produces a much lower flux of neu-
trons than a reactor, however if the proton beam, and hence the neutron beam, is pulsed
then so-called ‘time-of-flight’ instruments can be used which would be rather inefficient at a
reactor source.

2.1.2 Neutron Scattering Instruments

There are many types of neutron scattering instrument. For inelastic scattering the two
main types of instrument used are the time-of-flight (ToF) chopper spectrometer and the
triple-axis spectrometer (TAS). The former are used at pulsed spallation neutron sources, as
well as at continuous spallation or reactor sources, whereas the latter are most often used
at reactor sources. For the research presented in this thesis all of the neutron scattering
measurements were performed on triple-axis spectrometers, so only the details of these will
be presented.

Triple-axis Spectrometer

Figure 2.1: A schematic of a conventional triple-axis spectrometer.

The individual components of a TAS are as follows. The monochromator, typically made
from pyrolytic graphite (PG), silicon or Heusler crystals, turns a polychromatic beam of
neutrons into a monochromatic one by Bragg reflection (usually the 002 reflection for PG).
Only neutrons of a given wavelength (energy) fulfil the Bragg condition. Collimators can
be used to ensure that the beam does not diverge too much, and they typically take the
form of parallel plates which are coated with a neutron-absorbing material such as boron or
gadolinium. Despite this the width of the neutron beam is likely to be larger than the width
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of the sample, so in order to improve the signal:noise ratio diaphragms are placed before
and after the sample. Diaphragms are also placed in front of the analyser and detector in
order to allow full illumination whilst reducing spurious scatter entering the detector, thus
further improving the signal:noise ratio. The sample may be mounted in a standard orange
cryostat, in a dilution refrigerator, or in a cryomagnet depending on the sample environment
needed. The analyser crystals work in much the same way as the monochromator, e.g. one
might use the (002) reflection from PG, or the (111) reflection from Si, depending on the
choice of final neutron wavevector kf .

More often than not the spectrometer is set up to use a fixed final wavevector kf , meaning
that in order to do inelastic scattering measurements it is only the magnitude of the incident
wavevector that is varied. There are several reasons why this setup is chosen. One is that it
offers a larger dynamic range that is available with fixed incident wavevector, in that a greater
energy range and wavevector transfer is accessible within the geometric constraints of the
spectrometer. Also, because the incident beam monitor efficiency is inversely proportional
to ki (discussed later) the neutron count rate normalised to the number of monitor counts is
directly proportional to the response function S(Q, ω) (defined in section 2.1.3). Moreover,
by fixing the final wavevector it allows the used of a filter, the purpose of which is to
remove so-called ‘λ/2, λ/3’. . . noise, i.e. neutrons whose energy is such that their wavelength
is an integer fraction of the desired wavelength so they also fulfil the Bragg condition at
the analyser. This noise would result in spurious detector counts if filters were not used.
The filters may be made from a variety of materials, dependent on the desired scattered
wavevector. Typical choices might be cooled Beryllium for ki < 1.55 Å−1 or PG for ki =
2.66 Å−1 or 4.1 Å−1. These final wavevectors are chosen because they are values where the
transmission is close to unity, but the transmission of the second, third and higher harmonics
is close to zero.

For all of the work presented in this thesis thermal energy neutrons (Eincident < 50meV)
were used, for which the filters one uses are ones based on Bragg scattering. For any given
material there is a maximum wavelength (minimum energy) for which Bragg scattering can
occur, which is given by twice the smallest lattice constant. For wavelengths shorter (energies
higher) than this there is a steep decrease in the transmission. For example in a cooled Be
filter1 this change in transmission is rather sharp and occurs at about 5.2meV. In a PG filter
one can choose a neutron wavelength where the transmission of the beam is very high, and
in addition the λ/2 and λ/3 neutrons are at wavelengths that are strongly Bragg scattered
by the PG crystal2, and hence have a very low probability of transmission through the filter.

One of the main advantages of neutrons is that they interact rather weakly with matter,
and that their interaction with magnetic moments is not immeasurably weak. This does,
however, present a problem when it comes to detecting scattered neutrons. Neutrons are
not charged so they cannot be detected using radiation detectors which rely on direct gas
ionisation. Instead the neutrons need to cause some other atom to emit charged particles
which will ionise a gas and therefore be electronically detectable. The standard way of doing
this is to use a chamber filled with 3He gas, which then undergoes the following reaction:

1The Be is cooled so that the population of phonons is very small, which means that the probability of
phonon creation is very small, so neutrons with energies higher than 5.2 meV are less likely to lose energy
through phonon scattering processes and pass through the filter.

2Note that the PG crystal has to be correctly oriented with respect to the beam scattered by the sample
for this to work.
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n + 3He → p + 3H + 0.77MeV, (2.2)

so that the charged decay products ionise the gas and give rise to a signal proportional to
0.77MeV, which can be distinguished from signals at different energies arising from gamma
rays entering the detector, for example. The 3H nucleus eventually decays to form another
3He nucleus and an electron, so the supply of helium in the detector does not need to be
replenished.

It is important to know the flux of neutrons incident on the sample, especially given that
this will vary depending on the value of the incident energy. The incident flux is measured
using a monitor, which is simply a rather inefficient neutron detector. The monitor’s effi-
ciency is inversely proportional to the incident neutron wavevector, ki, so that when detector
counts are normalised to the monitor count rate and the final wavevector, kf , is fixed, no
correction for the kf/ki term in equation 2.24 is required. There are two main types of
neutron monitor. The most common ones work on the same principle as the 3He detector,
but with a much lower gas pressure, which dramatically reduces the efficiency. Another kind
of monitor is based on 235U-doped sol-gel thin films. A small number of 235U nuclei undergo
fission when neutrons pass through the film, and the charged decay products are detected
using scintillation detectors.

Polarised Neutron Scattering Instrument Components

A variation on the basic TAS is the polarised neutron TAS, which works on the same princi-
ples as the basic TAS but has a few modifications. The basic idea behind these is to produce
an incident beam of neutrons whose spins all point in the same direction. This reduces
the flux incident on the sample, however by analysing the change in polarization state of
the neutrons after scattering it is possible to measure scattering which is solely magnetic in
origin.

The first modification is to include a polarising monochromator. An example of such
a monochromator would be an array of large single crystals of Heusler (Cu2MnAl) alloy,
arranged so that neutrons scatter off the (111) Bragg planes. The analyser would be made
from the same material and works the same way. A magnetic field is applied parallel to
the surface of the monochromator/analyser and the spins in the crystal align parallel to
this. Because Heusler is a centrosymmetric crystal (i.e. the values for both the nuclear
and magnetic structure factors are real) and the nuclear and magnetic structure factors are
similar in value the two kinds of scattering can either constructively or destructively interfere,
depending on the orientation of the applied field, resulting in very good (but not perfect)
polarization. The precise details of this will be discussed later.

The next modification is the presence of guide fields around the neutron beam between
the monochromator and the sample, and the sample and the analyser. These are basically
shielded pipes inside which there is a uniform field of a few mT which serves to maintain the
polarization state of the neutron beam. If the guide field was not there then electromagnetic
noise would, over the course of the neutrons’ path, destroy the polarization state.

The final modification is the insertion of ‘flippers’ upstream, or more usually downstream,
of the sample. A flipper is a device which flips the neutron spin state from one eigenvalue
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to another, i.e. from spin up to spin down. The flippers often used on a thermal neutron
TAS are radio-frequency (RF) coil flippers. In an RF flipper a constant magnitude radio
frequency magnetic field is applied parallel to the neutron beam while a static field applied
perpendicular to the neutron beam varies in magnitude along the beam. For all neutron
energies there will be some point in the flipper such that their Larmor frequency is equal
to the radio frequency of the coil, thus resonance will occur and there will be a transition
between the Zeeman split up and down states, i.e. a spin flip.

A spin-flip magnetic scattering event would work as follows: the monochromator polarises
the beam so that the spins are up, then the spins are flipped in the sample by interaction with
a spin-1/2 magnetic moment/excitation (parallel to the neutron spin) so that the neutrons
are now spin down. The flipper then changes the spin state of the scattered beam so that the
magnetically scattered neutrons are spin up again. The analyser is then set to Bragg-reflect
only spin up, so almost all of the non-magnetically scattered neutrons are not reflected into
the detector, while the scattering from magnetic moments/excitations make up the vast
majority of the neutrons arriving at the detector.

2.1.3 Neutron Scattering Cross Sections

The derivation of the following results can be found in more detail in, for example, the book
by Squires [1]. Here the important results are simply stated without their associated proofs.

Figure 2.2: The scattering triangle, relating the incident and final wavevectors to the scat-
tering wavevector

A neutron scattering event must conserve both momentum and energy, and these simple
rules provide a starting point for the theory of neutron scattering. Energy conservation gives
us

Ei − Ef =
h̄2

2mN

(ki
2 − kf

2) = h̄ω, (2.3)

where Ei and Ef are respectively the incident and final energies of the neutron, ki and kf are
the incident and final neutron wavevectors and h̄ω is the energy of excitation in the sample.
Meanwhile momentum conservation gives us

Q = ki − kf , (2.4)

where Q is the scattering wavevector. The process is shown schematically in figure 2.2.
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Taken together equations 2.3 and 2.4 allow us to calculate from a given scattering event the
wavevector and energy of the excitations (or static order if h̄ω is zero) in the sample.

The quantity measured during a neutron scattering experiment is the double differential
cross-section, which is defined as:

d2σ

dΩdE
=

total number of neutrons scattered per unit time into the solid
angle dΩ in the direction θ, φ with energy between E and E+dE

dE dΩ Φ
(2.5)

where the total incident neutron flux is given by Φ. For elastic scattering we do not include
the dE term in the denominator, i.e. we are only interested in the differential cross-section
dσ
dΩ

. This is because elastic scattering has a greater probability amplitude than inelastic
scattering, rendering the differentiation with respect to energy redundant, as we assume
scattering which is not in the elastic channel to be negligible. So in both nuclear and
magnetic elastic scattering it is dσ

dΩ
that is of interest.

Nuclear Elastic Scattering

The coherent nuclear elastic scattering cross section is given by

dσ

dΩ
= N

(2π)3

V0

|FN(Q)|2, (2.6)

where N is the number of unit cells in the crystal, V0 is the volume of the unit cell and FN

is the nuclear structure factor.

FN(Q) =
∑

j

b̄j eiQ.rj e−Wj(Q,T ), (2.7)

where the sum runs over all atoms j, rj is the position of the jth atom, b̄j is the nuclear
scattering length of the jth atom and Wj is the Debye-Waller factor for the jth atom, which
takes account of the fluctuations of the atom due to finite temperature. Note that the
cross section stated in equation 2.6 is that for coherent nuclear scattering. There is also an
incoherent cross section which gives rise to an isotropic background scatter, which must be
subtracted from any data before analysis is performed.

The Debye-Waller factor is included in equation 2.7 because the atoms are not frozen to
their lattice sites, but rather they undergo a certain amount of thermal motion about an
equilibrium position. As temperature increases this thermal motion also increases, and the
result is that the intensity of the Bragg peaks decreases, this decrease being parameterised
by the Debye-Waller factor. For a Bravais crystal the Debye-Waller factor is defined as

Wj(Q, T ) =
1

2
〈(Q · uj(T ))2〉, (2.8)
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where uj(T ) is the thermal displacement of atom j from its equilibrium position.

Magnetic Elastic Scattering

Let us now consider the scattering of neutrons by magnetic interactions. Neutrons have a
magnetic moment given by

µn = −γµNσ , (2.9)

where µN is the nuclear magneton, γ is the gyromagnetic ratio (≈ 1.91) and σ is the Pauli
spin operator with values ±1. The magnetic interaction potential operator V̂M(r) between
neutrons and the local magnetic field B(r) in a material (e.g. due to an unpaired electron)
is given by

V̂M(r) = −µn ·B(r). (2.10)

The cross section must contain terms which are functions of wavevector Q rather than
spatial co-ordinate r, so the Fourier transform of this, V̂M(Q), is used. The local magnetic
field can be related to the local magnetisation, so that

V̂M(Q) = −µn ·B(Q). (2.11)

Now B(r) = ∇×A, where A is the magnetic vector potential, given by

A(r) =
µ0

4π

µe × r̂

r2
, (2.12)

where r̂ is a unit vector in the direction of r, the distance from the magnetic moment µewhich
gives rise to the magnetic field and in this case is due to a single unpaired electron. Now

∇×
(

µe × r̂

r2

)
=

1

2π2

∫
q̂× (µe × q̂)eiq·rdq, (2.13)

arises as a consequence of vector algebra3 so we can rewrite equation 2.11 as

V̂M(Q) = −µ0µn ·M⊥(Q), (2.14)

where M⊥(Q) is the component of the electron’s magnetic moment (due to spin and orbital
contributions) perpendicular to the scattering wavevector, such that

M⊥(Q) = Q̂× [µe (Q)× Q̂], (2.15)

where Q̂ is a unit vector pointing in the direction of the scattering wavevector Q.

3See appendix B of the book by Squires [1].
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We must now consider the implications of the fact that the neutrons magnetically scat-
tered by electrons will not necessarily consist of a spherical wave, so to formulate scattering
cross sections that assume that the incident and scattered beams are plane-waves a correc-
tion factor must be applied. We make the dipole approximation so that rather than using
the complicated form for the magnetisation M(Q) in equation 2.14 we are able to use the
dipole moment of the scattering electrons µ. For a 3d ion the total angular momentum J
is often not a good quantum number because the orbital angular momentum L is quenched.
Under such circumstances the magnetisation can be written as

M(Q) = −gµBf(Q)S = f(Q)µ. (2.16)

where S is the spin quantum number, and f(Q) is the magnetic form factor. If we denote
the normalised spin density by S, then the form factor is defined, for the spin-only case, as
the Fourier transform of S, i.e.

f(Q) =

∫
d3reiQ·rS(r). (2.17)

The derivation of the explicit form of the form factor f(Q) is rather complicated and is
omitted here for brevity. For a full derivation see the work of Freeman [2].

In fact f(Q) can be approximated analytically using Bessel functions, which can them-
selves be approximated in terms of sums of exponentials with suitable coefficients. These
coefficients have been found by experiment [3]. If we define s as

s =
sin θs

λ
=
|Q|
4π

, (2.18)

where θs is the Bragg angle at the sample, and λ is the wavelength of the incident neutrons,
then the analytic approximations for the expectation values of the Bessel functions are

〈j0(s)〉 = Ae−as2

+ Be−bs2

+ Ce−cs2

+ D

〈jn>0(s)〉 = (Ae−as2

+ Be−bs2

+ Ce−cs2

+ D)s2. (2.19)

As an illustration the coefficients for Cu2+ are given in table 2.1

n A a B b C c D
0 0.0232 34.969 0.4023 11.564 0.5882 3.843 -0.0137
2 1.5189 10.478 1.1512 3.813 0.2981 1.398 0.0017
4 -0.3914 14.740 0.1275 3.384 0.2548 1.255 0.0103

Table 2.1: The Bessel function coefficients for the Cu2+ form factor

Finally, we end up with an expression for the magnetic form factor for a pure (x2 − y2)
orbital4:

4See reference [4] for a derivation of this.
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f(Q) = 〈j0(Q)〉 − 5

7
(1− 3 cos2β)〈j2(Q)〉+

9

56

(
1− 10 cos2β +

35

3
cos4β

)
〈j4(Q)〉, (2.20)

where β is the angle between the scattering wavevector and the axis perpendicular to the
x2− y2 orbital plane. Note that for a spherical charge density (i.e. L = 0, so spin-only) this
simplifies considerably to

f(Q)spherical = 〈j0(Q)〉. (2.21)

For magnetic elastic scattering:

dσ

dΩ
= N

(2π)3

Vmag

(γr0

2

)2 ∑

αβ

(δαβ − Q̂αQ̂β)〈F (α)(−Q)〉〈F (β)(Q)〉, (2.22)

where N is the number of magnetic unit cells, Vmag is the volume of the magnetic unit cell,
γ = 1.91 is the gyromagnetic ratio, r0 = 2.8× 10−15m is the classical electron radius and the
sum over α and β is a sum over all combinations of two cartesian axes (i.e. xx, xy, xz,...).
Q̂α is a unit vector parallel to the α component of the scattering wavevector, and δαβ is the
Kronecker delta. F (α)(Q) is the α component of the magnetic unit cell structure factor. It
is given by

F (α)(Q) =
∑

j

µ
(α)
j f

(α)
j eiQ.rje−Wj(Q,T ), (2.23)

where the sum runs over all atoms, µ
(α)
j is the α component of the magnetic moment of the

jth atom, and f
(α)
j is the α component of the magnetic form factor of the jth atom.

Magnetic Inelastic Scattering

Let us consider now the case of an inelastic scattering process, i.e. one in which the neutron
gains or loses energy during the scattering process. The cross section for magnetic inelastic
scattering, in the dipole approximation for the case of spin-only scattering, is given by

d2σ

dΩdE
=

(γr0

2

)2

f 2(Q)e−2W (Q,T )kf

ki

S(Q, ω), (2.24)

where S(Q, ω) is the response function which is given by

S(Q, ω) =
∑

αβ

(δαβ − Q̂αQ̂β)Sαβ(Q, ω), (2.25)

and the Sαβ are the space and time Fourier transforms of the time dependent spin–spin
correlation functions, given by
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Sαβ(Q, ω) =
1

2πh̄

∫ +∞

−∞

∑

jj′
eiQ·(rj−rj′ ) e−iωt 〈Sα

j′(0)Sβ
j (t)〉 dt, (2.26)

where Sβ
j (t) is the β-component of the spin at site j at time t, and 〈. . .〉 denotes an average

over the initial states of the system. This expression can be considerably simplified if we
consider a system where the excitations are out of the ground state only5. The ground state
has wavefunction |0〉 and energy E0, and the spin–spin correlation function is given by

Sαα(Q, ω) =
∑

λ

|〈λ|Sα(Q)|0〉| 2 δ(h̄ω − E0 − Eλ), (2.27)

where the sum is over all eigenstates |λ〉 of the final state of the system with energy Eλ.
Sα(Q) is the Fourier transform of the α-component of the spin Sα

j .

Principle of Detailed Balance

The principle of detailed balance relates the response function for neutron energy loss and
neutron energy gain processes with equal and opposite wavevector. It accounts for the fact
that at any given temperature there will be a fraction e−h̄ω/kBT fewer excitations already
extant for neutrons to scatter from, compared to the number of excitations that can be
created by the neutron. Mathematically this is given by

S(Q, ω) = eh̄ω/kBT S(−Q,−ω). (2.28)

Fluctuation Dissipation Theorem

The fluctuation dissipation theorem relates the imaginary part of the dynamic susceptibility
χ′′(Q, ω) to the response function S(Q, ω). Mathematically this relationship is given by

S(Q, ω) = [1 + n(ω)]
1

π
χ′′(Q, ω), (2.29)

where n(ω) is the Bose population factor

n(ω) =
1

eh̄ω/kBT − 1
. (2.30)

Also note the sum rule that relates the imaginary part of the dynamic susceptibility to
the bulk susceptibility:

5Strictly speaking this means a system at zero temperature, however for non-zero temperatures the
simplification described is still a good approximation provided that the excited state lies at an energy
greater than kBT above the ground state
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χBulk = lim
Q→0

∫ +∞

−∞

χ′′(Q,ω)

πω
dω. (2.31)

2.1.4 Polarisation Analysis

Spin-flip (SF) refers to when the spin state of the neutron is flipped from up to down, or
vice versa, and non-spin-flip (NSF) refers to when the spin state of the neutron remains
unchanged during scattering6. In general the scattering cross section is given by

d2σ

dΩdE
∝ |〈kfSf |V̂ |kiSi〉|2, (2.32)

where the initial and final neutron states are labelled by their wavevectors ki and kf , and their

spin states Si and Sf respectively. V̂ is the scattering potential, which contains contributions
from both nuclear and magnetic potentials.

The coherent nuclear cross section is proportional to

〈Sf |V̂ coh
nuc (Q)|Si〉 = V̂nuc〈Sf |Si〉, (2.33)

where 〈Sf |Si〉=0 for spin flip scattering (Si 6= Sf ), or 〈Sf |Si〉=1 for non-spin-flip scattering
(Si = Sf ). Therefore all coherent nuclear scattering is in the non-spin-flip channel.

Recall equation 2.14, which gives the Fourier transform of the magnetic scattering po-
tential. Writing out the dot product explicitly

V̂M(Q) =
∑

α

µαMα
⊥(Q). (2.34)

We define the quantisation direction as z and calculate the matrix elements involving
V̂M(Q) for the various different spin-flip states as follows.

Transition Matrix element

| ↑>→ | ↑> 〈Sf |V̂M(Q)|Si〉 = M z
⊥(Q)

| ↓>→ | ↓> 〈Sf |V̂M(Q)|Si〉 = M z
⊥(Q)

| ↑>→ | ↓> 〈Sf |V̂M(Q)|Si〉 = Mx
⊥(Q) + iM y

⊥(Q),

| ↓>→ | ↑> 〈Sf |V̂M(Q)|Si〉 = Mx
⊥(Q)− iMy

⊥(Q)

Table 2.2: The matrix elements for different polarisation scattering events

The equations in table 2.2 allow us to determine what component of the magnetic scat-
tering can be observed with a given flipper channel and polarisation direction. These rules
can be summarised as follows:

6Neutrons are spin- 1
2 fermions and thus have only two spin states, |↑〉 and |↓〉, otherwise known as spin

+ 1
2 and spin - 1

2 , or spin-up and spin-down respectively.
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1. No component of spin parallel to Q may be detected.

2. In the SF channel only those components of spin perpendicular to the polarisation P,
subject to (1), may be detected.

3. In the NSF channel only those components of spin parallel to P may be detected,
subject to (1).

This then allows us to calculate the component of a static spin or a fluctuating spin in
the three possible orthogonal directions. Let us define N as the coherent nuclear scattering
arising from structural Bragg peaks, phonons etc. This scattering does not depend on neu-
tron spin polarisation and does not flip the neutron spins, so it is divided equally between
the three orthogonal NSF polarisation channels. Next we define BSF and BNSF as the back-
grounds in the SF and NSF channels respectively. The background will be different in the
two flipper channels because they contain different contributions from the nuclear spin inco-
herent scattering. Finally we define M as the magnetic moment of the sample’s constituents
squared7, µ2. Let the superscripts x, y and z be the directions of the polarisation parallel to
Q, perpendicular to Q but lying in the scattering plane, and perpendicular to the scattering
plane respectively. Then we get:

Ix
SF = BSF +My +Mz,

Iy
SF = BSF +Mz,

Iz
SF = BSF +My, (2.35)

Ix
NSF = BNSF +

N

3
,

Iy
NSF = BNSF +

N

3
+My,

Iz
NSF = BNSF +

N

3
+Mz.

By subtracting the measured scattering in the different polarisation channels from one
another it is possible to be left with the scattering that is solely magnetic in origin. This is
the great strength of polarised neutron scattering.

Production of a Polarised Neutron Beam

For all of the experiments described in this thesis where polarised neutrons were used, a
Heusler monochromator was used, so discussion of polarised beam production will be re-
stricted to this method. The total coherent neutron scattering cross section from any crystal
is a sum of the nuclear and magnetic parts, i.e.

dσ

dΩ
= {AFNuclear + BFMagnetic}2, (2.36)

7M ∝ µ2 is only valid for elastic scattering. For inelastic scattering M ∝ Sαα(Q, ω), where Sαα(Q, ω)
is the spin-spin correlation function.
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where A and B are constants which depend on the details of the scatterer, and FNuclear is
the nuclear structure factor and FMagnetic is the magnetic structure factor. Since the nuclear
scattering length can be either negative or positive, it is possible for the two terms in equation
2.36 to combine destructively or constructively.

Suppose we have a crystal where the scattering Bragg plane has a magnetic field B
applied parallel to its surface so that the spins line up parallel to B. Each incident neutron
has a polarisation P either parallel or antiparallel to the spins in the monochromator. This
means that for P antiparallel to the spins in the monochromator

dσ

dΩ
= {|AFNuclear|+ |BFMagnetic|}2, (2.37)

whereas for P parallel to the monochromator spins

dσ

dΩ
= {|AFNuclear| − |BFMagnetic|}2. (2.38)

If a material is chosen such that |AFNuclear| is equal to |BFMagnetic| then in one case
neutrons are strongly Bragg reflected and in the other they not reflected at all. Heusler
alloy is just such a material, which is why it is used to make polarising monochromators.
Analysers for polarised neutron scattering instruments work on exactly the same principles.

One might think, given the above, that polarised neutrons would be used as a matter of
course for all experiments involving magnetic materials. There are, however, some disadvan-
tages to the use of a polarised setup. The main disadvantage is the reduction in neutron flux
with polarised neutrons compared to unpolarised neutrons. The polarisation process neces-
sarily rejects 50% of the neutrons incident on the monochromator, however the reflectivity
of Heusler crystals is about a factor of two worse than for PG or Si crystals. Finally, with
Heusler crystals it is more difficult to focus the neutrons on to the sample than it is with
PG or Si, and even at the best polarised spectrometers this accounts for a further factor of
two loss in intensity.

Flipping Ratios

In a real experiment the polarisation is not perfect, and nor are the spin-flippers. It is possible
to correct for these imperfections, however, by measuring the flipping ratios. The flipping
ratio f is defined as follows when measuring the scattering that is purely non-magnetic8.

f =
NSFmeas

SFmeas

. (2.39)

The true spin-flip and non-spin-flip scattering is therefore

8For a purely magnetic signal the flipping ratio would be the reciprocal of this.
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NSFtrue =

(
f

f − 1

)
NSFmeas +

(
1

f − 1

)
SFmeas, (2.40)

SFtrue =

(
f

f − 1

)
SFmeas +

(
1

f − 1

)
NSFmeas. (2.41)

This means that in a polarised scattering experiment both flipping channels should be
measured for any given polarisation so that this correction can be made.

2.2 X-ray Scattering

2.2.1 The Synchrotron Source

An excellent description of the function of synchrotron light sources, as well as scattering
theory for x-rays, may be found in the book by J. Als-Nielsen and D. McMorrow [5]. The
following is an outline of the most important pieces of technology and theory for this thesis.

The X-ray experiments were carried out at the European Synchrotron Radiation Facility
(ESRF) in Grenoble, France. The basic principle of a synchrotron light source is very simple
– a beam of electrons (although they could be any charged particles) is accelerated in a
linear accelerator and then again in a circular accelerator to near light speeds (∼ 6GeV) and
is then injected into a storage ring (circumference 844m at ESRF) and allowed to travel at
constant speed around an approximately circular path. The acceleration of the electrons as
they travel on their curved path results in emission Bremsstrahlung x-rays.

Bending Magnets

In reality the circular path is made up of many straight sections, and at the end of each
one there is a magnetic field which bends the electrons into the next straight section, the
so-called bending magnet. The bending magnet is simply a static magnetic field that deflects
the electron path (describing a circular arc) due to the Lorentz force. Upon bending the
electrons are accelerated and therefore emit radiation in the form of Bremsstrahlung, and
these X-rays are emitted in the forward direction (parallel to the electron beam, with a small
divergence of about 0.08mrad) due to the relativistic Döppler effect.

Following the convention of Nielsen and McMorrow [5], let us define the energy of an
electron in the synchrotron storage ring as ξe. The radius of curvature ρ, for the (useful)
units shown in square brackets is given by

ρ [m] =
3.3ξe [GeV]

B [T]
, (2.42)

where B is the constant magnetic field applied by the bending magnet. The characteristic
energy, h̄ωc, of the emitted electrons, i.e. the energy at which the flux is greatest, is given
by
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h̄ωc [keV] = 0.665ξ2
e [GeV]B [T] (2.43)

and the radiated power, P , is given by

P [kW] = 1.266ξ2
e [GeV]B2 [T2]L [m] I [A] , (2.44)

where L is the length of the section over which the electron experiences a magnetic field,
and I is the current of electrons in the storage ring.

Insertion Devices

Figure 2.3: A schematic of an undulator (upper figure) and a wiggler (lower figure) insertion
device. The cones shown at various points along the electron path show the direction of the
emitted radiation.

Synchrotron light may be also be emitted by passing the electron beam through ‘wigglers’
or ‘undulators’ in the straight sections. A wiggler is a periodic array of alternating magnetic
fields which cause the electron paths to bend (describing a circular arc) in alternate directions
(wiggling), so essentially it is a series of alternating bending magnets. The electrons undergo
the same process as with a bending magnet, but several times, so that the emerging radiation
is the incoherent sum of 2n bending magnets, if the wiggler has n magnet periods9. The
period of the magnetic fields ‘seen’ by the electrons is affected by relativistic Lorentz length
contraction, so that for an array of n magnetic periods with overall length L the electrons
see an array of magnets of length L/γ, with a period of L/nγ, where the relativistic Lorentz
factor is given by

γ =
1√

1− v2
e

c2

, (2.45)

9there are two wiggles per period.
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where ve is the speed of the electrons in the storage ring. In the laboratory frame this
transforms to approximately L/2nγ if ve ∼ c. The wavelength of the synchrotron light
generated is of the same order of magnitude as the relativistic period of the wiggler magnets
as seen in the laboratory frame. The angular divergence of the beam is ∼ 1/γ.

An undulator is similar to a wiggler but works in a slightly different way. Figure 2.3
shows schematically the main difference. At points like C on the electron path, radiation
is emitted along the electron beam tube and will be incident on the sample, whereas at
points like D it will not. For an undulator radiation is emitted along the beam tube on
to the sample at both of the corresponding points A and B. The result of this is that the
overall intensity of radiation arriving at the sample, rather than striking the walls of the
electron beam pipe, is higher for an undulator. In addition the radiation cones from the
undulator interfere constructively so that the spectral weight is concentrated around just a
few wavelengths (the fundamental and its harmonics), which further increases the available
monochromated intensity. All of the experiments presented in this thesis that were performed
at insertion device beamlines were performed on undulator beamlines, so detailed discussion
of the expected x-ray spectrum from insertion devices is restricted to the case of undulators.

Let us define the magnetic field applied to the electrons, perpendicular to the plane of
the undulations, as

Bz = B0 sin (2πs/λu), (2.46)

where s is the spatial co-ordinate in the direction of the unbent electron path, λu is the
period of the magnetic field, and B0 is the maximum applied field. Define the dimensionless
parameter K as

K =
e

2πmc
λuB0 = 0.934λu [cm]B0 [Tesla] , (2.47)

where the right-hand term gives the value in the most useful units. The frequency of emitted
radiation from an undulator as a function of off-axis angle θ is given by

ωund(θ) =
4πcγ2M

λu

(
1

1 + K2/2 + γ2θ2

)
, (2.48)

where M represents the number of the harmonic, and λu is the wavelength of the electron
undulation. Note that on-axis, where θ = 0, only odd harmonics are produced.

For all of the x-ray experiments described in this thesis linearly polarised incident x-rays
were used. X-rays from bending magnets, undulators, and wigglers are linearly polarised in
the horizontal plane if the x-rays are incident on a point that is in the plane of orbit of the
electrons. The proof for this is rather complex so I simply state the result here – further
details may be found in reference [6].
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2.2.2 X-ray Scattering Instruments

From both an insertion device and a bending magnet x-ray source one should also place
a monochromator between the magnet and the sample. The need for this is obvious for
a bending magnet, however even a well controlled undulator does not produce a single
wavelength but rather a range. For all of the experiments detailed in this thesis where
synchrotron x-rays were used a monochromatic beam was required. On both the ID20
and XMaS beamlines at ESRF that were used for experiments presented in this thesis Si
(111) Bragg reflections are used for monochromation. Downstream of the monochromator
the beam is guided using mirrors. The x-rays are then incident on the sample, which for
the diffraction experiments presented here were placed on either four-circle or six-circle
diffractometers.

The Four-Circle and Six-Circle Diffractometers

The two standard diffractometers used in the work detailed in this thesis are the four-
circle and six-circle diffractometers. These diffractometers have been extensively detailed by
Busing and Levy [7], and by Lohmeier and Vlieg [8] respectively. Their diagrams showing
all of the angles are reproduced below.

Figure 2.4: After Busing and Levy. All of the angles shown here for the four-circle diffrac-
tometer are in their first quadrant.

Looking at figure 2.4 we see that for the four-circle diffractometer θ and 2θ are coupled,
whereas ω is coaxial to these but is an independent rotation. ψ is the angle of rotation
about the normal to the reflecting surface of the sample. Changes in this angle are achieved
through a combination of ω, φ and χ rotations. χ is a rotation about the circle which is in a
plane perpendicular to the scattering plane. The φ circle is perpendicular to this, with the
φ shaft attached to the χ circle.

Looking at figure 2.5 we see that there are additional degrees of freedom compared to the
four-circle diffractometer. The δ, ω and φ circles are coaxial in the zero angle setting. δ is a
rotation of the detector arm, ω is a rotation of the sample mount, including χ circle, while
the φ circle is a rotation of just the sample about the axis normal to its reflecting plane.
The γ circle is for out-of-plane rotations of the detector. The α circle is a rotation of the
whole diffractometer about the x-axis (vertical). Finally the χ circle is a rotation about an
axis perpendicular to the ω circle.
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Figure 2.5: After Lohmeier and Vlieg. All of the angles shown here for the six-circle diffrac-
tometer are set in the zero position (for clarity). The diffractometer shown has a horizontal
scattering plane.

X-ray Polarisation Analysis

It is often the case that one wishes to analyse the polarisation state of the scattered x-ray
beam. For the case of linearly polarised x-rays this can be done using a polarisation analyser
(PA) crystal. To understand how this works let us first consider a single electron with an
oscillating electric field applied to it, shown schematically in figure 2.6.

Figure 2.6: A schematic of the principle of an x-ray polarisation analyser

The electron, shown by the black circle, oscillates in phase with the oscillating applied
electric field of the incident photon, denoted by the red wavy line. The electron emits photons
over a range of angles. In figure 2.6 the electron is oscillating vertically so no photons are
emitted in this direction, and the maximum number of photons are emitted in the horizontal
plane. Consider now a collection of electrons in, for example, a crystal. They will clearly
behave in the same way, such that no photons are scattered vertically and in the horizontal
plane lots of photons will be scattered. If the electrons are in a crystal such that the Bragg
angle of one of the planes is 45◦ then for one orientation, where the scattered beam is at 90◦

to the incident beam but is still in the horizontal plane, lots of photons will be scattered,
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whereas for another orientation, where the outgoing beam is vertical, hardly any photons
are scattered.

Figure 2.7 shows schematically how this effect would be utilised to analyse the polarisation
state of x-rays. The polarisation analysis (PA) crystal is chosen such that the scattered beam
from a particular Bragg plane is perpendicular to the incident beam. In the two orientations
shown for the PA and detector either photons polarised in the horizontal plane (σ), or
photons polarised in the vertical plane (π) will be detected.

Figure 2.7: A schematic of the layout of a real x-ray polarisation analyser.

X-ray Detectors

Let us now consider how to detect x-rays from a synchrotron source. For the kind of single
crystal diffraction measurements that will be described in this thesis the detector consisted
of a single pixel that can be scanned in order to characterise the intensity and lineshape of
a particular scattering peak. This is as opposed to a position sensitive detector that is held
stationary and many peaks are measured, but with a lower sensitivity to the exact intensity
and lineshape – the crudest example of which would be photographic film in a Laue camera.

The older sort of detector used, for the experiments on ID20 and for fluorescence mea-
surements on XMaS, is a Bicron NaI scintillator. In such a detector a NaI crystal scintillates
(i.e. fluoresces photons of a lower energy than the x-rays that are incident on it) when it is
exposed to x-rays. The fluorescence from the NaI strikes a cathode which emits electrons
due to the photoelectric effect. These electrons are then multiplied in a vacuum chamber by
a succession of increasing electric fields so that a cascade is created. At the final electrode
there is a sharp electronic signal, which is recorded by the counting electronics.

The newer kind of detector, which was used for scattering measurements on XMaS, is a
silicon drift diode detector. X-ray photons incident on the Si crystal generate electron-hole
pairs, which can be separated if a sufficiently large electric field is applied to the Si crystal.
The electrons and holes are then collected at the electrodes. By measuring the amount of
charge that arrives at the electrode at a given time (near simultaneous arrival of charge is
assumed to be due to the same photon) the energy of the photon that caused the electrons
and holes to be separated can be calculated. This means that an electronic bandpass can
be set so that the measuring computer only registers x-rays that are in the expected energy
range of the experiment, thus reducing noise.
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2.2.3 X-ray Scattering Theory

For all x-ray scattering processes, the scattering cross-section is related to the form factor,
f as follows:

dσ

dΩ
∝ |f |2. (2.49)

The form factor is made up of non-resonant and resonant contributions, which arise from
the scattering of electrons by the electron clouds of atoms (charge scattering, non-resonant),
the scattering of electrons by both spin and orbital magnetic moments (non-resonant and
resonant) and more besides. I will detail here the simplest, and most relevant, contributions.

Non-resonant Scattering

Non-resonant scattering occurs when the incident x-ray energy is far from any absorption
edges of species in the sample. In such cases the x-rays are scattered by the electrons of the
atoms in the material. The intensity of scattering, I, from a single electron is given by

I = I0

(µ0

4π

)2
(

e4

m2r2

)(
1 + cos 2(2θ)

2

)

= I0
r2
0

r2

(
1 + cos 2(2θ)

2

)
(2.50)

where m is the mass of an electron, 2θ is the angle between the incident and scattered beam,
I0 is the intensity of the incident beam, and r0 is termed the Thomson scattering length,
and is equal to 0.282× 10−4 Å.

When considering the scattering from a large number of electrons, e.g. in an atom, we
must consider the electron density ρ(r). The atomic form factor, which is an amplitude
envelope function for the scattering, has the form

f0(Q) =

∫
ρ(r)eiQ·r d3r. (2.51)

where r is the radial co-ordinate from the atomic nucleus. If we assume a spherical charge
density, then

f0(Q) =

∫ ∞

0

4πr2ρ(r)
sin(Qr)

Qr
dr, (2.52)

where Q is the magnitude of the scattering wavevector Q. If we assume that ρ(r) decays
exponentially and isotropically with characteristic distance a/2 then the form factor is
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f0(Q) ∼ 1

[1 + (Qa/2)2]
. (2.53)

X-ray Resonant Scattering

The technique of x-ray resonant scattering (XRS) relies, for the purposes of magnetic scat-
tering, on an enhancement of the magnetic scattering cross-section when the incident energy
is tuned through an absorption edge of the magnetic ion. The effect was first observed in the
form of a large increase in signal upon tuning through the L3 absorption edge in holmium
[9]. When combined with polarisation analysis and azimuthal scans of the sample it allows
the direction of the ordered moment of a specific ion in a material to be determined. This is
useful when, for example, there is more than one species of magnetic ion present in a sample.
In a neutron scattering measurement the neutron is sensitive only to the average moment of
the system, that is to say that if there is more than one magnetic ion present the neutron
cannot distinguish between their magnetic order. It is the fact that XRS is species specific
that is its main strength.

The resonant enhancement process is in principle quite simple. When an incident pho-
ton’s energy is tuned to the binding energy of one of the electron shells of one of the con-
stituents of the sample one can visualise that it will excite that electron into a vacancy in
a higher energy shell. The electron will then relax back down into the hole created in that
shell, emitting a photon with the same energy as the incident x-ray. This process allows
information about the magnetic order, charge order, orbital order etc. of the outer shell
electrons to be passed to the emitted photon. This picture must be taken with a pinch of
salt, however, because in reality the resonant process is a virtual process and does not occur
in the two discrete steps described. Nor is it possible to remove the excited virtual electron
from the material, that is to say that the transition occurs in a closed loop.

The dominant resonant processes are generally from dipole-dipole (E1E1) transitions,
although there do also exist quadrupole-quadrupole (E2E2) transitions and other more com-
plex transitions. An example of an E1E1 process would be the 2p3/2 → 5d1/2 transition in
Holmium at the L3 edge.

The resonant magnetic scattering cross-sections for E1E1 (and E2E2) transitions are
derived in the paper of Hill and McMorrow [10], and I simply state the results here. The
E1E1 resonant contribution from a magnetic ion to the total coherent elastic scattering
amplitude is given by

fXRS
nE1 =

(
σ → σ′ σ → π′

π → σ′ π → π′

)

= F
(1)
E1

(
0 z1cosθ + z3 sinθ

z3 sinθ − z1 cosθ −z2 sin2θ

)
(2.54)

where the magnetic moment z is resolved into three components, parallel to the principal axes
which define the scattering geometry. The constant F

(1)
E1 is related to the atomic properties

of the ions from which resonant scattering occurs. σ and π denote the linear polarisation
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state of the incident beam, whereas σ′ and π′ relate to the scattered beam. The scattering
geometry is shown schematically in figure 2.8 for a vertical scattering plane.

Figure 2.8: The coordinate system used for defining the scattering plane and the components
of magnetic moments in the resonant scattering cross sections. π and σ are the components
of the polarization parallel and perpendicular to the scattering plane respectively.

2.3 Bulk Measurement Techniques

2.3.1 Magnetisation Measurements Using a SQUID

The magnetisation measurements presented in this thesis were all taken using a Quantum De-
sign MPMS XL magnetometer. This magnetometer works using a superconducting quantum
interference device (SQUID) coil [11]. The sample environment is a Helium flow cryostat,
which can be cooled to a base temperature of 1.6 K. A magnetic field is applied in the vertical
direction by a superconducting magnet, which has a practical range of about ±5T. All of
the measurements are computer controlled using software which was designed specifically for
this magnetometer by Quantum Design Inc.

For a measurement of the magnetic susceptibility the sample is typically mounted inside
a plastic straw of diameter ∼ 5mm, the diamagnetic moment of which is very small. It
can be secured inside this straw in a variety of ways. The two that were most often used
for the work presented here were, 1) to place the sample inside a plastic capsule, packed
tight with cotton wool and sealed with kapton tape, itself inserted into the plastic straw;
2) to wedge the sample between two folded over straws inserted into the plastic straw. The
method chosen depended on the particular geometry of the sample and the crystallographic
direction in which the field needed to be applied.

The principle of operation of the apparatus is shown schematically in figure 2.9. The
plastic straw containing the sample is translated vertically between three superconducting
coils, in which a current proportional to the sample magnetisation is induced. These coils
lead to two coupled inductors, which then leads to another pair of inductors, between which
a SQUID is placed. Thus small changes in the sample magnetisation are measured as small
current changes, which are converted into small changes in magnetic field near the SQUID.
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Figure 2.9: The pickup coils of the SQUID magnetometer.

2.3.2 Heat Capacity Measurements Using a PPMS

The heat capacity measurements presented in this thesis were all performed using a Quantum
Design Physical Properties Measurement System (PPMS) [12]. The PPMS can measure a
variety of physical properties (resistivity, AC susceptibility, etc), however the heat capacity
option is the only one that was utilised for the work presented in this thesis.

Figure 2.10: Side view of the sample mount for heat capacity measurements using the PPMS

A schematic of the sample mount, known as the puck, is shown in figure 2.10. The
platform is connected to the support frame of the puck, which acts as a heat sink, by thin
wires, which also serve as electrical contacts for the heater and resistance thermometer. A
good thermal contact between the bottom surface of the sample and the platform is ensured
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by using Apiezon grease. The whole apparatus is controlled by computer, using bespoke
software.

In order to make a measurement the heater supplies a fixed amount of power P (t) for
a length of time t, and is then turned off. The temperature of the sample/platform/grease
assembly rises as the heat is applied, whereas the thermal bath remains at constant temper-
ature, and then cools through radiation and conduction through the wires when the heater
is turned off. The software monitors the temperature throughout this, and the heat transfer
is modelled by the differential equation

Ctotal
dT

dt
= −Kw{T (t)− Tb}+ P (t), (2.55)

where Ctotal is the heat capacity of the sample and platform together, Kw is the thermal
conductivity of the wires, and Tb is the fixed temperature of the thermal bath. By solving
this differential equation the heat capacity is calculated from the exponential decay constant
of the sample temperature. In order to find the heat capacity of the sample the heat capacity
of the puck and platform must be subtracted, so the behaviour of this quantity as a function
of temperature is calibrated before the experiment takes place.

If the thermal contact between the platform and sample is not very good a more compli-
cated model is used which accounts for the behaviour of the two separately.

Cplatform
dTp

dt
= P (t)−Kw{Tp(t)− Tb}+ Kg{Ts(t)− Tp(t)} (2.56)

Csample
dTs

dt
= −Kg{Ts(t)− Tp(t)}, (2.57)

where Kg is the thermal conductivity of the grease, and the temperature of the sample and
platform is given by Ts and Tp respectively.
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Chapter 3

Growth and Preparation of the

Samples

In this chapter I give a brief outline of how the various samples that were measured

as part of this thesis were grown.

The samples used for the measurements detailed in this thesis were grown in several

locations and at several different times. To summarise, the La1.48Nd0.4Sr0.12CuO4samples

were grown at the University of Hokkaido, Japan, in the group of Dr. Naoki Momonol; the

La1.88Ba0.12CuO4samples were grown by Dr. Genda Gu at Brookhaven National Laboratory,

USA; the LaCoO33 and La0.82Sr0.18CoO33 samples were grown by Dr. Prabhakaran Dhar-

malingam at Oxford; and the DyMn2O5samples were grown by Dr. Barbara Wanklyn at

Oxford (in 1970!).

The La1.48Nd0.4Sr0.12CuO4, La1.88Ba0.12CuO4[I THINK], LaCoO33 and La0.82Sr0.18CoO33

samples were all grown using the floating zone technique [REFERENCE VARIOUS CRYS-

TAL GROWTH PAPERS HERE TO SHOW THIS]. In this method a powdered version of

the sample is made first, and this powder is then compressed to make two rod-shaped pellets.

The tips of the two rods are brought into contact with each other in an image furnace such

that at the contact point the pellets melt. The pair of rods are translated relative to the ‘hot

spot’ so that soon after melting the material cools in a single crystalline phase. By slow and

careful movement of the ‘hot spot’ along the rods a single crystal rod may be grown which

may be several centimetres long.
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The DyMn2O5samples were grown using the flux method [REFERENCE THE 1972 PA-

PER]. NEED TO DESCRIBE HERE HOW THIS METHOD WORKS.



Chapter 4

Charge and Spin Order in
La1.48Nd0.4Sr0.12CuO4

Polarised neutron scattering measurements, both elastic and inelastic, of the charge
ordered cuprate La1.48Nd0.4Sr0.12CuO4 are presented, along with x-ray diffraction
measurements. The neutron diffraction measurements rule out a number of pro-
posed ordering schemes for the Cu2+ spins, and it is shown that only three models
can account for the data. Of these, one is the so-called ‘stripe’ model, whereas
the other two are more complicated patterns associated with charge checkerboards.
The preliminary polarised inelastic scattering measurements can be more readily
reconciled with the stripe model. Unpolarised neutron inelastic scattering measure-
ments show that there is a gap in the low energy magnetic excitations, and that
this gap is in part due to anisotropy. X-ray scattering was used to probe structural
distortions associated with charge ordering, and the temperature and magnetic field
dependence of these distortions was measured. It was found that these distortions,
and by inference the charge order which causes them, are unaffected by the presence
of a vortex lattice.

4.1 Introduction

4.1.1 Introduction to La2−xBaxCuO4

La2−xBaxCuO4 (hereafter referred to as LBCO) was the first high-Tc cuprate superconductor
to be discovered [1], and very little time elapsed after this initial discovery before the main
features of the phase diagram as a function of doping were known. These follow the generic
features described in section 1.2.2. Of particular interest is the very strong suppression of
superconductivity near to x = 1/8. This suppression of Tc has been seen in all cuprates,
however in certain materials, of which LBCO is one example, Tc decreases almost to zero.
This contrasts with, for example, La2−xSrxCuO4, where the suppression of Tc is only a few
percent [2, 3].

The crystal structure of LBCO is different to most cuprates, because on cooling to low
temperatures (T ≤ 50K) it changes from orthorhombic to tetragonal [4], whereas most
other cuprates tend to remain in an orthorhombic structural phase. Measurements of the
resistivity [5] parallel to the CuO2 planes show that in the normal state there is a sharp
increase in resistivity on cooling to about 50K and then a further more gradual increase in
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resistivity with decreasing temperature, indicating that the mobile charge carriers become
localised below 50K. Such measurements do not, however, provide any information about
the spatial distribution of these localised carriers (holes).

It would be natural to investigate whether the difference in the low temperature structure
of LBCO compared to other cuprates is relevant to the strong suppression of superconduc-
tivity and the concomitant localisation of the charge carriers. The most obvious way to do
this would be to perform x-ray diffraction and neutron scattering measurements in order to
probe the order parameters in the tetragonal state. Unfortunately the necessary large single
crystals of LBCO have proved somewhat difficult to grow, and it has only been in recent
years that such measurements have been possible.

Faced with this difficulty other materials were sought which displayed similar character-
istics, and it was noticed quite quickly that substitution of a certain amount of Nd for La
in La2−xSrxCuO4 stabilised a tetragonal phase at low temperatures [6]. It was found that
the material La2−x−yNdySrxCuO4 (LNSCO) with y = 0.4 and x = 1/8 had many similarities
with x = 1/8 LBCO, with the advantage that the crystals were easier to grow.

4.1.2 Introduction to La2−x−yNdySrxCuO4

La2−x−yNdySrxCuO4, with y = 0.4 and x = 0.12, (LNSCO)1, is a superconductor with a
relatively low critical temperature compared to other hole-doped layered cuprates. Below
about 5K it becomes a superconductor, evidenced in the magnetic susceptibility by the
appearance of a Meissner state [7]. Neutron scattering measurements [8] led to a belief that
LNSCO becomes charge ordered below about 70K. Resistivity measurements showed, as
with LBCO, that the mobile charge carriers become localised at lower temperatures [9, 10].

LNSCO is structurally different to its much-studied parent superconductor La2−xSrxCuO4

(LSCO) – the crystal structure of the latter is orthorhombic whereas the former, exhibits two
structural phase transitions, similar to LBCO. On cooling to T ≈ 70K LNSCO undergoes
a transition from a low-temperature orthorhombic (LTO) to a low-temperature tetragonal
(LTT) structural phase [11], the latter of which is shown in figure 4.1. In the LTO phase
the b-axis is ∼ 0.05 Å longer than the a-axis. Concomitant withtransition into the LTT
phase is the appearance of satellite peaks in the neutron diffraction at (H, 0, L)±(δ, 0, 0) and
(H, 0, L)±(0, δ, 0), where δ = 2x = 0.25, H is an integer, and L is any real number [8, 12, 13].
These peaks have been interpreted as arising from the formation of a charge ordered state
[8, 12], the nature of which will be discussed later. This contrasts with the behaviour of
LSCO, where these satellite peaks are not observed in the elastic scattering channel but are
seen in inelastic channels, although the signals are rather weak [14, 15, 16, 17, 18]. It has also
been noted that in the LTT phase the CuO6 octahedra in the z=0 layer are rotated along
the a-direction, and the octahedra at the z=0.5 layer are rotated along the b-direction.

Neutrons cannot measure the ordered charge directly, since neutrons do not scatter from
localised charge, however the small ionic displacements brought about by electrostatic inter-
actions between the localised charge and the ions in the crystal can be probed. It is these
displacements, which have the same periodicity as the charge order, which are observed as

1these doping fractions will be assumed in all of the following discussion. Note that x is not quite equal
to 1/8.
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b
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a

Figure 4.1: The crystal structure of LNSCO [19]. Blue spheres represent Cu2+ ions, red
spheres O2− ions, and green spheres La3+, Nd3+ and Sr4+ ions. The space group is P42/ncm.

satellites around the structural Bragg peaks. It appears that the structural transition from
orthorhombic to tetragonal is important for the formation of a charge-ordered state because
the appearance of the charge order peaks occurs at the same temperature as the onset of the
LTT structural phase, i.e. TCO = TLTO−LTT ≈ 70 K. Similar measurements of the structural
distortion have been made using high energy x-rays [20], where it was found that half-integer
values of L give rise to the strongest peak intensity, which was attributed to a 90◦ rotation
of the charge stripes between adjacent CuO2 planes along the c-axis.

Magnetic Bragg peaks at (1
2
, 1

2
±ε, 0) and (1

2
±ε, 1

2
, 0), with ε = x = 0.12, appear below a

Néel temperature of TN ≈ 50K [13]2. The origin of these peaks is a subject of some debate,
with various different models of the ordered moments proposed to explain their existence.
The details of these models will be discussed later.

At very low temperatures, TNd ≤ 3K, the Nd ions become statically ordered [12]. The
Nd ordering has the same wavevector as the magnetic satellite peaks corresponding to Cu
ordering at higher temperatures. An important difference is that the Nd moments point
along the c-axis, whereas the Cu spins are thought to lie in the ab-plane. The ordering of
the Nd moments is due to a combination of interactions between Nd ions due to exchange
between them, and an interaction between the Nd and the already fully ordered Cu moments.
The Nd – Cu interaction is rather weak so that at higher temperatures it is very hard to
observe, since the moments fluctuate quite a lot. The Nd – Nd interaction is also very week,
and is restricted to low temperatures (i.e. below about 3K). However the Nd moments are

2Muon spin relaxation measurements indicate that TN ≈ 30K [21]. This may be because muons measure
on a longer time scale, and the neutrons have finite energy resolution and might pick up fluctuations of the
magnetic moments.
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quite large so the scattering arising from these ordered moments is relatively strong.

In order to explain the existence of the two sets of satellite peaks, arising from spin
and charge order, in LNSCO and other similar materials, several different models have
been proposed. The ‘stripe’ model, which was described briefly in section 1.2.3, and is
shown schematically in figures 4.2 and 4.3 describes a situation where the nearest-neighbour
Cu2+ spins in the ab-plane are antiferromagnetically coupled, with stripes of localised charge
coming every four lattice spacings. Across the charge stripe the interaction between Cu2+

spins is also antiferromagnetic, i.e. the localised charge acts as an antiphase domain boundary
between two different blocks of antiferromagnetic spins. The periodicity of the domains of
spins is therefore twice that of the localised charge, that is to say eight lattice spacings, so it
is this periodicity which gives rise to the satellite peaks around the (1

2
, 1

2
, 0) type magnetic

peaks. Because of the tetragonal symmetry there is an equal population of orthogonal
domains, with stripes running either parallel to the a-axis or parallel to the b-axis, giving
rise to the four charge satellite peaks observed. The maximum intensity of the charge
peaks with half-integer L [20] can be explained by considering a stripe model in which the
stripes in adjacent planes (i.e. the CuO2 planes at z=0 and z=0.5 in the unit cell) are
perpendicular, because in the LTT phase the CuO6 octahedra in the z=0 layer are rotated
along the a-direction, and the octahedra at the z=0.5 layer are rotated along the b-direction.
This would stabilise stripes parallel to the b-direction and a-direction in the z=0 and z=0.5
layers respectively. Coulomb interactions then cause the stripes at the z=1 layer to be shifted
two unit cells to one side, which gives an overall periodicity of two unit cells, and hence the
value of L = 0.5

Figure 4.2: A schematic of the charge order in a tetragonal unit cell proposed by the stripe
model

There have also been several other models proposed to explain the charge and spin
order which fall under the loose heading of ‘checkerboard’ ordering [22, 23, 24]. In all of
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Figure 4.3: A schematic of a single CuO2 plane showing the spin ordering proposed in the
stripe model.

these models there exists only one domain type of ordered charge, i.e. a single CuO2 plane
contains all of the information needed to realise all four of the charge satellite peaks seen
in neutron and x-ray measurements. The simplest of such models, shown schematically in
figure 4.4, is simply a superposition of the charge of the two possible stripe domains. In
more complicated models the charge does not form into one-dimensional ‘rivers’, but rather
is localised in a periodic lattice within the CuO2 plane.

Figure 4.4: A schematic of a checkerboard model.

Some models do not explicitly discuss the nature of the charge order, but rather focus on
the nature of the ordered spins and propose various different kinds of spiral ordering patterns
[25, 26]3. Lindg̊ard [25] considers a spiral structure where there are two possible domains,
where in each one there is a spiral with wavevector parallel to one of the principal axes, and
spins are modulated antiferromagnetically perpendicular to this wavevector. Silva-Neto [26]
proposes an ordering based on so-called ‘π-spirals’, which is similar to the model of Lindg̊ard
but in adjacent lines of spins the sense of rotation is opposite. Figure 4.5 shows a schematic
of both of these models.

3Such models, like the stripe model, require two orthogonal domains to explain the existence of four
magnetic satellite peaks.
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Figure 4.5: (a) The spiral structure proposed by Lindg̊ard [25]; (b) The ‘π-spiral’ structure
proposed by Silva-Neto [26]

The magnetic excitations in LNSCO have been investigated by Ito et al using neutron
inelastic scattering [27]. The excitations at low energy (E ≤ 5meV) were found to de-
crease in incommensurability with increasing temperature, i.e. ε decreased for the peaks
at (0.5 ± ε, 0.5, 0) etc, concomitant with an increase in their width. The fluctuations were
found to persist well above TN and even above TCO, and were attributed to so-called ‘slowly
fluctuating stripes’ [28]. Unlike in other superconducting materials at higher energies no
resonance was observed, suggesting that the presence of static stripes has a direct bearing
on the superconducting properties of the material. Ito et al suggested that this is because
the material is divided into hole-rich and hole-poor regions and this somehow changes the
interactions felt by the superconducting quasiparticles.

The magnetic field dependence of the charge order has been investigated using x-ray
diffraction [29]. On measuring the charge order peaks as a function of temperature for
several different magnetic fields applied parallel to the c-axis (after zero field cooling) it was
found that within experimental error the charge order peaks are unaffected by an applied
magnetic field.

4.1.3 Recent Measurements of La2−xBaxCuO4

Neutron scattering measurements have recently been performed on LBCO with x ≈ 1/8
(see for example reference [30], and the references therein), now that it has lately become
possible to grow large enough single crystal samples. These experiments have shown that
there exist peaks arising from charge and spin ordering at the same wavevectors as in LNSCO,
demonstrating that the underlying physics of these two systems is very similar. The neutron
scattering measurements of LBCO will not be of direct concern for the work presented here,
however. Rather, there is more interest in x-ray measurements of the charge order, so it is
these studies that will be focussed on now.

Jungho Kim et al [31] measured the charge superlattice reflections using x-rays, and found
that just below the LTO-LTT transition the correlation length of the charge order was much
shorter than at lower temperatures, with long range order, characterised by the maximal
correlation length, not setting in until T ≤ 40 K. Furthermore they noticed that there was a
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small decrease in correlation length of the charge order peaks below about 15K, which they
attributed to the onset of superconductivity, suggesting that the charge ordered state is in
competition with the superconducting state. No second or third harmonic reflections of the
charge order were observed, leading the authors to conclude that the charge order is actually
a sinusoidal charge density wave.

Young-June Kim et al [32] also used x-rays to measure the charge superlattice reflections,
however their measurements instead mostly focussed on the very low temperature range
around T ∼ 2K. They found that the application of increasingly large magnetic fields, up
to 10T perpendicular to the CuO2 planes, caused a small increases in the correlation length
of the charge order peaks. This was again interpreted as evidence of competition between
charge order and superconductivity, with the applied field reducing the superconducting
correlations and the charge order correlations increasing as a result. Similarly to Jungho
Kim el al they found that in zero applied magnetic field the charge order correlation length
reduced below ∼ 12K.

Abbamonte et al [33] have used soft x-ray resonant scattering (i.e. low energy x-rays,
with E < 1 keV, tuned to an absorption edge of the material) to probe the charge order
directly, rather than the associated structural distortions. By scanning the incident x-ray
energy over the oxygen K-edge and the Cu L3-edge they attempted to measure the location
in real space of the charge order, and found that there existed resonances at both energies.
This suggests that simple models of localised charge on either the Cu–O bonds or on the Cu
sites do not fully capture the physics of the charge ordered state.

4.1.4 Motivations

There exist several different theories for the ordering of spins in stripe / checkerboard ordered
materials, and in order for progress to be made in the field experiments are required to
determine which of these models are realistic. Polarised neutron scattering is a technique
that can distinguish between the proposed models, because the magnetic scattering can be
completely separated from the non-magnetic scattering. Furthermore some of the different
proposed ordering schemes would give rise to quite different magnetic scattering, e.g. some
would give rise to a nuclear-magnetic interference term in the magnetic cross-section that
can only be precisely determined when polarised neutrons are employed. LNSCO was chosen
for such a measurement because it is considered by many to be the archetypal charge ordered
cuprate, and it is also relatively easier to grow large samples, which are a definite requirement
for polarised neutron scattering experiments. Once an understanding of the static order of
is obtained the next natural step is to consider the excitations, and for this neutron inelastic
scattering measurements are the most obvious tool.

The competition postulated to exist between a charge ordered state and a superconduct-
ing state can be tested by measuring the charge order whilst tuning the superconductivity,
either with temperature or applied magnetic field. Such measurements have already been
performed on LBCO using x-ray scattering, so if similar results could be reproduced in
LNSCO then it would go some way towards proving whether charge order and superconduc-
tivity compete in the general case.
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4.2 Experimental details

4.2.1 Neutron Scattering

All of the polarised neutron scattering measurements described in this chapter were made
on the IN20 thermal neutron triple-axis spectrometer (TAS) at ILL. All of the unpolarised
neutron scattering measurements were performed on the IN14 cold neutron TAS at ILL.
The outline of a generic TAS was detailed in section 2.1.2, as are some of the details of the
equipment needed for polarised neutron scattering.

For this particular experiment on IN20 a standard polarised neutron setup was used, i.e.
Heusler monochromator and analyser, a flipper in the scattered beam, etc. The polarising
field at the sample was provided by electromagnetic Helmholtz coils which could be rotated
coaxially with the sample. A pyrolytic graphite (PG) filter was place in the scattered beam in
order to suppress higher harmonic contamination. The sample environment was the standard
orange cryostat, with 4He used as the cryogen.

All of the polarised measurements detailed below were performed at fixed final neutron
wavevector kf = 4.1 Å−1. This was chosen for two reasons. First was because even the
elastic scattering was found to be rather weak, and so it was decided that increasing the
resolution volume of the spectrometer, and hence the count rate, was necessary in order to
make the experiment possible in the allowed time frame. Second was that in order to access
magnetic reflections outside the first Brillouin zone a final wavevector larger than 2.662 Å−1

was needed for the scattering angle not to be inconveniently large for the specific geometry
of the spectrometer4.

The unpolarised measurements on IN14 were made with a fixed final wavevector of kf =
1.5 Å−1. This wavevector was chosen in order to optimise flux from the cold source at IN14,
whilst still allowing the use of a cooled beryllium filter in order to cut off scattering from
higher harmonic neutrons.

The sample used for the polarised neutron scattering measurements, and some of the
unpolarised neutron measurements, consisted originally of a single cylindrical rod about
3 cm long, with a diameter of about 0.7 cm and a mass of 3.2 g. It was grown at Hokkaido
university using the floating zone technique [6, 34]. Unfortunately, after the first unpolarised
neutron measurement, the upper third of the rod split. The effect of this was, despite the
two pieces being tied together with aluminium wire, a slight misalignment between the two
parts of the crystal. This could clearly be seen in scans of the sample angle ω, where instead
of a single peak there were two peaks, one larger than the other, separated by about 1◦. The
presence of the two peaks made fitting the data more complex, however ultimately it was
possible provided the ratio of the peak intensities could be fixed at each reciprocal lattice
vector. The procedure for doing this is described later in this chapter.

This sample was mounted in the cryostat with the (0, 0, 1)-axis vertical, so the scattering
plane was the (H,K, 0)-plane. The wavevectors of interest were the spin-superstructure
satellites to the antiferromagnetic (AFM) wavevector QAFM = (1/2, 1/2, 0), i.e. Q = (1/2±
q, 1/2, 0) + G and Q = (1/2, 1/2± q, 0) + G, where G is a reciprocal lattice vector.

4A kf of 2.662 Å−1 would have resulted in the detector crashing into the walls of the experiment zone,
but kf = 4.1 Å−1 avoided this problem.
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The first unpolarised measurement was made, as stated above, using the same crystal
as the polarised measurements, with the same scattering plane, before one of the pieces
became broken and misaligned. The second unpolarised measurement was made on an array
of four crystals with a combined mass of ∼ 8 g that were aligned to give a scattering plane
(H, H, 0)/(0, 0, L) when the cryostat was vertical. In order to access the satellite reflection
at (0.5, 0.38, L) the cryostat was then tilted off vertical using the goniometer whose axis was
parallel to the (0, 0, L) direction.

4.2.2 Synchrotron X-ray Scattering

For the x-ray measurements the ID20 beamline at the ESRF in Grenoble was used. This
beamline is situated on an undulator source, the generic details of which are given in section
2.2.1, and consequently has a very high flux over energy range used, in this case 8.5 keV.
This incident photon energy does not correspond to the absorption edge of any materials in
the compound, so the scattering was not resonantly enhanced. This is because the structural
distortion peaks to be measured exhibit no resonant enhancement. Also if the energy of the
x-rays is tuned to an absorption edge of an element in the material being studied there is a
considerable increase in the background due to fluorescence. It was therefore appropriate for
the experiments detailed in this chapter to use an energy where the flux from the undulator
is maximal, but where there are no elemental absorption edges nearby which could cause an
increase in the background.

This particular experiment was conducted using a vertical-field magnet with a maximum
field of 10 T. Since such magnets cannot be tilted a horizontal scattering geometry was
used, and rather than using a χ rotation there was a different rotation, γ, whose axis is
perpendicular to 2θ, the (horizontal) scattering angle. This essentially corresponds to the
six-circle diffractometer discussed in section 2.2.2 and shown in figure 2.5, albeit with a
slightly different scattering plane.

The LNSCO sample, which was from the same batch as that used for the neutron scatter-
ing measurements, was cut and polished so that the surface was parallel to the (1, 0, 2)-planes,
so that Bragg reflections that are some multiple of this (specular) wavevector would be rela-
tively strong compared to equivalent wavevectors off-specular. Experiments were performed
during the same x-ray beamtime at ID20 on a sample of La1.88Ba0.12CuO4 (LBCO) which
was cut and polished in the same way. This sample was grown at the Brookhaven National
Laboratory, and was taken from the same batch as other samples on which neutron scatter-
ing measurements have been reported [8, 12]. The stick on which samples are mounted to
go into the cryomagnet on ID20 has two slots in which samples can sit, one above the other,
making it possible to move one sample out of the beam and the other into it without warm-
ing up and venting the sample chamber. Both samples were cut so that the c-axis would be
parallel to the axis of the magnet, thus establishing a two dimensional vortex lattice within
the CuO2 planes.

4.2.3 Magnetisation Measurements

Magnetometry measurements were performed in a Quantum Design SQUID magnetometer,
the principles of operation of which were described in section 2.3.1. The sample used was
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a small piece from the same growth batch as those used for the neutron and x-ray mea-
surements. It was cooled in zero field (ZFC) and then its magnetisation as a function of
temperature was determined whilst warming, with an applied magnetic field of 500 Oe. The
same procedure was also followed but with field cooling (FC) with 500Oe. The crystal was
mounted using the plastic capsule method, described in section 2.3.1, in such a way that the
applied field was parallel to the ab-plane.

4.3 Results

The sample’s longitudinal moment5 which was used to determine the superconducting prop-
erties of the LNSCO sample, is shown in figure 4.6, and the entry into the Meissner state
can clearly be seen at about 7K in the ZFC data. Above the critical temperature the long
moment displays a Curie-Weiss type behaviour, which can be attributed to the disordered
(i.e. paramagnetic) Nd moments, which are much larger than the ordered Cu moments and
therefore dominate. This is best seen in the magnified FC data, shown in figure 4.6(a).
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Figure 4.6: (a) FC measurement of the long moment. (b) ZFC measurement of the long
moment. The applied magnetic field was 500Oe in the ab-plane.

5which is proportional to its magnetisation.
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4.3.1 Polarised Neutron Scattering Measurements

The results of the polarised neutron scattering measurements presented are the same as those
published in reference [35]. All of the scattering was corrected for imperfect polarisation – a
flipping ratio of 14 was measured at the purely non-magnetic Bragg peak Qnuc = (1, 1, 0).
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Figure 4.7: Measurements of the scattering with P perpendicular to the scattering plane
at Q = (1/2, 0.62, 0), with T = 1.7K. The non-spin-flip (NSF) channel is sensitive to the
component of the ordered moment pointing out of the plane (parallel to the polarisation),
whereas the spin-flip (SF) channel is sensitive to components of the ordered moment that
are in-plane. The NSF data are fitted to two Lorentzians. The scan angle ω corresponds to
a rotation of the sample about the (0, 0, 1)-axis.

Figure 4.7 shows the scattering at Q = (1/2, 0.62, 0) with T = 1.7K, which was the
base temperature of the cryostat used for this experiment. As noted in the section 4.1.2,
previous experiments with unpolarised neutrons in zero field [12] and in an applied magnetic
field [29] have concluded that the Nd3+ moments align perpendicular to the Cu-O planes
below TNd

N ≈ 3K. The Cu2+ have two nearest-neighbour La/Nd ions along the c-axis, each
connected via a single oxygen ion (see fig. 4.1). Coupling between the ordered Nd3+ and
Cu2+ spins results in the latter rotating out of the plane as the temperature is lowered and
the ordered Nd moment grows. It is a combination of the ordered Cu2+ and Nd3+ moments
that are detected in the neutron scattering measurements at low temperature.

The wavevector of the low-temperature magnetic order is the same as that of the spin
stripes observed at higher temperatures. This is because just above TNd

N the Nd3+ moments
are entrained to the order of the Cu2+. As the sample is then cooled through TNd

N it costs
more energy for the Nd3+ moments to change their ordering wavevector than it does for
them just to, in effect, amplify the order of the Cu2+ spins.

As stated in section 2.1.4, equations 2.36, the diffraction in the non-spin-flip (NSF)
channel with P ‖ z is sensitive to the component of the ordered moment that is also parallel
to z, which in this case is the c-axis, plus some background. Conversely the spin-flip (SF)
channel with this polarisation is sensitive to moments that lie in the scattering plane and
are perpendicular to Q. It is immediately obvious from the data shown in figure 4.7, that
the ordered moment points almost entirely along the c-axis. The NSF data were fitted using
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two Lorentzians - this peak function was used simply because it was the one provided the
best fit, quantified by having the smallest χ2.

The presence of a strong signal at low temperatures due to this ordering of the Nd3+

moments was actually quite helpful for the purposes of this experiment. The strength of the
signal meant that it was easy to characterise without using prohibitively long counting times.
Because the Nd-ordering had the same wavevector as the Cu-ordering it was possible to use
these well characterised scans to determine accurately the position in sample angle, ω, of
the two peaks (resulting from the two slightly misaligned crystals) at any given wavevector.
Furthermore the relative intensity of the two peaks was purely due to the profile of the two
crystals seen by the neutron beam, so by fitting these low temperature data it was possible
to fix this relative intensity in the higher temperature data fitting. In addition the widths of
the two peaks at any given wavevector were determined by the resolution of the spectrometer
at that position, so the low temperature fits could be used to constrain this parameter for
the higher temperature fits. Finally, because full polarisation analysis was performed at each
wavevector, the ‘pure’ magnetic signal was determined. This meant that the background
could be constrained to zero, and could hence be fixed when the higher temperature data
were fitted. The result of all of these constraints meant that for any given fit of the higher
temperature data only one parameter was free to be varied by the fitting program, resulting
in much more reliable fitting.

Figure 4.8: The scattering plane, showing the positions of the satellite peaks around the
AFM wavevectors in several Brillouin zones. The wavevectors with lines drawn to them
from the origin are the ones at which measurements were made.

Figure 4.8 shows the scattering plane in which the measurements presented below were
made. The spin superstructure peaks are shown as red and blue filled circles, depending
on whether they arise from spins modulated along the b- or a-axis respectively. The red
and blue solid lines from the origin to some of these positions indicate at which wavevectors
measurements of the scattering were made. I will adopt the convention of denoting scattering
resulting from in-plane moments lying perpendicular to the scattering wavevector as My.

Figures 4.9 to 4.11 show the polarisation analysed magnetic scattering at the six wavevec-
tors shown in figure 4.8 for T = 10K. At this temperature the Nd3+ spins are in a disordered
paramagnetic state, so the scattering arises entirely from the ordered Cu2+ moments.



58 Chapter 4. Charge and Spin Order in La1.48Nd0.4Sr0.12CuO4

135 136 137 138 139 140
−20

0

20

40

60

80

100
M

y [c
ou

nt
s 

pe
r 

m
in

ut
e]

149 150 151 152 153
ω [degrees]

Figure 4.9: Polarisation analysed ω -scans with T = 10K at Q = (0.5, 0.62, 0) and Q =
(0.62, 0.5, 0), denoted by red and blue circles respectively. The y-axis corresponds to the
magnetic signal arising from ordered moments that are in-plane and perpendicular to the
scattering wavevector. The black line represents a fit to the data, described in the text.

The main feature to notice is that the intensities of the scattering at the two positions
around the (0.5, 0.5, 0) position (fig. 4.9) are almost equal. This contrasts with the measure-
ments at the satellite peaks of (−0.5, 1.5, 0) and (1.5,−0.5, 0), figs. 4.10 and 4.11 respectively,
where the signals resulting from modulation of the spins along either the a- or b-axis have
substantially different intensities. For the satellite peaks around (−0.5, 1.5, 0) it is the mag-
netic signal arising from spins modulated along the b-axis that is stronger, whereas for the
peaks around (1.5,−0.5, 0) it is the signal arising from spins modulated along the a-axis that
is stronger.

Table 4.1 shows the inelastic scattering intensities for two different wavevectors at an
energy transfer of 5meV with T = 10 K. Polarisation analysis allowed the ‘pure’ spin-spin
correlations to be measured, with Sy denoting components perpendicular to Q but in the
scattering plane, and Sz denoting components perpendicular to the scattering plane. The
measurements of the six polarisation channels were made at a point in the middle of the
peak position, determined from the elastic scattering, and at two points at the background
level either side of this peak6. A full scan in wavevector space (i.e. a linear Q-scan or an
ω-scan) would have been preferable in order to determine the line-shape accurately, however
the intensity of the scattering was very weak that this was not feasible. Indeed three-point
scans at these two wavevectors with sufficiently long counting times for the results to have
statistical significance took a total of 44 hours.

6Unpolarised neutron inelastic scattering measurements, shown later, have shown that the spin excitations
are non-dispersive at low energies.
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Figure 4.10: The scans at Q = (−0.5, 1.38, 0) and Q = (−0.38, 1.5, 0) (red and blue circles
respectively) corresponding to the scans shown in figure 4.9. The black line is a fit to the
data, described in the text.
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Figure 4.11: The scans at Q = (1.5,−0.38, 0) and Q = (1.38,−0.5, 0) (blue and red circles
respectively) corresponding to the scans shown in figures 4.9 and 4.10. The black line
represents a fit to the data, described in the text.
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Wavevector Q Magnetic fluctuation component Intensity
(-0.38,1.5,0) Sy 7.4 ± 1.3
(-0.38,1.5,0) Sz 9.9 ± 1.4
(1.38,-0.5,0) Sy 2.4 ± 1.1
(1.38,-0.5,0) Sz 7.6 ± 1.1

Table 4.1: The inelastic scattering intensities of the transverse in-plane and out-of-plane spin
fluctuations, for E = 5meV, and T = 10K.

It is clear that whilst the two components of the spin fluctuations that were measured at
Q = (−0.38, 1.5, 0) are quite close in magnitude, the two components are very different at
Q = (1.38,−0.5, 0).

4.3.2 Unpolarised Neutron Scattering Measurements
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Figure 4.12: Fixed-energy wavevector scan over the (0.5, 0.38, 0) position with E = 1.5meV,
showing the scattering at T = 1.5K and T = 10K.

The spin excitations at the wavevectors Q = (0.5±δ, 0.5, 0) and Q = (0.5, 0.5±δ, 0), with
δ = 0.12, were measured at low energies using unpolarised neutrons from a cold source on
the IN14 TAS. The excitations measurable in the first Brillouin zone with the spectrometer
setup described (see section 4.2.1) were found not to disperse, and nor did they change
in width as a function of energy or temperature, shown by the fixed-energy Q-scans at
E = 1.5meV and E = 4 meV shown in figure 4.12 and figure 4.13 respectively. This therefore
meant that subsequent fixed wavevector energy scans could be performed more quickly by
measuring three points at each energy without losing information about the signal, like with
the polarised inelastic measurements described in section 4.3.1.

The first set of measurements used a single crystal sample with a (H, 0, 0)/(0, H, 0) scat-
tering plane. Figure 4.14 shows energy scans of the signal minus the background, corrected
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Figure 4.13: Fixed-energy wavevector scan over the (0.5, 0.38, 0) position with E = 4meV,
showing the scattering at T = 1.5K and T = 10K.
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Figure 4.14: The peak minus background scattering at Q = (0.5, 0.38, 0) for T = 2K,
T = 10K, and T = 35 K.

for the Bose-Einstein population factor, for T = 2K, T = 10K, and T = 35 K. The scan at
2K shows a clear gap of about 3meV, whereas at 10K the gap has reduced to about 1meV.
The scan at 35K consists of only three points, but it is clear that after correcting for the
Bose factor the signal at 4meV is the same as it is at the other two temperatures. It also
appears that the scattering is more intense at lower energies, because at 1meV the dynamic
susceptibility, χ′′, at 35 K is a factor of 5 stronger than the same energy with T = 10K and
is a factor of 10 stronger than at T = 2K.

The second set of measurements on IN14 were made on a four-crystal sample with a
scattering plane defined by the vectors (H,H, 0) and (0, 0, L), with a small goniometer
tilt required to access magnetic satellite peaks. Figure 4.15 shows a schematic of the two
wavevectors at which measurements were made. The angles θ1 and θ2 are 37.23◦ and 82.06◦

respectively. Thus the measurements at L = 0 measure spin fluctuations perpendicular to the
ab-plane and perpendicular to (0.5, 0.38, 0), whereas the measurements at L = 4.5 measure
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Figure 4.15: The scattering planes used for the second measurement on the IN14 spectrom-
eter.

a much smaller fraction of the out-of-plane component and almost all of the fluctuations in
the ab-plane.
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Figure 4.16: The scattering at Q = (0.5, 0.38, 0) and Q = (0.5, 0.38, 4.5), L = 0 and L = 4.5
respectively, with T = 35K

Figure 4.16 shows data taken using the four-crystal array sample. The measurements
here were made at T = 35K, which was chosen because the absolute count rate arising from
the magnetic excitations was greater at this temperature than at lower temperatures due to
the Bose population factor. This meant that better quality data, i.e. higher counts, could
be collected in a shorter period of time, giving rise to smaller error bars on the data and also



C4. Charge and Spin Order in La1.48Nd0.4Sr0.12CuO4 63

faster data collection.

The data shown were obtained, as with the first experiment, by measuring three points at
each energy - one peak and two background. The scattering at (0.5, 0.38, 4.5) is less intense
than that at (0.5, 0.38, 0) at the lowest energies. Its intensity then increases less sharply
with increasing energy, and reaches a maximum at 4meV. The scattering at (0.5, 0.38, 0)
reaches a maximum at 1.5meV and then decreases steadily with increasing temperature.
The behaviour as a function of temperature of the scattering at (0.5, 0.38, 0) is consistent
with the three points measured on a different sample, shown in figure 4.14.

4.3.3 X-ray Diffraction Measurements

Figure 4.17 shows a typical scan along the (H, 0, 0)-direction of LNSCO over the wavevec-
tor Q = (2.24, 0, 4.5), i.e. Q = (2, 0, 4) + (0.24, 0, 0.5), probing a structural modulation,
induced by a similarly modulated charge ordering pattern. As was noted in section 4.1,
La2−xBaxCuO4 (LBCO), with x ≈ 1/8, shows similar behaviour. In figure 4.18 the same
kind of scan for LBCO as was shown in figure 4.17 for LNSCO is presented for comparison.
This measurement was also made on ID20 with the exact same setup of the apparatus during
the same beamtime allocation. Note that although the measurements discussed in the rest
of this section relate to these peaks at Q = (2.24, 0, 4.5), there was an observable signal
at the other satellites of the (2, 0, 4) Bragg peak. The (2.24, 0, 4.5) was chosen simply for
experimental convenience7.
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Figure 4.17: Scan of charge-order induced structural distortion peak in LNSCO, at T=2K
in zero applied field.

The temperature dependence of the peak intensity in both materials is shown in figures
4.19 and 4.20. The peaks were fitted with a Lorentzian-squared lineshape, since of the simple
peak functions (Gaussian, Lorentzian etc.) this provided the best overall fit. The intensity
was then calculated from this using the product of the amplitude and the width.

In both materials the intensity of the charge peak decreases monotonically above about
20K. In LNSCO the peak disappears at about 70K, which is the same temperature as the

7The specular direction of the sample used was (1, 0, 2).
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Figure 4.18: Scan of charge-order induced structural distortion peak in LBCO, at T=2K in
zero applied field.

LTT-LTO structural transition. In LBCO the peak disappears above 50K, which is similarly
around the temperature of a structural transition.
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Figure 4.19: The temperature dependence of the integrated intensity of the charge order
induced structural peak at Q = (2.24, 0, 4.5) in LNSCO.

It is possible that the correlation length of the charge order may change, depending on
the presence or absence of superconductivity. The fits also provide information about this,
and the width in zero field in LNSCO is shown in figure 4.21. This clearly shows that the
width does not deviate significantly over the range 2 ≤ T ≤ 60K (above 60K the fit for the
width is so large that to plot it on the same axes would not be sensible).

A similar measurement was conducted for LBCO, measuring the charge order peak in
zero applied field, and then the same peak after field cooling in applied field of H = 10 T.
Figure 4.22 shows that the peak does broaden at higher temperatures, just below the charge
ordering transition temperature. The measurement in an applied field is not discernibly
different from the zero-field measurement, so it appears that the charge order is unaffected
by the presence of an applied magnetic field.
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Figure 4.20: The temperature dependence of the integrated intensity of the charge order
induced structural peak at Q = (2.24, 0, 4.5) in LBCO.
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Figure 4.21: The temperature dependence of the width of the charge order peak in LNSCO
in zero applied magnetic field

To test further the result from LBCO, that an applied magnetic field does not affect
charge order, the LNSCO sample was field cooled from 100K (well above the stripe-order and
superconducting transition temperatures) and then the charge order peaks were measured as
function of temperature. As with the zero field data, the peaks were fitted with a Lorentzian-
squared lineshape. It was found, within the error bars of the fits, that there is no difference
between the zero-field intensity and the field cooled intensities for applied fields of up to
9T. Furthermore, the charge order peak’s width did not change compared to the zero field
measurement when magnetic fields were applied.
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Figure 4.22: The temperature dependence of the width of the charge order induced structural
peak at Q = (2.24, 0, 4.5) in LBCO with zero applied magnetic field, and an applied field of
10T.

4.4 Analysis and Discussion

4.4.1 Analysis of the Polarised Neutron Scattering Measurements

For chiral magnetic structures there are extra terms in the magnetic inelastic scattering cross-
section that were neglected, for brevity, in the general introduction to scattering theory
presented in section 2.1. The relevant part of the full cross-section is instead given in
appendix A.

Referring to equations A.5 and A.6, note that the imaginary part of M⊥ contains the
information about the phase of the magnetic order. For non-chiral structures M⊥ = M∗

⊥,
so that M⊥ ×M∗

⊥ = 0. Therefore measuring the scattering in both channels, spin-flip and
non-spin-flip, for each polarisation allows one to determine whether or not there exists chiral
magnetic order. If chiral order exists then the sum of the two channels for the different
polarisations would be different, whereas if there were no chiral order the sum of NSF and
SF scattering would be the same for each polarisation. Figure 4.23 shows the differences in
the values of the sum of SF and NSF scattering at Q = (−0.5, 1.38, 0) and Q = (−0.38, 1.5, 0)
for all three polarisations. It is clear that the sum of the two channels is the same, within
the error on the measurement, for all three polarisations at each wavevector. This means
that chiral ordering is completely ruled out by these measurements.

Analysis based on Landau theory considerations [36] shows that if there is a non-spiral
spin order at wavevectors Q1 and Q2 then there will be charge order at wavevectors of the
form Q1 + Q2, as well as at 2Q1 and 2Q1, however the former set of peaks have never been
observed experimentally, ruling out spin-checkerboard type models.

Let us now make the ansatz that the stripe model provides an adequate description of
the spin order in LNSCO, and calculate whether the data are consistent with this ansatz,
and if so what further information may be obtained about the ordered spins.

When manipulating the data they were first corrected for the differences in magnetic
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Figure 4.23: The scans at Q = (−0.5, 1.38, 0) and Q = (−0.38, 1.5, 0), showing the sum of
NSF and SF for P ‖ Q minus the sum of NSF and SF for P ⊥ Q and P ‖ Q. Black vertical
lines show the main peak position for each wavevector.

form factor at different wavevectors. There exist tabulated coefficients for the analytical
approximation of the form factor for various magnetic ions [37] which can be used to calculate
the form factor at the various different wavevectors. However in many solids there may be
extra effects which cause the analytical approximations to break down, so correcting the
data for form factor in this way is somewhat risky. It was therefore considered safer for
this material to compare the integrated intensities of the signals of peaks in the same group
of magnetic satellites (e.g. only compare the signal from a peak at (−0.38, 1.5, 0) with
other satellites around the (−0.5, 1.5, 0) position). This meant that when the data were
being fitted the integrated intensities of pairs of peaks were compared, but peaks in different
magnetic zones were not compared. During the analysis the only fitting parameter required
for the pair of peaks at each wavevector was an overall intensity scale factor, since the widths,
background and intensity ratio was fixed by the low temperature data fits (see section 4.3.1).

The integrated intensity of a particular spin signal is proportional to the square of the
ordered moment in that direction (see section 2.1.4), so for each pair of wavevectors the ratio
of the intensities will determine a unique spin direction relative to the principal axes for the
case of spins ordered in the stripe model. In such a model there is an equal population
of orthogonal domains of spins and stripes, due to the tetragonal symmetry of the crystal,
but these domains do not contribute to the same satellite peak. However the spin direction
relative to the b-axis for the (0.12,0,0) satellites will be the same, due to the tetragonal
symmetry, as the spin direction relative to the a-axis for the (0,0.12,0) satellites.

The angle of the spin to the wavevector for the (0.12, 0, 0)-type peaks is given by

α = (90− θ1) + φ, (4.1)

where φ is the angle of the spin to the b-axis, α is the angle of the spin to the scattering
wavevector, and θ1 is the angle of the wavevector to the a-axis.
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Figure 4.24: Definitions of angles used in analysis of the polarised neutron diffraction data.

The same angle, relative to the a-axis for the (0, 0.12, 0) peaks results in

β = θ2 − φ, (4.2)

where β is the angle of the spin relative to the scattering wavevector and θ2 is the angle of
this wavevector to the b-axis. The ratio, R, of the scattering at the two wavevectors arising
from the component of the spin perpendicular to the wavevector is then given by

R =
sin2(α+) + sin2(α−)

sin2(β+) + sin2(β−)
, (4.3)

where α+ and α− represent the α calculated in equation 4.1 with +φ and −φ respectively,
and β+ and β− are defined similarly8.

The results of these fits which, to reiterate, were magnetic zone independent, gave rise
to slightly different values for the angle between the spins and the principal axes. For the
wavevectors Q = (0.62, 0.5, 0) and Q = (0.5, 0.62, 0) the symmetry of the system means
that the angle between the spins and the principal axes cannot be determined. Irrespective
of the angle φ chosen the ratio of intensities will always be the same, which can be seen
immediately on inspection of equations 4.1 and 4.2. The pair of satellite peaks of (0.5, 0.5, 0)
chosen for these measurements were symmetric about a line at 45◦ to the principal axes.
This means that (90 − θ1) = θ2, and if we allow an equal number of spins to be at +φ and
−φ, which we must given the tetragonal symmetry, then the ratio given in equation 4.3 will
always be unity. Hence this pair of peaks provide no information about the orientation of

8Due to symmetry there is no difference in energy between a spin lying at +φ and −φ to a principal axis,
so there will be an equal population of both.
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the spins in the stripes.

The other magnetic zones in which measurements were made do, however, provide
information on the arrangement of the spins. The ratio of intensities of the peaks at
Q = (−0.38, 1.5, 0) and Q = (−0.5, 1.38, 0) was found to be R1 = 0.35 ± 0.06, which in
turn gives φ = 27.8 ± 2.4◦. The ratio of intensities of the peaks at Q = (1.38,−0.5, 0) and
Q = (1.5,−0.38, 0) was found to be R2 = 2.77 ± 0.68, which would give rise to an angle of
φ = 28.2 ± 4◦. Calculating the weighted mean and weighted error of these two vales gives
φ̄ = 28.0± 1.5◦. It is the fits that give this result that are shown as the solid lines in figures
4.9, 4.10, and 4.11.

The information shown in table 4.1 can be readily interpreted in terms of the stripe
model. The low energy of the excitation examined (5meV) means that the fluctuations can
be simply interpreted as arising from semi-classical spin-waves. When spins are statically
correlated then such fluctuations should be predominantly perpendicular to the direction of
the ordered moment. If the spin waves are isotropic then both of the two components of the
excitations that are perpendicular to the ordered moment direction should be non-zero and
equal. This contrasts with the component that is longitudinal to the spin ordering direction,
which one would expect to be very small, or even zero. As with measurements of the static
magnetic moments, detailed above, it is only the components of the spin excitations that
are perpendicular to the scattering wavevector that can be measured.

Figure 4.25: Definitions of the first set of angles used in analysis of the polarised neutron
inelastic scattering data.

Examining the inelastic scattering at Q = (−0.38, 1.5, 0) first, and defining the angle
between the b-axis and Q as θ1, the angle between the ordered moment and the b-axis as φ,
and the angle between Q and the transverse component of the spin wave as γ (as in figure
4.25) we see that

γ+ = 90◦ + θ1 − φ, (4.4)

γ− = 90◦ + θ1 + φ,
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where the + and − subscripts take into account the assumed equal population of spins ori-
ented at angles +φ and −φ to the b-axis. This means that the in-plane transverse component
of the inelastic scattering, which is labelled Sy in table 4.1 will be related to the out of plane
component Sz by

Sy =
Sz

2

(
sin2(γ+) + sin2(γ−)

)
. (4.5)

If we put γ = 28◦ then we find that Sy = 0.75Sz. Looking at table 4.1 we see that
Sz = 9.9±1.4, which means that the calculated value is Scalc

y = 7.4±1.1. This is in excellent
agreement with the measured value Smeas

y = 7.3± 1.3.

Figure 4.26: Definitions of the second set of angles used in analysis of the polarised neutron
inelastic scattering data.

Following the same procedure for the polarised inelastic scattering at Q = (1.38,−0.5, 0),
where this time the angle between the in-plane transverse component of the scattering and
the wavevector is δ, and the wavevector makes an angle θ2 with the a-axis, we find that

ε = 90◦ − (φ + θ2), (4.6)

δ+ = 90◦ − ε

= φ + θ2,

δ− = θ2 − φ, (4.7)

and calculating Sy in the same way as before we find that Scalc
y = 0.29 · Sz = 2.17 ± 0.31.

Again this is in excellent agreement with Smeas
y = 2.4± 1.1.
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4.4.2 Discussion of the Polarised Neutron Scattering Measure-
ments

The main result presented in this chapter concerns the polarised diffraction data taken at
T = 10K, which corresponds to the ordering of the Cu2+ moments. Although it has been
shown that the data can be fitted quite well by assuming a stripe ordering model, it is
useful to consider qualitatively several of the other proposed models of the spin-ordering in
charge ordered materials such as LNSCO, and what polarised neutron diffraction features
they predict.

Consider first the single domain of helically ordered spins shown in figure 4.5(a), corre-
sponding to the spiral order proposed by Lindg̊ard, which are described by a single wavevector
q = (0.12, 0, 0). A pattern of spins orthogonal to the one shown, and with an orthogonal
wavevector, is equally likely so the population of these two domains in a bulk sample should
be the same. The measurements at Q = G+(0.5, 0.5, 0)+(0.12, 0, 0), where G is a reciprocal
lattice vector, should all give rise to scattering of the same intensity (after form factor correc-
tions). This is manifestly not the case for the data presented here. Furthermore, assuming
the population of the two orthogonal domains was the same, all of the satellite peaks in any
given magnetic zone should also have the same magnitude, which is also not observed. This
means that such a pattern of ordered spins may be ruled out by the measurements presented
here.

Figure 4.27: ‘Two-q’ magnetic ordering pattern, proposed by Fine [24].

Figure 4.27 shows another proposed ordering pattern of the spins, proposed by Fine [24],
a collinear ‘two-q’ arrangement. In this case only a single domain is required to produce
all four satellite peaks, because the pattern shown has the required periodicity in both the
a and b directions. In this case one needs to consider pairs of measurements made in the
same magnetic zone. For example let us consider the measurements at Q = (−0.38, 1.5, 0)
and Q = (−0.5, 1.38, 0). The angle between these two scattering wavevectors is 5.7◦, so the
direction of the spins relative to the measurement wavevector is almost the same for both
cases. Since there is only one domain the two wavevectors are measuring the same spins,
and if the angle between the wavevectors is almost the same the angle between the spins
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and the wavevector in each case is almost the same. This would give rise to almost equal
intensity of the magnetic scattering, but for the wavevectors considered here the scattering
is clearly much more intense at one wavevector than the other, and this observation means
that we can immediately rule out this proposed spin ordering pattern.

Now consider the so-called π-spirals proposed by Silva-Neto [26], shown in figure 4.5(b).
In this model the alternating rows of spins rotate alternately clockwise and anticlockwise,
which is distinct from the model of Lindg̊ard [25] where there is only one sense of rotation of
the spins. The ordering pattern proposed by Lindg̊ard provides peaks at the correct positions,
Q = (1/2, 1/2)± (δ, 0) and Q = (1/2, 1/2)± (0, δ), provided there are two orthogonal chiral
domains. If one were then to superpose another ordering pattern on this model then it
should be possible to produce the π-spiral pattern. The required superposition is shown
in figure 4.28. The wavevector of the upper structure is Q1 = (1/2, 1/2) ± (δ, 0), whereas
the lower structure has Q2 = (1/2, 1/2) ± (2δ, 0). This gives four possible wavevectors,
QA,B = (1/2, 0) ± (δ, 0) and QC,D = ±(δ, 0). In other words, if the π-spiral structure were
correct then there would be additional magnetic Bragg peaks at these positions. Scans were
performed using unpolarised neutrons at the (0.38, 1) position, which corresponds to QB,
and there was no signal. This measurement proves that the π-spiral model cannot describe
the ordering of spins in LNSCO.

Figure 4.28: A coherent superposition of the two patterns shown would generate the π-spiral
pattern. Circles denote zero spin, and the central spin is twice as large as the other two
shown.

The qualitative inspection and quantitative analysis of the data presented thus far rule
out all but three possibilities for the pattern of the spins in this material. The first model that
is not ruled out is the stripe model, with the proviso that there exist an equal population of
orthogonal domains. To reiterate a point that was made in section 4.1, it has been proposed
that these orthogonal domains exist in adjacent CuO2 planes, that is to say that the stripes
are stacked orthogonally along the c-axis. Another model with which the data are consistent
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is one particular kind of checkerboard order, shown in figure 4.29, which is in fact a coherent
superposition of the two orthogonal stripe domains. Such a model has the interesting feature
of a 90◦ rotation of spins across the charge domain wall. The interaction between spins across
the domain wall would certainly not have a simple form for such an ordering pattern to arise.
A third model has been proposed [23], subsequent to the publication of the results described
here [35], to describe these data. It bears many similarities to the second model, however in
this model the nature of the charge order is very different, so that the magnetic domain walls
described above do not exist. Instead of stripes or checkerboards of charge, the charge is
localised at single points in the CuO2 planes, and the spins are then organised in a so-called
‘vortex lattice’. Two such vortex lattices are shown in figure 4.30, describing situations
where the charge is centred on Cu sites or on Cu-O bonds respectively. This model is in
fact another possible result of a coherent superposition of an equal number of domains of
orthogonal stripes, but with the difference that the charge stripes shown in figure 4.29 are
assumed not to exist.

Figure 4.29: A coherent superposition of two stripe domains, which would give an equivalent
diffraction pattern.

The diffraction data cannot provide any further information that would allow one to
distinguish between these three models, since they must give rise to the same diffraction
features because they are all superpositions of the stripe model. Indeed the inelastic scat-
tering data, taken at face value, cannot provide any further clues as to which model is likely
to be correct, since the inelastic scattering in all three models would also be a coherent
superposition of two stripe domains. One can, however, consider the plausibility of the sim-
ple spin wave model used to analyse effectively the inelastic scattering data. For the stripe
model, with nearest neighbour spins that are arranged antiferromagnetically, simple spin
waves would seem to be the most obvious way for the system to be excited and the data
bear out such an interpretation. Such a simple interpretation may not, however, be appli-
cable to the more complicated ordering patterns shown in the other two models. However,
no stronger statement than this may be made in the absence of further evidence and/or
theoretical predictions of the microscopic properties (including the magnetic excitations) of
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Figure 4.30: (a) Site centred charge with a vortex spin lattice, (b) Bond centred charge with
a vortex spin lattice, as proposed by B.V. Fine [23].

the non-stripe models.

4.4.3 Analysis and Discussion of the Unpolarised Neutron Scat-
tering Measurements

The measurement at Q = (0.5, 0.38, 0) with T = 2 K shows that there is an energy gap in the
excitations of the spins in LNSCO. The size of this gap seems to be temperature dependent,
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reducing from 3meV to 1meV as the temperature is increased from 2K to 10 K. At 35K the
gap is lower than 1meV, but because there are no measurements at sufficiently low energies
for this temperature it is not possible to say by how much it has reduced, or even whether
it has disappeared.

The cause of the gap, and its temperature dependence, are not immediately obvious.
However one possible explanation is that the spin fluctuations are anisotropic. It is com-
mon in strongly correlated electron systems for different components of the spin fluctua-
tions to have different energy gaps (so-called anisotropy gaps). This is because of single-ion
anisotropy, which arises due to quenching of the orbital moments by the crystal field, which
has the same symmetry as the lattice. The effect is felt by the spin excitations due to
spin-orbit coupling, resulting in magnetic moments that preferentially lie along a particular
direction, and which must be supplied with a fixed amount of energy before they can support
spin waves. Another possible cause of the gap is that there is some coupling between the
excited Cu2+ spins and the Nd3+ spins which are introduced into the material in order to
stabilise the LTT crystallographic phase below 70 K. The polarised neutron diffraction mea-
surements described in section 4.3.1 showed that the Nd moments order at low temperature
(T ≤ 3K) such that the moments point along the c-axis. This magnetic anisotropy could
cause the excitations parallel to the c-axis to be more favourable at low temperatures than
excitations in the ab-plane.

The most straightforward way to test the hypothesis of an anisotropy-related gap would
be to conduct a polarised neutron inelastic scattering experiment, and repeat the fixed-Q
energy scans at several temperatures. Polarisation analysis would allow the various compo-
nents of the fluctuations to be determined individually and the anisotropy measured. Such
a measurement was the original intention of the polarised neutron measurements described
in this chapter, however it was soon realised that the counting times required to do the ex-
periment with polarised neutrons would be prohibitively long due to the much-reduced flux
of the polarised neutron spectrometer IN20 compared to unpolarised neutron instruments.

By using two different crystal orientations in an unpolarised neutron scattering exper-
iment, it is possible to resolve partially the spin fluctuation components of the scattering.
This can be done because the magnetic part of the unpolarised cross-section is not sensi-
tive to any component of an excitation parallel to the scattering wavevector. As stated in
section 4.3.2 scattering at Q = (0.5, 0.38, 4.5) is largely sensitive to the components of the
spin fluctuations in the ab-plane, whereas scattering at Q = (0.5, 0.38, 0) is sensitive to the
out-of-plane component of the spin fluctuations, plus the in-plane component perpendicular
to Q.

A qualitative inspection of the data suggests that there is some degree of anisotropy,
simply because the shape of the fixed-Q energy scans at different wavevectors behave so
differently as a function of energy. A more quantitative approach can be made by assuming
that the statically ordered moments are oriented according to the results of the polarised
neutron diffraction analysis. The scattering at Q = (0.5, 0.38, 0) (L = 0), shown in figure
4.16, comprises components of the fluctuations that are perpendicular to Q, i.e. along unit
vectors v1 andv2 which are parallel to (0, 0, 1) and (0.38,−0.5, 0) respectively. If we assume
that in the low energy regime the fluctuations are purely transverse to the ordered moment
direction (semi-classical spin-waves), and we know the direction of the ordered moment, then
we also know two vectors perpendicular to it - one of which is out of the plane (we are free
to choose this) and the other is in the plane. The polarisation of the spin fluctuations can
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be completely described by these two vectors, and hence the projection of these two vectors
on to v1 and v2 can be calculated. It is the sum of these two projections that is measured
by the unpolarised magnetic scattering cross-section.

Explicitly, for the case of L = 0:

S = (−sin 28, cos 28, 0)Sin−plane + (0, 0, 1)Sz, (4.8)

and the quantity measured in the inelastic scattering measurements is

dσ

dΩ
∝ (

(S · v1)
2 + (S · v2)

2
)
. (4.9)

For the L = 0 case the terms in equation 4.9 are given by

(S · v1)
2 = S2

z , (4.10)

(S · v2)
2 = 0.985S2

in−plane. (4.11)

However there is also an equal population of spins at an angle of −28◦ to the principal
axis. The vector describing these spins is given by

S− = (sin 28, cos 28, 0)Sin−plane + (0, 0, 1)Sz, (4.12)

so performing the same analysis for this group of spins and averaging the two intensities we
finally arrive at

dσ

dΩL=0
∝ 0.566S2

in−plane + S2
z . (4.13)

For the case of L=4.5, we get, following the same procedure

dσ

dΩL=4.5
∝ 0.992S2

in−plane + 0.031S2
z . (4.14)

Equations 4.13 and 4.14 can be solved simultaneously for S2
in−plane and S2

z . The result
of manipulating the data accordingly is shown in figure 4.31. This measurement seems to
suggest that above about 2.5meV the in-plane component of the fluctuations becomes much
larger that the out-of-plane component. The out-of-plane component apparently tends to
zero for E ≥ 3meV. This cannot be reconciled with the results of the polarised inelastic
measurements, shown in table 4.1 – indeed those measurements appear to give almost the
opposite result! The most obvious reason for the discrepancy is that the three-point method
used to calculate the peak intensity did not work. For example if a small amount of spurious
scatter was present in the background signals for the higher energies at L = 0 then the signal
there might be anomalously low and result in the effect seen in figure 4.31.
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Figure 4.31: The in-plane and out-of-plane components of the spin fluctuations, determined
from unpolarised neutron scattering. T = 35K.

4.4.4 Analysis and Discussion of the X-ray Diffraction Measure-
ments

In section 4.3.3 non-resonant x-ray diffraction measurements of a superlattice which is present
in both LNSCO and LBCO were presented. The existence of this superlattice has been at-
tributed to a periodic structural distortion of the crystal lattice which is induced by a periodic
modulation of the charge density within the CuO2 planes. In section 4.1 the possibility that
this charge order may be influenced by superconductivity and/or the existence of a vor-
tex lattice was mooted. The measurements presented in section 4.3.3 clearly demonstrate,
however, that the charge order is not affected by the presence of a vortex lattice.

In a superconductor in the vortex phase magnetic flux penetrates the bulk of the sample,
however this flux is quantised and forms a so-called flux line lattice. The flux quantum is
given by

Φ =
h

2e
= 2.068× 10−15 Wb, (4.15)

so that the flux density penetrating the sample is B = NΦ, where N is the number of fluxoids
per unit area. Now if the flux forms a triangular lattice comprising equilateral triangles of
side L then it is obvious that

√
3

4
L2 =

1

N
=

Φ

B
=

h

2eB
, (4.16)

L =

(
h

eB

2√
3

)1/2

.

For an applied magnetic field of 10 T this gives N = 4.836×1015 m−2, i.e. L = 219 Å. For
the case of LNSCO and LBCO this translates as L ≈ 58 unit cells. This can be compared
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with the widths of the charge order peaks shown in fig. 4.17 and fig. 4.18, which correspond
to the inverse correlation length of the charge order. For the case of LBCO, the peak width
is 0.012 r.l.u, giving a correlation length of 315 Å or about 83 unit cells. This tells us that in
the highest applied field there is, on average, at least one flux-line penetrating each domain
of correlated charge so that if there was an interaction between this flux-line and the charge
then x-ray diffraction could in principle be used to measure it.

Theoretical studies [38, 39] have shown that the existence of a vortex core causes nearby
stripe order to be stabilised, both in terms of the spin order and the charge order. Neutron
scattering experiments by Chang et al [40] on the spin stripe peaks in La2−xSrxCuO4 (LSCO)
at different doping fractions have shown that the presence of a large enough magnetic field
gives rise to the appearance of static spin order, where in the absence of an applied field
the spins were not ordered in such a pattern. These results would seem to tie in with
the theoretical predictions mentioned above, so that fluctuating stripes become statically
correlated. In the same neutron scattering study Chang et al present similar measurements
on LNSCO. There it was found that an applied field of up to 15T had no effect on the spin
stripe order at T = 15 K, unlike in LSCO. If one takes the degree of spin stripe order and
the degree of charge stripe order to be inherently connected then this result would tie in
with the measurements presented here, that the stripes are not affected by the presence of
an applied magnetic field.

A possible explanation for this lies in the theoretical prediction that vortex cores stabilise
stripes. The theory assumes that any other interactions that might drive the formation of
stripes are not sufficiently strong to give rise to static stripes in the absence of vortex cores,
which would be an accurate description of the situation in LSCO. However in LNSCO there
are stripes in zero applied field, indeed they are correlated over quite a long range, so although
the interaction that makes vortex cores stabilise stripes may still exist in this material, its
effect is not seen because stripes exist already. The vortex interaction may, perhaps, cause
stripes to be correlated over a slightly longer range. Indeed this could well explain the results
of Jungho Kim et al [31] who observe a very slight narrowing of the charge order peaks in
their sample of LBCO in an applied field of 10T. However if the correlation length of the
stripe order is already determined in zero field by intrinsic properties of the material such as
impurities or oxygen stoichiometry, then the presence of the vortex cores may well make the
stripe phase more stable but the effect would not be measurable. It is this latter situation,
therefore, that probably accounts for the measurements presented in this work, on both the
LBCO and the LNSCO samples.

The effect of superconductivity on charge order is less clear. In figures 4.21 and 4.22 it
appears that in the lower temperature range, where for these particular samples supercon-
ductivity was extant, the charge order might become correlated over a slightly longer range,
evidenced by a very small reduction in the peak width. This change of width is, however,
smaller than the error bars on the measurements so it is not possible to be entirely certain
that the effect is real and not just due to statistics. Indeed, if the charge order were to
become correlated over a longer range one might expect the intensity of the scattering to
increase, and figures 4.19 and 4.20 show that, within the error bars, this does not occur.
Indeed the intensity at temperatures below Tc ≈ 10K may actually be somewhat lower than
that at higher temperatures, e.g. around 20K.

This result is somewhat surprising, because one might expect that when superconduc-
tivity occurs the charge carriers would become paired and delocalised. If, just above Tc, all
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of the charge is localised in stripes, say, then it would seem logical that just below Tc some
of the charge would be removed from these stripes and hence the order would extend over a
shorter length scale, resulting in a lower peak intensity and an increased peak width. This
is at variance with what is actually observed. A possible alternative explanation might be
that in the stripe phase the localised charges experience Coulomb repulsion from the sur-
rounding localised charges. The energy of such an interaction may not be high enough to
destabilise the stripe phase. On cooling below Tc some charge is removed from the stripes so
the Coulomb repulsion energy would be lowered, resulting in a more stable stripe phase with
a longer correlation length. The intensity of the structural distortion peak is proportional to
the Coulomb interaction between the stripes and the lattice, so if charge is removed from the
stripes then this Coulomb interaction would be weaker, resulting in a reduction in intensity.
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4.5 Conclusions

In conclusion the results presented here have provided new information on several different
aspects of the charge and magnetic order, and dynamics in two copper-oxide superconductors
at 1/8 doping.

The spin order found in LNSCO using polarised neutrons was consistent with stripe
order, but ruled out several more exotic types of chiral order. There remain two possible
structures not ruled out by the data – a coherent superposition of two orthogonal stripe
domains, and a checkerboard model in which there is a periodic vortex-like arrangement of
spins centred on localised charge.

Unpolarised neutron measurements of LNSCO show that there is a gap in the low energy
spin excitations, the magnitude of which decreases with increasing temperature. Polarised
neutron measurements were unable to shed light on the nature of any anisotropies in the fluc-
tuations due to very low neutron count rates. Unpolarised neutron scattering measurements
with the crystal in different orientations showed that the in-plane fluctuation spectrum is
different to that of the out-of-plane spectrum.

X-ray measurements of the structural distortions induced by the presence of a periodic
charge order were performed on LNSCO and LBCO. In both materials no change was ob-
served in either the intensity of the scattering, or width of the peaks, at low temperatures
when a magnetic field was applied parallel to the c-axis, establishing a vortex lattice. This
can be explained if the length scale over which charge order exists is already limited by other
effects, because theoretical studies have suggested that the presence of a vortex lattice should
help to stabilise charge stripe order. There is circumstantial evidence that superconductivity
has a small effect on the charge order, which might be explained by some of the localised
charge becoming delocalised when it participates in superconductivity.

There are several possibilities for future measurements on LNSCO and LBCO. Soft x-ray
measurements could be performed on both materials in order to measure directly the charge
order and establish its symmetry. Anisotropies in the excitation spectrum of LNSCO could
be investigated further, either by performing careful absorption corrections whilst using the
same sample as before, or by growing a larger series of samples with similar shapes and
repeating the existing measurements.
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Chapter 5

Neutron Scattering Measurements of
LaCoO3

Neutron scattering measurements were performed on LaCoO3 in order to probe the
nature of its thermally excited spin state. Very broad dispersive magnetic excita-
tions were found to be extant throughout the Brillouin zone, reminiscent of those
observed in ferromagnets above their critical temperatures. Analysis of these exci-
tations allowed an upper limit on a possible ferromagnetic interaction strength to be
determined. Analysis of the temperature dependence of the excitations was unable
to differentiate between proposed models of the excited spin state.

5.1 Introduction

LaCoO3 is a semiconductor that has been of interest for many years due to its peculiar
magnetic properties. The ground state, measured at low temperatures, is non-magnetic
however as the material is warmed the magnetic susceptibility steadily increases, reaching a
maximum at about 100K. As the temperature is increased further the susceptibility gradually
decreases following a Curie law type behaviour. The behaviour of the susceptibility then
deviates from this above about 400K, becoming slightly larger than expected from the Curie
law alone. The magnetic susceptibility, as measured by English et al [1] is shown in figure
5.1.

This behaviour is somewhat surprising, because the Co3+ ions have the 3d6 configuration,
for which Hund’s rules predict a ground state with S = 2. It is therefore clear that this is
a material in which the competition between the intra-atomic exchange and the crystal
field determines the magnetic properties. The general principles to explain the unusual
magnetism observed in LaCoO3 are broadly agreed upon – the Co3+ ions have a ground
state with S = 0, and there is an energy gap between this state and excited states that have
S 6= 0. As the material is warmed the magnetic excited state(s) are thermally populated,
so that increasing temperature leads to an increased number of magnetic ions. However
there is a trade-off between the increase in susceptibility that results from this thermal
population, and the thermally induced fluctuations of the ions in the magnetic state that
act to reduce the susceptibility according to the Curie law. It is this trade-off which results
in the susceptibility rising to a maximum before decreasing again on warming.

Measurements of the electrical resistivity show that this decreases with increasing tem-
perature [1], and its behaviour is consistent with a semiconducting gap of about 38meV for
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Figure 5.1: After English et al [1], the magnetic susceptibility of LaCoO3 as a function of tem-
perature. Van-Vleck and impurity contributions to the susceptibility have been subtracted
from these data.

T ≤ 80K, and a larger gap of about 146meV for T ≥ 120K. These energy gaps correspond
to temperatures of 440 K and 1700K respectively. Measurements of the optical conductivity
[2] have shown that the indirect semiconducting gap is about 1.1 eV, however the transition
is rather broad in energy, with a noticeable rise in the conductivity as low as 0.1 eV.

LaCoO3 crystallises in the rhombohedral space ground R3̄c, in which its lattice param-
eter a ≈ 5.43 Å and lattice angle α ≈ 60.8◦. The lattice can be regarded as a slightly
distorted cubic lattice, with pseudo-cubic1 lattice parameters a ≈ 3.8 Å and α = 90◦, and
the crystalline environment of the Co3+ ions is therefore very close to being octahedral. An
octahedral crystal field would split the 3d orbitals into t2g and eg states, with the former at
a lower energy [3]. In the non-magnetic state the Co3+ is in the t6

2g configuration, whereas
in the magnetic state one or more electrons are excited into the eg states.

The delicate balance of the various interactions in LaCoO3 means that the nature of
the magnetic excited state is not immediately obvious. A simple view is that there exists
competition between the crystal field and the L-S coupling (parameterised by Hund’s rules),
which would mean that the excited state has S = 2. Indeed this view prevailed for many
years after the physical properties of LaCoO3 were first measured. For example Raccah
and Goodenough [4] were able to model successfully the behaviour with temperature of the
conductivity, magnetic susceptibility and structural parameters assuming a high-spin (HS,
S = 2) model.

More recently, however, such interpretation has been cast into doubt. LDA+U calcu-
lations by Korotin et al [5] predict an excited state with S = 1, which has been called
intermediate-spin (IS). The IS state is favoured by the LDA+U calculation because there
is a strong hybridisation between the Co eg levels and the O 2p levels which lowers the
IS energy relative to that of the HS state. Subsequently measurements of susceptibility,
thermal expansion [6, 7], photoemission spectroscopy, x-ray absorption spectroscopy [8], and
infra-red spectroscopy [9] were all interpreted using models with an IS excited state, where

1See appendix B.
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at higher temperatures a HS state is thermally populated, or the orbital degeneracy of the
IS state increases, to account for the semiconductor-metal transition.

Several predictions were made by the calculations of Korotin et al [5], in addition to
the existence of the IS state. The IS state was predicted to be metallic and the HS state
semiconducting, at variance with experimental observations. It was suggested that this may
be an artifact of the calculation, because the existence of long-range spin order was assumed.
It was also predicted that an orbitally ordered state is energetically favoured in the IS state.

The low-spin (LS) non-magnetic ground state is not Jahn-Teller active because it is
orbitally non-degenerate [10]. The proposed IS and HS states, however, do possess orbital
degeneracy and therefore would be Jahn-Teller active. X-ray diffraction measurements on
powder and single crystal samples [11] in the temperature range 95 ≤ T ≤ 295K have shown
lattice distortions attributed to Jahn-Teller distortions, in agreement with measurements of
the susceptibility [6] and infra-red spectroscopy [9] which find that the thermally excited
spin states are orbitally non-degenerate.

Neutrons can probe magnetism on an atomic scale, so neutron scattering is an obvious
choice of technique to investigate the interplay of effects that determine the spin state in
LaCoO3. The simplest experiment to confirm the existence of a HS or IS first excited
state would be to use inelastic scattering to excite electrons directly from the LS state,
since the HS state would preclude such transitions whereas the IS would not, provided that
the LS-IS scattering matrix element is non-zero. Evidence for such a transition, from the
LS to IS state at T = 8K, was presented by Kobayashi et al [12], who used unpolarised
neutrons and therefore had to perform quite complicated corrections to their data in order
to subtract the non-magnetic scattering from the signal. The energy gap between the LS and
IS state determined by this method was found to give rise to a broad peak centred around
20meV at the ferromagnetic wavevector QFM = (1, 0, 0) in pseudo-cubic notation. Recently,
however, measurements using polarised neutrons [13] have failed to confirm these results,
indeed finding no magnetic signal at either ferromagnetic or antiferromagnetic wavevectors
at low temperature. This has cast doubt on the background subtraction procedure used
by Kobayashi et al, and it seems that a direct transition from the ground state is not
observable, which would suggest either that the first excited state is high-spin, or that the
LS–IS transition matrix element is too small to make the transition observable.

Neutrons can also be used to probe the magnetism within the excited spin state, and
several studies have already been performed to examine different aspects of this. An early
measurement by Asai et al [14] used polarised and unpolarised neutrons to measure the
diffuse quasi-elastic scattering around the pseudo-cubic wavevector (1, 0, 0), the scattering
corresponding to short range ferromagnetic correlations. They found reasonable agreement
between the local moment calculated from susceptibility measurements and the intensity of
the scattering as a function of temperature. A later work by Asai et al [15] measured the
same scattering at higher temperatures, and found a gradual decrease in intensity at the
ferromagnetic wavevector above about 300K, with no abrupt changes near 500K, the tem-
perature at which anomalies have been observed in the bulk susceptibility and conductivity.
Plakhty et al [16] conducted detailed polarised neutron diffraction measurements on a single
crystal in an applied magnetic field of 5.8T in order to determine the local moments on
the Co3+ ions. They found that their measurements were consistent with an IS first excited
state, although the uncertainty on some of the fit parameters used was quite high.
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Two groups have used unpolarised neutrons to examine the low energy excitations in
LaCoO3 [17, 18], using powder samples. Both studies found that there exists an excitation at
E ≈ 0.6meV in the temperature range 25 < T < 100K, however the interpretations differed.
Phelan et al [17] performed measurements on a single crystal and a powder sample, and
found that the 0.6meV excitation could be discerned for T > 100K at both ferromagnetic
QFM = (0, 0, 1.1) and antiferromagnetic QAFM = (0, 0.5, 0.5) wavevectors2. They interpreted
their data as showing that there exists an orbital contribution to the magnetic correlations
within an IS state. Podlesnyak et al [18] measured the 0.6meV excitation in a powder sample
only, however they additionally measured the neutron inelastic scattering with an applied
magnetic field of 6 T. The latter measurement showed a shift in the excitation energy to
E ≈ 1.5meV which was consistent with a g-factor of about 3, which is interpreted as arising
either from a HS triplet excited state with a weak splitting due to small trigonal distortions
from cubic symmetry3, or a IS triplet excited state with a much larger trigonal distortion.

The suggestion by Phelan et al [17] of orbital correlations in LaCoO3 is based on an
analogy with LaMnO3, which has the spin state t3

2g e1
g. This spin state is Jahn-Teller active

and orbital ordering of the eg states results, in turn giving rise to A-type antiferromagnetic
order, which corresponds to ferromagnetic coupling within the ab-plane, and antiferromag-
netic coupling between planes. Phelan et al argue that similar orbital ordering occurs in
LaCoO3, but that this order is not static, and hence leads to dynamic magnetic correlations
with a short range.

Both of these neutron scattering experiments are consistent with an electron spin reso-
nance (ESR) measurement by Noguchi et al [19], who found a g-factor of 3.35 and a uniaxial
crystal field splitting of 0.6 meV. They point out that such a g-factor is almost identical to
that of Fe2+ in MgO, which is a 3d6 paramagnetic system in a HS state within an octahedral
crystal field environment [20].

Subsequent to all of the bulk and microscopic measurements described thus far, soft
x-ray absorption spectroscopy and magnetic circular dichroism measurements have been
interpreted as arising from a HS first excited state [21], provided that the gap between the
ground state and the excited states is temperature dependent.

5.1.1 Motivations

Despite many experimental and theoretical studies, there remains much controversy sur-
rounding the excited spin states of LaCoO3. Until now it has not been possible to use
polarised neutrons to examine this material, other than to use diffraction to determine that
there is no static magnetic order. Recent improvements to the IN20 spectrometer, together
with the high neutron flux available at the ILL [22], mean that it is now possible to mea-
sure the magnetic excitations. This offers the possibility of probing the dynamic magnetic
correlations, and possibly determine the strength and type of coupling between spins in the
excited state. This can, in turn, be used to shed light on the nature of the excited spin state.

2The offset was used at the FM wavevector to avoid contamination of the unpolarised signal by the tail
of the structural Bragg peak.

3A trigonal distortion of an octahedron from cubic symmetry is one which preserves the 3-fold symmetry.
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5.2 Experimental details

In order to measure the magnetic scattering in LaCoO3 definitively, something that has not
yet been done, polarised neutrons must be used in order to separate out the magnetic and
non-magnetic scattering. We chose to use the IN20 polarised triple-axis spectrometer (TAS)
at ILL for these measurements due to the fact that it has the highest flux of any polarised
spectrometer in the world. Additional measurements were subsequently performed on the
IN8 unpolarised thermal neutron TAS.

The IN20 spectrometer was used in the standard fully polarised mode (i.e. Heusler
monochromator and analyser, Helmholtz coils at the sample position, etc.), a description of
which is given in section 2.1.2. On the IN8 spectrometer a silicon monochromator was used,
with a graphite analyser and a PG filter in the scattered beam between the sample and the
analyser. On both spectrometers the samples were mounted in a standard orange cryostat.

The experiments used both kf = 2.662 Å−1 and kf = 4.1 Å−1, the former being used
in preference for its better resolution in wavevector-energy space, although the latter was
used for higher excitation energies where constraints of the scattering geometry made its use
necessary.

Two different samples were used for the measurements detailed in this chapter. One sam-
ple was grown in Oxford by Dr. D. Prabhakaran using the floating zone technique, and the
other was grown using the same method in Cologne [23]. For one of the IN20 experiments,
and for the IN8 experiment, the rod-shaped Oxford sample was used (mass=18.25 g, length
40.6mm and diameter 8.6mm), aligned so that the scattering plane was (0, 1, 1) - (1, 0, 0)4

with the cylindrical crystal’s axis tilted about 30◦ from vertical. For the other two experi-
ments on IN20 the Cologne sample was used. This consisted of six co-aligned rods with a
combined mass of ∼ 17 g. These were mounted with the same scattering plane as the Oxford
sample. The rods had been grown in such a way that their cylindrical axes were in the
scattering plane, which meant that for certain orientations of the spectrometer the crystals
were all parallel either to the incident beam or the scattered beam. In such configurations
there was a measurable decrease in the count rate, so such configurations were avoided if
possible. In a few situations it was impossible to avoid such configurations, so in order to
correct for this effect a scan was made of the incoherent elastic scattering as a function of
sample angle. The reduced transmission when the crystals lay nearly parallel to the incident
or scattered beam could therefore be quantified and the data were subsequently corrected.

Calculations of the phonon scattering intensities, which at low energies have a similar
form to the structure factor, detailed in appendix C, revealed that the phonon scattering
would be weakest near the (1, 0, 0) pseudo-cubic position in reciprocal space. This was
then verified by measuring several structural Bragg peaks and phonons at the start of the
experiment.

4These wavevectors are in pseudo-cubic notation, detailed in appendix B, which will be used for all of
this chapter.
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5.3 Results

The results of neutron scattering measurements of the magnetic scattering in LaCoO3 will
be presented in this section. The first set of measurements were performed using polarised
neutrons, and these enabled us to determine unequivocally the character of the magnetic
inelastic scattering. It is clear from these measurements that the magnetic scattering is
rather broad and diffuse. In order to characterise further the magnetic scattering unpolarised
neutron inelastic scattering measurements were performed in an energy range where the
nuclear scattering is minimal.

As detailed in section 5.2, two different samples were used. For one of the polarised
neutron scattering measurements, and the unpolarised neutron scattering measurement, the
sample grown in Oxford was used. For the other polarised neutron scattering measurement
the sample grown in Cologne was used.

5.3.1 Polarised Neutron Scattering Measurements

Polarisation analysis, as described in section 2.1.4, was performed on these data in order
to separate the magnetic from the non-magnetic scattering. The magnetic fluctuation com-
ponents along the (0, 1, 1) and (0, 1̄, 1) directions could be determined5, and it was found
that these two components were indistinguishable, i.e. that the magnetic scattering at all
energies and temperatures shown was isotropic.

Figures 5.2 and 5.3 show fixed-energy Q-scans for a range of energies at T = 220K,
for the P ‖ Q channels. Measurements were made using only one polarisation because the
counting times required to measure all polarisation channels would have been prohibitively
long6. Nevertheless, for this polarisation the non-spin-flip (NSF) channel shows only non-
magnetic scattering whereas the spin-flip (SF) channel shows magnetic scattering plus some
background, so it is possible to distinguish magnetic from non-magnetic scattering. Indeed,
a peak appears in the SF channel, but not in the NSF, showing that the excitations being
probed are magnetic. Note that the scans for E ≥ 12meV were taken with kf = 4.1 Å−1, as
opposed to kf = 2.662 Å−1, due to constraints on the spectrometer geometry. The magnetic
signal appears to disperse from the ferromagnetic (1, 0, 0) position with increasing energy,
becoming broader and less intense as it does so.

Figure 5.4 shows scans in the SF and NSF channels with P ‖ Q at E = 4meV. The blue
circles (filled for SF, open for NSF) show measurements made on the Oxford-grown sample,
whereas the green squares show measurements made on the Cologne-grown samples. When
the data are rescaled to account for the different counting times used, it is clear that they
are equivalent and that the measurements are reproducible and sample independent.

Figure 5.5 shows similar fixed-energy Q-scans to figures 5.2 and 5.3. In this case the
measurements were made in all six polarisation channels. This meant that, by performing
the analysis described in section 2.1.4, the scattering that is purely magnetic in origin could

5These wavevectors are in the scattering plane and perpendicular to Q, and perpendicular to the scattering
plane respectively.

6The counting times required were longer than usual because of a problem, which was not known about
at the time of the experiment, with the Heusler monochromator on IN20.
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Figure 5.2: Fixed-energy Q-scans for P ‖ Q, spin-flip (filled symbols) and non-spin-flip
(open symbols), showing the magnetic scattering at T = 220 K with energies in the range
2 ≤ E ≤ 6meV. Scans at successive energies are offset by 200. The Oxford-grown sample
was used for these measurements.
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Figure 5.3: Fixed-energy Q-scans for P ‖ Q, spin-flip, showing the magnetic scattering at
T = 220K with energies in the range 8 ≤ E ≤ 16meV. Note that the 8meV scan was with
kf = 2.662 Å−1, whereas the scans at 12meV and 16meV were with kf = 4.1 Å−1. The
non-spin-flip is not shown because the data are very noisy due to the shorter counting times
used to measure this channel. Note that successive scans are not offset. The Oxford-grown
sample was used for these measurements.

be separated from all other contributions. It is this ‘pure’ magnetic signal that is shown
in figure 5.5. Note that the Cologne grown sample was used for these measurements. It is
clear that the dispersion is not a feature of the background, which was a possibility, albeit
a remote one, for the data showing only the P ‖ Q channel.

Figure 5.6 shows fixed wavevector energy scans at Q = (1, 0, 0) and Q = (1, 0.5, 0.5),
i.e. the magnetic zone centre and the magnetic zone boundary, that have been polarisation
analysed to give just the magnetic scattering. The lines shown are fits to these data, and
will be described later. It is clear that the magnetic scattering does not go to zero at the
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Figure 5.4: P ‖ Q SF and NSF (closed and open symbols respectively) Q-scans at 4meV
for both samples, showing that both display the same effects. The raw data from the
Cologne sample are contaminated slightly by spurious scatter, but this is eliminated in the
polarisation analysis in other figures showing data from this sample. The data have been
scaled to the same monitor count, which corresponded to 16 minutes for the experiment on
the Oxford sample, and 12 minutes for the experiments on the Cologne sample.
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Figure 5.5: Fixed-energy Q-scans after polarisation analysis, showing the magnetic scattering
at T = 220K for 2 ≤ E ≤ 6meV. Successive scans have been offset by 200 for clarity. The
Cologne-grown sample was used for these measurements.

zone boundary, i.e. the magnetic scattering is spread over the whole Brillouin zone.

In summary, the polarised neutron inelastic scattering measurements presented here show
that the magnetic scattering is very diffuse in wavevector and energy. Q-scans show features
that are reminiscent of spin-wave dispersion, namely two symmetric peaks which move fur-
ther apart at higher excitation energies. The fixed-wavevector energy scans, do not, however,
show a peak indicative of such a mode.
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Figure 5.6: Fixed wavevector energy scans of the polarisation analysed magnetic scattering,
at Q = (1, 0, 0) and Q = (1, 0.5, 0.5), at T = 220K. Solid lines are fits to the data, described
in the text. The Cologne-grown sample was used for these measurements.

5.3.2 Unpolarised Neutron Scattering Measurements

The Oxford-grown sample was used for all of the unpolarised neutron scattering measure-
ments.
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Figure 5.7: Fixed-Q energy scans at Q = (1, 0, 0) using unpolarised neutrons, showing scans
at T = 2, 100, and 220 K on a logarithmic scale.

When using unpolarised neutrons a major concern is non-magnetic background scatter,
particularly for a material such as LaCoO3 where, as the polarised neutron measurements
have shown, the magnetic scattering is very weak and broad in reciprocal space. To this
end the first concern for these measurements was to select positions in (Q, E) – space where
the non-magnetic scattering was minimal. The structure factor at Q = (1, 0, 0) is very
small, as has been mentioned, but it was also important to consider over which energy
range the non-magnetic scatter was lowest. Energy scans were performed at Q = (1, 0, 0)
and Q = (1, 0.5, 0.5), the magnetic zone centre and zone boundary respectively, at low
temperature where the material is in the LS state and hence all the scattering is non-
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Figure 5.8: Fixed-Q energy scans at Q = (1, 0.5, 0.5) using unpolarised neutrons, showing
scans at T = 2, 100, and 220K on a logarithmic scale.

magnetic. The blue circles in figures 5.7 and 5.8 show that there are no non-magnetic
features between 5meV and 7 meV, so for fixed energy Q-scans energies within this range
would be the easiest to analyse.

The energy scans shown in figures 5.7 and 5.8 also display some other features. At about
11meV there is an optic mode phonon, which is easier to see in figure 5.8 because the overall
intensity is lower and hence the phonon is more apparent on the logarithmic scale used. The
tail of this phonon is apparent down to an energy of about 8 meV. The nuclear Bragg peak at
(1, 0, 0) is also obvious in fig. 5.7, and it appears to broaden at higher temperatures, which
might be due to the presence of quasi-elastic ferromagnetic scattering. The elastic line in
fig. 5.8 is, of course, much weaker since it corresponds to just the incoherent elastic scatter.

Figure 5.9 shows examples of the raw data from the unpolarised scattering measurement
of fixed energy Q-scans, at E = 5meV. The energy was fixed at 5meV because, as mentioned
above, the level of non-magnetic scatter at this level is the lowest and is also the easiest to
subtract off. It is clear that at T = 2K there are no features in the scan, apart from a few
pieces of spurious scatter. As the temperature is increased to 100 K a pair of peaks, the
same as those seen in fig. 5.2, appear. Concomitant with this the background scattering also
increases. As the temperature is increased further to 220 K the peaks become more distinct
and the overall intensity continues to increase. As the temperature is increased above about
150K, the peaks gradually move closer to the origin.

5.4 Analysis

The polarised neutron scattering data can be fairly straightforwardly treated, since the
non-magnetic background scattering has either been subtracted off, in the case of fully
polarisation analysed scans, or can be modelled using a straight line for the case of single
polarisation scans. The treatment of the unpolarised neutron scattering data is somewhat
more complicated, because both the non-magnetic background scattering and the magnetic
scattering are temperature dependent.
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Figure 5.9: Typical fixed-energy Q-scans at E = 5 meV using unpolarised neutrons, showing
scans at T = 2, 100, and 220K. Note that the scans are not offset from one another.

Fortunately the way in which the non-magnetic background behaved as a function of
temperature could be determined from the polarised neutron measurements. This is because
the scattering in the P ‖ Q non-spin-flip channel has no magnetic contributions, so by
combining all of the measurements in this channel at a range of temperatures the behaviour
of the non-magnetic background with temperature could be interpolated

The energy-scans made with unpolarised neutrons, shown in figures 5.7 and 5.8, display
several features which must be considered in the analysis. Whilst it is clear that the non-
magnetic scattering around E = 5meV is quite low and simple to model, the other features
such as the optic phonon and the quasi-elastic scattering are not. In principle the optic
phonon should scale simply as the Bose factor, however in reality there are likely to be multi-
phonon scattering events whose behaviour with temperature cannot be simply modelled with
the data available here. The nuclear elastic scattering is so strong in comparison to the
magnetic scattering at low energies that subtraction of the former to give the latter is rather
risky given the size of the error bars that would result. It was therefore decided that only
the Q-scans at E = 5meV could be reliably analysed, and that the energy-scans could not
be used to draw quantitative conclusions.

The unpolarised neutron scattering measurements, specifically the Q-scans at E = 5meV,
also feature a few pieces of spurious scattering. These are temperature independent, and do
not change position in wavevector or energy, and must be subtracted from all data sets before
any other corrections relating to temperature dependent background are made. Since the
measurements at T = 2K contain no magnetic scattering, scans taken at this temperature
could be subtracted from all higher temperature data sets in order to remove these so-called
‘spurions’.
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The non-magnetic background subtraction procedure was thus as follows:

• Only consider measurements where there is little non-magnetic scattering, e.g. Q-scans
at E = 5meV.

• Subtract data at T = 2 K in order to remove temperature-independent spurions.

• Next scale the next highest temperature set of data (T = 20 K) according to the
interpolation of the temperature-dependent non-magnetic scattering deduced from po-
larised neutron scattering measurements, and subtract this from all higher temperature
scans.

• Finally scale all measurements to the Bose thermal population factor, detailed in sec-
tion 2.1.3, n(ω) + 1 = 1 + 1/(eh̄ω/kBT − 1).

For the analysis of the data presented there are several considerations for the model to be
employed. The first is that when analysing the temperature dependence of the unpolarised
scattering data the function should obey the sum rule relating the response function and
the bulk susceptibility (see equation 2.31). In addition the model must account for the
experimental observation that the spin excitations are rather weak and broad in reciprocal
space. The electrons thermally excited into the eg level must have a finite lifetime, which
is rather short. In other words the number density and lifetime of magnetic ions is finite
and temperature dependent. For a magnetic excitation to propagate through a material
magnetic ions must be near to each other for a timescale comparable to the lifetime of the
excitation. If there are a large number of non-magnetic ‘gaps’ between magnetic ions when
an excitation is created then that excitation will be very short ranged and will have rather
a short lifetime. Conversely if the number of non-magnetic gaps is smaller, because more
electron have been thermally excited into the eg levels and the interval where any given ion
is in the non-magnetic state is shorter, then excitations will on average be able to propagate
further and live longer. The natural choice of function to describe the behaviour of such
local excitations is the damped harmonic oscillator function,

χ′′(q, ω) ∝ Γ(q)ω

Γ2(q) + ω2
, (5.1)

where ω is the energy of the spin excitation, and Γ(q) is the q-dependent damping. The
precise details of this q-dependence will be determined by the best fits to the data7. It has
been found in studies of materials with short range magnetic correlations [24] that equation
5.1 will not alone capture all of the physics – an additional term needs to be included in the
form of a Lorentzian in q-space, which leads to the response function

χ′′(q, ω) =
A

T
· κ2

κ2 + q2
· Γ(q)ω

Γ2(q) + ω2
, (5.2)

where κ parameterises the Lorentzian width. Various different functional forms for Γ(q)
were tried, and it was found that the best fits were obtained when Γ(q) = Γ0 + Γ2q

2. The

7Various different forms of q-dependence have been observed, especially in magnetic materials above their
critical temperatures. See reference [24] for some examples.
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scaling amplitude, A, is divided by temperature, T , in equation 5.2 because measurements
of the bulk susceptibility [6] found that it could be modelled by a Curie law. This means
that A ∝ µeff , the effective local moment, so that the temperature dependence of A directly
reflects that of the microscopic magnetism.
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Figure 5.10: Fits to equation 5.2, plus a sloping background since the data were not fully
polarisation-analysed, of fixed energy Q-scans with P ‖ Q spin-flip, taken with the Oxford
sample on IN20 at T = 220K. Note that the data at E = 12meV was taken with kf =
4.1 Å−1, whereas the other two scans were with kf = 2.662 Å−1.

Figure 5.10 shows fits to Q-scans, with data taken in the polarised scattering channel
P ‖ Q spin-flip. In order to account for the fact that this channel includes some background
contributions, an additional term was included in equation 5.2 in the form of a linearly sloping
background. Similar fitting was performed on Q-scans which had been fully polarisation-
analysed to give solely the magnetic signal, such as the data shown in figure 5.5, but without
a background contribution since the polarisation analysis should remove such terms.

Energy (meV) A (arb. units) Γ0 (meV) Γ2 (meV r.l.u.−2) κ (r.l.u.)
2 130000± 4000 2± 14 0.25± 0.27 0.17± 0.01
4 68000± 2000 4± 300 73± 11 0.17± 0.005
6 58000± 2000 3.7± 0.2 65± 7 0.23± 0.005
8 48000± 2000 2.9± 0.1 130± 12 0.23± 0.006
12 36000± 1000 12.0± 1.1 118± 13 0.28± 0.002

Table 5.1: Fit parameters obtained by fitting equation 5.2 to polarised neutron Q-scans with
P ‖ Q spin-flip at T = 220K. The fit for the data at E = 12meV was scaled down by a
factor of 4 because a larger kf was used – the scale factor was determined experimentally by
measuring a Q-scan at 8meV with both kf = 2.662 Å−1 and kf = 4.1 Å−1.

The resulting parameters of fits to equation 5.2 of the magnetic scattering obtained with
polarised neutrons are given in tables 5.1 and 5.2. The amplitude steadily decreases with
increasing energy for the P ‖ Q spin-flip data shown in table 5.1. This is actually what would
be expected for a constant amplitude in equation 5.2 because these data were not corrected
for the Bose thermal population factor as they contain a non-zero background. The fit
parameters presented in table 5.2 are the results of fits to data that have been corrected for
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Energy (meV) A (arb. units) Γ0 (meV) Γ2 (meV r.l.u.−2) κ (r.l.u.)
2 32000± 2000 1.0± 0.2 6.8± 3.1 0.19± 0.01
4 27000± 2000 4± 133 120± 37 0.29± 0.02
6 28700± 1900 6.1± 35 71± 26 0.33± 0.02

Table 5.2: Fit parameters obtained by fitting equation 5.2 to polarised neutron Q-scans
analysed to give the ‘pure’ magnetic scattering at T = 220K.

the Bose factor, because the polarisation analysis removes background contributions to the
scattering. It can be seen here that the data can be fitted with a constant amplitude for all
energies.

The fit to the P ‖ Q spin-flip data at 2 meV suggests that Γ2 is negligible. However
this may be because of a feature in the background, and indeed the fit to the fully polarised
scan gives a larger value for Γ2 at 2meV, however it is still not consistent with the results
of the other fits. One problem with the fit parameters is that they are all interconnected,
in that the heights and widths of the peaks are determined by A, Γ0, Γ2 and κ together,
and not by a single parameter. This in turn means that the errors on the fit parameters are
interconnected, so that if for a given fit the error on A is large, the error on Γ0, say, is likely
to be smaller.

Temp. (K) Q (r.l.u.) A (arb. units) Γ (meV) κ0 (r.l.u.)
150 (1, 0, 0) 25300± 1500 6.8± 0.8 N/A
150 (0.5, 0.5, 0.5) 26200± 3000 6.9± 1.2 0.34± 0.12
220 (1, 0, 0) 41000± 1300 6.0± 0.6 N/A
220 (1, 0.5, 0.5) 43000± 4000 10.1± 1.0 0.34± 0.09
300 (1, 0, 0) 21600± 1300 5.8± 0.6 N/A
300 (0.5, 0.5, 0.5) 21200± 2000 8.8± 0.9 0.39± 0.11

Table 5.3: Fit parameters from polarised energy-scans of the polarisation-analysed, taken at
the magnetic zone centre and zone boundary over a range of temperatures.

Table 5.3 shows fit parameters derived from fitting the magnetic signal in fixed-wavevector
energy-scans at three temperatures – sample fits for T = 220K are shown in figure 5.6. The
analysis performed so far has shown that κ appears to vary slightly with energy, with κ
becoming larger at higher excitation energies. However when fitting the energy-scans various
different functional forms for κ were tried, and none of them improved the quality of the fits.
Indeed in most cases they appeared to cause the Γ parameter to become inconsistent with
that obtained from the Q-scans, so in the end a constant value for κ was assumed. The values
of Γ obtained from the energy-scans at the magnetic zone boundary, QAFM = (1, 0.5, 0.5)
are consistent with those obtained from Q-scans8. However the values of Γ obtained for the
energy scans at QFM = (1, 0, 0) are larger than expected, and do not appear to be consistent
with the results of the fits of Q-scans.

Figure 5.11 shows typical fits to Q-scans at 5meV taken with unpolarised neutrons, after
the data have been processed by subtracting the temperature dependent background and
then correcting for the Bose thermal population factor. When equation 5.2 was used then
the average ‘goodness of fit’ parameter for all of the fits was χ2 = 6.4 when the functional

8A single Γ was used because the scans were performed at fixed wavevector.
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Figure 5.11: Fits to equation 5.2 for unpolarised neutron Q-scans at E = 5meV, after
correction for the Bose factor.

form Γ(q) = Γ0 + Γ2q
2 was used. Other functions to describe the damping gave fits with

larger values of χ2.
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Figure 5.12: The temperature dependence of Γ0 (red circles, left-hand axis) and Γ2 (black
diamonds, right-hand axis), determined from fits of unpolarised Q-scans at 5 meV using
equation 5.2.

Figure 5.12 shows how the values of Γ0 and Γ2 vary with temperature. The value of
Γ0 increases almost linearly with increasing temperature, whereas Γ2 remains more or less
constant. The value of κ was also allowed to vary in the fits, but was found to be constant
with temperature at κ = 0.28 r.l.u. This corresponds to a correlation length of about 3.5
lattice units, or about 14Å. The values of Γ0 and Γ2 are generally consistent with those
obtained from fits of the polarised neutron data.

The Bleaney-Bowers equation, which gives the susceptibility of a spin system in which
there is a non-magnetic singlet ground state and a magnetic multiplet excited state is
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χB−B(T ) =
NAg2µ2

B

3kBT
· νS(S + 1)(2S + 1)e−∆/T

1 + ν(2S + 1)e−∆/T
(5.3)

where ∆ is the gap between the ground state and the first excited state, ν is the orbital
degeneracy of the first excited state, and all other symbols have their usual meanings. The
second term on the right-hand side is a measure of the occupation number of the magnetic
excited state. This equation was used by Zobel et al [6] to model the behaviour of the bulk
susceptibility, and it was found that their data were fitted well when S = 1, ∆ = 15.5meV,
and ν = 1; this represents an IS excited state which is orbitally non-degenerate.
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Figure 5.13: Fit of amplitude A, defined in equation 5.2, determined from fits to equation
5.3 (multiplied by T ) of unpolarised Q-scans at 5meV. At many points the errorbars are
smaller than the points themselves.

Figure 5.13 shows a fit of the amplitude of the scattering arising from correlations in the
magnetic state, which is proportional to the occupation number in equation 5.3. The fit
parameters for this are ∆ = 23.9 ± 0.5meV and the best fit was obtained when ν = 1 and
2S + 1 = 3 (fixed), so the energy gap between the ground state and thermally populated
excited state does not agree with that determined by bulk measurements, but the orbital
degeneracy and spin state do agree.

5.5 Discussion

The main points that should be taken from the data analysis presented in section 5.4 are:

1. The data can be modelled well by a damped harmonic oscillator function.

2. The magnetic excitations appear to disperse.

3. The correlation length of the magnetic excitations might be slightly energy dependent,
with shorter correlation lengths for higher energy excitations.
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4. The results of fits to the magnetic scattering in fixed wavevector energy scans are
not fully consistent with the results of fits of the Q-scans from both polarised and
unpolarised neutron scattering experiments.

5. The amplitude, which reflects the effective local moment, µeff , is temperature depen-
dent and can be modelled quite well by the Bleaney-Bowers equation (5.3). However
the parameters which give the best fit are not consistent with those determined from
measurements of the bulk susceptibility.

Once these points have been addressed there are some further more general points for
discussion, namely:

1. The physical origins of the damping, and the possible reasons for its dependence on
temperature.

2. Whether these data can shed any light on the nature (IS or HS) of the excited magnetic
state.

Let us first address the point that the data are fitted well by the damped harmonic
oscillator function, given by equation 5.2. In fact it is possible to get a fit that is just as good
using two Lorentzians to model the magnetic scattering from the Q-scans. However, such
a model does not contain as much physical information as the damped harmonic oscillator
model. The appropriateness of the latter function demonstrates that the excitations are
indeed rather localised and tend to be short-lived, as was hypothesised.

The appearance of dispersion of the magnetic excitations has been noted in other mate-
rials which bear some similarities to LaCoO3. In particular measurements of the magnetic
excitations in ferromagnetic Fe and Ni above their critical temperatures [25] showed what
were termed ‘persistent spin-waves’. However it was subsequently realised that these fea-
tures, which were found in Q-scans, were not actually due to spin-waves because there did
not exist a corresponding peak in fixed-wavevector energy-scans [26].

Equation 5.2 has poles at non-zero values of q when the energy ω is held constant, and
these poles move to larger q as ω is increased. There are, however, also poles in equation
5.2 when q is held constant and ω is varied, which is different to the case of the metallic
ferromagnets Fe and Ni. This suggests, then, that spin-waves do exist in the magnetic state
of LaCoO3, but that they are strongly localised due to the inhomogeneous nature of the
excited spin state.

The peaks in the constant energy Q-scans disperse outwards with increasing energy when
κ is held constant in equation 5.2, so the variation observed in κ with energy does not
itself give rise to the dispersion-like features. However it appears that κ does increase with
increasing energy, corresponding to a reduction in the correlation length of the excitations
at higher energies. It is not clear why this occurs, and the effect is rather small, with
the correlation length varying between about 11 Å and 25 Å for high and low energies
respectively (see tables 5.1 and 5.2). Furthermore, the quality of fits to the energy-scans was
actually reduced when κ was allowed to vary as a function of energy, so if the effect does
occur it is indeed rather small.
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Consider now the fits to the energy scans, the results of which are presented in table 5.3.
Whilst the fits to the scans at QAFM = (1, 0.5, 0.5) produce parameters which are consistent
with those obtained from Q-scans, the fits of scans at QFM = (1, 0, 0) do not. Specifically
the values of Γ obtained from these latter fits, which should reflect just Γ0 since q = 0,
are somewhat larger than expected. Even considering the finite resolution of the neutron
spectrometer, which would allow a certain contribution of the Γ2 term, this is rather hard to
reconcile with the rest of the data. These data have been polarisation-analysed to give solely
the magnetic scattering. One problem with this, however, is that the errorbars become quite
large compared to the signal when the necessary subtractions are performed, so it is possible
that the fits are not as well constrained as they might be. The result of this is that the fit
is particularly sensitive to individual data points, which may then skew the fits.

We have established, then, by measuring their fluctuations, that the ions in the excited
magnetic state are coupled. There is a significant body of literature concerning the magnetic
fluctuations of ferromagnets above their critical temperatures – see for example the review
article by Endoh and Böni [24] and the references therein. It is common for the magnetic
neutron inelastic scattering from such systems to be modelled using a damped harmonic
oscillator function, with a q-dependent damping Γ(q).

The precise details of Γ(q) are not, however, universal. In materials that are insulators
where the magnetic moments are localised and ferromagnetically aligned below TC , the spin
fluctuations above TC are well described by a damped harmonic oscillator like equation 5.2.
The damping is given by dynamical scaling9 as

Γparamag = Γpq
2.5f(κ/q), (5.4)

where Γp is a constant, κ is defined the same as in eq. 5.2 and f(κ/q) is the dynamical
scaling function, which in ferromagnetic semiconductors such as EuO is the Résibois-Piette
function [28]. In addition κ is temperature dependent and has the form

κ = κ0

(
T − TC

TC

)m

, (5.5)

where κ0 is the correlation length of the fluctuations at T = 2TC and m is a constant which is
material dependent. The Résibois-Piette dynamical scaling function does not have a simple
analytical form, but at TC f(κ/q) = 1, and with increasing temperature it first decreases
and then increases again as

√
κ/q.

In metallic systems it has been found that the damping of spin fluctuations increases more
rapidly with increasing temperature, since additional damping by the conduction electrons
occurs [29, 30]. The general functional form for the damping in this case is

Γmetallic = Γmq(q2 + κ2), (5.6)

where Γm is a constant and κ has the same temperature dependence as before, given by
eq. 5.5. At the temperatures under consideration in this study LaCoO3 is not metallic, and

9Scaling laws in general relate the critical exponents of static order parameters. Dynamical scaling is an
extension of this to non-equilibrium, dynamic, phenomena. See reference [27] for further details.
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indeed when this equation was used to analyse the data the quality of the fit was poor.

In contrast equation 5.4 is in best agreement with the data if f ∼
√

(κ/q), i.e. if LaCoO3

is like a local moment ferromagnetic material at T À TC . Additional credence is provided
by noticing that Γ2, which corresponds to Γp · f(κ/q) in equation 5.4, is constant with
temperature, as is κ.

In order to provide the best fit, however, an additional q-independent damping term,
Γ0, was required. This additional damping increases approximately linearly with increasing
temperature. A clue to the origin of this extra damping term might be found in considerations
of the spin fluctuations observed in nearly-ferromagnetic semiconductors such as FeSi [31, 32],
and theoretical descriptions thereof [33]. In such materials the magnetic fluctuations are
the result of correlations between electrons thermally excited into the conduction band,
however since the electrons are never statically ferromagnetically correlated the fluctuations
are similar to those seen in metallic ferromagnets above TC .

It has already been noted in section 5.1 that LaCoO3 is a semiconductor, and that even
for energies well below the band gap the optical conductivity is non-zero, suggesting that a
small number of electrons are excited into the conduction band even at temperatures where
kBT ¿ Egap. These electrons might act to damp the magnetic excitations, in much the
same way as conduction electrons in metallic or semiconducting ferromagnets do. Since
the number of conduction electrons increases with increasing temperature the damping will
concomitantly increase, in agreement with the measurements presented here.

Returning to equation 5.4, it has been noted [24] that in many ferromagnets the constant
Γp is often very close in value to the spin-wave stiffness, albeit in many cases slightly lower.
It has been determined here that in LaCoO3 Γ2 ≈ 35meV r.l.u.−2, and considering equation
5.4 this leads to

Γ2 = Γp ·
√

κ, (5.7)

which means that Γp ≈ 66meV r.l.u.−2.5, or Γp ≈ 19.4meV Å2.5. The spin-wave stiffness for
a cubic lattice can be related to the nearest-neighbour Heisenberg exchange constant (see
equation 1.14) by

D = 2JSa2, (5.8)

where J is the exchange constant, S is the spin, a is the lattice constant, and the factor of
2 is included because the scans were along the (0, q, q) direction. Assuming an IS state this
gives upper limits on the exchange parameters of JIS = 0.65meV, and alternatively assuming
a HS state we get JHS = 0.33meV.

Let us now consider the behaviour with temperature of the scaling amplitude A, shown
in figure 5.13, that is a measure of the size of the effective local magnetic moment. As
has already been mentioned, the bulk susceptibility was successfully modelled with an en-
ergy gap of ∼ 15.5meV between the ground state and an IS excited state that is orbitally
non-degenerate [6]. The amplitude dependence found in this study was consistent with an or-
bitally non-degenerate IS excited state. The gap was found to be somewhat larger, however.
There are several possible explanations of this discrepancy.
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The first is that we have assumed that the neutron magnetic inelastic scattering spectrum
is entirely modelled by equation 5.2, and that integrating this over all energies at zero
wavevector gives the bulk susceptibility. However it is conceivable that there are other
magnetic excitations, for example at higher energies than were studied here, that will also
contribute to the bulk susceptibility.

Another possibility is that the model of Zobel et al [6] is not correct – in order to fit
the susceptibility they required a Landé g-factor of 2, whereas ESR and neutron inelastic
scattering studies [19, 18] have shown that a g-factor of 3 is appropriate. Haverkort et
al [21] were able to obtain agreement between their soft x-ray absorption and magnetic
circular dichroism with the bulk susceptibility by making the gap between the LS and HS
states temperature dependent, varying from about 20meV at 70K up to 80meV for T ≥
450K. Furthermore, the measurements presented here suggest that there exist ferromagnetic
correlations between magnetic ions, whereas the model used by Zobel et al to describe the
bulk susceptibility assumes that the magnetic ions are completely paramagnetic, i.e. that
they are uncorrelated.

Without a functional form for the temperature dependence of the gap it is not possible
to analyse the data presented here in terms of the model proposed by Haverkort et al. It was
found, however, that by choosing a simple function to describe the temperature dependence
of the gap, e.g. ∆(T ) = ∆0 + αT with α a constant, that fits with a slightly better χ2 of
3.85 were obtained, as opposed to 3.89 with constant ∆ and ν = 1. However using such
a functional form meant that the spin and orbital degeneracy of the excited state could
not be determined – indeed a model that includes an energy gap with a linear temperature
dependence is equivalent to equation 5.3. This does not, then, allow us to say whether the
excited state is IS or HS.

5.6 Conclusions

In conclusion, the thermally excited spin state of LaCoO3 has been investigated using neutron
inelastic magnetic scattering. Ferromagnetic spin fluctuations which are rather weak and
broad in reciprocal space were observed, the behaviour of which was found to be very similar
to those of the magnetic fluctuations in ferromagnets above their critical temperatures.
It seems, therefore, that LaCoO3 is a strange kind of nearly-ferromagnetic material, since
most other nearly-ferromagnetic materials are itinerant electron systems. In addition the
behaviour whereby ferromagnetic correlations are thermally activated and increase in size
up to a given temperature before declining again is seemingly unique.

The nature of the excited spin state, IS or HS, could not be definitively determined
from the measurements presented here. It is hoped that these results will stimulate further
theoretical work that may solve this riddle.

There are several further scattering experiments that could be performed on this material.
The present measurements could be extended further to higher temperatures, up to and
above the insulator–metal transition at 450 K. Once the material becomes metallic the spin
excitations would almost certainly change, and the way they change might shed some light
on the spin state both above and below this transition temperature. In the future, when
polarised neutron time-of-flight instruments with sufficiently high neutron flux are available,
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a broader survey of reciprocal space could be made, which would determine if there are any
additional excitations that have not been observed by the measurements presented here.
Such measurements would also give the magnetic scattering in absolute units, which means
that the amplitude of the fluctuations would convey information about the nature of the
excited spin state.
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Chapter 6

Polarised Neutron Scattering
Measurements of La0.82Sr0.18CoO3

‘Half polarised’ neutron inelastic scattering measurements of the ferromagnetic spin-
waves in La0.82Sr0.18CoO3 are described in this chapter. The dispersion of these
spin-waves was well defined at low energies, allowing a spin-wave stiffness constant
of D = 216± 14meV Å2 to be measured. At higher energies the spin-waves became
heavily damped. Several possible damping mechanisms are suggested, however it
was not possible to determine unequivocally which of them was responsible for the
observed effects.

6.1 Introduction

The materials with the general formula La1−xSrxCoO3 (LSCoO)1 are an interesting group
of materials to study because they display many of the characteristics typical of the colossal
magnetoresistance (CMR) perovskites [1, 2], and also share some similarities with giant
magnetoresistance (GMR) heterostructures [3]. The latter materials are artificial structures
in which ferromagnetic metallic sections are placed in a matrix of non-magnetic material,
and have been extremely important for the development of efficient hard disk drives. Similar
so-called ‘phase separation’ of ferromagnetic and non-magnetic media, occurring naturally
rather than being engineered, has been observed in CMR materials. An example of such
heterogeneity would be the formation of ‘islands’ of magnetically ordered ions surrounded
by a region of the material that is non-magnetic. The most studied CMR perovskites to
date have the general formula La1−xAxMnO3, where A is a hole dopant such as Sr2+, Ca2+,
Ba2+, etc. The CMR effect is observed to be greatest near the critical temperature for the
onset of bulk magnetic order [1].

There does not yet exist a complete theoretical understanding of the mechanisms which
give rise to CMR. A good deal of progress has nevertheless been made and it is possible to
outline some of the underlying physics of this effect. The phenomenon of double exchange
(DE), introduced in section 1.2.1 and shown schematically in figure 6.1, whereby ferromag-
netic alignment of adjacent ions where one has a single eg electron and a half filled set of
t2g levels, and the other does not have the eg electron, turns out to be important. The
ferromagnetism is driven by the energy saving caused by hopping of the eg electron, so mag-

1LSCO would be a more obvious choice of acronym, however it is already commonly used to denote
La2−xSrxCuO4, so LSCoO is used to avoid confusion.
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Figure 6.1: The double exchange mechanism. In the upper half the ferromagnetic case is
shown, where electron hopping is possible. In the lower half of the figure the antiferromag-
netic case is shown, where hopping is not possible

netoresistance can be explained by such a model, because application of a magnetic field will
tend to align the t2g cores and hence give rise to an increased amount of electron hopping,
meaning a lower resistivity.

The mechanism described above does not fully explain CMR, however. The DE model
would only give rise to a relatively small change in resistivity, whereas the CMR effect is
too big to be explained by this alone. Millis et al [4] have proposed a possible mechanism
for the enhancement of the magnetoresistance which is based on the existence of a strong
electron–phonon coupling. This strong coupling results in a localisation of the conduction
electrons, that is to say that the carriers should be considered as ‘polarons’ rather than
electrons. It is proposed that this effect weakens as the material is cooled towards its critical
temperature, so that the actual CMR results from the fact that the non-magnetic state
would have a higher than expected resistivity. This qualitatively agrees with the fact that
the largest CMR is observed near to the critical temperature – the application of a field
is able to drive the system from a state in which there are polarons into the ferromagnetic
metallic state. At lower temperatures the material would already be somewhat metallic so
the change in resistivity would be smaller.

Bulk measurements of the magnetic and transport properties of LSCoO show dramatic
changes with doping [5, 6]. Susceptibility measurements, shown in figure 6.2, show that the
x = 0 material is non-magnetic, but as doping is increased the size of the moment increases
rapidly, with a transition into a true ferromagnetic state at x = 0.18. The Curie temperature
at x = 0.18 is 150 K, and TC increases with further increase in doping. These measurements
have been interpreted as arising from the growth of ferromagnetic clusters, the number and
size of which increase as doping is increased, until percolation to a bulk ferromagnetic state
occurs at x = 0.18.

As is shown in the left-hand panel of figure 6.3, in the ferromagnetic phase the hysteresis
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Figure 6.2: (After Kriener et al [5]) Magnetic susceptibility of La1−xSrxCoO3 as a function
of temperature and doping x.

Figure 6.3: Left-hand panel (after Kriener et al [5]), magnetic susceptibility of La1−xSrxCoO3

as a function of applied magnetic field and doping x. Right-hand panel (after Kriener et al
[5]), resistivity of La1−xSrxCoO3 as a function of temperature and doping x.

of the magnetisation with applied field decreases, as does the applied field necessary to reach
saturation, with increasing doping above x = 0.18. The magnetic easy axis has been found to
be the (1, 0, 0)-direction in the rhombohedral unit cell [7], which corresponds to the (1, 1, 0)-
direction in pseudo-cubic notation. See appendix B for a general discussion on the use of
pseudo-cubic notation for rhombohedral crystal structures.

The behaviour of the resistivity with temperature, shown in the right-hand panel of
figure 6.3, is also found to vary as a function of doping [5, 6]. At x = 0 the material is a
semiconductor, but the resistivity steadily decreases as holes are doped into the material.
These measurements show that as the material tends towards ferromagnetism it also becomes
increasingly metallic, i.e. the magnetism resides on itinerant rather than localised electrons.
This aspect of LSCoO bears many similarities to the behaviour of the CMR manganites.
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Of perhaps the greatest importance are measurements of the magnetoresistance of LSCoO
as a function of doping [8]. These show that for higher dopings, when the material is in a
ferromagnetic metallic phase, the magnetoresistance is just a few percent. However when
the doping reaches the critical level of x = 0.18 the MR becomes around 30%, and as the
doping is decreased further the MR increases such that for x = 0.09 the resistivity drops by
as much as 90% at low temperatures.

In the region of doping 0 < x ≤ 0.18 the material displays behaviour which is in some
respects like that of a spin glass. In a true spin glass dilute spins in a solid are randomly
distributed, however there exist interactions between spins that act to freeze them into a
metastable state with short range magnetic order [9]. The spin glass phase in LSCoO has
been investigated by Wu et al [6] for x = 0.15 by cooling the material in a magnetic field,
removing the field and observing the evolution of the magnetisation and resistivity over time.
They found that the material appears to relax, with magnetisation decreasing and resistivity
increasing, as time passes, behaviour typical of a spin glass. The interpretation of these
measurements is that as holes are doped into the material clusters of metallic ferromagnetic
regions form, these clusters becoming more numerous and larger as doping is increased. At
the ferromagnetic-metallic phase transition at x = 0.18 these clusters percolate to form a
bulk metallic ferromagnet. Below this phase transition the inter-cluster interactions are what
give rise to the spin-glass-like behaviour, whereas the intra cluster interactions give rise to
the decreasing resistivity and increasing magnetic moment. Co NMR [10] and small-angle
neutron scattering measurements [11] have demonstrated the veracity of the cluster model,
and have furthermore shown that the nature of the correlations within the clusters is the
same as those in the bulk metallic ferromagnetic phase.

Giblin et al [12] have proposed, based on µSR measurements on the x = 0.03 material,
that in addition the ferromagnetic clusters interact with the underlying ‘matrix’ of LaCoO3.
A neutron inelastic scattering study on very lightly doped LSCoO (x = 0.002) by Podlesnyak
et al [13], which was performed on a powder sample at low temperatures, found that the
presence of even a small number of holes appears to induce a spin-state transition in the
Co3+ ions in the surrounding matrix of LaCoO3 from a non-magnetic ground state to an
excited magnetic state. This measurement ties in quite well with the µSR measurements
described above.

Figure 6.4: (After Kriener et al [5])The magnetic phase diagram of La1−xSrxCoO3, showing
the spin glass (SG), paramagnetic (PM), and ferromagnetic (FM) phases.

LSCoO crystallises in the rhombohedral space group R3̄c. The specific material studied
in this work had x = 0.18, and previous work [7] shows that the rhombohedral lattice
parameters are a = 5.371Å and α = 60.758◦. This lattice can be regarded as a slightly
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distorted cubic lattice, with pseudo-cubic2 lattice parameters a ≈ 3.8 and α = 90◦.

There have already been several neutron scattering studies of the magnetic correlations
in LSCoO [7, 13, 14, 15]. Caciuffo et al [7] conducted a powder diffraction study for a range
of different dopings, and were able to observe enhancement of weak Bragg peaks (where the
nuclear structure factor was very small, or indeed zero) due to the onset of ferromagnetism.
They found that this enhancement was very large for x ≥ 0.2 but was still non-negligible
for x < 0.18, i.e. below the ferromagnetic percolation threshold, supporting the idea that
ferromagnetic clusters form below the critical doping level. Phelan et al [14] measured the
undoped material and then the doped material using single crystal and powder samples. The
excitation at the ferromagnetic (0, 0, 1)-position (in pseudo-cubic notation) at about 0.6 meV
found in the undoped material (see section 5.1) has vanished by x = 0.1, concomitant with
an increase in intensity of the ferromagnetic Bragg peak. This is interpreted as follows: on
doping there occurs the formation of Co4+ ions with S = 1/2 in the t5

2g configuration, and
these interact with the surrounding Co3+ to induce a S = 1, t5

2g e1
g state. Hopping between

these ions then mediates the conductivity, i.e. double exchange, which means that as the
clusters of Co4+ ions become bigger the conductivity should increase. In a different study
Phelan et al [15] observe a superstructure in the neutron diffraction from single crystals. The
intensity of the scattering from this superstructure is greatest at a doping just below the
transition to the bulk ferromagnetic state. The origin of this superstructure is tentatively
proposed to arise from local distortions induced by the clustering.

Manganite compounds with the formula A1−xBxMnO3, where A are rare-earth and B
are alkaline-earth ions, are well known for their CMR properties. There exists a much
greater body of literature concerning neutron scattering experiments on these materials
[16, 17, 18, 19, 20, 21, 22], so it is instructive to review it.

Ye et al [17] show that for many of the CMR manganites there exists a softening of
the magnon modes near to the zone boundary, which can be fitted using a Heisenberg
ferromagnetic Hamiltonian with nearest neighbour and 4th-nearest neighbour interactions,
the ratio of which seems to be Curie temperature-independent. This latter observation would
appear to rule out on-site disorder, double exchange, coupling with optic-mode phonons,
and orbital fluctuations, as giving rise to zone-boundary softening of the magnon modes. It
does not appear that this behaviour is universal, however, since the magnon spectrum of
La0.7Pb0.3MnO3 is found to be adequately described by a simple Heisenberg model with only
nearest neighbour coupling.

In any case recent work [19] has cast doubt on some of the measurements described
above. Many of the previous neutron scattering experiments were performed with unpo-
larised neutrons, whereas theirs, which used a polarised neutron setup, showed that the
softening of the magnon modes was much less dramatic in La0.7Ca0.3MnO3 than had been
previously reported. Moussa et al [23] have very recently performed a very extensive study of
La1−x(Ca1−ySry)xMnO3 using unpolarised neutrons. They showed that the magnon disper-
sion crosses phonon dispersions at several different points between the zone centre and zone
boundary, and the softening and broadening of spin-wave modes observed previously was
actually an artifact of the proximity of the magnon and phonon dispersions. The data were
satisfactorily described by 4th-nearest neighbour interactions, but there is some broadening
of the spin-wave modes near the magnetic zone boundary, which was attributed to random

2See appendix B.
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fluctuations in the values of the exchange parameters.

The holes in the CMR manganite La1−xCaxMnO3 are known to form clusters within a
hole poor matrix (which is magnetic) [24] for 0.05 < x < 0.125, similar to the effect observed
in LSCoO. Neutron scattering measurements by Hennion et al [25] on the x = 0.17 and
x = 0.2 materials have shown that there exist standing-wave spin excitations at discrete
energy levels. Analysis of the exchange coupling within these clusters show that in fact they
correspond to standing spin-waves within hole-poor clusters, embedded within a hole-rich
matrix. This analysis was rendered somewhat easier because both the hole-rich and hole-
poor regions are magnetic, so with very low and very high doping it had been possible to
characterise these regions independently. In LSCoO it is less clear whether or not the hole-
poor regions are magnetic, and hence whether such a scenario could occur in this material
as well.

6.1.1 Motivations

There are several motivations for performing a neutron scattering experiment on LSCoO.
Whilst there exists a large body of literature on neutron scattering experiments on the CMR
manganites, comparatively little has been done with the cobaltites, which also display CMR
effects. Comparison between the magnetic scattering data of manganites and cobaltites
might then shed some light on the similarities and differences between the origin of the
CMR in these two classes of materials.

One major difference is the nature of the undoped parent compounds, which for the
manganites is magnetic whereas for the cobaltites is non-magnetic, and this difference may
be evidenced in the spin excitation spectra. Another clear difference relates to the spin states
of the two classes of materials. The Mn3+ and Mn4+ ions have t3

2g e1
g and t32g configurations

respectively, whereas the Co3+ ions are in the t6
2g e0

g, t5
2g e1

g, or t4
2g e2

g states, and the Co4+

is in the t5
2g configuration. The manganites are therefore orbitally ordered, whereas the

degeneracy of the spin states in the cobaltites is greater. This difference may also contribute
to differences in the CMR properties, and also in the neutron magnetic scattering spectra.

6.2 Experimental details

In order to measure the ferromagnetic fluctuations (ferromagnons) in LSCoO, with x = 0.18,
using polarised neutrons the ferromagnetic domains into which the material would be divided
in zero applied field needed to be aligned. In order to align as many domains as possible
the sample was field cooled from room temperature to 2 K in an applied field of 3.5T. Once
the temperature had stabilised at 2K the field was ramped down slightly to 1T. Inspection
of the M − H curve of LSCoO shown in the left-hand panel of figure 6.3 shows that the
reduction in magnetisation, and hence domain alignment, only decreases by about 10% on
decreasing the applied field from 3.5T to 1 T. A smaller applied field than 3.5T makes the
experiment easier to conduct, as it makes it easier to correct for stray fields at the flipper
which would otherwise prevent its proper operation.

The magnetic field was applied using an Oxford Instruments cryomagnet with a horizontal
magnetic field. The field in such an instrument is provided by four oppositely poled 10T
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vertical magnets, giving a region in the centre of the bore of the cryostat where the non-
uniformity of field was at worst just 3% [26]. There were a few ‘dead zones’ on the cryostat
where there were support structures for the vertical magnets, however the positions of these
were checked so that situations where the incident or scattered beam lay close to such zones
were avoided.

For a polarised neutron inelastic scattering measurement with a magnetic field applied
to the sample the cross-section is somewhat modified, in that the magnetic field affects the
neutron polarisation as well as the moments in the sample. In particular the polarisation
state of the scattered beam will be modified. Note that a full derivation of the following is
given in the book of Marshall and Lovesey [27].

For the case of a Heisenberg ferromagnet the polarisation of the scattered beam, P′, when
there is creation (+) or annihilation (−) of a magnon is given by

P ′ ± =
[
−2Q̂(Q̂·η̂)

{
(Q̂ · P)(Q̂ · η̂) ∓ 1

}
− P

{
1 − (Q̂ · η̂)2

}
+ 2η⊥ × (P⊥ · η⊥)

]

×
{
1 + (Q̂ · η̂)2 ∓ 2(Q̂ · P)(Q̂ · η̂)

}−1

(6.1)

where the unit vector parallel to the wavevector is denoted by Q̂, P denotes the polarisation
of the incident neutron beam, η defines the direction of the spins (and hence applied field),
and the ⊥ subscripts refer to the component of a variable which is perpendicular to the
scattering wavevector. For an unpolarised incident beam (P = 0) this simplifies to

P′
± =

±2Q̂(Q̂ · η̂)

1 + (Q̂ · η̂)2
(6.2)

meaning that if the spins are perpendicular to the scattered wavevector then the scattered
beam is unpolarised, and hence there is no way of distinguishing magnetic from non-magnetic
scattering. Such a case would occur if a vertical magnetic field were used with a horizontal
scattering plane. On the other hand if a horizontal magnetic field is used and scans are
performed where the field direction and the wavevector are kept parallel, then Q̂ ‖ η̂, and the
final polarisation state is parallel to the scattering wavevector. A non-magnetic signal would
not polarise the scattered beam, so magnetic and non-magnetic signals can be separated in
this way if a horizontal field with scans parallel to the field direction are used.

In the case where the incident beam is polarised, considering now only magnon creation
for simplicity, the final polarisation state is given by the somewhat more complicated equation
6.1. For a horizontal applied magnetic field we have Q̂ ‖ η̂, and in addition η̂ ‖ P or η̂
is antiparallel to P, if a flipper is placed in the incident beam and is off or on respectively.
Inspecting equation 6.1 we get

P′
parallel = 0 (6.3)

P′
antiparallel = Q̂ (6.4)
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which means that of the four possible combinations of flipper states, only one will show a
signal arising from the magnon.

There are, then, two options for measuring ferromagnons when using a horizontal mag-
netic field. For almost all of the work presented in this chapter an unpolarised incident
neutron beam was used. This is because it was found that preventing stray fields from in-
terfering with the operation of both flippers simultaneously was practically impossible. In
addition the so-called ‘half polarised’ (i.e. unpolarised incident beam, polarisation analysed
scattered beam) setup does have some advantages over the fully polarised setup: it is easier
to find a configuration of the spectrometer where stray fields do not affect the performance
of the flipper very much, and the incident flux from a Si monochromator is significantly
higher than that from a Heusler monochromator. The disadvantage is that non-magnetic
and magnetic scattering are mixed together, even in the channel which shows the magnetic
scattering, hence making weak signals harder to measure above the background.

Prevention of stray fields affecting the one remaining flipper (in the scattered beam) was
important to maintain the possibility of polarisation analysis. Therefore an electromagnet,
whose current could be varied from the instrument control computer, was placed in front of
the flipper so that an opposite ‘compensation’ field could be applied to make the environment
of the flipper free from unwanted magnetic fields. The stray fields at the flipper were strongly
dependent on the orientation of the spectrometer, specifically the angle of the sample relative
to the incident beam (ω) and the scattering angle minus this (2θ − ω), so the current
in the electromagnet had to be adjusted for every data point. Calibrations for the current
variation with spectrometer configuration were done using germanium, a material from which
the scattering is purely nuclear in origin, with a negligible magnetic contribution. The
required currents to give optimum flipping ratio were recorded and then interpolated for
every spectrometer configuration.

Often sections of scans during the experiment were found to require a linear variation
of the flipper currents, so that rather than constructing each scan from a discrete set of
points the scans could be broken into several sections with flipper currents as a linear scan
variable. The best achievable flipping ratios were still dependent on the orientation of the
magnetic field with respect to the flipper, however on average the flipping ratio was about 8
for kf = 4.1 Å−1 and about 17 for kf = 2.662 Å−1.

For this experiment the spectrometer was set to give fixed final wavevector of either
kf = 2.662 Å−1 or kf = 4.1 Å−1, depending on the energy of the excitation being measured.
A pyrolytic graphite (PG) filter was placed in the scattered beam in order to reduce con-
tamination of the signal by scattering from higher harmonic scattering. The sample was
mounted with the pseudo-cubic (1, 0, 0)− (0, 1, 1) plane horizontal (i.e the scattering plane)
and hence the (0, 1̄, 1)-direction vertical. The sample used for this experiment was grown
using the floating zone method [5], and its mass was 8.76 g. The sample comprised a single
cylindrical rod about 4cm long with a diameter of about 0.8cm, and was mounted on an
aluminium bracket, with a small amount of GE varnish and secured additionally with alu-
minium wires. When mounted inside the cryostat the sample was encased in a bag made
from thin aluminium foil so that if the sample was forced off the mount by magnetic forces
it would not be lost to the bottom of the cryostat.

In the horizontal field the ferromagnons around the (0 1 1) Bragg peak were measured.
This was because it has been found that the Co4+ moments order along the (0, 1, 1)-direction
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[7] and thus with the constraint of using a horizontal field scans had to be performed with
the field (and therefore the wavevector) along this direction, i.e. scans of the form (0, 1 +
H, 1 + H). This is not the optimum setup as far as possible contamination of the signal
by non-magnetic scattering is concerned because, after calculating the structure factors (see
appendix C) and checking them on the instrument itself, for a pseudo-cubic lattice of this type
the (1 0 0)-type positions, and the low energy acoustic phonons dispersing out of them, have
a much smaller structure factor. It was therefore imperative to set up the flippers carefully
so that the best possible flipping ratio could be obtained at all energies, but particularly
at higher energies, where kf = 4.1 Å−1 was required and the magnons may be weaker but
phonons comparatively stronger.

6.3 Results
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Figure 6.5: Raw data from a constant energy Q-scan at E = 4meV, T = 2K, using a fully
polarised setup.

Figure 6.5 shows a sample scan from a slightly different experimental setup from the one
described. One fixed-energy Q-scan was performed using a fully polarised setup, i.e. with a
Heusler monochromator so that the incident beam was polarised with flippers in the incident
and scattered beams. In order to prove beyond doubt the existence of ferromagnetic spin
excitations in this material the scattering should appear in just one channel, and this is
indeed the case since it appears in the channel where the incident beam flipper was on but
the scattered beam flipper was off, i.e. one of the true spin flip (magnetic) channels.

The rest of the data presented in this chapter were taken using the half-polarised setup.
Figure 6.6 shows all of the polarisation-analysed scans, i.e. non-spin-flip (flipper off) minus
spin-flip (flipper on) channel, combined. The colours, representing intensity, have been
smoothed by interpolation, so the figure is for the purpose of illustration only. The black dots
show points in (Q, E)–space where the scattering was measured, so special care should be
taken when considering colours on this map far from any such dots, because the interpolation
in such regions is a less reliable indicator of the true intensity there3. This figure shows
us several features which will guide our understanding of the physics of LSCoO. First is

3Note that the data have been symmetrised, e.g. data taken at the wavevector (0, 1.4, 1.4) are shown on
this figure at (0, 0.6, 0.6) because they are symmetrically equivalent once they have been corrected for the
magnetic form factor.
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Figure 6.6: Colour map showing the magnetic scattering (NSF−SF), all scans combined and
symmetrised. T = 2 K.

that at low energy there are well defined spin-waves which disperse from the ferromagnetic
wavevector (0, 1, 1). Close to the origin these spin-waves can be approximated by a quadratic,
and the fitting of these scans will allow the calculation of the spin-wave stiffness constant
for this material. Second is that above about 12meV the spin-waves broaden in both energy
and wavevector quite significantly, and above about 20meV the magnetic scattering is very
diffuse and hence very hard to characterise accurately.
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Figure 6.7: Energy scans in the (non-magnetic) spin-flip channel showing the optic phonon.
q is defined such that the measurements were taken at Q = (0, 1− q, 1− q). T = 2K.

Figure 6.7 shows scattering in the spin-flip (non-magnetic) channel at a range of wavevec-
tors across the magnetic Brillouin zone, showing the presence of an optic mode phonon
around 20 meV. Note that for 0.4 ≤ q ≤ 0.5 the scattering was actually measured at the
symmetrically equivalent4 wavevector (0, 1 + q, 1 + q), due to geometrical constraints of the

4I adopt the convention of denoting the actual wavevector used for the measurement as (0, Q,Q), and
the wavevector relative to (0, 1, 1) as (0, q, q). So for Q = (0, 1.4, 1.4), q = (0, 0.4, 0.4).
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spectrometer. At larger wavevectors the phonon structure factor is generally larger, which
would explain why the background and the phonon signal are larger for q = 0.4 and 0.5.
Due to the fact that there were only two polarisation channels, both of which contain some
non-magnetic scattering, one would expect the error of the subtraction measurements to
determine the magnetic signal to be higher in the vicinity of this phonon, and hence the
magnons would be more difficult to measure here. For example, if the subtraction giving
the magnetic signal was (25 ± 5) − (9 ± 3) = 16 ± 6 in a region with little non-magnetic
scattering, then a magnetic signal of the same magnitude near a large non-magnetic signal
would have a much bigger error – (125± 11)− (109± 10) = 16± 15. This means that scans
which pass over the vicinity of 20meV required longer counting times in order to reduce the
errors.
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Figure 6.8: Constant energy Q-scans of the magnetic scattering (NSF−SF). T = 2K. Suc-
cessive scans are displaced by 100 for clarity.

Figure 6.8 shows several fixed-energy Q-scans in the magnetic scattering channel, for
relatively low energies. At these low energies it was possible to use kf = 2.662 Å−1, at which
final wavevector the flipping ratio was significantly better and hence the cross-contamination
of non-magnetic scattering into the magnetic scattering channel was much lower. A clear
dispersion from the origin is visible, accompanied by a decrease in the intensity of the
scattering. These data, and the data from similar scans taken at other nearby energies,
can be fitted fairly easily and the results compared with the predictions of linear spin-wave
theory.

Figure 6.9 shows fits (solid lines) to the magnetic signal, offset by +1, from fixed-
wavevector energy scans at a range of wavevectors on a logarithmic scale. A single Gaussian
function, with a flat background that was fixed to zero, was used as the fitting function.
The fits show that as the wavevector moves away from the ferromagnetic zone centre, the
excitation disperses out to a higher energy. The fits also illustrate that the energy width of
the excitation increases markedly at higher energies and wavevectors.

Figure 6.10 shows the results of fits to the constant-energy Q-scans (red circles with
horizontal error bars), and constant-wavevector energy-scans (blue circles with vertical error
bars). The Q-scans were fitted with two Lorentzians, which were constrained to be centred
at symmetrically equivalent wavevectors relative to the ferromagnetic zone centre, and also
to have the same width. The energy scans were fitted, as described above, using a single
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Figure 6.9: Fits to fixed-wavevector energy scans, using a single Gaussian. T = 2K. Note
that all of the data points and fits have been offset by +1 so that a logarithmic scale can be
used.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

45

(0,q,q) [r.l.u.]

E
ne

rg
y 

[m
eV

]

Figure 6.10: Fits to Q- and E-scans to determine a dispersion relationship. Red filled
circles with horizontal errorbars are determined from Q-scans, blue filled circles with vertical
errorbars are from E-scans.

Gaussian. Note that only the higher energy fits are shown because for lower energies the
centre positions of the Gaussians were fixed to values determined from the fits to the Q-scans.

It is immediately obvious that not all of the scans provide consistent results, particularly
for E > 10meV, where for most wavevectors the Q-scans appear to overestimate the energy
of the dispersive mode compared to the results of fitting energy scans. In some cases this
may be due to choice of fitting function – if the line shape of the data are not well fitted by
the Gaussian or Lorentzian functions, e.g. because they are asymmetric, then the value of
the centre of the fit may not be correct. There is also the question of the error bars, which
seem to underestimate the error on the measurement somewhat. This again could be due
to the line shape of the data compared to the fit function – if the value of χ2 À 1 then the
error on the resulting fit will be given by the fitting program as being unrealistically small5.

5The errors are only meaningful if χ2 ≈ 1, because the error on a particular variable is calculated by
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It is also possible that, due to a combination of the line shape of the excitations and the
shape of the resolution ellipsoid, that the maximum co-ordinates given by a cut along the
energy axis are not the same as those given by a cut along the (0, q, q) axis.
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Figure 6.11: Full width at half maximum (FWHM) in energy of the magnetic excitations as
a function of wavevector.

Figure 6.11 shows the FWHM of the energy scans, determined from the Gaussian fits
already described, as a function of wavevector. It is clear that for lower energy excitations the
width is relatively constant, however it increases markedly above about 10meV (q = 0.15)
becoming close to the energy of the excitations themselves.

6.4 Analysis and Discussion

The low energy data (E ≤ 7meV) were fitted using a quadratic dispersion of the form

E0 = ∆ + Dq2 (6.5)

where E0 is the energy of the spin-wave, D is the spin-wave stiffness constant and ∆ is
an energy gap. If the spin-waves are damped then the intensity of the scattering I can be
described using a damped harmonic oscillator model, i.e.

I ∝ 4ΓEE0

(E2 − E2
0)

2 + 4Γ2E2
(6.6)

where Γ is the damping constant. This function has a maximum, which corresponds to a
spin-wave peak, when dI

dE
= 0. Using the quotient rule, this is when

E2
max =

−(4Γ2 − 2E2
0)±

√
(4Γ2 − 2E2

0)
2 + 12E4

0

6
(6.7)

varying that parameter from its optimum value until ∆χ2 = 1.
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Figure 6.12: Damped harmonic oscillator fit to the low energy spin-waves, assuming a
quadratic dispersion. The raw data have been fitted in this case.

The positions of the excitation peaks, determined by fitting to Lorentzians, were pre-
sented in figure 6.10. For the peaks below 7meV these data were re-fitted to equation
6.7, and the results are shown in figure 6.12. The stiffness constant D1 was found to be
180 ± 20meV Å2, the energy gap ∆1 was 3.3 ± 0.3meV, and the damping constant Γ1 was
4.5±0.9meV. It appears from figure 6.12 that these parameters give a low energy dispersion
curve that is slightly too low in energy, which at first glance is confusing. However recall that
the points and errorbars on these plots were found by fitting the raw data to a Lorentzian
line shape, whereas the low energy dispersion parameters were found by re-fitting the raw
data with the damped harmonic oscillator function given by a combination of eq. 6.5 and
eq. 6.6. The line shape given by this pair of functions is not the same Lorentzian, and it
is this that results in the discrepancy between the points and the line in figure 6.12. To
find an alternative set of parameters, one can fit the ‘processed’ data, i.e. by fitting a line
to the points shown in figure 6.12, rather than fitting the raw data. In this case one sets
dI
dq

= dI
dE0

· dE0

dq
= 0, which results in

E2
0max =

2E2 ∓
√

4E4 + (48Γ2E2 + 12E4)

6
(6.8)

The resulting fit from equation 6.8 is shown in figure 6.13. The parameters in this case
are D2 = 216 ± 14meV Å2, ∆2 = 2.3 ± 2.0meV, and Γ2 = 2.7 ± 5.3meV, and more or less
agree with the parameters found using the other fitting method.

These results can be compared to similar measurements in the CMR manganite La0.8Sr0.2MnO3

[16] for which DLSMO ≈ 150meV Å2 and ∆LSMO ≤ 0.04meV, so it appears the low energy
spin-waves are stiffer in LSCoO but that the energy gap is larger, although this latter quantity
is not especially well constrained by the data presented here. The larger stiffness constant
shows that in LSCoO the ferromagnetic exchange between magnetic ions is stronger than in
a similarly doped manganite compound.

For a nearest-neighbour interaction Heisenberg Hamiltonian, D = 2SJ a2 (see section
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Figure 6.13: Damped harmonic oscillator fit to the low energy spin-waves, assuming a
quadratic dispersion. The processed data have been fitted in this case.

1.3.1), where S is the spin quantum number of the system, J is the nearest neighbour
exchange constant, and a is the lattice parameter. Although it is not clear whether only
the Co4+ spins with S = 1/2 are ferromagnetically correlated, or whether the Co3+ spins
with S = 1 or S = 2 are also correlated, it is possible nevertheless to write an ‘average’
Hamiltonian. In such a Hamiltonian we assume that S = 1/2 and then determine the
exchange constants accordingly. If there is no clear way to separate the Co4+ and the
Co3+ contributions to the magnetic scattering then this is the only sensible approach to
take. Taking the first set of values for the spin-wave stiffness constant we find that Jfit1 =
12.3±1.5meV. The same Heisenberg model also tells us that the band-width of the magnon
spectrum is 8J S for dispersion from the (0, 1, 1) wavevector parallel to (0, 1, 1). This gives
a band-width of 49.2meV, i.e. the zone boundary magnon in such a model would have
an energy of 52.5 ± 6meV. From the alternative fit we find Jfit2 = 14.8 ± 1.0meV, and a
band-width of 61.5± 2.8meV.

It is clear from inspection of the data presented in figure 6.14, which shows energy scans
near the Brillouin zone boundary, that this model does not provide a complete description
of the physics of LSCoO, because there is no evidence of a signal near 50 meV in any of the
energy scans shown. This leaves three possibilities; either the band-width of the magnons
is greater than expected from the nearest-neighbour Heisenberg model; the band width is
very much less than the expected value and is lower than the minimum energy of the scans
shown; or the magnon signal becomes so weak as to be unobservable near the zone boundary
due to some additional piece of physics.

Considering the first possibility, that the spin excitations at the zone boundary exist at an
energy greater than ∼ 60meV, it is hard to reconcile this possibility with the measurements
of the low energy dispersion. The band width would reduce if higher order neighbour terms
were to be introduced to the Heisenberg model, so the nearest-neighbour only bandwidth is
an upper limit on the bandwidth in this type of model. The excellent agreement between the
quadratic dispersion predicted in the Heisenberg model and the low energy measurements
strongly suggests that such a model is appropriate to this system. So on this basis, an increase
in the band width of the spin excitations beyond that expected from a nearest-neighbour
Heisenberg model is ruled out.
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Figure 6.14: Fixed wavevector energy scans, comparing a scan at (0, 0.9, 0.9) where there is
a clear spin-wave peak, with scans at (0, 1.4, 1.4) and (0, 1.5, 1.5), where there is no apparent
signal. The scan at (0, 0.9, 0.9) is shown twice, black triangles and the black line show it to
scale with a fit, whereas red diamonds show it reduced by a factor of 10.

In hole-doped manganites the second possibility, of a softening of the magnon modes at
higher wavevectors, has previously been encountered [17, 18] and several authors have intro-
duced longer ranged couplings to fit their data. It has been found that 2nd and 3rd nearest
neighbour couplings seem not to be important, however 4th nearest neighbour couplings are.
A Heisenberg model which includes nearest- and 4th-nearest neighbour interactions, for the
case of scans along the (0, q, q) direction, gives a dispersion relation of the form

E0 = 2J1[1− cos (2πq)] + 4J4[1− cos2(2πq)] (6.9)

where J1 is the nearest-neighbour exchange constant, and J4 is the 4th nearest-neighbour
exchange constant, and the S = 1/2 factor has been incorporated into the pre-factors of
the two terms on the right hand side. Equation 6.9 can be calculated for small wavevectors
using a Taylor expansion of the cosine terms. Doing this gives

E0 = ∆ + (D1 + D4)q
2 (6.10)

where D1 = 8J1Sπ2 and D4 = 32J4Sπ2. Notice that for this definition the Dns are defined
in units of meV r.l.u.−2, unlike in equation 6.5. Converting the value of D found from fitting
the processed data into these units, we get Drlu

fit2 = 584 ± 38meV r.l.u.−2. The constraint
(D1 + D4) = 584 means we can calculate what the full dispersion would look like for any
given ratio of J1 and J4. One limiting case is when J4 = 0, i.e. nearest-neighbour interactions
only, and another would be when J4 > J1. Specifically it is when the ratio 4J4/J1 → ∞.
The expected dispersions are shown in figure 6.15 for the case J4 = 0 and 4J4/J1 = 10.

This figure shows that the addition of a 4th-nearest neighbour term results in softening
of the magnon energy for larger wavevectors, and in fact the size of the softening compared
to the nearest-neighbour only case is a measure of J4. It is clear from the data that in
LSCoO any magnon softening due to interactions of this type must be very small. Of course
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Figure 6.15: A comparison of the magnon dispersion with nearest-neighbour only terms (up-
per curve), and with 4J′4/J

′
1 = 10 (lower curve), with identical spin-wave stiffness constants.

this mechanism for magnon softening does not of itself provide any explanation of why the
width, Γ, increases so dramatically away from the magnetic zone centre. Indeed it would
seem that this effect is the more significant one in LSCoO. It appears, therefore, that 4th

nearest-neighbour interactions do not play a significant part in determining the magnetic
excitation spectrum in LSCoO.

Indeed, as has been noted by Perring et al [22] for La0.7Pb0.3MnO3, in a Heisenberg
model with only nearest-neighbour interactions the Curie temperature TC is related through
mean-field theory to the exchange energy by

TC =
zJ1S(S + 1)

3kB

(6.11)

where z is the number of nearest neighbours, and all the other symbols have their usual
meanings. When this is corrected (reduced) for the effects of fluctuations [28] equation 6.11
is re-written as

TC =
J1

2kB

[2.90S(S + 1)− 0.36] (6.12)

and using the value of J1 obtained from the spin-wave stiffness, this gives an expected Curie
temperature in LSCoO of 156K, which is in excellent agreement with measurements of the
susceptibility [5].

One possible cause of broadening and loss of intensity at higher wavevectors would be
the presence of a continuum of Stoner excitations, which are typical in metallic ferromagnets
and were described in section 1.3.2. A measurement of the Stoner continuum using polarised
inelastic neutron scattering shows a continuum of states characterised by wavevector and
energy where the scattering is weak and isotropic. Outside of this continuum, and just
inside it, it is possible for spin-wave modes to be measured [29], so it would seem, at least
qualitatively, that this effect may explain what has been observed here in LSCoO. A classic
example of such a measurement is the paper by Mook and Nicklow [30], where the spin-waves
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in iron are observed at low wavevector with high precision before the dispersion runs into
the Stoner band and the intensity of the scattering becomes much weaker.

The precise details of the Stoner continuum are dependent on the band structure, which
is parameterised by the effective mass of the charge carriers. Unfortunately neither of these
are available in the literature, so a detailed calculation of where the boundaries of the Stoner
continuum lie is not possible. However it is possible to determine experimentally whether or
not the presence of Stoner excitations is the cause of the spin-wave broadening in LSCoO. The
Stoner continuum is dependent on the Fermi energy (at zero temperature), which depends
on the number of charge carriers, and how it compares to the splitting between spin up and
spin down bands in a material. If a series of experiments similar to this one were performed
where the charge concentration was varied (for x ≥ 0.18 so that the materials studied would
be in the ferromagnetic-metallic phase) it should be possible to determine whether the energy
and wavevector at which spin-waves are broadened is dependent on doping.

Moussa et al [23] noted that in La1−x(Ca1−ySry)xMnO3 the magnons are broadened in
wavevector and energy an increasing amount as q increases, with the maximum broadening at
the magnetic zone boundary. They explain this phenomenon by suggesting that there exist
defects in the mean magnetic structure. For example, if there was only a nearest-neighbour
coupling J1, but there was a random spatial distribution of this coupling about a mean value
due to defects in the magnetic structure on a microscopic scale, then the magnons would be
broadened and the effect of this broadening would be more apparent at higher wavevectors.
An illustration of this is given in figure 6.16, which shows schematically what the magnetic
scattering arising from such a dispersion would look like if the exchange parameter J1 was
given by a Gaussian distribution centred on a value of 12.3meV with a FWHM of 5.6meV.
The colour map is such that the lighter parts of the plot correspond to higher intensity
and the darker parts to lower intensity. This appears to capture qualitatively the observed
broadening of the spin-waves in LSCoO.

Figure 6.16: Broadening of the dispersion due to a Gaussian distribution of nearest-neighbour
exchange parameters.

To test the appropriateness of this model one must examine the width in both wavevector
and energy throughout the Brillouin zone. At low energies and wavevectors the width of
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both Q-scans and E-scans will be limited in part by the resolution of the instrument, rather
than the effects described above. However if the excitations become broader than this
instrumental resolution then it should be possible to determine if the observed broadening
is consistent with the model proposed.

It was found that the widths of the Q-scans at low energies were more or less constant,
although the uncertainty on the fits means that small changes would not be possible to detect.
However the low wavevector widths were much larger than what would be expected if they
were limited by resolution only, so there must be an additional damping of the excitations.
The width of the E-scans was shown in figure 6.11. This figure is re-plotted in figure 6.17
with a line drawn on to indicate the energy width that would be expected if the exchange
parameter J1 was randomly disordered such that its value followed a Gaussian distribution
with FWHM ∼ 10meV (as above). At low wavevectors and energies the width would have to
be limited by some other factor, and this is accounted for in the plot by adding a broadening
Γ, as in equation 6.6, which occurs in addition. At higher wavevectors the width is then
given by the width due to exchange disorder, whereas at lower wavevectors it is given by the
finite Γ.
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Figure 6.17: The expected width of the spin excitations if the exchange parameter has
random disorder (black line), plotted over the real energy width of the spin excitations
(filled red circles).

Note that because the plot of the energy widths contains only a few points it is not possible
to find a fit using the model of a randomised exchange parameter because the fit would be
under-constrained. Moreover it is not clear how the additional damping that is required
to explain the width of the lower energy scans would arise. Finally the amount of disorder
required to fit the data here is significantly larger than that found in La1−x(Ca1−ySry)xMnO3,
indeed it is hard to see how an amount of disorder as large as that required to fit the LSCoO
data would arise.

It was noted in section 6.1 that in La1−xCaxMnO3 (LCMO) standing spin-waves have
been observed using neutron magnetic scattering [25] due to the existence of hole-rich and
hole-poor magnetic clusters, the latter supporting the standing waves. The size of the clusters
and their spacing was uniform in LCMO, enabling the nature of the exchange and the spin
state of the cluster region to be determined accurately. Consider now a similar situation,
but with a non-uniform cluster size. Standing spin-waves might still exist in these clusters,
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either in the hole-rich or the hole-poor ones, however there would be an almost continuous
range of energies allowed for these standing waves. If one were then to measure the neutron
magnetic scattering from these standing waves, the modes (that are well defined in LCMO)
would become broader in energy because of the variation in cluster size, resulting in lower
neutron count rates and a much less well defined signal. If there was a significant range
of cluster sizes then the standing wave modes may even become so broad as to coalesce to
form almost a continuum of weak magnetic scattering. If such a scenario were to occur then,
clearly, it might be a possible explanation for the measurements of LSCoO presented here. It
is not, however, possible to verify this hypothesis from the data obtained in the experiments
described here.

6.5 Conclusions

To conclude, it is clear from these measurements from the spin excitations that LSCoO
with x = 0.18 is not a simple localised Heisenberg ferromagnet. The spin excitations along
the (0, 1, 1)-direction have been measured using a half-polarised neutron inelastic scattering
technique. At low energies and wavevectors spin-waves were measured and their stiffness
was found to be larger than in similarly doped manganites. At higher energies the spin
excitations broaden significantly, and become too weak to measure near the Brillouin zone
boundary.

There are several possible mechanisms which might explain this broadening and weak-
ening. The first is that a continuum of Stoner excitations crosses the spin-wave dispersion,
which would result in the magnetic excitations rapidly becoming isotropic and weak. An-
other possible explanation is that the nearest-neighbour Heisenberg exchange is randomly
distributed about a mean value so that several different dispersion curves overlie each other
to give an overall measured dispersion that is significantly broadened as the wavevector in-
creases. The amount of disorder required to fit the data is, however, unrealistically large.
Finally standing spin-wave modes may exist in ferromagnetic clusters with a range of sizes,
giving rise to a broad continuum of magnetic scattering.

Future experiments on this material could take a number of directions. The ‘pure’ ferro-
magnetic phase (x À 0.18) could be investigated using polarised neutrons, and the dispersion
obtained would help future characterisation of the excitations at lower doping fractions. Fur-
thermore lower doping fractions (x < 0.18) could be investigated for the existence of optic
spin-wave modes. Broadening possibly due to the existence of a Stoner continuum can be
checked by measuring the scattering throughout the Brillouin zone for a range of dopings in
the ferromagnetic metallic phase.
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Chapter 7

X-ray Resonant Scattering
Measurements of Multiferroic
DyMn2O5

X-ray resonant scattering has been used to measure the magnetic order below 40 K
in multiferroic DyMn2O5. The magnetic order has a complex behaviour. Several
different ordering wavevectors, both incommensurate and commensurate, present
themselves as the temperature is varied. In addition a non-magnetic signal at twice
the wavevector of one of the commensurate signals is observed, the maximum inten-
sity of which occurs at the same temperature as a local maximum in the ferroelectric
polarisation. Some of the results, which bear resemblance to the behaviour of other
members of the RMn2O5 family of multiferroic materials, may be explained by a
theory based on so-called acentric spin-density waves.

7.1 Introduction

7.1.1 Bulk Properties

The RMn2O5 (R = rare earth) materials have played a major part in the recent upsurge
of interest in multiferroics [1, 2], with their seemingly complex phase diagram providing a
series of problems for physicists to solve. The bulk properties of the RMn2O5 (R = Tb,
Ho, Er, Dy, ...) compounds have been studied in some detail and have many common
features [1, 2, 3, 4, 5]. In zero applied magnetic field there exists a finite FE polarisation
along the b-axis in the approximate temperature range 20 ≤ T ≤ 35K, which, with increasing
temperature, increases rapidly at the lower end of the temperature range and decreases more
gradually at the upper end. Such behaviour is present for all RMn2O5 compounds, however
the magnitude of the polarisation is largest in DyMn2O5, and appears to be significantly
weaker if R is a non-magnetic ion such as Y [5]. It would seem, therefore, that the presence
of a magnetic rare-earth enhances the ferroelectric (FE) polarisation. Coexistent with the
ferroelectric order a complicated series of magnetic orders present themselves, the nature
of which will be described below. It is this coexistence that make the RMn2O5 compounds
multiferroic.

The temperature dependence of the FE polarisation of DyMn2O5 is shown in Figure 7.1,
reproduced from the paper of Higashiyama et al. [4]. It can be seen that the behaviour is
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Figure 7.1: FE polarisation measured by Higashiyama et al. [4]. The upper figure shows
remnant polarisation after the applied electric field has been cycled, analogous to a magnetic
hysteresis loop. The lower figure shows the polarisation inferred from measurement of the
pyroelectric current.

rather complicated. Features of particular note, from the upper pane, are

• The FE polarisation is small but non-negligible for 7 ≤ T ≤ 12K,

• The sharp rise beginning at 12 K to a maximum at 15 K,

• A local maximum at about 25 K

• A steady reduction of FE polarisation with increasing temperature, reaching zero at
about 39K.

A strong hint towards the existence of coupling between the ferroelectric and magnetic
orders is provided by the fact that the application of a magnetic field can affect the ferro-
electric properties of the RMn2O5 compounds. In DyMn2O5 Higashiyama et al [4] showed
that application of a magnetic field parallel to the a-axis can have a strong effect on the
ferroelectric polarisation parallel to the b-axis. Above about 17K application of a magnetic
field up to 3T has very little effect on the polarisation, however for T ≤ 17K an increase in
field causes a steady increase in the magnitude of the polarisation. The general form of the
polarisation as a function of temperature is unchanged for Ha ≤ 1T however the decrease in
polarisation on cooling from about 14 K is less steep. This effect becomes even more marked
for 1 < Ha < 2.5T, with the polarisation becoming much larger at the lowest temperatures
than in the zero field case. Eventually for Ha ≥ 2.5T the polarisation actually increases on
cooling below 14 K and tends to saturate below about 7K.

As well as the ferroelectric phase, other common features among RMn2O5 compounds are
the existence of a magnetic transition from an ordered to a disordered state at TN ∼ 40K,
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with a transition into a ferroelectric state just below TN. At low temperatures, typically
T < 10K, the magnetic rare earth ions are observed to order antiferromagnetically. The
precise details of these changes are different, depending on the choice of R. This may depend
on the magnetic easy axis of the material, which is the a-axis for R = Tb, the b-axis for R
= Dy and Ho, and the c-axis for R = Er and Tm. All of these transitions are accompanied
by distinct anomalies in the specific heat.

DyMn2O5 crystallises in the orthorhombic space group Pbam with the lattice parameters
a = 7.294 Å, b = 8.555 Å and c = 5.688 Å. The structure is such that interspersed between
sheets of Dy3+ ions there are, in order along the c-axis, a Mn4+O6 octahedron, a Mn3+O5

bipyramid, followed by another Mn4+O6 octahedron [6].

The crystal structure is shown in figure 7.2, with the polyhedra showing the DyO8 envi-
ronment. The Dy–O bond distances within each polyhedron are not all the same, however
they are all within 10% of each other.

Figure 7.2: The unit cell of DyMn2O5, with Dy ions shown as blue spheres, Mn4+ ions shown
as purple spheres, Mn3+ ions shown as green spheres, and O2− ions shown as red spheres.
The polyhedra show the DyO8 neighbours.

Figure 7.3 shows schematically how the Dy–O bonds relate to the Mn–O bonds, with
the colour half way along each bond showing the two ions that it connects. Although it is
rather hard to see from the diagram, each Dy ion is connected via oxygen ions to 28 different
Mn ions. The Dy–O–Mn bond angles range from 96.2◦ to 134.6◦, so it is not clear from the
GKA rules [7] whether the coupling between Dy and Mn ions would be ferromagnetic or
antiferromagnetic. X-ray resonant magnetic scattering will be observed if there is a coherent
magnetic polarisation of the Dy 5d states through coupling to the magnetically ordered Dy
4f or Mn 3d moments. Mn3+ is in the configuration t32g e1

g, whereas the configuration of the
3d states in Mn4+ is t3

2g.

For completeness, figures 7.4 and 7.5 show the polyhedra that make up the Mn3+O6

environment and the Mn4+O5 environment respectively.
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Figure 7.3: The DyMn2O5 unit cell showing Dy–O and Mn–O bonds.

Figure 7.4: The DyMn2O5 unit cell showing Mn3+O6 octahedra

7.1.2 Previous Scattering Measurements

There have been several neutron scattering experiments conducted on DyMn2O5 [6, 8, 9].
These experiments have had some success in elucidating the crystallographic and magnetic
structure of this material. It appears that there are three distinct magnetic phases present
at various temperatures below TN. Below T ≈ 8K the Dy ions are modulated antiferromag-
netically (AFM) along the a-axis, with wavevector qDy

AFM = (0.5, 0, 0), with their moments
pointing along the b-axis. From base temperature up to TN the Mn3+ and Mn4+ ions un-
dergo several magnetic transitions between an incommensurate magnetic (ICM) phase and
a commensurate magnetic (CM) phase. The propagation vectors of these phases will be
denoted hereafter by qICM and qCM respectively, where qICM = (0.5 ± δ, 0, 0.25 ± ε) and
qCM = (0.5, 0, 0.25). The existence of these phases has been shown in all the neutron
scattering measurements, but the precise details of ordering wavevectors and their onset
temperatures are not consistent between studies.
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Figure 7.5: The DyMn2O5 unit cell showing Mn4+O5 bi-pyramids

Wilkinson et al. [8] measured the magnetic structure at three temperatures (4.2K, 18K
and 44K) and found, coexisting with the AFM order of the Dy ions, an ICM structure with
δ = 0 but ε 6= 0. The value of ε was found to vary slightly in the range 0 ≤ ε ≤ 0.002 for the
three temperatures measured. This incommensurate order was attributed to the ordering of
both sets of Mn ions. More recently, neutron powder diffraction measurements by Blake et
al. [6] were able to resolve a magnetic structure with δ = 0.01 and ε = 0 below 32K, which
they did not observe to change on cooling until T ≤ 8K, whereupon it became much weaker
and an AFM phase the same as that seen by Wilkinson et al. was found.

Subsequently, single crystal neutron diffraction measurements were made by Ratcliff et
al. [9] over a temperature range 2 K≤ T ≤ 45K. Like the other measurements they found
an AFM phase below 8K, but at higher temperatures they found a more complex behavior.
Two different ICM phases were found for 8 K≤ T ≤ 18K characterised by the wavevector
qICM = (0.5, 0, 0.25 + ε1,2), where ε1,2 are two different incommensurabilities which vary in
size between 0 and 0.02 and have opposite sign. For 18 K≤ T ≤ 33K one of the ICM peaks
becomes CM whilst the other’s intensity gradually decreases with increasing temperature.
For T > 33K there exists only the CM phase, and on warming this disappears by ∼ 40K.

Up to now there have been no x-ray resonant scattering (XRS) studies of DyMn2O5,
although there have been two XRS studies of the related compound TbMn2O5 [10, 11], both
of which have concerned themselves with the ordering of the Mn sublattice by tuning the
incident x-ray energy to one of the Mn absorption edges. For 10 ≤ T ≤ 41K a pair of
ICM peaks at (0.5± δ, 0, 0.25 + ε) are observed, where δ decreases from about 0.012 at 10K
to 0.003 at 25 K, where it remains constant until 32K above which it increases to about
0.012 at 41K. The c-axis incommensurability, ε, gradually decreases from 0.06 at 10K to
0.03 at 41K. The intensity of the ICM peaks decreases steadily with increasing temperature.
Above about 21 K a CM peak at (0.5, 0, 0.25) appears, the intensity of which increases with
increasing temperature up to about 30K, and then decreases on further warming to 41K.
It is also noted that the (3,0,0) Bragg peak, which is forbidden in the Pbam space group
that characterises the crystal structure of TbMn2O5, is observed to scale exactly as the FE
polarisation squared. The (3, 0, 0) Bragg peak would be allowed if the space group became
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non-centrosymmetric, and lack of a center of inversion is required in all of the proposed
explanations for the occurrence of FE polarisation in magnetically ordered materials.

In their neutron powder diffraction study Blake et al [6] considered the possibility that
in the ferroelectric phase the symmetry of the crystal structure is lowered so that the space
group of the material is Pb21m. Such a group would allow a change in the positions of the
Mn3+ ions that might give rise to a ferroelectric polarisation along the b-axis. Table 7.1
shows the allowed reflections for the Pbam and Pb21m space groups. The (3, 0, 0) reflection
is still forbidden in the lower symmetry Pb21m space group, however there are some extra
allowed peaks – for example the (1, 0, 4) peak is allowed in Pb21m but is forbidden in Pbam,
so if this peak were to be found in DyMn2O5 then the veracity of the existence of a lower
crystal symmetry could be proven.

Space group Allowed reflections
Pbam 0kl : k = 2n

h0l : h = 2n
h00 : h = 2n
0k0 : k = 2n

hkl : h + k = 2n
Pb21m h0l : l = 2n

00l : l = 2n

Table 7.1: Allowed reflections for Pbam and Pb21m space groups

There were several motivations for this XRS study of DyMn2O5. Firstly, XRS offers
the possibility of probing the magnetic order on the Dy and Mn sites separately by using
the resonant enhancement in the scattering when the x-ray energy is tuned to an atomic
absorption edge. Neutron diffraction, by contrast, is sensitive only to the size of the overall
magnetic moment and not to the atomic species to which it is attached. Secondly, XRS offers
a high wavevector resolution, which makes it possible to measure changes in the magnetic
ordering wavevector with very high accuracy. Thirdly, XRS is particularly useful for the case
of DyMn2O5 because the neutron absorption cross section for 164Dy is relatively large and
this isotope makes up about 28% of naturally occurring Dy. Hence, it is difficult to obtain
a good signal to background ratio in a neutron diffraction measurement on DyMn2O5. The
advantages of XRS will therefore enable us in this study to clarify the existing data on
DyMn2O5, and to provide a more detailed picture of the various ordering features of this
important multiferroic material.

7.1.3 Analogies with TbMnO3: X-ray Resonant Scattering

A recent extensive study of TbMnO3 [12] using XRS has demonstrated additional types
of measurements that are only possible with this technique, and it will be instructive to
consider them here. TbMnO3 possesses magnetic order with the wavevector (0, qMn, 0),
where 0.28 ≤ qMn ≤ 0.29, and for T ≤ 28K it is non-collinear. The non-collinear magnetic
order coexists with ferroelectric order, with the FE polarisation parallel to the c-axis in
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zero applied magnetic field. Using XRS it was possible to show that this corresponds to a
magnetic order on the Mn sites. Mannix et al [12] also showed, using resonant scattering
at the Tb L3 edge, that the Tb ions also order with this wavevector. Furthermore the
behaviour of the intensity of the scattering with temperature using both Mn K edge and
Tb L3 edge resonances was the same, providing further proof that their physical origin is
the same. Conversely it was found that at low temperatures (T ≤ 7K) there is a distinct
ordering of the Tb ions, with wavevector (0, qTb, 0) with qTb = 0.42, which is not reflected by
the Mn ions. This Tb-only signal is, however, rather weak and is therefore probably due to
an interaction with an energy scale similar to the mean field due to the surrounding ordered
Mn ions.

The signal due to Mn ordering that is seen using the Tb L3 resonance was polarisation-
analysed in order to obtain more information about the physics giving rise to it. Using
incident σ-polarised x-rays (see below) it was found that the magnetic signal scattered into
both the π and σ polarisation states. The latter would only arise due to magnetic order that
is non-dipolar in nature, demonstrating that the interaction between the Mn and Tb ions is
far from straightforward. It was also possible to scan the azimuth (defined in section 2.2.3)
in order to uncover the symmetry of the magnetic order. Dipolar magnetic order would give
rise to an azimuth dependence of the scattered intensity that was proportional to cos2(φ),
where φ is the azimuthal angle. In TbMnO3 it was found that most of the azimuth scans of
the magnetic scattering behaved in this way, however for Tb L3 resonances at (0, 3±qMn, 0) a
more complex behaviour was observed, which was attributed to interference between dipole
and quadrupolar magnetic scattering channels caused by the existence of a toroidal magnetic
order.

Although many of the measurements described above are specific to TbMnO3 and are
unlikely to be reproduced in DyMn2O5, they serve the purpose of demonstrating further the
power of the XRS technique compared to bulk measurements, and the additional information
that can be obtained by XRS compared to neutron scattering.

7.2 Experimental details

The single crystal sample was grown using the flux method [13]. The particular crystal used
for these bulk measurements and scattering measurements was grown c.1972 by B.M.R.
Wanklyn in Oxford. Because of the age of the sample careful characterisation of its bulk
properties was required, and these measurements are presented in section 7.3. Preliminary
x-ray measurements using a standard Laue camera showed that the lattice parameters and
space group of the sample used were consistent with those expected from the literature.

The alignment of the crystal was determined using an x-ray Laue. After this the sample
was cut and polished so that the (0, 0, 1) direction was normal to the largest surface, from
which x-rays could be easily scattered. Most of the synchrotron x-ray measurements were
consequently made at wavevectors of the form Q = (0, 0, 4)± q.

Magnetometry measurements were performed using a Quantum Design SQUID magne-
tometer. The sample mounted using the second method described in section 2.3.1, and was
additionally secured using a small amount of kapton tape. The crystal was oriented in this
arrangement so that the b-axis was parallel to the applied field, i.e. vertical. The specific
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heat measurements were performed in zero applied magnetic field using a Quantum Design
PPMS, a description of which is given in section 2.3.2.

X-ray resonant scattering (XRS) and non-resonant x-ray scattering measurements were
performed on the XMaS beamline at the European Synchrotron Radiation Facility (ESRF),
Grenoble, France. The source of x-rays at XMaS is a bending magnet, so the light is linearly
polarised in the horizontal plane. A vertical scattering geometry was used, shown in figure
2.8, so the incoming x-rays were σ-polarised. For the XRS measurements an incident energy
of 7.795 keV, corresponding to the Dy L3-edge (see below), was used. For non-resonant
measurements an incident energy of 11.17 keV was used. For the XRS measurements at the
Dy L3-edge a Au(222) analyser crystal between the sample and detector was used in order
to measure the σ′ and π′ polarised components in the scattered beam. The detector used
for the scattering measurements was a Si drift diode, which can be set up to count only
x-rays within a certain energy range in order to improve the signal to noise. Fluorescence
measurements were performed on the sample in order to check the energy calibration of the
x-ray beam relative to the known absorption edges of the atoms in the sample, and for these
a NaI bicron detector was used.

The Dy L3-edge, which involves virtual electronic transitions between the 2p and 5d
states, was used for XRS measurements because the resonant enhancement of the magnetic
scattering at this energy can be several orders of magnitude. This contrasts with the resonant
enhancement of magnetic scattering at the Mn K-edge (1s → 4p), which is only a factor of
about 3. Furthermore, the spectrum of the bending magnet source at XMaS is such that
the flux of x-rays with energies near the Dy L3-edge is significantly higher than the flux of
x-rays with energies near the Mn K-edge. Thus one would expect it to be possible to observe
magnetic scattering arising from ordering on both the Mn and Dy sublattices by measuring
the signal from the Dy sublattice alone, assuming that the magnetic polarisation of the 5d
states of the Dy ions is caused by a combination of the local magnetic environment due to
the Mn ions and the magnetisation of the Dy 4f electrons.

An energy of 11.17 keV was chosen for the non-resonant measurements for two reasons.
First, at higher x-ray energies the penetration depth of the x-rays is larger, thus increasing
the scattering volume and making the signal less surface sensitive. This means that any
observed signal is both more intense and sharper in wavevector than it would be for lower
energies. Second, this energy is sufficiently high that although the flux of x-rays from the
bending magnet is still very high, the flux of higher harmonic x-rays is vastly smaller. This
effectively eliminates the possibility of mistaking scattering at this energy with scattering
resulting from second or third harmonic x-rays.

The sample was aligned using the (0, 0, 4) Bragg peak, which is in the specular direction1

and also happens to be one of the strongest. The additional, off-specular, reflection that was
used to give a full alignment was the (1, 0, 4) peak, which is in fact forbidden in the Pbam
space group but is allowed in the Pb21m space group, as detailed in section 7.1.2. This peak
was a factor of approximately 10000 weaker than the (0, 0, 4) peak. Note that although the
(1, 0, 4) Bragg peak is allowed only in the Pb21m space group and not in Pbam, and the
Pb21m space group has been associated with the existence of ferroelectricity, it was found
not to vary with temperature, and is therefore not equivalent to the (3, 0, 0) peak used in

1Specular means perpendicular to the Miller planes which form the crystal’s surface. The highest reflec-
tivity is found for specular reflections.
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x-ray studies of TbMn2O5 as a measure of the ferroelectric polarisation.

The sample was mounted on a four-circle diffractometer, although once the alignment
had been established φ, the azimuthal angle, was fixed so that in fact the three angles that
could be varied were θ, 2θ and χ. The scattering geometry used was such that for specular
reflections the bc-plane was the scattering plane. The resonant magnetic scattering in the
dipole channel was therefore sensitive to components of the magnetic order in the b and c
directions. The sample was placed in an evacuated space enclosed by Be domes (Be is almost
transparent to x-rays) and was mounted on a ‘cold finger’ which was cooled by a displex
cryostat. The cooling was achieved using the Joule-Thomson effect on low pressure He gas
that was pre-cooled using liquid nitrogen.

7.3 Results
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Figure 7.6: Measurement of the magnetisation at T = 2 K, with the applied magnetic field,
which was parallel to the b-direction, being ramped up (blue circles) and ramped down (green
squares). On ramping the field up there are jumps in the magnetisation at about 1.7T and
3.7T, however these transitions do not occur when the field is ramped down.

The magnetisation of the sample used for the XRS study is shown as a function of
applied magnetic field at T = 2 K in figure 7.6. There is a clear hysteresis displayed between
ramping the field up and ramping the field down, and there is a clear anomaly around 1.7 T,
both of which are in agreement with the literature [2]. An additional effect not seen before
is the jump in magnetisation around 3.7T. Hur et al [2] show that when H ‖ b there is a
maximum in the dielectric constant between 3T and 5T when T = 3K. However the changes
in the dielectric constant are much greater when H ‖ a. The saturation moment of about
8µB mole−1 is about 75% of the expected moment of the free Dy3+ ion2.

Scans of the temperature with fixed applied field, an example of which is shown in figure
7.7 where the field was applied along the b-direction, are not especially informative. This is

2Dy3+ has the 4f9 configuration, so according to Hund’s rules it has L = 5, S = 5
2 , and J = 15

2 , giving
an effective moment of 10.63µB per ion.
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Figure 7.7: The magnetisation of DyMn2O5 as a function of temperature in an applied field
of 0.5T parallel to the b-direction.

because over the whole temperature range the signal from the Dy moments is much greater
than any other contribution – at low temperatures there is an antiferromagnetic transition, at
TDy

N ≈ 7K, and at higher temperatures there is a Curie-Weiss-like behaviour which swamps
any signal from the Mn moments.
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Figure 7.8: Measurement of the heat capacity of the crystal of DyMn2O5 used in the x-ray
measurements. The temperatures at which there are anomalies agree with those measured
previously [2, 4]. Note that the lattice heat capacity has not been subtracted from these
data.

The heat capacity of the sample as a function of temperature is shown in figure 7.8.
There are clear anomalies at T = 7.2K, 13K, 27K, 39K, and 42 K, which is in agreement
with previous measurements of the heat capacity [4]. Some of these transitions may be
compared to figure 7.1 and be seen to mark the onset of the various different ferroelectric
phases, and also magnetic phases. The anomalies correspond to the Néel temperature of the
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Dy moments, FE3, FE2, FE1, and the Néel temperature of the Mn moments respectively.
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Figure 7.9: XRS from the AFM ordering of the Dy ions in DyMn2O5 with wavevector
qDy

AFM = (0.5, 0, 0). (a) and (b) Results of fits to the peak in scans parallel to (H, 0, 0)
to a Gaussian lineshape. Notice that the intensity is plotted on a logarithmic scale, and
that the incommensurate signal is two orders of magnitude weaker than the AFM signal.
Above 6.2K the intensity became so weak as to be below the detection threshold of the
apparatus. (c) Scans of the incident x-ray energy at fixed wavevector qDy

AFM = (0.5, 0, 0),
showing a strong resonance at the Dy L3 edge (blue circles) and the sample fluorescence
(green squares, rescaled).

The first XRS measurements I shall describe were designed to confirm the existence
of antiferromagnetic (AFM) order on the Dy ions at low temperatures, an effect which
is seemingly ubiquitous in the RMn2O5 compounds when R is magnetic. Figure 7.9(a)
shows the integrated intensity and 7.9(b) shows position in reciprocal space of the scattering
arising from the Dy AFM order. On warming, the intensity of the scattering decreases
monotonically, as expected, until TDy

N is reached. However, between 4.5K and 5K the
ordering wavevector of the Dy ions suddenly changes from (0.5, 0, 0) to (0.52, 0, 0). Such
an effect has not previously been observed in neutron or x-ray scattering measurements on
any of the RMn2O5 compounds. Figure 7.9(c) shows a scan of the incident x-ray energy
at the (0.5, 0, 0) position at 2K. There is a clear resonance at 7.795 keV, which corresponds
to virtual transitions to the 5d states. The resonance peak is broadened on the left-hand
side by about 10 eV, and the background level on the left-hand side is higher than that on
the right-hand side. Such broadening is probably due to interference between resonant and
non-resonant magnetic scattering [14]. Figure 7.9(c) also shows the sample fluorescence,
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which has been re-scaled because a different detector (the NaI bicron, rather than the Si
drift diode) was used to measure it.

These data show that the scattering due to AFM order disappears below the TDy
N indi-

cated by heat capacity measurements shown in figure 7.6, even though the measurements
were made using the same sample. There are two possible explanations for this. The first is
that as the intensity of the scattered signal decreases the amplitude of the peak will become
more comparable to the random fluctuations of the background scatter and the electronic
noise intrinsic to the detector. At some point the peak will no longer have a greater statistical
significance than these background fluctuations, and at this point the measurable intensity is
effectively zero. This means that if the detector was yet more sensitive, and/or had a lower
background, the peak might still be visible. Such an effect might account for a discrepancy
of at most 1K, so it does not account for the full difference between TDy

N deduced from the
x-ray measurements and TDy

N deduced from the heat capacity measurements.

The second reason for the discrepancy between TDy
N from the x-ray measurements and the

maximum of the heat capacity is to do with what each method is actually measuring. The
x-ray diffraction only has a peak when the order has become sufficiently long-ranged that
the peak is quite narrow and can be easily discerned above the background. The maximum
in the heat capacity occurs discontinuously and this indicates that the phase transition of
the Dy spins is second order and continuous. The spins are likely to order locally at first,
before a global order rapidly condenses out of this local order. So the heat capacity anomaly
occurs at the onset of local magnetic order, whereas the x-ray measurements will not show
a peak until some kind of long-range magnetic order is achieved, which may well be at a
temperature a degree or so lower.

Figure 7.10(a) shows the temperature dependence of the intensity, together with the
temperature dependence of the Dy AFM order, and figs. 7.10(b) and (c) show the H-
and L-components respectively of wavevector of the magnetic signal associated with the
order on the Mn sublattice. The scattering arising from order on the Mn sublattice was
measured at several ICM wavevectors of the form Q = (0, 0, 4) + qICM where qICM =
(±0.5± δ, 0,±0.25± ε). At low temperatures this ICM phase has non-zero δ and ε. Between
T = 2K and T = 19K δ increases slightly from about −0.023 to −0.018, and ε increases
almost linearly from −0.015 to zero, then changes sign and increases further to 0.007. The
intensity of the scattering has a maximum at 5K, the same temperature at which the Dy
AFM order disappears. Above 5K the intensity decreases steadily, and eventually falls below
the detection threshold at T = 19 K.

Figure 7.10 also shows that for T ≥ 14K a CM phase appears, i.e. one for which
qCM = (0.5, 0, 0.25). The intensity of this signal grows upon warming, becoming stronger
than the ICM signal by 15K, where it also reaches a maximum. The maximum intensity
of the CM signal is a factor of 5 weaker than the maximum intensity of the ICM signal.
As temperature is increased above 15K the intensity of the scattering gradually decreases,
falling below the detection threshold for T > 37K.

Signals were measured at the equivalent positions q1 = (−0.5 + δ, 0, 0.25 − ε), q2 =
(−0.5− δ, 0, 0.25− ε) and q3 = (−0.5 + δ, 0,−0.25 + ε) for several temperatures. Although
the same behavior was observed at each position the absolute intensity of the signal was
strongest at q2, probably due to a certain amount of absorption of x-rays by the crystal in
the other orientations. The intensity and wavevector at each temperature were determined by
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Figure 7.10: XRS data from DyMn2O5 at the wavevectors qDy
AFM = (0.5, 0, 0) (filled circles),

qICM = (−0.5 + δ, 0, 0.25 + ε) (filled squares), and qCM = (−0.5, 0, 0.25) (filled diamonds).
Diffraction peaks were fitted to a Gaussian lineshape for scans parallel to (H, 0, 0), and to a
Lorentzian-squared for scans parallel to (0, 0, L). (a) Shows the integrated intensity, which is
the product of the Gaussian amplitude and width at each temperature. (b) and (c) show the
H- and L-components of the ordering wavevector respectively. The error bars are smaller
than the size of the points.

fitting the lineshape in scans parallel to (H, 0, 0) to a Gaussian, and scans parallel to (0, 0, L)
to a Lorentzian-squared function. These functions were chosen on phenomenological grounds
simply because they gave the best fit to the data. The maximum intensities of these signals
were at least an order of magnitude smaller than the signal arising from the AFM order of
the Dy ions. The intensity of the scattering arising from the Dy AFM order is shown on the
same (logarithmic) scale in fig. 7.10 (a) to illustrate this.

Figure 7.11 shows scans of the incident x-ray energy through the Dy L3-edge at the ICM
wavevector (0.5+δ, 0, 0.25+ε). The resonance has essentially the same profile as that shown
in figure 7.9(c), for the same reasons. The existence of this resonance proves that the Dy 5d
states are affected by the magnetic order of the surrounding Mn ions.

Figure 7.12 shows the temperature variation of the widths of the AFM, ICM and CM
peaks for scans parallel to (0, 0, L). The peaks were fitted to a Lorentzian-squared lineshape,
and a moment analysis was also performed to find the width. Both procedures gave the same
results. As the intensity of the peaks became weaker quite large variations in the width
parameter were possible without increasing the value of the goodness of fit parameter χ2,
thus giving rise to quite large error bars. The moment analysis was therefore used to provide
a clearer picture of the change in width with temperature. It is clear that the correlation
length, proportional to (width)−1, is shorter for the ICM order at low temperatures than for
the Dy AFM and the CM order at higher temperatures. Indeed, the correlation length of
the order on the electrons spins in the 5d states of the Dy ions, induced by the Mn sublattice
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shows that the scattering is purely magnetic at this wavevector.
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analysis. The dashed lines are guides to the eye. Similar analysis of scans parallel to (H, 0, 0)
and (0, K, 0) (not shown) shows no change in the width in these directions.

ordering, increases with increasing temperature, before becoming constant above about 20K.

Figure 7.13 shows the results of non-resonant x-ray scattering measurements made with
an incident x-ray energy of 11.17 keV, plotting the intensity of the signal at Q = (0, 0, 4.5) =
(0, 0, 4) + 2qCM , versus temperature. At no temperature was a signal corresponding to
(0, 0, 4) ± 2qICM observed. The signal at 2qCM appears at T = 15K and its intensity
increases steadily with warming, reaching a maximum at 27K. On further warming the
intensity decreases until it becomes too weak to measure at T > 38K. This measurement
is in complete agreement with the x-ray scattering data of Higashiyama et al. [4] on the
same material. Interestingly, the temperature at which this signal is a maximum is the
same temperature at which there is a distinct anomaly in the heat capacity (see Figure 7.8),
and at which the FE polarisation reaches a local maximum [4]. Since this peak occurs in a
non-magnetic, non-resonant channel it must arise from Thomson scattering, i.e. scattering
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Figure 7.13: Temperature variation of the intensity of the signal at q = (0, 0, 0.5) measured
with a non-resonant x-ray energy. The intensities were calculated from fits to a Gaussian
for scans parallel to (H, 0, 0). This scattering is structural in origin.

of the x-rays by the charge of the ions in the system, and therefore be structural in origin.

7.4 Discussion

XRS methods have been used to examine the magnetic ordering in DyMn2O5 by measuring
the magnetism on the Dy ions induced by the magnetic environment of the surrounding Mn
ions. Several observations have been made which go beyond previous neutron scattering
studies of this compound. Specifically these are:

1. The existence of a purely commensurate magnetic order in the same temperature range
as the largest FE polarisation3.

2. The existence of a structural distortion, characterised by q = (0, 0, 0.5), for 15K≤ T <
40K, coexistent with the strongest FE polarisation.

3. The existence of magnetic interactions in the 5d states of the Dy ions induced by the
magnetism of the surrounding Mn sublattice. This is an effect which is present for
T ≤ TN ≈ 40K, and not just below 8K (T ≤ TDy

N ).

4. Changes in the H component of the wavevector of the ICM order for 2K≤ T ≤
19K, and indeed non-zero incommensurability of this H component, as well as an
incommensurate L component.

There have also been observed differences with XRS measurements on the related compound
TbMn2O5:

3This apparently contradicts the neutron powder diffraction study of Blake et al. [6] in which the
ordering wavevector was found to be incommensurate and temperature independent. Note however that
the wavevector resolution of single crystal x-ray diffraction is in general much better than that of neutron
powder diffraction. The data in Figs. 7.10 (b) and 7.10 (c) establish that the high temperature magnetic
phase observed above ∼ 15K is commensurate to within an experimental uncertainty of ±0.0015 in the H
and L wavevector components.
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1. No sign of a re-entrant ICM phase at higher temperatures.

2. The existence of an ICM phase with negative ε as well as positive ε, as opposed to the
phase with only positive ε observed by Okamoto et al. [10].

In addition, this study goes beyond all previous scattering studies by measuring changes
in the widths of the various peaks with temperature. Finally, the existence of a previously
undetected magnetic ordering wavevector of q = (0.52, 0, 0) between 5K and TDy

N was ob-
served.

There are, of course, many similarities between the findings in this study and the findings
of previous studies which used neutron scattering to examine DyMn2O5, or XRS to measure
TbMn2O5:

1. The existence of two distinct phases below TN, namely the ICM and CM phases.

2. Changes in the incommensurability of the ICM signal with changing temperature.

3. The existence of antiferromagnetic order on the Dy ions at low temperatures.

The change in wavevector of the AFM order from (0.5, 0, 0) to (0.52, 0, 0) shown in fig. 7.9,
which has not been observed before in scattering measurements of other RMn2O5 compounds,
might be explained as follows. The Dy 4f spins are coupled antiferromagnetically, and so
the exchange Hamiltonian contains terms which are proportional to µ2

Dy, the square of the
ordered Dy magnetic moments. With increasing temperature the ordered moment reduces,
causing the exchange energy to decrease rapidly, as does the exchange interaction between
the ordered 4f spins and the 5d states. As well as the Dy–Dy interaction the Dy 5d spin
states and the Mn spins are also coupled. The Mn spins order at a much higher temperature
so their average magnetic moment remains fairly constant at the low temperatures under
consideration, so the exchange energy of the Dy–Mn coupled system will reduce much less.
At low temperatures the Dy–Dy interaction dominates over the Dy–Mn coupling, but as
temperature increases the two couplings eventually become similar in strength. This may
allow the H-component of the Dy 5d magnetic order to become entrained to the ICM order
of the Mn sublattice. Further support for such an interpretation is found from the widths of
the peaks in scans parallel to (0, 0, L) shown in Figure 7.12. The change of wavevector from
(0.5, 0, 0) to (0.52, 0, 0) is accompanied by a sudden increase in the width to a value similar
to that of the ICM phase. If indeed the competition between Dy–Dy AFM coupling and
Dy–Mn ICM coupling causes the change in wavevector then one might expect the width of
the peak at (0.52, 0, 0) to be similar to that of the ICM peak at the same temperature.

To reiterate, the data presented here show that the Dy 5d bands show some magnetic
order right up to the Néel temperature of the Mn sublattice. Since the measurements
presented here show only the magnetic order on the Dy 5d states, assuming that above TDy

N

the measurements reflect only the magnetic order of the Mn sublattice, then the changes in
the width of the L-component of the ICM and CM peaks, shown in figure 7.12, must arise
due to a change in correlation length of the Mn magnetic order. A possible explanation of
the increased L width in the ICM phase compared to the CM phase is that the magnetic
structure is broken up into locally commensurate domains between which there exist ‘slips’
which have the overall effect of making the magnetic structure incommensurate. Koo et al.
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[11] suggest that in TbMn2O5 the ICM phase may be interpreted as CM spin modulations
with domain walls, analogous to an effect observed in ErNi2B2C [15]. The measurements
detailed above would appear to support such an interpretation, with domain walls parallel
to the ab-plane.

The non-resonant scattering measured at 2qCM = (0, 0, 0.5), which is structural in origin,
ties in with a model proposed to explain multiferroicity in TbMn2O5 [16] and later extended
to describe YMn2O5 [17]. The RMn2O5 materials are geometrically frustrated, with five dif-
ferent exchange interactions identified between the Mn ions, and it is clear a small distortion
would lift the degeneracy. Analysis of the atomic displacement parameters [16] suggests that
a canted antiferroelectric (CAF) structural phase may be the way in which this occurs. In
this case the lattice distorts in the opposite sense in adjacent unit cells along the c-axis, but
in the same sense along the a- and b-axes. In each unit cell the distortions along the a-axis
of different ions are in different directions such that the FE polarisation along the a-axis is
cancelled out, however this does not occur for the distortions along the b-axis, giving rise
to the observed FE polarisation along the b-axis. A difficulty with this explanation of the
occurrence of ferroelectricity in DyMn2O5, however, is that the amplitude of the scattering
at 2qCM does not map on to the amplitude of the observed FE polarisation. The polarisa-
tion does have a local maximum at the same temperature at which the scattering at 2qCM

is most intense, Tmax = 27 K, but the onset of the largest polarisation is actually at about
17K, and the signal at 2qCM is relatively weak at this temperature.

Several phenomenological theories have been proposed to explain the occurrence of mul-
tiferroicity [18, 19, 20, 21]. A successful approach for the RMnO3 compounds has been
developed by Mostovoy [20], which was briefly discussed in section 1.2.5, as was the theory
of Betouras et al. [21], which was designed specifically to account for the multiferroic prop-
erties of the RMn2O5-type compounds. The physical grounds for both theories are in essence
the same, namely a consideration of magneto-electric coupling within a Ginzburg-Landau
framework, with differences only in the precise details of the spatial variation of the mag-
netisation and FE polarisation. Betouras et al require that the chiral magnetic structure is
acentric, i.e. the spin density is not necessarily centred on a lattice site and has a non-zero
phase, and that the polarisation and inverse ferroelectric susceptibility have small oscillatory
parts in addition to a constant term. The result of this is that a spontaneous polarisation is
only allowed for magnetic phases which are commensurate with a non-zero acentricity. The
former of these two conditions suggests that this model can successfully describe the mul-
tiferroic behaviour of DyMn2O5, where the polarisation is much larger when the magnetic
order is, as has been shown here, purely commensurate.

As mentioned in section 7.1.1, the magnitude of the FE polarisation in DyMn2O5 is the
strongest of all the materials in the RMn2O5 family. The results presented here show that
there is a significant magnetic interaction in the Dy 5d bands, and it is possible that there is
also an induced ordering of the partially occupied Dy 4f states. It has been found previously
that the size of the ordered moment of the Dy ions in DyMn2O5 is larger than that of other
rare earth ions in the RMn2O5 series [6], which might partly explain why such a clear signal
at the Dy L-edge resonance is observed here. The models used to explain multiferroic effects
discussed above do not constrain the magneto-electric coupling to involve just the Mn ions,
so in principle magnetic order of the Dy ions with the same wavevector as the magnetic order
of the Mn ions could give rise to an ‘extra’ contribution to the FE polarisation through the
same mechanism. If such coupling were proportional to the size of the rare-earth moment
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then that might explain the existence of the strongest polarisation in DyMn2O5 and the
weakest polarisation in YMn2O5 among the RMn2O5 materials.
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7.5 Conclusions

In conclusion, the XRS measurements presented here have shown that the magnetic order-
ing in DyMn2O5 bears many similarities to that of other members of the RMn2O5 family
of materials previously studied. These measurements also show extra features not previ-
ously observed in neutron scattering measurements on DyMn2O5. Of particular note is the
observation that the Dy 5d bands are magnetically polarised right up to TN ∼ 40K, the
Néel temperature of the Mn ions. If the 4f states are magnetised in a similar fashion there
may be an enhancement of the ferroelectric polarisation in this material, given the large
Dy magnetic moment. Such measurements demonstrate that x-ray resonant scattering is
a powerful tool for studying materials in which there exists more than one magnetic ion,
in particular allowing one to resonantly enhance the scattering from magnetic order on one
sublattice which has been induced by the magnetisation of the other sublattice.

In the future one obvious experiment to do would be to measure the same diffraction
peaks as was done here using soft resonant x-rays. With these the Mn 3d states can be probed
directly, so the measurements presented here of the ICM and CM states could be checked.
Of particular interest would be the variation of the intensities of the different magnetically
ordered states with temperature – specifically it would be interesting to see if the intensity of
the CM order is maximal at 15K when the FE polarisation is at a maximum. Furthermore
the symmetry of the magnetic order in the ICM and CM states could be investigated using
azimuth scans, allowing the symmetry of the order parameters to be investigated like they
were in the XRS study of TbMnO3 [12] which was discussed in section 7.1.3.
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Appendix A

Extra Terms in the Neutron Magnetic
Scattering Cross-Section

In section 2.1.4, when considering the cross-section for polarised neutron magnetic diffraction,
I neglected considerations of non-uniaxial changes in polarisation, which account for nuclear-
magnetic interaction terms in the cross section. For a chiral magnetic structure these are
important, as will be demonstrated below. A more detailed calculation may be found in the
paper of Moon et al [1].

Put the magnetic amplitude p = (γr0/2)gSF (Q) and write

A = −pM⊥ + BI, (A.1)

where B is the spin-dependent nuclear scattering amplitude. We then define Ã and b̃i as:

Ã = 〈q′ | A | q〉, (A.2)

b̃i = 〈q′ | bi | q〉. (A.3)

The neutron scattering cross-section is then given by

d2σ

dΩdE
=

∑

qq′
Pq

k′

k

(∑
ij

eiQ.(ri−rj)
[
b̃ib̃j + Ãi.Ã∗

j + P0.(b̃iÃ∗
j + b̃∗jÃi − iÃi × Ã∗

j )
])

. (A.4)

Ignoring the effects of nuclear spins, i.e. put A = −pM⊥, and also note that P0 × A
type terms rotate the polarisation through 90◦ and are therefore undetectable with a uniaxial
polarising setup. We are then left with a cross-section which is proportional to a polarisation
independent term

M̃⊥i.M̃
∗
⊥j, (A.5)
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and a polarisation dependent term

P0.(M̃⊥i × M̃∗
⊥j). (A.6)
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Appendix B

Use of Pseudo-Cubic Notation for
Rhombohedral Crystals

Although the crystallography of the cobaltites of the form La1−xSrxCoO3, which includes
x = 0 and x = 0.18, is usually considered in terms of a cubic crystal structure, they are in
fact rhombohedral with the space group R3̄c. In some circumstances the difference between
the rhombohedral crystal structure and the cubic structure is very small, and since the cubic
notation is somewhat simpler it is more generally used by neutron and x-ray scatterers.

When one considers the rhombohedral unit cell, shown in figure B.1 in relation to the
cubic unit cell one can see that it has a different periodicity. Indexing a cubic structure with
rhombohedral co-ordinates in real space gives rise to the following conversion:

(100)R = (101)C

(010)R = (110)C (B.1)

(001)R = (011)C

where the subscript R refers to the rhombohedral lattice and the subscript C refers to the
cubic lattice. In reciprocal space, because the rhombohedral axes are non-orthogonal, this
leads to

(100)∗R =

(
1

2

1̄

2

1

2

)∗

C

(010)∗R =

(
1

2

1

2

1̄

2

)∗

C

(B.2)

(001)∗R =

(
1̄

2

1

2

1

2

)∗

C

It is immediately clear form this that one must be careful when using pseudo-cubic notation
in a scattering experiment - there will be weak structural peaks at the cubic antiferromagnetic
position (1/2, 1/2, 1/2) which actually corresponds to the rhombohedral (1, 1, 1) structural
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position.

Figure B.1: The (non-primitive) unit cell of LaCoO3, which is rhombohedral. Since the
angle α is only slightly greater than 60◦ in this material the distortion away from cubic (for
which α=60◦) is also small.



Appendix C

LaCoO3 Structure Factor Calculation

The structural form factor of LaCoO3 can be approximately calculated as follows. Assume
that the material really is cubic, rather than pseudo-cubic rhombohedral, in order to make
the analysis easier. In the cubic unit cell there are eight Co3+ ions at each of the corners of
the cell, the (0,0,0) positions. There is also a single La3+ ion at the (1

2
, 1

2
, 1

2
) position, and

there are four O2− at each of the (1
2
, 0, 0), (0, 1

2
, 0) and (0, 0, 1

2
).

Therefore the structure factor Shkl is

Shkl = bCo + bLae
−iπ(h+k+l) + bO(e−iπh + e−iπk + e−iπl) (C.1)

where the b s are the nuclear scattering lengths for the different elements. Their values are
bCo = 2.49 fm, bLa = 8.24 fm and bO = 5.803 fm. The scattered intensity I is proportional to
the square of Shkl.

The following rules for structural Bragg peak intensities follow:

(h,k,l) all even: I ∝ (bCo − bLa − 3bO)2 = 536.3 (C.2)

(h,k,l) all odd: I ∝ (bCo + bLa + 3bO)2 = 791.8 (C.3)

One even index, two odd: I ∝ (bCo + bLa − bO)2 = 24.28 (C.4)

One index odd, two even: I ∝ (bCo − bLa + bO)2 = 2.8× 10−3 (C.5)

154


