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Abstract

This thesis describes neutron scattering experiments on strongly correlated sys-

tems exhibiting a range of emergent phenomena: antiferromagnetism, charge order,

superconductivity and multiferroicity. I have examined the La2CoO4 compound

which is a Mott insulator and orders antiferromagnetically near room tempera-

ture. The La2CoO4 sample was studied using spherical neutron polarimetry and

I present magnetic structure models to describe the two antiferromagnetic phases

of the compound. Furthermore, the magnetic fluctuations have been investigated

using neutron time-of-flight technique. This has allowed us to extract the dominant

exchange interactions in the system. More interestingly, the work on La2CoO4 pre-

sented in this thesis provides a basis for the experimental evidence of an hourglass

dispersion in La5/3Sr1/3CoO4, previously only observed in the copper oxide based

superconductors. This dispersion has been understood in terms of a stripe ordered

magnetic phase and was found to be well described by a linear spin-wave model.

Neutron scattering experiments were also carried out on the new iron-based

high-temperature superconductors, FeSexTe1−x. A range of compositions were stud-

ied, including both antiferromagnetically ordered and superconducting. Below the

superconducting phase transition temperature, a spin resonance mode was found

centred on the antiferromagnetic wavevector. This is an important feature shared

by many unconventional superconductors. The spin resonance intensity was found

to reflect the order parameter of the superconducting state. Polarised inelastic neu-

tron scattering experiments have revealed a small anisotropy between the in-plane

and out-of-plane magnetic fluctuations at the resonance. This anisotropy cannot

be readily explained by the usual anisotropic terms in the Hamiltonian. This could

be evidence of new physics in the FeSexTe1−x superconductors.

Finally, I have studied CuO – a high-temperature multiferroic. Analysis of po-

larised neutron diffraction experiments shows that the magnetic domain population

can be varied using an externally applied electric field. This unambiguously demon-

strates coupling between the magnetic and ferroelectric degrees of freedom. Using

representation analysis I derive the incommensurate magnetic structure in the mul-

tiferroic phase. The origin of the magnetoelectric coupling is consistent with models

based on the inverse Dzyaloshinskii-Moriya interaction.
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Definitions of notation

ki (kf) : Initial (final) neutron wavevector

Ei (Ef) : Initial (final) neutron energy

~ω or E : Energy transferred to or from a crystal in a neutron

scattering process, E = Ei − Ef

Q : Scattering wavevector Q = ki − kf
G : Reciprocal lattice vector

a, b, c : Real space unit cell parameters

(h, k, l) : Miller indices

a∗, b∗, c∗ : Reciprocal lattice basis vectors

κ : Magnetic propagation vector

τ : Translation vector in real space

r : Vector in real space

M(r) : Magnetisation at position r

M(Q) : Magnetic structure factor at Q

M⊥(Q) : Magnetic interaction vector at Q

σi (where i = x, y, z) : Pauli spin matrices along x, y, z

σ : Pauli spin matrix vector σ = (σx, σy, σz)

J : Exchange constant

TN : Antiferromagnetic ordering temperature

Tc : Superconducting phase transition temperature

me : Electron mass

mn : Neutron mass

mp : Proton mass

µN : Nuclear magneton µN = e~/(2mp)

−e : Charge on an electron

µB : Bohr magneton µB = e~/(2me)

σ(α, β) : Neutron cross-section where the two indices refer

to the direction of the neutron polarisation before

and after the sample, respectively

Pαβ : Polarisation matrix component where α and β

indicate the polarisation of the incident and final beam

S(Q, E) : Magnetic scattering response function

u : Small displacement of the nucleus from equilibrium

position

W : Exponent for the Debye-Waller factor, W = 1
2⟨(Q · u)2⟩

kB : Boltzmann constant

Pe : Electric polarisation

G0 : Paramagnetic space group

Gκ : Paramagnetic little group belonging to propagation

wavevector κ

χ2
ν : Reduction of the goodness of fit normalised to the

number of degrees of freedom ν
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1.1. Introduction 2

1.1 Introduction

The magnetic compass is the first technological application of magnetism and one

of the oldest instruments for navigation. It was discovered sometime in the 12th

century by mariners in China and Europe that a piece of lodestone, a naturally

occurring magnetic iron ore, when floated on water, tends to align itself to point

in the direction of the polestar [1]. The magnetic property of the iron ore has been

known for a long time, since about 500 BC. Nevertheless, a microscopic mechanism

to describe magnetism did not emerge until relatively recently when it was shown

to be inherently quantum mechanical in origin.

Metals can be thought of as consisting of nearly free electrons, whereas on the

other side of the spectrum are insulators where electrons are tightly bound to the

positively charged ions contained within the solid. The point at which electrons

interact in a cooperative way opens up a broad range of interesting new phenom-

ena. One of these is superconductivity, where electrons in the solid flow without

resistance. Many low-temperature superconductors were explained several decades

ago by lattice vibrations providing the necessary electron binding. However, sub-

sequently many new materials were discovered whose properties did not obey the

conventional theory. The new compounds were found to raise significantly the

critical temperature at which superconductivity sets in and has resulted in a lot

of interest in the potential technological applications. Although no consensus has

been reached on the microscopic origin of high-temperature superconductivity, spin

fluctuations are likely to play a crucial role in mediating electron pairing.

1.2 Magnetic and charge ordering

Magnetism is a quantum mechanical phenomenon associated with the motion of

electric charges. Interacting magnetic moments in solids exhibit a diverse range of

properties and cooperative behaviour between moments is often very different to a

system of isolated magnetic moments.

The magnetic moment of an atom originates from the spin s and orbital l angular

momentum intrinsic to an electron orbiting a nucleus. The total electronic spin and

angular momentum of an ion can be calculated by the vector sum of the moments

of the individual electrons, giving S =
∑

i si and L =
∑

i li. In the presence of a

perturbing magnetic flux density B, the Hamiltonian for a system of electrons at

positions r in the atom can be expressed as [2],

H = H0 + µB(L+ gS) ·B +
e2

8me

∑
i

(B × ri)2, (1.1)

where the initial Hamiltonian is H0. The second and third terms are related to the

effect of paramagnetism and diamagnetism. For diamagnetic substances, a mag-

netic field induces a magnetic moment which opposes the applied magnetic field.

Diamagnetism is present in all materials to some extent but is usually very weak.
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Paramagnetic behaviour is characterised by magnetic moments which align parallel

to the applied magnetic field which causes it. This originates from unpaired elec-

trons in an atom. In the absence of a magnetic field, the magnetic moments are

orientated in random directions unless neighbouring atoms interact. The angular

momentum on an atom is associated with a total angular momentum J , which is

defined as J = L + S. For an isolated atom, there are many ways of combining

the total spin and orbital angular momentum based on different electronic config-

urations. An estimate of the angular momentum quantum numbers can be found

using Hund’s rules. In order to reduce Coulomb repulsion between electrons, it is

necessary to maximise S followed by L. The value of J can be evaluated using

J = |L− S| if the shell is less than half full and J = |L+ S| if it is more than half

full. This arises from an attempt to minimise the spin-orbit energy but is only ap-

plicable in certain circumstances. As will be discussed later, the last of the Hund’s

rules is violated when the crystal field surrounding an atom dominates over spin-

orbit coupling. In the case where Hund’s rules hold, the effective magnetic moment,

which can be determined from measurements of the paramagnetic susceptibility, is

calculated from the spin-orbit interaction as,

µeff = gJµB
√
J(J + 1), (1.2)

where µB is the Bohr magneton and gJ is the Landé g-factor, which can be found

as,

gJ =
3

2
+
S(S + 1) − L(L+ 1)

2J(J + 1)
. (1.3)

A magnetic solid consists of atoms carrying a magnetic moment whose net mag-

netisation M is defined as per unit volume. On length scales considered to be much

larger than interatomic distances, the magnetisation is a vector quantity. The mag-

netic susceptibility χ is in general a tensor which relates the response M to an

applied magnetic field H. These quantities are related as,

Mα = χαβHβ, (1.4)

where α, β are spatial directions x, y and z. If the system in the groundstate

possesses J = 0, no paramagnetic effect would be expected. This would imply

that the groundstate energy of the system does not change when a magnetic field

is applied and therefore there is no paramagnetic susceptibility [2]. However, this

is only true for the groundstate and provided one takes into account the excited

states with J ̸= 0, van Vleck paramagnetism can be created. As in the case of

diamagnetism, this effect is small and temperature independent [2].

1.2.1 Exchange interactions

Magnetic order of atoms in solids is possible when interactions between moments

of magnetic ions are such that it is energetically favourable for them to order in a

periodic arrangement. Magnetic exchange interaction between ions originates from
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the differences in the electrostatic energy of different orientations of the magnetic

moments. The most probable configuration is one which minimises the total energy

of the system. For a system of two interacting electrons at positions r1 and r2 the

overall wavefunction has to be antisymmetric to satisfy Pauli exclusion principle.

Hence, double occupancy of an orbital is possible for antiparallel electron spins

(↑↓) but forbidden for parallel spins (↑↑). The total wavefunction is made up of

the spatial and spin states of the electrons. The spatial part can be described by

wavefunctions ψa or ψb. The spins can either be in a spin singlet state S = 0, where

the spin part of the wavefunction is antisymmetric χS, or in a triplet state S = 1

with a wavefunction χT. The total wavefunctions for the singlet (ΨS) and triplet

(ΨT) states are therefore,

ΨS =
1√
2
χS[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)] (1.5)

ΨT =
1√
2
χT[ψa(r1)ψb(r2) − ψa(r2)ψb(r1)]. (1.6)

In order to realise a parallel spin arrangement, one electron must occupy an excited

state. The energy required to do so comes from the Coulomb interaction,

VC =
e2

4πε0|r1 − r2|
, (1.7)

between two electrons. The Coulomb interaction is spin independent but is larger

for electrons in a common orbital (↑↓) than in different ones (↑↑). The Coulomb

interaction indirectly favours the parallel spin alignment and competes against an

increase in one-electron energy. The difference between the energies for a spin triplet

and singlet states can then be found as,

J = ET − ES = −2

∫
ψ∗
a(r1)ψ

∗
b (r2)Hψa(r2)ψb(r1) dr1dr2, (1.8)

which defines the exchange constant J . The effective spin Hamiltonian can then be

expressed as [2],

H = (ET − ES)S1 · S2 = JS1 · S2. (1.9)

The parameter J is a measure of the strength of interaction between two spins. If

J < 0, ES > ET then the triplet state (S = 1) is favoured as the groundstate. Con-

versely, when J > 0, ES < ET, the singlet state (S = 0) is lower in energy. Although

the generalisation of this formulation for a many-body system is complicated, it was

recognised by Heisenberg that Eq. 1.9 could be applied to all neighbouring atoms

where the result, known as the Heisenberg Hamiltonian can be written as,

H =
∑
ij

JijSi · Sj , (1.10)



1.2. Magnetic and charge ordering 5

Figure 1.1: Superexchange interaction in transition metal oxides. The orbital
lobes of the electron clouds of the transition metal ions are shown in blue and the grey
lobes show the electron orbitals of O. The hopping of the electrons is shown in the
diagrams below the electron densities. In the antiferromagnetic case the moments on
the transition metal ions can freely mix and the electrons are delocalised over the
entire M–O–M unit, thereby lowering the kinetic energy. Ferromagnetic alignment of
moments on M costs more energy as Pauli exclusion principle excludes the possibility
of moments in parallel on the same ion.

for all pairs of spins i and j and Jij is the isotropic exchange constant describing the

strength with which the moments are coupled. The interaction between adjacent

magnetic moments creates spontaneous alignment. In this convention, J > 0 favours

antiferromagnetic magnetic order with spins antiparallel to one another and J <

0 favours a ferromagnetic alignment of moments where spins are parallel to one

another.

Electrons on neighbouring ions can interact directly without the need for an

intermediary in a process known as direct exchange. However, in most circum-

stances this exchange mechanism is not important as there is insufficient overlap

between neighbouring electron orbitals. This is true in particular for rare earths

where the 4f electrons are strongly localised and lie close to the nucleus [2]. The

electron orbitals are more extended in transition metals with 3d orbitals, however

in many transition metal oxides the magnetic ions are separated by O. In these

circumstances the indirect exchange interaction becomes important.

The exchange interaction described by coupling parameter J is dependent on

the distance between ions and the interaction is normally very short ranged. In ionic

solids the most important interaction is known as superexchange, which involves

indirect exchange interaction between two ions mediated by a non-magnetic ion

between them. The superexchange interactions are usually antiferromagnetic in

nature. This is because for antiferromagnetic alignment, the electron are delocalised
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over the entire M–O–M configuration, where M is a transition metal ion and O is

oxygen. This process is illustrated in Fig. 1.1 for the simple case of one electron in

the outer shell on the M ion and two electrons on O. The electrons can hop through

the covalent bond joining the atoms. For ferromagnetic alignment, only one electron

can hop with the other electron prevented by the exclusion principle. In this simple

scenario, the antiferromagnetic state is therefore favourable as it lowers the energy

of the system. A full calculation of the superexchange coupling is complicated due

to the large number of orbital states involved, however it can be approximated as

J ≈ 4t2/U in the physically relevant limit of U ≫ t (see § 1.4) [2, 3]. The hopping

integral t is proportional to the energy width of the conduction band in a tight-

binding approach. The energy cost of making an excited state is provided by the

Coulomb energy U .

A semi-empirical set of rules for superexchange interactions was developed by

Goodenough and Kanamori [4, 5]. The main features for estimating the sign and rel-

ative magnitudes have been formulated into the Goodenough-Kanamori-Anderson

rules [6]. The exchange is usually antiferromagnetic but can be ferromagnetic due

to direct exchange if the overlap between the atomic orbitals involved is zero by

symmetry [7]. Therefore, the geometric shapes of the orbitals play a crucial role in

the interatomic interactions.

(i) For a configuration of M–O–M, where the bond angle between the two M ions

with half-filled orbitals is 180◦, the interaction will be strongly antiferromag-

netic.

(ii) When the angle between half-filed orbitals is 90◦, a rather weak ferromagnetic

interaction can occur.

(iii) Exchange due to overlap between a half-filled and an empty orbital of different

symmetry is also weakly ferromagnetic. The electron transfer can be mediated

by an intermediate O ion.

It should be noted that superexchange also plays an important role in ferrimag-

netism, this is antiferromagnetic coupling of unequal spins on different atomic sites,

resulting in a net magnetisation [8].

An important mechanism in oxides with mixed valence is double exchange. In

the case of Mn ion in La1−xSrxMnO3, doping by Sr2+ creates Mn3+ and Mn4+

valence states. In both the tri- and quadi-positive ions, the low-lying t2g state is

occupied by three well-localised 3d electrons. But in Mn3+ there is an additional eg
electron. A strong single-centre exchange interaction between the eg electron and

three electrons in the t2g level enforces them to be all aligned [2]. The hybridisation

with O 2p electrons allows the eg electron to hop and thereby gives a kinetic energy

saving. The corresponding spin transfer gives both ferromagnetism and conduction

[8].
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Figure 1.2: The crystal field environment. (a) and (b) Panels showing the
electron orbitals in an octahedral environment for eg (figure shows the dx2−y2 orbital)
and t2g orbitals. (c) The octahedral arrangement of O ions surrounding a transition
metal (M) ion. (d) The effect of the crystal field on the energy levels of the ion in the
case of an octahedral environment. The t2g orbitals will lower the system’s energy with
respect to the free ion whereas the eg energy levels will raise the energy.

1.2.2 Lattice effects

We have already seen that the neighbouring ions greatly influence the magnetic

properties of transition metal ions in solids. The formulae 1.2 and 1.3 describe

the response of spin and orbital angular momenta to external fields and are very

successful in describing the paramagnetic susceptibilities of rare earth systems [3].

The high-temperature susceptibilities of insulating transition metal compounds are

described in a similar fashion. The values of the magnetic moment predicted by

Eqs. 1.2 and 1.3 do not always appear to agree with experiment (except for the

case of 3d5 and 3d10 where L = 0). The magnetic moment seems to arise solely

from the spin degree of freedom of the 3d ions. The orbital contribution is almost

completely missing. The reason for this discrepancy is that the free-ion description

no longer applies and one needs to consider the 3d ions as embedded in a surrounding

environment which exerts an electrostatic field on the ion.

1.2.2.1 Crystal field

The crystal field is the electric field originating from the neighbouring atoms in the

crystal. The symmetry of the environment is crucial in determining the size and

nature of the crystal field [2]. Many transition metal compounds contain transition
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metal ions at a centre of octahedron with O ions at each corner, see Fig. 1.2(c). The

crystal field arises from the electrostatic repulsion from electrons in the O orbitals.

The d orbitals fall into two classes, the t2g orbitals point between {x, y, z} axes

(these are dxy, dxz and dyz orbitals). The eg orbitals along these axes – d3z2−r2

where the lobes are along the z axis and dx2−y2 orbital which is symmetrical about

the x and y axes.

Figures 1.2(a) and (b) illustrate the effect of the surrounding O ions on the

transition metal in the centre. The crystal field is largely produced by the p orbitals

on the neighbouring atoms. From symmetry of the 3d ion orbital, it is clear that the

t2g state will have a lower overlap with the p orbitals than eg. The degeneracy of

the free ion energy levels will therefore be lifted with the threefold t2g levels lowered

in energy and the eg levels raised in energy, as shown in Fig. 1.2(d).

The crystal-field Hamiltonian can be expressed using Stevens operators Om
l (J)

as,

HCF =
∑
i

∑
lm

Bm
l O

m
l (Ji). (1.11)

The crystal field parameter Bm
l can in principle be calculated from the charge

distribution but in practice it is difficult to obtain meaningful results. The problems

arise from uncertainties in the charge distribution surrounding an ion as these can

in general be rather asymmetric and spread out in space. The redistribution of

charge in the unit cell can modify the electric fields experienced by the 3d (or 4f)

electrons. Such shielding effects are very difficult to estimate [3]. A crude estimate

can be obtained using the point-charge model, in which an adjustable charge is

placed on each lattice site. Alternatively, the Bm
l parameter can be regarded as a

quantity to be deduced experimentally. Fortunately, the number of free parameters

can be restricted by lattice symmetry.

The crystal field effects are much stronger for 3d electrons than for 4f . The 4f

orbitals lie deep within the ion core that other occupied shells in the ion screen out

the potential of the surrounding ions [3]. For the 4f electrons, the external effects

on the ion are relatively small and the electrons act as if surrounding a free ion.

The 4f electrons in rare-earth solids are examples of the weak crystal field where

the spin-orbit coupling dominates over the crystal fields. All of Hund’s rules hold.

The 3d transition metal ions are part of intermediate crystal field strength where

the crystal field is stronger than the spin-orbit coupling. This means than although

L and S are still good quantum numbers and their values are given by Hund’s first

and second rules, J is no longer a good quantum number. An intermediate crystal

field mixes states within a given (L, S) term [3].

The strong crystal fields are comparable to the exchange splitting, which are

used to derive the Hund’s first and second rules. Such effects can be observed in

4d and 5d transition metal compounds. The simple ionic model cannot be applied

to such cases and mixing of d-orbitals of the transition metal with the p-orbitals of

neighbouring ions must be taken into account [3]. Such systems are not dealt with

in this thesis and will not be discussed further.
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1.2.2.2 Jahn-Teller distortion

If the symmetry of the crystal field is so high that the groundstate of an ion is or-

bitally degenerate, it is energetically favourable to spontaneously distort the crystal

structure in such a way as to remove the orbital degeneracy [9]. The distortion will

raise the energy of some orbitals while lowering the energy of others. In the case

of partially filled orbitals this effect can be significant. For example, let us consider

CuO6 where the octahedron is elongated in the z-direction. The two O ions will lie

farther apart along z, an electron in the d3z2−r2 orbital will be less repelled by other

charges and thus lie at a lower energy than an electron in the dx2−y2 . Therefore

the orbitally degeneracy has been lost. The distortion costs an elastic energy of

order α(δz)2. The splitting of the energy levels is proportional to (δz). The en-

ergy of two electrons will be lowered by going into the d3z2−r2 orbital and one will

gain energy by having to be raised to dx2−y2 . The total energy will therefore be

α(δz)2−βδz, which is minimised by the finite distortion δz = β/(2α) [3]. Although

here we have only considered the distortion along z, similar arguments can be made

for distortions along arbitrary directions of the crystal.

1.2.3 Charge order

In certain systems with mixed valencies, Coulomb interaction can lead to periodic

arrangement of ions. At high temperatures, the excess holes are randomly dis-

tributed but on cooling the repulsion between ions of the same valence state forces

them to form a unidirectional charge modulation. The ordered charge state is known

as charge order and is well known to occur in systems of the form La2−xSrxMO4,

where M is a transition metal such as Cu, Mn, Ni or Co. Charge order typically

occurs at a temperature well above the magnetic ordering transition and has a

significant impact on the spin density state. The transition metal ion sits inside

an octahedral arrangement of O ions. The difference in valence states in a charge

ordered phase will therefore induce slightly different lattice distortions. This alters

the lattice periodicity and can be probed by x-ray scattering, however in practice

the effect is small and difficult to detect.

1.3 Introduction to excitations in materials

At a finite temperature, the ordered magnetic moments are able to fluctuate about

their average positions. The arising excitations are spin waves. Exciting a spin-

wave means creating a (bosonic) quasi-particle known as a magnon. Magnons are

quantised magnetisation density waves. The magnon dispersion relation can be cal-

culated within theoretical framework of the linear spin-wave theory and thereby the

dominant exchange interactions extracted. As an example, let us explore the ele-

mentary excitation spectrum of a spin S Heisenberg antiferromagnet whose Hamil-
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tonian is given by Eq. 1.10 as,

H = J
∑
⟨ij⟩

Si · Sj , (1.12)

where J > 0 and the summation is taken over neighbouring sites. The quantum

mechanical spin operator at lattice site i is denoted by Si. The system can be

considered in terms of a bipartite lattice where the groundstate of the Heisenberg

antiferromagnet are close to a staggered spin configuration, known as a Néel state,

where all neighbouring spins are antiparallel. The Néel state is not an exact ground-

state of the Hamiltonian as the true groundstate exhibits zero-point fluctuations.

In the limit of large spin S and at low excitation energies, the ordered phase can

be described in terms of small fluctuations of spins around their expected values.

The fluctuations can be conveniently expressed in terms of spin raising and lowering

operator, S
−(+)
i which lowers (raises) the z-component of the spin at site i by one.

We can then expand the Hamiltonian in terms of bosonic operators ai defined as,

Sz
i = S − a†iai, S−

i ≃ (2S)1/2a†i and S+
i ≃ (2S)1/2ai, (1.13)

for the A sublattice and similarly for the B sublattice, related to A by a canonical

rotation by 180◦, as

Sz
j = −S + b†jbj , S−

j ≃ (2S)1/2bj and S+
j ≃ (2S)1/2b†j , (1.14)

derived from the expansion in powers of 1/S of the Holstein-Primakoff transforma-

tions [10]. The linearised Heisenberg Hamiltonian can then be written as,

H = −zrNJS2 + JS
∑
⟨ij⟩

aibj + a†ib
†
j + b†jb

†
j + a†iai, (1.15)

where zr is the coordination number andN is the number of spins on each sublattice.

In order to diagonalise Eq. 1.15 we have to perform the Fourier transformation,

aQ =
1√
N

∑
i

eiQ·riai, bQ =
1√
N

∑
j

eiQ·rjbj . (1.16)

Eq. 1.15 can then be diagonalised by an appropriate ansatz of linear combination

of the operators. To preserve the commutation relations, the transformation must

preserve the metric g = diag(1,−1). This is the Bogoliubov transformation and is

known from its relation to superconductivity as,

aQ = cosh θQαQ − sinh θQβ
†
Q, (1.17)

b−Q = − sinh θQα
†
Q + cosh θQβ−Q. (1.18)
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All mixed terms can be eliminated provided tanh 2θQ = γQ. The Hamiltonian,

which takes the form of a quantum mechanical oscillator is described by,

H = −zrNJS(S + 1) +
∑
Q

ωQ

(
α†
QαQ + β†QβQ + 1

)
, (1.19)

with the dispersion of the excitations given by,

ωQ = zrJS
(
1 − γ2Q

)1/2
. (1.20)

The magnon dispersion function can be defined as γQ =
∑

δ exp(iQ · δ)/zr, which

in this approximation depends only on the positions of the nearest neighbour spins.

The derivation also assumes that the lattice possess inversion symmetry such that

γQ = γ−Q. At long wavelengths, the dispersion ωQ ∝ |Q|. This follows from

Goldstone theorem which states that if a continuous symmetry is broken and the

forces are sufficiently short-ranged, then there is a branch of excitations with the

property that the energy vanishes in the limit |Q| → 0 [3]. In the present case

considered, it is the spin-rotational symmetry which is spontaneously broken by

the non-vanishing magnetisation of the groundstate. A long-wavelength magnon is

equivalent to a nearly uniform rotation of the spins [3].

The order parameter in the antiferromagnet is the staggered magnetisation. The

quantum fluctuations in the groundstate, where no spin waves are excited thermally,

reduce the staggered magnetisation from its classical value of S by an amount [3],

∆S =
1

2

(∫
dDQ

(2π)D
(1 − γ2Q)−1/2 − 1

)
. (1.21)

The integral in Eq. 1.21 depends on the dimensionality D of the system. For a

simple cubic lattice,

∆S =


−0.078 D = 3

−0.197 D = 2

∞ D = 1

(1.22)

This demonstrates that in one-dimensional isotropic Heisenberg model, the quan-

tum fluctuations destroy long-range antiferromagnetic order1 for any spin S. Fluc-

tuations and the mean number of bosons become smaller for larger D or S. The

correction is difficult to measure. In the spin wave model including anisotropic terms

in the Hamiltonian, ∆S is very sensitive to the anisotropy. A compound that has

been used to validate the staggered magnetisation reduction is RbMnF3, which is a

three-dimensional Heisenberg antiferromagnet [11, 12]. Due its high-dimensionality

and large spin (S = 5/2), ∆S is difficult to measure reliably, nevertheless the spin

reduction has been confirmed in RbMnF3 [11]. Two-dimensional antiferromagnets

are an intermediate case. Linear spin wave theory predicts that for S = 1/2 sys-

tem, only approximately 60% of the classically ordered parameter is left. This is

1The result ∆S = ∞ is clearly not meaningful, more careful argument should give ∆S = S.
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interesting as it closely corresponds to La2CuO4 where the reduction of the ordered

moment by quantum fluctuations has been confirmed owing to weak anisotropy ef-

fects in the compound [3]. However, it is important to note that the situation where

∆S/S ≈ 0.4, places the initial expansion in leading orders of 1/S in the spin wave

theory in question. This could suggest that higher orders in (1/S) are important

or perhaps that long-range order is destabilised completely.

1.4 Local and itinerant picture of magnetism

The interactions considered thus far have been based on the view that the elec-

trons are well localised and at fixed distances from each other. Although this is

realised in insulating materials, the situation is clearly quite different in metals

where electrons can propagate through the crystal. The kinetic energy of the elec-

trons can be lowered if they are delocalised over the whole of the crystal. However,

this competes in certain systems with the on-site Coulomb energy. The strongly

interacting many-body system of electrons can be described by the (single-band)

Hubbard Hamiltonian as,

HH = −t
∑
⟨ij⟩

∑
σ

c†iσcjσ + U
∑
i

ni↑ni↓. (1.23)

The first term in the Hamiltonian relates to the kinetic energy (electron hopping)

which promotes to delocalise the electrons into itinerant states (Bloch states) leading

to metallic behaviour. The second term in Eq. 1.23 corresponds to the electron-

electron interaction, approximated by on-site Coulomb interaction. The effect of

this term is to localise the electrons onto sites, driving the transition to a Mott

insulator, which is usually magnetic. The operator c†iσ creates an electron in the

Wannier state with spin σ. The corresponding occupation number operator is given

by n = c†iσciσ. The transfer integral between site i and j is denoted by t and U is

the Coulomb interaction between two electrons on the same atom in the up- and

down-spin-states. The summation ⟨ij⟩ is taken over neighbouring lattice sites.

The phase diagram of the Hubbard Hamiltonian is characterised by the dimen-

sionality, the ratio of the Coulomb interaction scale to the bandwidth U/t, the filling

fraction ⟨n⟩ (average number of electrons per site) and dimensionless temperature

T/t. At low temperature and in the dilute limit ⟨n⟩ ≪ 1, the electron wavelength

is much larger than the particle separation and the dynamics can be considered as

free. The local interactions present only a weak perturbation and the properties of

the Hubbard system will mirror those of a weakly interacting nearly free electron

system. As long as the interactions are weak, one would expect metallic behaviour

to persist. The half-filled system is more interesting. If the interaction is weak

U/t ≪ 1, one would again expect physical properties corresponding to a weakly

interacting electron system. If the Fermi wavelength becomes commensurate with

the lattice, a transition into an insulating spin-density wave characterised by a small

quasi-particle energy gap can be initiated. In the converse case where U/t≫ 1, site
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double occupancy is inhibited. The mutual Coulomb interaction between electrons

drives the system from a metallic into an insulating phase with properties very dif-

ferent to those of conventional band insulators. This has been used to explain why

a certain class of materials, known as Mott insulators, which should be conducting

assuming usual band theories are in fact insulating.

The application of the Hubbard model to real systems is rather complicated.

However, it can successfully explain why La2CuO4 is an insulator. In order to

understand the electric and magnetic properties of this material, we need to consider

only the electronic states lying in the vicinity of the Fermi level. Assuming in

La2CuO4 that the relevant part of the bands are derived from the Cu 3d states

lying in between O 2p bands, which are completely filled and Cu 4s band which

is empty [3]. The 3d bands are split by the crystal field and we are left with

one dx2−y2 orbital and one electron per Cu atom. Applying the Hubbard model

in describing the electrons in this band, in view of the narrowness of the band,

the ratio Ux2−y2/tx2−y2 is expected to be large [3]. Therefore, in La2CuO4, the

insulating properties are decided by a subsystem of strongly correlated electrons

which occupy the states near the Fermi level.

1.5 Superconductivity

Superconductivity was first observed by Onnes in 1911, three years after he first

liquefied He. A property of a superconductor is that when it is cooled below its

transition temperature in a magnetic field it expels all magnetic flux from its inte-

rior. The phenomena of perfect diamagnetism is known as the Meissner effect and

is characteristic of superconductivity. The initial superconducting phase transition

temperature was found in Hg at 4.2 K. Much effort, on both theoretical and exper-

imental fronts has since between devoted in trying to understand the mechanism

in which the material loses electrical resistivity and to raise the phase transition

temperature.

1.5.1 Conventional superconductors

It was not until late 1950s that a satisfactory microscopic description of the phe-

nomena was given by Bardeen, Cooper and Schrieffer – commonly referred to as

the BCS theory [13, 14]. This has been very successful in explaining the origin of

superconductivity in materials such as Hg, Nb and many others. At low temper-

atures, the presence of an attractive pairwise interaction can induce an instability

of an electron gas towards formation of bound pair of states in the vicinity of the

Fermi surface. The entropy of a superconducting state is found from heat capacity

measurements to be lower than that of the normal state. This means that the sup-

erconducting phase is somehow a more ordered state and agrees with the hypothesis

of a pairing interaction.

For the majority of electronic sates, the scattering between electrons induces

an effective repulsive interaction of the electrons. However, for a narrow band of
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states around the Fermi level, electron-phonon scattering can cause an attractive

pairing interaction within the Debye frequency ωD of the Fermi surface, such that

~ωD ≪ EF. This is because the electron can exploit a lattice distortion created by

the passage of a second electron. The coupling of electron degree of freedoms to

phonons forms the basis of the phenomena of conventional superconductivity. The

BCS theory relies heavily on the accuracy with which the normal state is described

by Fermi liquid theory – BCS superconductivity is a Fermi surface instability, which

is only meaningful when there is a well defined Fermi surface.

The composite pair of electrons form objects known as Cooper pairs and these

behave as bosons. The electron-phonon coupling mechanism correctly explains the

isotope effect of Tc found experimentally by substituting atoms in the materials by

isotopes. The formation of the Cooper pairs is associated with an energy gap ∆ as

the energy saved by the Cooper pair formation compared to the normal, unpaired

state. The superconducting order parameter can be expressed as ∆ = eiϕ|∆|, where

the energy required to break apart the Cooper pairs at T = 0 is 2|∆(0)| for a gap

function which is isotropic in momentum space. At finite temperature, the gap 2|∆|
decreases as temperature increases, above the critical temperature Tc, 2|∆| = 0. At

T = 0, the gap size can be directly related to Tc, by the famous BCS prediction of

2|∆(0)| = 3.52kBTc, (1.24)

which is obeyed very accurately in a wide range of low-temperature superconductors.

1.5.2 Unconventional superconductors

The progress in raising the superconducting transition temperature stalled for many

years, until in 1986 Bendorz and Müller synthesised the first of the copper oxide

based superconductors with Tc ≈ 30 K in a Ba-doped La2CuO4 compound [15].

Other compounds were discovered soon after with the current record set at Tc ≈
130 K (ambient pressure [16, 17]) and 164 K (under pressure [18]) in Hg doped

cuprates.

High-temperature superconductivity, like its low-temperature BCS counterpart,

is known to result from electrons forming Cooper pairs. A major challenge remains

in trying to understand the microscopic mechanism that binds the electrons to-

gether. Estimates of Tc based on phonon-exchange and using experimentally known

values of the Debye frequency, electron-phonon coupling and the normal-state den-

sity are much lower than the observed critical temperatures in the cuprates. In ad-

dition to this, a characteristic of BCS superconductors is that the Cooper pairs have

zero orbital angular momentum, they exhibit s-wave symmetry. In most hole-doped

cuprate superconductors, the Cooper pairs have a non-zero angular momentum, in-

deed they were found to possess d-wave symmetry. The underlying mechanism of

superconductivity in cuprates remains an open question although it seems likely

that magnetic fluctuations or spin and charge separation are involved. The super-

conductors which cannot be described by BCS theory are known as unconventional
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Figure 1.3: Generic phase diagram of an unconventional superconductor.
The diagram shows the typical phase diagram of hole-doped cuprate superconductors
as a function of hole doping.

superconductors and are actively studied.

1.5.3 Cuprate superconductors

Strong electronic correlations cause diversity in the phase diagram of cuprate su-

perconductors. The simplified phase diagram common to most hole-doped cuprate

superconductors is shown in Fig. 1.3 as a function of doping the system with holes.

The number of holes is a convenient parameter that can be used to compare different

cuprates. Superconductivity can also be obtained through doping with electrons,

however these systems are outside of the scope of this thesis.

At low doping levels, the electronic properties are to a large extent controlled

by the strong electrostatic repulsion between planar quasi-particles. This causes

the d electrons to localise to form a Mott insulator. The effective antiferromagnetic

coupling between the spins causes the system to order antiferromagnetically. The

magnetic behaviour of these localised spins is well described by a two-dimensional

Heisenberg model, where the inter-planar interactions are considered much weaker

than the in-plane ones. The antiferromagnetic region is the best understood part

of the phase diagram. At increased doping levels the material becomes conducting

and the exact temperature and doping determines in which phase of matter the

system will be. The addition of holes to the system interferes with long-range

antiferromagnetic order and the transition temperature sharply decreases.

Beyond the antiferromagnetic order are the pseudo-gap and spin-glass phases.

The pseudo-gap phase is characterised by the existence of an energy gap. All of

the cuprates’ thermodynamic and electronic-transport properties change by a large

amount owing to the material’s loss of low-energy excitations [19]. The discovery of

the pseudo-gap phase in underdoped cuprates, where the conditions for optimal Tc
are not quite established, has presented a major challenge for theorists and a broad
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range of ideas have been proposed. The spin-glass phase consists of short-ranged

spin correlations which can be ascribed as due to slowly fluctuating spin clusters

and are a precursor of antiferromagnetic order [20].

The superconducting phase is eventually reached on sufficient doping with holes.

The phase forms a dome on the phase diagram with optimally doped samples dis-

playing the highest superconducting phase transition temperatures. A quantum

critical point (QCP) has been postulated to exist at the optimal Tc and connecting

the pseudo-gap and Fermi-liquid regions [21, 22]. The QCP affects the behaviour of

the system in a wide range of temperatures and might explain some of the properties

of the non-Fermi liquid phase, such as linear temperature dependence of resistivity.

In the over-doped region, superconductivity gradually disappears and the ma-

terial goes into the Fermi-liquid state. The properties of a single electron are renor-

malised by interactions with other electrons to form quasi-particles. The properties

of the material can then be understood in terms of the weak residual interactions

between the quasi-particles and their excitations.

At higher temperatures and over a wide range of doping there exists a non-

Fermi liquid phase. The thermodynamic properties are in fact similar to the Fermi-

liquid behaviour, however, this phase is characterised by power-law dependencies

of transport properties as a function of temperature. It is these unusual transport

properties which differentiate this phase from the Fermi-liquid. The origin of the

non-Fermi-liquid phase is still a matter of debate but could suggest that new physics

are required to understand the cuprates.

1.5.4 Discovery of Fe-based superconductors

Ferromagnetism is a mechanism by which certain materials form permanent mag-

nets. It was therefore very surprising when superconductivity was found in LaFePO

in 2006 [24] and two years later in LaFeAsO [25] since magnetism is thought to de-

stroy the delicate balance that allows electrons to form Cooper pairs. Both cuprates

and Fe-based superconductors have two-dimensional lattices of 3d transition metal

ions as their building blocks.

All of the Fe-based superconductors that have been discovered belong to a class

of poor conductors in the normal state, known as semi-metals. The parent com-

pounds of the cuprates are on the other hand Mott insulators. This suggests that

the Mott-Hubbard physics of half-filled Hubbard model is not a good starting point

in modelling these systems [23]. This does not exclude the effects of correlations in

Fe-based superconductors but they may be moderate or small. A different approach

is required. However, in both families, weakening of antiferromagnetism seems to

play a role in establishing superconductivity.

The phase diagram of Fe-based superconductors is broadly similar to that of

the cuprates. Superconductivity typically emerges at a finite doping in the vicinity

of an antiferromagnetic phase. The antiferromagnetic phase, as already mentioned,

is metallic suggesting that interactions are generally weaker in the Fe-based super-

conductors. Because the electrons which carry a magnetic moment travel relatively
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s++ s±

nodal s± d

Figure 1.4: Schematic diagram of the symmetries of the order parameters.
The order parameter is plotted in the tetragonal basal plane. Different colours indicate
different signs of the gap, adapted from Ref. [23].

freely from site to site, the magnetic order is often termed as spin-density-wave, by

analogy to Heisenberg antiferromagnets in which the electrons are localised. Unlike

in the cuprates, where the long-range magnetic order vanishes before the onset of

superconductivity, in Fe-based superconducting materials the competition between

these two orders takes several forms. In some systems, including FeySexTe1−x which

will be discussed in § 5, magnetism can coexist with superconductivity over a small

doping range.

The second major difference in the phase diagram of Fe-based superconductors

is related to the normal state properties. Underdoped cuprates manifest pseudo-

gap behaviour which influences many of the physical properties. In hole-doped

cuprates, a strange metal phase near optimal doping is characterised by linear-

temperature dependence of resistivity over a wide range of temperatures. In Fe-

based superconductors no robust pseudo-gap behaviour is observed in a variety of

physical observables [23].

The pairing symmetry and gap structure contain the most relevant information

on the superconducting pairing mechanism. In the absence of spin-orbit coupling,

the total spin of the Cooper pair is well-defined and can be either S = 0 or S = 1.

Experimental data for Fe-based superconductors appears to rule out the spin-triplet

states and we will focus on the singlet groundstate.

In a crystallographic structure with tetragonal symmetry, group theory allows

for only five irreducible representations: A1g (s-wave), B1g (dx2−y2-wave), B2g (dxy-

wave), A2G (g-wave) and Eg (dxz- and dyz- wave) according how the order parameter
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transforms under symmetry operations of the tetragonal group [23]. Figure 1.4 il-

lustrates the case of s- and dx2−y2-wave symmetries. All of the order parameters

possessing s-wave symmetry are the same under a 90◦ rotation. The symmetry

properties are distinct from the gap structure, which describes the wavevector de-

pendence of the order parameter within a given symmetry class. The isotropic,

fully gapped s++ and s± states only differ by a relative phase of π, which in the

later case leads to a change of sign in the order parameter between the hole and

electron pockets. The nodal s± state shows vanishing of the gap at certain points

on the electron pockets. The sign on the electron pockets is still opposite to the hole

pockets. The existence of nodes is not obtained from symmetry but from details of

the pairing interaction [23].

The d-wave state changes sign when a 90◦ rotation is applied. The magnitude

of the energy gap for the superconductor vanishes at certain points on the Fermi

surface. We note that the g-wave states, not shown here, but allowed by symmetry

would also have nodes on the electron pockets. However, at present few if any

superconductors have been been found to exhibit such gap symmetry and this will

not be discussed further. More complicated gap functions with relative phases on

different pockets become possible when more pockets are present in the system or

when three-dimensional effects are included [23].

It is now well established that the cuprate superconductors possess a d-wave

gap symmetry. In contrast, the symmetry of the order parameter appears to be

s-type for Fe-superconductors. The presence of hole and electron pockets leads to

ambiguities in the sign structure of various states [23]. Assuming spin fluctuations

in the paramagnetic phase is the main pairing interaction, it has been argued and

confirmed experimentally that a sign changing s-wave gap symmetry produces the

necessary pairing of electrons and holes in the newly discovered Fe-based supercon-

ductors [26, 27].

The above discussion has been concerned with the spin-singlet groundstate of

the Cooper pairs. It should be noted that in the presence of strong ferromagnetic

interactions, where parallel spin alignment is favoured, we can expect to find spin-

triplet pairing state. Such scenario is likely realised in Sr2RuO4 [28] and in some

heavy-fermion compounds. The most thoroughly studied case of p-wave (L = 1)

pairing into a spin-triplet (S = 1) is the superfluid state of 3He. The triplet pairing

is the consequence of the combination of hard-core repulsion and exchange effects.

The hard-core repulsion between 3He atoms can be reduced by forming a paired

state with L > 0. For parallel alignment, Pauli principle keeps them from occupying

the same region which suppresses the effect of hard-core interaction and favours a

triplet state [29].

1.6 Brief introduction to multiferroic materials

Multiferroic materials exhibit two or more ferroic properties in the same phase, see

Fig. 1.5. The types of order can be ferroelectricity, ferromagnetism, ferroelasticity
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Figure 1.5: Relationship between ferroelectricty and ferromagnetism. In
the ideal case, the magnetisation of a ferromagnet shows a hysteresis as a function of
applied field H (yellow) and ferroelectrics have a similar response to an electric field E
(purple). The grey-shaded area represents the magnetoelectric coupling and the green
region is the magnetoelectric multiferroic phase.

and ferrotoroidicity, as well as their anti-ferroic counterparts. This section and sub-

sequent discussions are concerned with the coupling between (anti)ferromagnetism

and ferroelectricity – magnetoelectric multiferroics. Ferroelectric materials are an

electric analogue of ferromagnetic materials and can spontaneously order below a

critical transition temperature. Although there are many magnetic and ferroelec-

tric materials, there are relatively few which exhibit both types of order. Mag-

netoelectric multiferroics are materials which exhibit spontaneous ferroelectricity

and spontaneous magnetic order in a single phase. To simplify the subsequent dis-

cussions, magnetoelectric multiferroics will be referred to as simply multiferroics.

Magnetoelectric materials are generally different to multiferroics as either electric

or magnetic order is not spontaneous.

1.6.1 Magnetoelectric effect

The magnetoelectric effect quite generally describes the coupling between electric

and magnetic fields in matter, that is the induction of magnetisation M by an

applied electric field E or polarisation Pe caused by magnetic field H. Within the

Landau theory, the expansion of the free energy for a magnetoelectric system about

the groundstate free energy F0 is [30],

F (E,H) = F0 − P s
i Ei −M s

iHi −
1

2
ε0εijEiEj −

1

2
µ0µijHiHj

− αijEiHj − βijkEiHjHk − γijkHiEjEk − . . . , (1.25)
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the polarisation is then given as,

Pi(E,H) = − ∂F

∂Ei
= P s

i +
1

2
ε0εijEj +αijHj +

1

2
βijkHjHk +γijkHiEj + . . . , (1.26)

and analogously the magnetisation can be derived to be,

Mi(E,H) = − ∂F

∂Hi
= M s

i +
1

2
µ0µijHj+αijEj+βijkHjEi+

1

2
γijkEjEk+. . . , (1.27)

where the subscripts (i, j, k) refer to orthogonal spatial coordinates, P s and M s

denote the spontaneous polarisation and magnetisation, ε0 and µ0 are the dielec-

tric and magnetic susceptibilities of vacuum, εij and µij the second-order tensors

of dielectric and magnetic susceptibilities and βijk and γijk are third-order tensor

coefficients. The αij corresponds to the induction of polarisation by a magnetic field

or of magnetisation by an electric field [31]. This corresponds to the linear magne-

toelectric effect. The majority of research is focused on the linear magnetoelectric

effect [31]. Although Landau theory proves that ferroelectricity can be induced by

magnetic order, it does not say anything about the microscopic origin.

The vast number of multiferroics has led to the classification into two broad

groups. The type-I (or proper) multiferroics contains materials in which ferroelec-

tricity and magnetism arise from different sources and appear largely independent

of one another, although there is some coupling between them. The ferroelectricity

typically appears at a higher temperature than magnetism and the spontaneous

polarisation is often large 10 – 100µC/cm2 [32]. The second group is the type-II

(improper) multiferroics in which magnetism and ferroelectricity emerge concomi-

tantly, implying there is strong coupling between the two degrees of freedom. The

polarisation is however usually much smaller than observed in type-I systems of or-

der 10−2 µC/cm2. The later compounds are of fundamental interest but have little

practical use at the moment due to their low critical parameters. A goal of research

in this area is to find a type-II multiferroic that operates at room temperature.

Coupling between ferroelectricity and magnetism is governed by the symmetries

of the two order parameters. The polarisation Pe can be considered to be caused by

a local electric dipole moments where positive and negative charges lie asymmet-

rically about an atomic site within the unit cell such that there is no net charge.

The sign of polarisation will change under spatial inversion r → −r but not under

time-reversal t→ −t. The magnetisation transforms in the opposite way. Here the

local magnetic moments can be considered to be due to circulating currents. Spa-

tial inversion will leave the moments unchanged, whereas time-reversal will cause

a change of sign. The difference in transformation properties means that for a sys-

tem to become multiferroic it must break simultaneously spatial- and time-reversal

symmetries. Out of 233 Shubnikov magnetic point groups 2, only 13 allow the si-

2A Shubnikov group leaves the magnetic structure invariant, it is a subgroup of the direct
product of a space group and the time inversion group in a way that does not contain time reversal
operator alone but only in combination with other symmetry elements [33].
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Figure 1.6: Effects of the Dzyaloshinskii-Moriya interaction. The
Dzyaloshinskii-Moriya interaction depends on the position of the negative O ion lo-
cated between two transition metal ions carrying spin S and connected by vector r.
A local electric dipole is generated as positive and negative charges are displaced by u
transverse to r.

multaneous appearance of polarisation and magnetisation: 1, 2, 2′, m, m′, 3, 3m′,

4, 4m′m′, m′m2′, m′m′2′, 6 and 6m′m′ [30]. The restrictions in the crystallographic

symmetries means that multiferroics are rare in nature.

Linear coupling between (Pe,E) and (M ,H) is only possible when these vectors

vary in both space and time [34]. Coupling between static Pe and M can only be

non-linear and results from competing charge, spin, orbital and lattice degrees of

freedom [34].

Most of the type-II multiferroics that have been discovered to date possess a non-

collinear magnetic structure. A helicoidal spin structure spontaneously breaks time-

reversal as well as spatial inversion symmetries. Therefore, a helicoidal magnetic

state allows for the simultaneous presence of multiferroicity. The precise microscopic

mechanism responsible for the emergence of ferroelectricity is complex and several

models have been proposed, these are summarised below.

Inverse Dzyaloshinskii-Moriya interaction A prominent model to account for

non-collinear spins driving the system into a ferroelectric state has been pro-

posed based on the antisymmetric Dzyaloshinskii-Moriya (DM) interaction

[35, 36]. Ferroelectricity is the inverse effect, resulting from lattice relaxation

in a magnetically ordered state. In this mechanism, which is a relativis-

tic correction to the usual superexchange interaction, O ions are displaced

from equilibrium positions driven by the DM interaction between neighbour-

ing transition metal ions. Figure 1.6 shows the symmetry breaking interaction

leading to ferroelectricity. The Hamiltonian can be expressed as,

HDM =
∑
ij

Dij · (Si × Sj) , (1.28)

where D is the DM factor related to the O displacement away from the line

joining two spins Si and Sj . It is proportional to the spin-orbit coupling λ

and the amount by which the O is shifted, expressed as Dij ∝ λu× rij . The

interaction shifts the O in the direction perpendicular to the spin chain and
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this results in an electric polarisation. This term therefore can give rise to a

small canting of the moments. In antiferromagnets, it can result in a weak

ferromagnetic moment perpendicular to the antiferromagnetic alignment, as

in the case of La2CuO4. The DM vector vanishes where there is a centre of

inversion between the ith and jth sites.

Spin-current model The spin current model serves as the second microscopic

explanation of multiferroicity in helicoidally arranged spin systems, proposed

by Katsura et al. [37]. The coupling between the spin current and an internal

electric field has the same form as the DM interaction [38]. Spontaneous

spin-current flows between mutually canted spins, jij ∝ Si × Sj produced by

the superexchange interaction mediated by an O atom between two transition

metal atoms. In analogy to charge currents generating a magnetic field, the

spin current induces an electric dipole moment between the pairs of spins given

by Pe ∝ rij × jij , where spins are connected by vector r. The implication

of this model is that electric polarisation can occur when there exists non-

collinear spin arrangement between adjacent transition metal atoms and the

spin rotation axis is not parallel to the magnetic propagation wavevector.

Although this model gives simple predictions to the direction in which electric

polarisation is generated, it is limited in two important ways. Firstly, the

model lacks quantitative prediction results and secondly the concept of spin

current in spin-orbital coupled system is not well defined [39].

Electric current cancellation model In systems with strong spin-orbit coupling,

ferroelectricity can be induced by non-collinear magnetism through an electric

current cancellation process [39]. This model is derived from first principles

and gives quantitative predictions to the size of the ferroelectrically induced

response. The total ferroelectricity can be written as [39],

Pe =
ε0g

2meeλM2
0

⟨M ×∇×M⟩, (1.29)

where λ is the effective spin-orbit coupling parameter, M0 is the magnitude

of the magnetic moment on an atom site and the ⟨. . .⟩ denote spatial average

over the sample volume. The model predicts that the size of the magneti-

sation does not increase ferroelectricity, which is against what is expected

in the phenomenological Ginzburg-Landau theory [39]. It also shows that

ferroelectricity is inversely proportional to the spin-orbit coupling. A semi-

quantitative estimation gives polarisation of approximately 100µC/m2 for a

typical manganite system [30].

Despite their apparent differences, the three models give a similar prediction that

Pe ∝ rij × Si × Sj and canted spin structure is a prerequisite for ferroelectricity.

However, not all helicoidal magnets are ferroelectric. For example Cs2CuCl4 has a

magnetic structure consisting of counter-rotating spirals [40]. Ferroelectricity is not

observed in this compound.
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Figure 1.7: One dimensional chain of atoms leading to ferroelectricity
through magnetostriction. The dashed grey outline shows the equilibrium posi-
tion of yellow ions. Due to magnetostriction, they are displaced towards blue ions
with moments in the same direction. The yellow and blue ions carry different charges
and therefore the distortion results in polarisation observed along the direction of the
bonds.

Ferroelectricity can also emerge in type-II multiferroics with collinear magnetic

order, without necessarily involving spin-orbit interaction. The origin of polarisa-

tion in such materials is due to exchange striction, which is the inverse effect of the

symmetric superexchange interaction combined with the effect of charge order. Let

us consider the case of a one dimensional Ising spin chain with competing nearest-

neighbour ferromagnetic interactions JF and next-nearest-neighbour antiferromag-

netic interaction JAF. The groundstate of such a system will be of ↑↑↓↓ provided

|JAF/JF| > 1/2 in an arrangement shown in Fig. 1.7. The exchange striction asso-

ciated with the symmetric superexchange interaction will lower the system’s energy

by shortening the bonds between parallel spins and lengthening those where spins

are antiparallel. This breaks the spatial inversion symmetry and polarisation is cre-

ated along the bond direction, as per Pe ∝ (Si ·Sj)rij . A realisation of such a state

is found in Ca3CoMnO6 [41]. The structure of Ca3CoMnO6 consists of alternating

Co2+ and Mn4+ ions. At high temperature the bond distances are the same but as

the material orders magnetically, exchange striction distorts the crystal structure

and the material becomes ferroelectric.

Although the effect in Ca3CoMnO6 relies on transition metal ions of different

valencies, this need not be the case. The same effect can be observed in RMnO3

perovskites where R is small rare earth. The Mn ions order in a ↑↑↓↓ fashion in

the basal plane but exchange striction shifts O ions perpendicular to the Mn–Mn

bonds producing a polarisation in the direction of the distortion [32].

The physics of type-II multiferroics where non-collinear spin structure drives

the system into a ferroelectric state illustrate that magnetic order is often a result

of competing magnetic interactions. This competition usually reduces the ordering

temperature of conventional spin-ordered phase [30]. Therefore, relatively few non-

collinear multiferroics are observed above 40 K, far below room temperature where

their properties would be applicable for practical use in devices.

The search for such materials continues but it seems one possible way of increas-

ing the phase transition temperature is to search for materials with very strong com-
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peting interactions. In cuprates, the superexchange interaction J favours collinear

arrangement of Cu–O–Cu bonds when ϕ ≈ 180◦. The value of J is found to decrease

monotonically for decreasing bond angle eventually becoming negative at ϕ ≈ 95◦

[30]. Therefore, in cuprates deviations of ϕ from 180◦ results in competition with

higher-order superexchange interactions, often leading to non-collinear magnetic

structures. A good example of this effect is CuO investigated in this thesis. The

dominant exchange interaction is along Cu–O–Cu bonds with ϕ = 146◦ [42]. Incom-

mensurate magnetic order and ferroelectricity have been found at relatively high

temperatures in the range from 213 to 230 K. Therefore, it is interesting to try to

understand the mechanism leading to multiferroicity in CuO.
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1.7 Work presented in this thesis

Strongly correlated electron systems exhibit a wide range of intriguing physical phe-

nomena due to a multitude of competing order parameters. The studies presented

in this thesis examine the roles of magnetism, superconductivity and multiferroicity.

Using a combination of experimental techniques we gain a deeper understanding of

the processes leading to these properties. The main projects of interests which will

be discussed herein are outlined below.

Magnetism and dynamics in Sr doped La2CoO4

Hole-doped transition metal oxide antiferromagnets exhibit a range of physical prop-

erties due to competing ordered phases. At certain dopings, holes segregate into

unidirectional density-wave states which can involve coexistence of charge and mag-

netic order. Such correlations are often termed as stripes and have been discussed

extensively in connection with copper oxide superconductors.

The La2−xSrxCoO4 family of compounds, which although not superconducting,

share many features with holed-doped copper oxide superconductors. Furthermore,

the Co3+ ions forming the charge stripes adopt the low spin S = 0 state and there-

fore layered cobaltates offer the chance of investigating fundamental interactions

and excited states in an ordered stripe phase.

In order to quantify the dominant exchange interactions we have looked at the

parent La2CoO4 phase using time-of-flight neutron scattering technique on MAPS

instrument at ISIS, UK to comprehensively map out the excitations up to 250 meV.

The spectrum was found to be well described by a model which includes the spin and

orbital degrees of freedom of Co ions in a crystal field environment. This was then

used to explain the magnetic excitations in x = 1/3 which display an hourglass-like

dispersion analogous to some of the cuprate superconductors.

Interplay of magnetism and superconductivity in FeySexTe1−x

The recent discovery of Fe-based superconductors raises the interesting question

of its origin and relation to cuprate superconductors. One common feature is the

emergence of a sharp peak in the magnetic spectrum localised in wavevector upon

cooling into the superconducting phase. Using the crystal growth expertise and

a combination of magnetometery, µSR and neutron scattering techniques at PSI,

Switzerland we have studied extensively the phase diagram of FeySexTe1−x.

The focus has been looking at the low-energy dynamics. We found that stark

contrasts exist between superconducting and purely magnetic phases of FeSexTe1−x.

A resonant mode was found to develop at 6.5 meV centred at (0.5, 0.5, 0) in recip-

rocal space, whilst the non-superconducting sample showed incommensurate ex-

citation branches in the vicinity of this wavevector. We also demonstrated using

polarised inelastic neutron scattering on IN22, ILL, France with the CryoPAD setup

that spin fluctuations in and out of the plane of Fe layers are nearly isotropic in
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the superconducting phase. This result is consistent with the singlet pairing state

of s± symmetry.

Multiferroicity in CuO

The superexchange interaction between copper ions coordinated by oxygen as found

in low-dimensional copper oxide based superconductors have been extensively stud-

ied for many years. Yet, the building block of these materials, CuO, is different

in character. In 2008, CuO was found to possess coupling between magnetic and

ferroelectric degrees of freedom. Owing to a large superexchange interaction, a

ferroelectric response was measured up to 230 K. Although this material has been

studied previously in the context of antiferromagnetism, the discovery of multifer-

roicity has led to a number of theoretical models to be postulated on the possible

origin of this phenomenon.

To this end we have carried out careful measurements with an applied electric

field to see if we can control the magnetic domains related by inversion symmetry

to unambiguously show that magnetism and ferroelectricity are coupled. These

measurements were made using polarised neutron diffraction with the MuPAD de-

vice installed on the TASP instrument at SINQ, PSI, Switzerland. A group theory

based approach was developed to account for the experimental results and has been

shown to provide a unique and rigorous solution to the magnetic structure.
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2.1 Introduction

Neutrons are elementary particles which were identified in 1932 by J. Chadwick

[43]. The value of the neutron as a probe of condensed matter derives from the

fact in the thermal energy range, its de Broglie wavelength is of the same order as

interatomic distances in solids and liquids. Interference can occur and this provides

information on the scattering system.

The precise mechanism by which an incoming particle is scattered by a com-

pound depends on the properties of the probe such as its charge, spin, energy and

so on. In this thesis only neutron scattering has been employed. The neutrality

of neutrons allow them to probe the bulk of the sample as neutrons interact with

the nucleus of an atom via the strong force. Although it is inherently powerful, the

range over which the strong force acts is rather small and therefore the probability

of neutron scattering is rather low. Owing to its magnetic dipole moment, a neutron

can couple to magnetic field distribution in a crystal thereby probing both nuclear

and magnetic structure. The complementary technique of x-ray scattering relies on

the electromagnetic interaction between the electron charge clouds surrounding the

nuclei. The strength with which an atom scatters x-rays is therefore related to the

number of electrons it possesses. Light elements are difficult to detect using x-rays.

Conversely, the neutron scattering strength does not vary systematically with the

atomic number and is invariant for different valence states.

Neutron diffraction makes possible for the study of crystallographic and mag-

netic structures, whilst inelastic neutron scattering provide information on spin or

lattice excitations. Consequently, neutrons can be used to look at order and dynam-

ics in compounds. This section will introduce the concepts to neutron scattering

theory and the technical aspects which allow us to use neutron scattering as a probe

of condensed matter systems.

2.2 Concepts of scattering theory

A rigorous theoretical treatment of the process of neutron scattering is given in

detail in many textbooks such as Refs. [44–48]. Here I shall present the main features

in calculating magnetic cross-sections for elastic and inelastic neutron scattering. In

a neutron scattering experiment, an incident neutron with wavevector ki is scattered

by a sample through an angle of 2θ into a final wavevector kf . In this process the

momentum, spin and energy of the neutron can change. From conservation of

momentum and energy during a scattering process,

Q = ki − kf , (2.1)

E = Ei − Ef , (2.2)

where ~Q and E are the momentum and energy imparted to the crystal, respec-

tively. The latter can be expressed in terms of the initial and final neutron wavevec-
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tors, where mn is the mass of the neutron

E =
~2

2mn

(
k2i − k2f

)
. (2.3)

The elastic scattering process is one in which ki = kf . In inelastic neutron scattering

ki ̸= kf and the neutrons can either gain or lose energy by exciting modes in the

sample. The condition for a plane wave to be diffracted by a family of planes is given

by Bragg’s law as, nλ = 2d sin θ, where d is the lattice spacing, λ is the wavelength

of the diffracting radiation and n is an integer describing the order of the reflection.

In a neutron scattering experiment, the count rate C as measured by a detector

which subtends a solid angle ∆Ω, with an energy acceptance range of ∆Ef around

nominal value Ef and efficiency η is given by,

C = ηΦ0
d2σ

dΩdEf
∆Ω∆Ef (2.4)

The double differential cross-section d2σ/dΩdEf gives the probability that a nor-

malised flux of neutrons Φ0 with incident wavevector ki is scattered into a solid

angle dΩ perpendicular to the direction kf and the neutron energy falls within a

range between Ef and Ef + dEf .

The double differential cross-section for unpolarised neutrons can be separated

into the coherent and incoherent parts,

d2σ

dΩdEf
=

d2σ

dΩdEf

∣∣∣∣
coh

+
d2σ

dΩdEf

∣∣∣∣
inc

. (2.5)

Generally, the coherent part provides information on the cooperative effects among

atoms such as elastic Bragg scattering or inelastic scattering by phonons or magnons.

The incoherent part is related to the time correlations of the individual atoms.

The cross-section can be calculated from first principles using quantum me-

chanics for the cases of elastic, inelastic and polarised neutron scattering. As the

neutron probes matter, it acts as a very weak perturbation of the scattering sys-

tem. A neutron can excite a transition between quantum states, but it does not

modify the nature of the states themselves [46]. In the Born approximation, where

both incident and outgoing neutrons can be treated as plane waves, the differential

cross-section between λi and λf states and neutron spin states σi and σf can be

expressed as,

d2σ

dΩdEf

∣∣∣∣
λi,σi→λf ,σf

=
kf
ki

( mn

2π~2
)2

|⟨λfσf |V (Q)|λiσi⟩|2δ(E + Ei − Ef), (2.6)

where the Fourier transform of the effective interaction potential is given by,

V (Q) =

∫
V (r)eiQ·r dr, (2.7)
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such that the scattering centres are at positions r. Summing over all final states of

the sample λf and final polarisation states σf and taking an average over the initial

states λi, which occur with a probability pλi
and over all initial states of the neutron

whose probability is pσi , we obtain

d2σ

dΩdEf
=
kf
ki

( mn

2π~2
)2 ∑

λf ,σf

∑
λi,σi

pλi
pσi | ⟨λfσf | V (Q) | λiσi⟩ |2 δ(E+Ei−Ef). (2.8)

Energy conservation considerations lead to the δ-function. Equation 2.8 is general

and can be applied for different interaction potentials. In the case of unpolarised

neutron beam Eq. 2.8 reduces to

d2σ

dΩdEf
=
kf
ki
S(Q, E), (2.9)

where the response function S(Q, E) is defined as,

S(Q, E) =
1

2π~

( mn

2π~2
)2 ∫ ∞

−∞
⟨V (Q, 0)V (−Q, t)⟩e−iEt/~ dt. (2.10)

This corresponds to the time and space Fourier transform of the interaction poten-

tial. We have used angle brackets ⟨. . .⟩ to denote the average over initial states and

t is time. The factor S(Q, E) does not depend on the properties of the neutron. In-

stead it describes the property of the system of interest and depends on the relative

motions of the particles or spins in the system. The aim of most neutron scattering

experiments is to measure the response function S(Q, E) and thereby determine

microscopic properties of the system.

2.2.1 Nuclear interaction

When neutrons are incident on a sample, they can undergo elastic scattering from

the nuclei through the strong nuclear force. Since the strong force acts over ex-

tremely short distances, the nuclear potential for an assembly of atoms can be

approximated by a spherically symmetry Fermi pseudo-potential (in the absence of

nuclear spin) as,

VN(r) =
2π~2

mn

∑
j

bjδ(r − rj), (2.11)

where a neutron at position r interacts with the jth nucleus at position rj . The

scattering length bj represents the strength with which the neutrons are scattered

at position rj . In general this quantity is complex as at resonance, the nucleus can

absorb the neutron. This is only significant in a few strongly neutron absorbing

materials such 103Rh, 113Cd, 157Gd, and so on. The scattering length in such cases

becomes strongly dependent on neutron energy. However, in most materials the

imaginary part of the scattering length is small and will not be discussed further.

In crystalline solids, the neutrons can interfere with planes of atoms in the
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lattice to give Bragg peaks. The scattering cross-section for the elastically scattered

neutrons (Ei = Ef) can be calculated by evaluating Eq. 2.8 using the scattering

potential in Eq. 2.11. The coherent differential cross-section is therefore

d2σ

dΩdEf

∣∣∣∣el
coh

= |N(Q)|2δ(E)

= n
(2π)3

V0
|FN(Q)|2δ(Q−G)δ(E), (2.12)

where n and V0 is the number and size of the unit-cell, respectively. The Fourier

transform of a crystal lattice N(Q) will will give rise to finite intensity only when

the scattering wavevector Q is equal to the reciprocal lattice wavevector G. The

nuclear structure factor FN(Q) is given by,

FN(Q) =
∑
j

⟨bj⟩eiQ·rje−Wj , (2.13)

where we consider the coherent scattering length ⟨b⟩ of the jth atom. In practice

the lattice is not a rigid structure and atoms will fluctuate about their equilibrium

positions due to thermal motion. This causes a reduction of the Bragg intensities

which is parameterised by the Debye-Waller factor W . In the scope of this thesis,

this effect is not important for measurements performed below about 100 K and will

not be discussed further.

2.2.2 Magnetic interaction

The scattering of neutrons by atomic magnetic moments can be calculated in simi-

lar fashion to nuclear scattering by Eq. 2.8. The relevant interaction is between the

dipole magnetic moment of the neutron and the internal magnetic fields of the sam-

ple produced by spin and angular momentum of unpaired electrons. The neutron

moment is given by,

µn = −γµNσ, (2.14)

where the nuclear magneton is µN = e~/2mp and the gyromagnetic ratio γ = 1.913.

The Pauli spin operator σ has eigenvalues of ±1. The spin angular momentum and

Pauli spin operators for the neutron are related to each other by a factor of two,

σ = 2sn. A dipole in an inhomogeneous field B from the sample will experience a

potential,

VM(r) = −µn ·B(r). (2.15)

The magnetic field at a distanceR from an electron with momentum p and magnetic

dipole moment µe = −2µBs due to its spin angular momentum s (in units of ~) is

the sum of the magnetic field contributions due to the electron’s spin and orbital

motion,

B = BS +BL =
µ0

4πR2

(
∇× µe × R̂− 2µB

~
p× R̂

)
. (2.16)
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The Fourier transform of the magnetic interaction potential can be found to be

VM(Q) = −µ0µn ·M⊥(Q). (2.17)

The Fourier transform of the real-space magnetisation M(r) is defined as M(Q),

where the component of magnetisation perpendicular to Q is related as M⊥(Q) =

Q̂×M(Q) × Q̂, or

M⊥(Q) = −2µB
∑
j

eiQ·rj
(
Q̂× sj × Q̂+

i

~|Q|
pj × Q̂

)
, (2.18)

where the jth electron is located at position rj and possesses spin and momentum

sj and pj . In the case of unpolarised neutron scattering, it is convenient to separate

the differential cross-section into two components belonging to elastic and inelastic

scattering as

d2σ

dΩdEf
=
kf
ki

(
γr0
2µB

)2 [
|M⊥(Q)|2δ(E) + S̃(Q, E)

]
, (2.19)

where r0 = µ0e
2/(4πme) is known as the classical radius of the electron. The

elastic part in Eq. 2.19 is the time-averaged value of magnetisation and measures

static correlations should be expressed as the expectation value, ⟨M †
⊥(Q)⟩⟨M⊥(Q)⟩.

However, in order to simplify the notation, I shall hereafter refer to this quantity as

|M⊥(Q)|2. The inelastic part is denoted by S̃(Q, E) and is (to within a constant

factor) the dynamical part of S(Q, E) defined in Eq. 2.10.

2.2.2.1 Elastic neutron scattering

The first term in Eq. 2.19 describes the elastic neutron scattering differential cross-

section. In analogy to nuclear interaction, the magnetic scattering intensity is given

by,

d2σ

dΩdEf

∣∣∣∣el
coh

=

(
γr0
2µB

)2

|M⊥(Q)|2δ(E)

= n
(2π)3

V0
|F⊥M(Q)|2δ(Q−GM)δ(E), (2.20)

where GM is the reciprocal lattice wavevector of the magnetic structure and can

be related to the magnetic propagation wavevector κ as GM = G ± κ. A mag-

netic reflection is therefore only allowed when Q = G ± κ. In the dipole-dipole

approximation the magnetic structure factor is given by,

F⊥M(Q) = Q̂× FM(Q) × Q̂, (2.21)

FM(Q) =
∑
j

fj(Q)µje
iQ·rje−Wj . (2.22)
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Figure 2.1: Free-ion magnetic form factor for Co2+ and Fe2+ ions. The
variation of the zeroth order spherical Bessel function ⟨j0(Q)⟩ with Q is plotted for
the case of Co2+ and Fe2+. The (h, k, l) indices refer to the reciprocal lattice of the
two compounds studied, namely La2CoO4 and FeSexTe1−x. The values of coefficients
defining ⟨j0(Q)⟩ are taken from Ref. [49].

The effective magnetic moment on site j is described by µ, as discussed in § 2.2.2,

both spin and angular momentum of electrons can contribute to the magnetic mo-

ment. The magnetic form factor f(Q) is obtained from the Fourier transform of

the magnetisation distribution of a single magnetic atom [49]. For magnetisation

with a unique direction,

µ

∫
m(r)eiQ·r dr = µf(Q), (2.23)

where m(r) is a normalised scalar function describing how the intensity of magneti-

sation varies over the volume of the atom [49]. In the dipole approximation, that is

when the magnitude of Q is much smaller than the reciprocal of the mean radius of

the wavefunction for the unpaired electrons, it can be shown that for a single atom

[50],

M(Q) ≈ −2µB

[
⟨j0(Q)⟩S +

1

2
(⟨j0(Q)⟩ + ⟨j2(Q)⟩)L

]
, (2.24)

where S and L are the total spin and orbital angular momentum operators.

For 3d transition metal ions the crystal field is usually much stronger than the

spin-orbit coupling. The orbital moment L is usually quenched, but the spin-orbit

interaction can induce a small component of L in a direction parallel or anti-parallel

to the spin S. It can be shown that in this case L is replaced by (g − 2)S and the
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magnetisation in Eq. 2.24 reduces to,

M(Q) ≈ −gµBf(Q)S = µf(Q), (2.25)

where g = 2 when the orbital angular momentum is fully quenched. The dipole

magnetic form factor can then be approximated as,

f(Q) = ⟨j0(Q)⟩ +
2 − g

g
⟨j2(Q)⟩. (2.26)

The 4f ions usually have both spin and orbital degrees of freedom and the total

angular momentum J is a good quantum number. From Eq. 2.24, the magnetisation

is written as,

M(Q) ≈ −gJµBf(Q)J = µf(Q), (2.27)

and gJ is the Landé splitting factor, defined in Eq. 1.3. The magnetic form factor

defined in Eq. 2.26 has the same form but we must replace g by gJ .

The radial distribution of magnetisation surrounding a single magnetic atom can

be approximated by nth order spherical Bessel functions ⟨jn(Q)⟩. These in turn can

be approximated by a sum of suitable analytical expressions for d electrons of the

3d and 4d series and the f electrons of some rare earth and actinide ions [49]. In

this approximation,

⟨j0(s)⟩ = A1e
α1s2 +A2e

α2s2 +A3e
α3s2 +A0 (2.28)

⟨jn>0(s)⟩ =
(
A1e

α1s2 +A2e
α2s2 +A3e

α3s2 +A0

)
s2, (2.29)

where s = |Q|/(4π) = sin θ/λ, the neutron wavelength is denoted by λ. The

numerical values of the coefficients An and αn are tabulated in Ref. [49]. Figure 2.1

illustrates how the leading order approximation of the magnetic form factor varies

as a function of reciprocal lattice wavevector Q. The plotted function is spherically

symmetric reflecting the real-space magnetisation decreasing monotonically away

from the ion. This need not always be the case and the octahedral ligand field such

as in structures containing CuO6 can cause significant asymmetry in the magnetic

form factor, as found in PrBa2Cu3O6+x for example [51]. However, for magnetic

structures considered hereafter such effects are not considered to be important.

2.2.2.2 Inelastic neutron scattering

Ordered magnetic moments can fluctuate about their average orientations. It costs

energy to create the fluctuations and the variation of magnetic excitation energy E

as a function of wavevector Q can be measured using inelastic neutron scattering.

The response function S(Q, E) is related to the Fourier transform of the time-
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dependent correlation function for the magnetisation, and can be written as

S(Q, E) =

(
γr0
2µB

)2∑
αβ

(δαβ − Q̂αQ̂β)Sαβ(Q, E), (2.30)

Sαβ(Q, E) =
1

2π~

∫ ∞

−∞
⟨Mα(−Q, 0)Mβ(Q, t)⟩e−iEt/~ dt, (2.31)

where {α, β} = {x, y, z} are Cartesian components of the magnetisation operator.

Therefore, the scattering is dependent on the magnetic fluctuations in the system.

Unlike scattering from nuclei, the magnetic interaction contains a term (δαβ−Q̂αQ̂β)

which selects the component of the magnetisation which is perpendicular to the

momentum transfer Q.

A response function for a macroscopic system relates the change in the ensemble-

average physical quantity (i.e. magnetisation) to an external force (i.e. oscillating

magnetic field) [52]. In the limit where the external force is sufficiently small, the

physical observable changes linearly with applied force. Furthermore, the initial

state of the system must be in thermal equilibrium before the force is applied.

These conditions form the basis of the linear response theory which can be applied to

condensed matter systems as a means of comparing theoretical models to observable

spectra.

In a realistic system in a thermal bath at temperature T , a neutron exciting

a lower state in energy is more likely than a neutron losing energy through an

energy loss process with equal but opposite wavevector and energy transfer. The

proportion in which the two states are thermally populated is directly related by the

Boltzmann factor. Therefore, the response function will be related by the principle

of detailed balance as [52],

S(Q, E) = eE/kBTS(−Q,−E). (2.32)

In addition, the fluctuation-dissipation theorem relates the imaginary part of

the generalised susceptibility [χ(Q, E) = χ′(Q, E) + iχ′′(Q, E)] to the dynamical

part of S(Q, E) by,

S̃(Q, E) =
1

π
[1 + n(E)]χ′′(Q, E), (2.33)

where the Bose-Einstein thermal population factor is n(E) = [exp (E/kBT ) − 1]−1.

The imaginary part of the susceptibility corresponds to the absorption of energy

from an external field, in this case due to magnetic fluctuations. The physical

interpretation resulting in absorption is because in thermal equilibrium transitions

from lower to higher energy states are more likely than transitions from higher to

lower energy.
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Type Contribution Description

N PiNN
∗ Incident polarisation is conserved

when only considering atomic
structure

M −Pi(M⊥ ·M∗
⊥)

+M⊥(Pi ·M∗
⊥)

+M∗
⊥(Pi ·M⊥)

Incident polarisation is spin flip ex-
cept for the component with Pi ∥
M⊥

C −iM∗
⊥ ×M⊥ Intensity is dependent on the initial

polarisation, the chiral term is non-
zero whenever M⊥ is not parallel
to M∗

⊥, as for helicoidal magnetic
structures

I NM∗
⊥ +N∗M⊥ −

i [(NM∗
⊥ −N∗M⊥) × Pi]

Polarisation is created along M⊥
when nuclear and magnetic Bragg
peaks coincide.

Table 2.1: Description of the four terms contained in Eq. 2.35 for elastic polarised
neutron scattering. The types are labeled as: (N) nuclear, (M) magnetic, (C) magnetic
chiral and (I) nuclear-magnetic interference, from Ref. [53].

2.2.3 Polarised neutron scattering

The previous section have been primarily concerned with unpolarised neutron scat-

tering, where only the change in the momentum is considered. Polarised neutron

scattering makes use of the incident and outgoing neutron spin state to provide ad-

ditional information on the magnetic system. The polarisation of a neutron beam

is a statistical quantity defined as the normalised expectation value of an ensem-

ble of neutron spins. Scattering from a sample can in general reorient the neutron

moment from one orientation to any other orientation in three dimensions. This

process can be described by a polarisation matrix Pαβ which is a second rank ten-

sor. The equations for elastic neutron polarimetry based on standard theory of

neutron interaction with matter have been established in the 1960s by Blume and

Maleyev [54, 55]. Although these equations are useful in gaining insight into how

different scattering processes affect the terms in the polarisation matrix, the for-

mulation cannot be used directly when dealing with more realistic systems with

different magnetic domains. The total neutron cross-section due to a single domain

for incident polarisation Pi of the neutron beam is,

σ = NN∗ +M⊥ ·M∗
⊥ + Pi · (M⊥N

∗ +M∗
⊥N) + iPi · (M∗

⊥ ×M⊥), (2.34)

where the Q-dependencies have been omitted for clarity. The polarisation of the

beam after elastic scattering from the sample Pf relative to the original polarisation

has contributions primarily from nuclear, magnetic, magnetic chiral and magnetic-
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nuclear interference terms and is of the form,

Pfσ = (Pfσ)N + (Pfσ)M + (Pfσ)C + (Pfσ)I, (2.35)

where the main contributions to elastic neutron scattering are listed in Table 2.1.

It can be observed that scattering neutrons from mixed nuclear-magnetic Bragg

reflections or from a helicoidal magnetic structure can create polarisation of the

neutron beam [56]. The former is the method by which single-crystal polarisers

§ 2.4.3 can be created.

The central equation describing neutron scattering is given by Eq. 2.8 where the

differential scattering cross-section,

d2σ

dΩdEf
∝ |⟨λfσf |V (Q)|λiσi⟩|2δ(E + Ei −Ef). (2.36)

This can be shown to lead to the Blume-Maleyev equations but can also be used to

determine the scattering cross-sections for multi-domain structures as well as inelas-

tic polarised scattering processes. We have already established that the interaction

potential is in general V (Q) = VN(Q) + VM(Q) defined in Eqs. 2.11 and 2.17. For

an interaction potential that contains both nuclear and magnetic contributions, due

to the square of the matrix element of V (Q), the cross-section can be separated into

three terms – purely nuclear, purely magnetic and one involving nuclear-magnetic

interference. Unpolarised neutron scattering is not sensitive to nuclear-magnetic

interference as these terms vanish on averaging of spin states. It is useful to define

the polarisation matrix where a neutron with initial spin state |β⟩ scatters from the

interacting potential into a final state |α⟩ as,

Pαβ =
|⟨α|V (Q)|β⟩|2 − |⟨α|V (Q)|β̄⟩|2

|⟨α|V (Q)|β⟩|2 + |⟨α|V (Q)|β̄⟩|2
, (2.37)

where the cross-section can be measured in a polarised neutron scattering experi-

ment and the weighted difference between non-spin-flip and spin-flip channels com-

pared to magnetic structure models. It is convenient to define the frame of reference

as x the direction parallel to Q, z perpendicular to the scattering plane and y com-

pleting the right-handed coordinate system, such that {α, β} = {x, y, z}. In the triv-

ial case where the reflection which is probed by polarised neutrons is purely due to

nuclear scattering, the interaction potential leaves the incident neutron spin invari-

ant. The polarisation matrix, for ideal beam polarisation, is therefore Pαβ = δαβ.

Let us now consider the purely magnetic interaction potential where the Fourier

transform of the magnetisation M(Q) = (Mx,My,Mz) and the Q-dependence of

the components has been neglected for clarity. Since the neutron can only probe

magnetic correlations perpendicular to the scattering wavevector, for a given re-

flection, it is not possible to probe the Mx component of the magnetisation. The

cross-section for polarised neutron scattering from magnetic correlations is there-

fore reduced to be proportional to |⟨α|σyMy + σzMz|β⟩|2. The matrix element can
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therefore allow us to separate the different components of M⊥. The Pauli spin

matrices are defined for a spin-1/2 particle to be,

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (2.38)

The polarisation matrix for a magnetic reflection in the absence of nuclear-magnetic

interference and for |Pi| = 1, i.e. perfect incident beam polarisation, can then be

found as,

P =

−1 0 0

H −K L

H L K

 (2.39)

HD = i(MyM
∗
z −M∗

yMz),

KD = |Mz|2 − |My|2,
LD = MyM

∗
z +M∗

yMz,

D = |My|2 + |Mz|2. (2.40)

There are several important consequences of these equations. The polarisation

matrix can in principle be calculated for both static and dynamic correlations as

already discussed, Eq. 2.36 used in the derivation is rather general. The Pxx term

can be readily used to identify the nature of scattering, a nuclear reflection will give

Pxx = 1 whereas for a magnetic reflection Pxx = −1. This relates the fact that

nuclear interaction, as defined in Eq. 2.11, does not contain operators which act on

the neutron spin. Therefore, in a coherent scattering process, the neutron spin will

not be flipped by such a nuclear interaction whereas a spin-flip will occur when the

neutron experiences a magnetic dipolar interaction. It should be noted that nuclear

spin incoherent scattering can flip the spin and thereby contribute to a featureless

spin-flip background.

The chiral term in Eq. 2.40 can be equivalently expressed as HD = −i(M∗
⊥ ×

M⊥), as in Table 2.1, and is a signature of non-collinear magnetic order. Com-

plicated magnetic structures can be solved using spherical neutron polarimetry to

determine the polarisation matrix. Usually this requires collection of polarisation

matrices at several non-equivalent reflections and knowledge of the crystal symme-

try in order to account for depolarisation of the matrix elements due to the presence

of domains. For a single magnetic domain the summation H2 + K2 + L2 = 1 will

hold for ideal beam polarisation.

Magnetic domain structures occur whenever the symmetry of the ordered mag-

netic structure is lower than that of the paramagnetic phase [48]. Some of the

possible domains are as follows:

Configuration domains or κ-domains Domains in which the translational sym-

metry has been lost. This is when the magnetic propagation wavevector κ is

not transformed into G± κ on applying symmetry operations of the param-
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agnetic group. The symmetry elements of the space group that change the

propagation wavevector and are related by a rotation form the arms of the star

of κ. The symmetry elements that produce κ-domains belong to {G0 −Gκ}.

The energy of the domains is equivalent.

180◦ domains When a material orders magnetically, time inversion symmetry is

lost. These are always present in antiferromagnetically ordered systems and

cannot be distinguished by neutron scattering.

Spin domains These domains occur when the lattice has symmetry equivalent

directions, for example moments on a square motif cannot have a unique

direction. From symmetry considerations these are the domains which belong

to the little group where Gκ ∈ G0, in which the symmetry operations leave κ

unchanged but are part of the paramagnetic space group G0.

Chiral domains In non-collinear magnetic structures, chiral domains can occur.

The paramagnetic space group is centrosymmetric but the ordered magnetic

structure is not. They are a special type of κ-domains in which +κ ̸= −κ.

Polarised neutron scattering is capable of distinguishing between the chiral

domains.
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2.3 Representation analysis of magnetic structures

The technique that will be presented here is the application of group theory to mag-

netic structures and is termed representational analysis [33, 57–65]. The pieces of

information that are required for these calculations are the propagation wavevector

κ, the crystallographic space group and the atomic coordinates of the magnetic

atoms in the paramagnetic phase. The representational analysis is a powerful theo-

retical technique which allows for the determination of possible magnetic structures

as imposed by the crystallographic symmetry and the magnetic ordering wavevec-

tor. Comprehensive analysis can be made using the SARAh [66] and BasiReps [67]

program packages.

The formal definition of a group G containing elements gi with an operation ◦
acting on gi, satisfies the following axioms.

Associativity [gi ◦ (gj ◦ gk) = (gi ◦ gj) ◦ gk] The multiplication is associative

Identity [gi ◦ E = E ◦ gi = gi] There exists a unique identity element E

Closure [gi ◦ gj = gk such that gk ∈ G] The group is closed, the multiplication of

two elements produces an element which is a member of the same group

Inverse [gi ◦ g−1
i = g−1

i ◦ gi = E] Every element gi has an inverse g−1
i

Some groups have the additional property of commutation and are termed abelian,

the non-commutative groups are referred to as non-abelian. Commutation satisfies

the relation that the product of two elements in the group is the same regardless of

the order in which they are combined.

Each space group contains a set of symmetry operations gn which act on a

general position vector {x, y, z} in the cell, which is defined with respect to the

crystallographic axes {a, b, c}. The symmetry elements can be described by a com-

bination of unitary transformation matrix R and a translation τ , such that the

position 3-vector x can be related to x′ as x′ = {R|τ}x = Rx+ τ . The symmetry

elements gn which leave the crystallographic unit cell unchanged under their action

form the paramagnetic space group G0.

The effect of applying a symmetry operation on an atom and its magnetic mo-

ment is to simultaneously change the atom’s position and moment direction. The

magnetic moment is an axial vector, i.e. one which does not change under an

inversion operation. Conversely, polar vectors are reversed by an inversion. The

symmetry arguments presented hereafter for the magnetic structure can equally well

be applied to the problem of phonon modes, whose origin – atomic displacements

– are polar vectors. Both polar and axial vectors have the same transformation

properties for rotations, as illustrated in Fig. 2.2.

The paramagnetic little group Gκ is a subset of elements within the G0 group

(Gκ ⊆ G0) which leave the propagation vector invariant under operation R. The

star of κ is defined as the set of non-equivalent propagation vectors produced by

the action of symmetry elements of the space group. The set of matrices which
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Axial

Polar

Figure 2.2: Polar and axial vectors under improper rotations. Diagram to
show the difference between polar and axial vectors under an inversion operator ⃝.

describe the transformation of the magnetic structure by symmetry elements in

the Gκ group is the representation of Gκ. However, it is convenient to transform

the representation of Gκ into the irreducible representations which are orthogonal

to one another. A character table can be constructed by considering the effect of

the symmetry operations within Gκ on the magnetic structure |Ψ⟩ for each of the

irreducible representations. The structure should transform as R(g)|Ψ⟩ = χ(g)|Ψ⟩,
where χ is the character and can in general be complex.

The magnetic representation Γmag is the result of the symmetry operations on

magnetic (axial) and position (polar) vectors. The two effects are independent and

can be treated separately. The symmetry elements of group Gκ permute the atomic

positions such that,

gnxi = xj . (2.41)

It is possible that the symmetry operation takes the atom outside of the zeroth

unit cell. In such case, a phase factor of eiκ·(xj−xi) is required. The matrix which

identifies the permutation of atom labels and a phase change is the permutation

representation Γperm.

The magnetic moments must obey the axial vector property and remain invari-

ant under an inversion. Therefore, the magnetic vector of an atom µ = (µa, µb, µc)

is related to the rotational part of the symmetry element of Gκ as,

µ′ = |R|Rµ, (2.42)

where |R| is the determinant of R required to conserve the symmetry of the axial

vector under improper rotations. The axial representation Γaxial relates how the

moment vector is altered by the symmetry operations and is a 3 × 3 matrix. The

character of permutation and axial vector representations is simply given by the

trace of the respective representations. The magnetic representation Γmag is then a

tensor product of the permutation and axial representations,

Γmag = Γperm × Γaxial, (2.43)

χmag = χpermχaxial, (2.44)
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where Γmag has dimensions of 3N × 3N . Any magnetic representation is reducible

to block-diagonal form by a summation over the irreducible representations Γν ,

Γ1µ1 + Γ2µ2 + . . .+ Γνµν =


Γ1 0 . . . 0

0 Γ2 . . . 0
...

...
...

0 0 . . . Γν



µΓ1

µΓ2

...

µΓν

 . (2.45)

Each of the matrices Γν acts only on a subspace of 3N -spin components µΓν . The

magnetic representation can then be described as,

Γmag =
∑
ν

nνΓν , (2.46)

nν =
1

n(Gκ)

∑
g∈Gκ

χmag(g)χΓν (g)∗, (2.47)

The value of nν tells us how many distinct basis vector we can expect for each

irreducible representation. The basis vectors ψ are calculated using the projection

operator technique by using a trial functions along crystallographic axes ma =

(1, 0, 0), mb = (0, 1, 0) and mc = (0, 0, 1). The projection operator formula to find

the basis vector ψ for magnetic representation Γν is given as,

ψαν =
∑
g∈Gκ

χ∗
ν(g)

∑
n

δn,gn |R(g)|R(g)mα (2.48)

where χ(g) is the character of the little group Gκ. In general, any linear combination

of the basis vectors will have the symmetry of the irreducible representation. The

moment distribution Mj of jth atom can be expressed as the Fourier transform of

the linear combination of basis vectors Ψj =
∑

αCαψα,

Mj =
∑
κ

∑
α

Cαψαe
−iκ·τ , (2.49)

where Cα, which can be complex, is the coefficient describing the mixing of the

basis vectors and the summation is taken over all possible propagation vectors κ.

This can lead to the unphysical result of a complex moment on an atom. The basis

vectors can be brought into a form in which they are completely real by forming

a linear combination of each basis vector with a basis vector whose ordering is

described by −κ. These basis vectors are the complex conjugates of +κ deduced

from the projection of test functions [68],

Mj =
∑
α

(
Cαψαe

−iκ·τ + C∗
αψ

∗
αe

iκ·τ ) , (2.50)



2.3. Representation analysis of magnetic structures 43

which is equivalent to,

Mj = 2
∑
α

|Cα|v̂α cos (κ · τ + ωα + θα) , (2.51)

where the basis vectors in a direction v̂ can be expressed as ψ = e−iωv̂ and the

complex coefficient as C = |C|e−iθ. The phase contribution ω is restricted by the

symmetry of the space group, whereas θ is a free parameter.
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2.4 Instrumentation

The field of neutron scattering techniques is vast and the choice of instruments

depends on the problem which is tackled. The majority of the work in this thesis

was carried on triple-axis spectrometers: TASP at SINQ, Paul Scherrer Institut

(PSI), Switzerland and IN22 and IN8 at Insitut Laue-Langevin (ILL), France. The

time-of-flight measurements were carried out using the MAPS spectrometer at ISIS,

UK.

2.4.1 Neutron sources

There are two methods of high flux neutron production for use in scattering ex-

periments – spallation (PSI, ISIS) and reactor sources (ILL). A spallation source

produces relatively lower flux of neutrons than a reactor source but with a broad

range of energies. Retrospectively, the spallation process is about an order of mag-

nitude more efficient in producing neutrons [69]. In order to produce neutrons by

this method, protons are accelerated to high energies in pulses before colliding with

a heavy metal target. The proton beam can be produced in a number of ways, such

as [49],

(i) Linear accelerators such as LAMPF at Los Alomos. However, the long pulses

or high frequencies cannot be used effectively in neutron scattering experi-

ments. Particle storage rings are required to compress the pulses.

(ii) Cyclotrons such as SINQ at PSI produce continuous neutron beam by the

spallation reaction.

(iii) Synchrotrons as used at ISIS where are H− ions are initially accelerated by

linear accelerator which then injects protons into the synchrotron for further

acceleration. Typically an initial pulse width of approximately 1µs at a fre-

quency of 10–50 Hz is used in the neutron production [46].

The fragmentation of the target due to collisions with the protons produces high

energy neutrons. At SINQ, the target is located inside a heavy water moderator

tank which slows the neutrons down to required energies. The resulting neutrons

are then guided through beam lines to the instruments.

The alternative method to produce neutrons is through controlled fission pro-

cess in specially designed research reactors. The uranium-235, which comprises as

only 0.7% of the naturally occurring uranium undergoes fission when bombarded

by thermal neutron, producing on average 2.4 fast neutrons and releasing approxi-

mately 177 MeV of energy per fission. One of the equations for the fission process

may be written as

235
92 U + nthermal → 144

56 Ba + 89
36Kr + 2.4nfast + Q (2.52)

Neutrons produced from the reaction are similarly moderated to a particular

temperature with an energy profile described by Maxwell-Boltzmann statistics with
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an effective temperature of around 300 K, they are always higher than the physi-

cal moderator temperature as true equilibrium is never achieved in a finite sized

moderator [49]. The Maxwellian peaks in intensity at an energy of about 25 meV

for a room temperature moderator [49]. Research reactors are not designed to pro-

duce electricity and therefore have very small nominal thermal power compared to

nuclear power plants. The radiation protection is provided by borated concrete

and steel structure which surrounds the reactor. Some of the moderated neutrons

escape the core region to be used for neutron scattering experiments.

Thermal neutrons have energies in the range of 5–100 meV. However, using

liquid H2 or CH4, the neutrons can be moderated for studies with cold neutrons

(T ≈ 20 K) of 0.1–10 meV [46]. Spallation sources have a large epithermal neutron

contribution (>100 meV) than reactor based ones and are suitable for exploring

these energies. However, a moderator such as graphite heated to 2400 K, as used

at ILL, can shift the neutrons to the hot energy range.

2.4.2 Triple-axis spectrometer

The triple-axis spectrometers are capable of measuring very precisely the change

of momentum and energy of neutrons that scatter from samples. This is useful

in looking at excitations in the crystal such as spin-waves or when high resolution

elastic scans are required. As a result this technique has been used for decades in

understanding of condensed matter systems. A typical spectrometer configuration

is shown in Fig. 2.3.

The initial neutron beam is polychromatic. The incident neutron wavevector

ki is selected by Bragg reflections on a single-crystal monochromator. Different

wavevectors can be chosen by varying the scattering angle 2θM and thereby the

neutrons which fulfil the Bragg scattering condition. Typically, the monochromator

and analyser are made of pyrolytic graphite (PG), Cu, Si or Heusler crystals. The

later are particularly important when spin-polarising the neutron beam. The scat-

tered neutrons can then be selected in analogous fashion by using reflections from

the analyser which correspond to the kf wavevector.

The monitors are simply low-efficiency detectors. They are placed along the

neutron beam path to normalise the counts in the detector and serve as a check for

certain spurious scattering (see below). Typically 3He gas single-detectors are used

to measure the number of counts for a given monitor rate. When a neutron enters

the detector, it will be absorbed by 3He and emit a proton, as per the reaction,

n + 3He → 3H + 1H + Q, (2.53)

where Q = 0.76 MeV. The protons ionise the gas and the electrons produced drift

towards the central anode. The signal is multiplied by a Townsend avalanche and

the count is registered. The 3H nucleus eventually decays to form another 3He

nucleus and so the detector is self sufficient. However, due to a finite relaxation

time, the detector signal saturates when neutron flux is too high.
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Detector

Sample in
cryostat

Slits

Filter or precession
coils (optional)

Analyser

Neutron beam

Monochromator

2θA

2θM
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kf

Figure 2.3: Schematic of a triple-axis spectrometer. The neutrons contributing
to the signal at the detector are shown by the red line. The monochromator, analyser
and sample are able to rotate to achieve the required momentum and energy transfer.
In order to eliminate higher order neutron wavelengths, a Be or graphite filter can be
mounted. Monitors are placed between monochromator–sample and sample–analyser
to normalise the detector counts and as checks for spurious scattering. In addition
to this, in polarised neutron scattering experiments, precession coils can be added to
finely adjust the incident and reflected neutron polarisation.

The measurements of a given (Q, E) point can be performed in an infinite num-

ber of ways due to the flexibility of the instrument configuration. However, in reality

not all configurations are equivalent as they lead to different intensity or resolution

characteristics. The quantity which we measure in neutron scattering experiments

is the double-differential cross-section with respect to solid angle Ω and scattered

neutron energy Ef ,
d2σ

dΩ dEf
=
kf
ki
S(Q, E), (2.54)

where the response function S(Q, E) is the physical quantity of the sample which we

wish to extract in neutron scattering experiments. Generally, the final wavevector

kf is held fixed and ki is allowed to vary. This is for a number of good reasons.

Often varying ki results in a decreasing incident neutron flux on the sample. Also,

in qualitative analysis of the integrated intensities in constant-Q scans, the intensity
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is proportional to the factor F (kf) which is given as [46],

F (kf) = RA(kf)k
3
f cot θA, (2.55)

where RA is the reflectivity of the analyser and θA is the scattering angle, defined

in Fig. 2.3. This factor accounts for the changes in analyser response and resolution

volume as a function of kf . Therefore, in instrument setup where kf is varied, a

significant kf -dependent correction correction must be taken care of. Over a large

range of kf , the analyser reflectivity will also become important. The variable-kf
mode is useful in measurements which require a very low background as higher-order

neutrons can be filtered out of the incident beam [46].

By contrast, in the fixed-kf scattering mode, which is more frequently used,

the factor F (kf) becomes constant. That is not to say that the resolution volume

is not changing but rather, as the incident beam monitor efficiency is inversely

proportional to ki, the neutron count rate normalised to the monitor counts is then

directly proportional to the response function S(Q, E), from Eq. 2.54.

2.4.2.1 Spurious signals

The beam size is typically larger than the sample mounted in the cryostat, therefore

some neutrons can scatter off the cryostat wall or sample holder. This is undesirable

as it may produce spurious signals. Slits or diaphragms are placed before and after

the sample along beam path to reduce this effect and are adjusted in size for optimal

count rate at detector.

In the absence filters in the beam, higher-order neutrons can create spurious

diffraction peaks when the analyser and monochromator are of the same crystal. A

series of diffraction peaks will then be observed corresponding to the fundamental

wavevector and higher-order harmonics which fulfil the Bragg scattering condition.

In inelastic neutron scattering, accidental reflections can occur due to diffraction of

different harmonics at the monochromator (with wavevectors 2ki, 3ki,. . .) and anal-

yser (with wavevectors 2kf , 3kf ,...). The contribution of the unfiltered harmonics

to the monitor count-rate (in the constant-kf mode) can lead to scan profiles being

distorted. The harmonics can also lead to spurious signal when nki = mkf with

n,m = 1, 2, 3, . . . due to elastic (coherent or incoherent) scattering from the sample

(or its environment) [49]. For identical monochromator and analyser crystals, a

spurious reflection will occur when the spectrometer is set for an energy transfer,

Espurion =

(
1 − n2

m2

)
Ei. (2.56)

The false-peak conditions can therefore result in a large, sharp peak at a distinct

energy transfer. To avoid this, a useful condition of working with 2/3 < ki/kf < 3/2

can be considered [49]. An inelastic scattering event may also occur due to phonons

in the monochromator or analyser (thermal diffuse scattering). This can lead to a

strong signal if the beam is scattered elastically in the sample.
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A number of artifacts can arise from the sample environment. Most trivial

example is Bragg scattering from the sample holder or cryostat. Typically Al is used

for many applications in neutron scattering experiments the neutron beam will be

Bragg scattered. Finally, it is worth mentioning that condensation of He exchange

gas can be observed by inelastic neutron scattering. Although the scattering cross-

section of 4He is low, with enough sensitivity it can lead to an inelastic temperature-

dependent background [46].

2.4.2.2 Filters

To eliminate the unwanted spurious scattering it is also useful to use pyrolytic

graphite or cooled Be to suppress higher order harmonics. For thermal neutrons, a

PG filter can effectively suppress the second order of neutrons of particular wavevec-

tors, k = 2.66 Å−1 and 4.1 Å−1. The polycrystalline Be cooled below 80 K only

transmits neutrons with k < 1.57 Å−1 [70]. Cooling of Be is required to reduce the

inelastic phonon scattering. Such filter is useful when working with neutrons in the

cold energy range.

2.4.2.3 Resolution function

In analysing the neutron scattering data it is important to properly take into ac-

count the experimental resolution. The calculation of the resolution function is

rather complicated as it depends on many instrument parameters and generally

an anisotropic four-dimensional ellipsoid in (Qx, Qy, Qz, E)-space is used in the ap-

proximation. The details are discussed at length in Ref. [46] and programs such as

ResLib can be used to calculate the resolution function of triple-axis spectrometers

[71].

The calculations involve determining the reciprocal space distribution functions

pi(ki) and pf(kf) which describe the transmission of the monochromator and anal-

yser arms, respectively. The measured intensity at nominal position (Q0, E0) is

then given in general by a four-dimensional convolution,

I(Q0, E0) = N⟨A(ki)⟩
∫
R(Q−Q0, E − E0)S(Q, E) dQdE, (2.57)

where N is the number of particles in the irradiated sample volume and ⟨A(ki)⟩
is the average source spectrum function and the normalised resolution function is

given by, ∫
R(Q−Q0, E − E0) dQdE =

∫
pi(ki)pf(kf) dki dkf . (2.58)

In an experiment there is always a compromise that has to be reached between

highest possible resolution and sufficiently short counting time. Focusing the neu-

tron beam can be used to increase the flux on the sample. A vertical focusing

monochromator increases the beam divergence and can allow for a flux increase

of around four times without seriously deteriorating the in-plane momentum and
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Figure 2.4: Polarisation analysis setup using MuPAD. The zero-field chamber
setup used in spherical neutron polarimetry is shown centred on the sample (6) inside a
cryostat (5). The polarisation of the incident spin-polarised neutrons is maintained by
guide-fields before (1) and after (9) the sample. The neutron moments can be rotated
into arbitrary direction by the Helmholtz coils (2) and (7) which generate a magnetic
field in orthogonal directions. As the spectrometer moves to access different scattering
wavevectors Q, the instrument arms (3) and (8) together with the shielding of the
sample space also change position. The Cartesian x, y, z coordinate system, usually
adopted in describing polarisation analysis, is also plotted. The standard definition
is used where x is parallel to scattering wavevector Q. The z axis is chosen to be
perpendicular to the scattering plane and y completes the right-handed axes.

energy resolution [46]. In similar fashion a vertically bent crystal can be used as an

analyser. A horizontally bent monochromator or analyser will degrade the in-plane

momentum. This is sometimes acceptable when studying short-ranged magnetic

correlations whose response is weak and broad, for example.

2.4.3 Polarimetry using triple-axis spectrometer

In the preceding section we have only considered using the triple-axis spectrometer

to analyse the change in momentum and energy of an incident neutron. However,

since neutrons carry a magnetic moment, additional information can be extracted

about a system by looking at the change in the spin-state of the neutron using

spherical neutron polarimetry.

Various techniques have been developed for producing and analysing polarised

neutron beams. The most common methods are (i) diffraction from single-crystal

polarisers, (ii) reflection from magnetised thin films or supermirrors and (iii) spin-

state selective absorption by 3He [56].

Single-crystal polarisers An applied magnetic field saturates magnetic moments

in a centrosymmetric crystal such that the moments are perpendicular to Q.

From Eqs. 2.34 and 2.35, an initially unpolarised neutron beam (Pi = 0) can
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be fully polarised provided |M⊥| = |N | [56]. Conversely, the case of |M⊥| = 0

leaves the polarisation of the neutron ensemble unchanged.

Supermirrors The initial beam polarisation is obtained using total reflection of

neutrons from a magnetised ferromagnetic thin film, the critical angle is given

by

θ±c = λ
√
n(b± p)/π. (2.59)

Here n denotes the particle density and b and p are the nuclear and magnetic

scattering lengths, respectively. The reflection angle of θ−c (θ+c ) corresponds

to neutrons with (anti)-parallel to the direction of magnetisation of the film.

The critical angle can be increased by constructing supermirrors of alternating

ferromagnetic and non-magnetic layers.

3He spin filter These filters use optical pumping of meta-stable 3He whose trans-

mission is polarisation dependent. They allow a wider energy band of neutrons

to be polarised, however, the efficiency of the filters decreases with time and

they must be replaced [56].

The first spherical polarisation analysis setup CryoPAD was developed at ILL

and was used in diffraction measurements of complicated magnetic structures [72,

73]. This setup was later modified to allow for inelastic polarised neutron scattering

[74, 75]. The region around the sample is shielded from external magnetic fields by

double Meissner shields of Nb. Incident neutron are spin-polarised by a Cu2MnAl

Heusler crystal. Nutation and precession fields then rotate the neutron spin into

an arbitrary direction. An alternative to CryoPAD is the MuPAD instrument [76].

Instead of using the Meissner-Ochsenfeld effect of a superconductor to expel the

magnetic field out of the sample volume, a shielding composed of highly permeable

material is used.

The MuPAD device is shown in Fig. 2.4. The polarisation of the incident neu-

trons is conserved using a magnetic guide field. Without this, stray fields will

quickly depolarise the neutron beam. Precession coils are placed before the sample

which allow for the manipulation of the neutron spins into any direction by the

application of transverse magnetic fields. Scattering of the neutrons by the sample

will will change the initial spin state of the neutron. The spin state of the scattered

neutrons can be analysed by rotating the magnetic moments to examine a particular

polarisation channel. The number of counts is then recorded by the detector.

In this thesis both MuPAD and CryoPAD have been employed to perform spher-

ical neutron polarimetry. This technique is valuable as analysis of the change in

the neutron spin-state provides us with additional information on the scattering

processes in the sample. It is a very good method for unambiguously separating

the coherent magnetic and nuclear scattering contributions to a signal at a given

(Q, E) position. The method suffers from the serious drawback that ferromagnetic

materials cannot be analysed as these will rapidly depolarise the beam. Although

this can be useful in showing a material entering a ferromagnetic phase, it can also
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Figure 2.5: Schematic diagram of beam depolarisation in a measurement
of a nuclear reflection using polarised neutrons. An initially perfectly polarised
neutron beam |↑0⟩ will be depolarised such that most neutrons will be in spin-up |↑1⟩
but some will be in the spin-down |↓1⟩ state before reaching the sample. Similarly,
when the scattered neutrons are analysed, neutrons in the |↑1⟩ state can be reflected
with the spin in the |↓2⟩ state. Therefore, a signal will be measured in the spin-flip
channel which is not related to the sample.

be detrimental to analysis of crystals with even small ferromagnetic impurities from

the growth process. Spherical neutron polarimetry is therefore largely restricted to

studies of antiferromagnets. In addition, in order to use polarised neutron analysis,

a large decrease in the count-rate has to be sacrificed – usually a factor of around

20 compared to unpolarised scattering process.

2.4.3.1 Finite spin-flip ratio correction

In practice, due to stray magnetic fields a neutron beam will never be 100% polarised

such that an incident and scattered beam will have polarisation efficiency 0 <

f1, f2 < 1, respectively. This will cause some neutrons to be scattered into the

wrong channel such that a purely nuclear (magnetic) reflection will have a finite

component in the spin-flip (non-spin-flip) channel. However, this effect can be

compensated for provided one measures a Bragg reflection which is either purely

nuclear or magnetic in origin. It is useful to define the spin-flip ratio, R for a nuclear

reflection as

R =

(
INSF

ISF

)
measured

=
1 + f1f2
1 − f1f2

, (2.60)

by measuring the intensity in the spin-flip ISF and non-spin-flip channels INSF. A

flipping ratio of 10 will then correspond to a neutron beam polarisation of 82%. The

corrected intensity coming from the sample in each channel can then be related as

follows, (
INSF

ISF

)
corrected

=
1

R− 1

(
R −1

−1 R

)(
INSF

ISF

)
measured

. (2.61)

This is particularly important when the flipping ratio R is small or ratios of inten-

sities are needed to calculate polarisation matrices.

2.4.4 Time-of-flight spectrometer

An alternative to the triple-axis spectrometers, in which initial and final neutron

wavevectors are selected by Bragg reflections, is the time-of-flight technique. Unlike
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Figure 2.6: Schematic diagram of MAPS spectrometer at ISIS as an ex-
ample of a time-of-flight instrument. The initial neutron beam is pulsed and two
choppers as used to select a particular incident wavevector ki. The scattered neutrons
are recorded by a large array of position sensitive detectors located some distance away
from the sample. Monitors (not shown) are placed before background chopper, after
Fermi chopper and at very end of the beam after the detectors. The scattering triangle
for this setup is shown on the top right.
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the triple-axis spectrometer which probes a specific point in (Q, E) space, the time-

of-flight technique is capable of collecting many energy spectra simultaneously for a

wide range of wavevectors by using position sensitive detector (PSD) arrays. Pulsed

sources are therefore ideally suited for time-of-flight techniques. Although a reactor

source can be adopted to use time-of-flight if the source beam is pulsed by using a

chopper or a series of choppers.

The time-of-flight measurements can be made in two settings of geometry:

Direct geometry spectrometer The incident neutron energy Ei is defined by a

crystal or a chopper and the final energy Ef is found from time-of-flight.

Indirect geometry spectrometer The sample is illuminated by a polychromatic

beam and Ef is defined by a crystal or filter. The incident energy Ei is

determined by time-of-flight.

Only a direct geometry spectrometer has been used in the work presented in this

thesis and will be discussed further.

In the classical limit where the neutron wavelength is much smaller than the

slits the neutron encounters along its path, neutrons can be treated as an ensemble

of particles of mass mn traveling with a velocity v for a time interval of t. The

velocity of thermal neutrons is of order of km/s and consequently their energy can

be determined by measuring their time-of-flight over a distance of a few meters.

This is achieved as follows. Figure 2.6 shows the typical time-of-flight setup using

the MAPS instrument at ISIS as an example. An initial pulse of neutrons from the

spallation source contains neutrons with velocities ⟨v⟩±δv, where ⟨v⟩ is the average

velocity and velocity distribution is δv. As the neutrons propagate the pulse width

will increase. To reduce the background initial background choppers are used to

block fast neutrons produced in the instant of proton spallation. A Fermi chopper is

then placed to monochromate the incident beam further. The chopper is a rotating

drum synchronised to the neutron pulse which consists of layers of highly absorbing

(such as B) and transparent material (such as Al). Only a narrow range of neutrons

with desired energy are allowed to pass, with the remainder of neutrons absorbed

by the chopper. The energy width of the pulse is varied by adjusting the frequency

of the rotation of the chopper. Using a higher frequency will improve the energy

resolution but reduce the beam intensity.

The monochromatic beam is then incident on the sample and will be scattered

into the position sensitive detector banks. The neutron position can be determined

to within about 1 cm and the neutron arrival time is measured to a precision of

around 1 ns. When the chopper–sample and sample–detector distances are L1 and

L2, respectively, and the neutron transverses this distance in a time interval of t12,

the final energy can be found by solving,

t12 =
(mn

2

)1/2( L1

E
1/2
i

+
L2

E
1/2
f

)
. (2.62)
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The scattering wavevector can then be calculated since the position of the detector

is known. However, unlike in the triple-axis experiments, the momentum and energy

transfer are coupled. Resolving the scattering wavevector parallel and perpendicular

to ki as (Q∥, Q⊥), it can be shown that,

E = − ~2

2mn

(
Q2

∥ +Q2
⊥ + 2Q∥Q⊥ cot 2θ

)
, (2.63)

where 2θ is the angle between ki and kf . Therefore, for a given Q⊥ the predeter-

mined values of Ei and Ef can be used to calculate Q∥. The variation of Q∥ with E is

not a problem when analysing two-dimensional systems, as in the case of La2CoO4

which will be discussed later. When the dispersion is three-dimensional, rotation

of the crystal about the axis perpendicular to the scattering plane is necessary and

software is available to reconstruct the full (Q, E) excitation spectrum.

The resolution function given in Eq. 2.57 also holds for the time-of-flight spec-

trometers. However, a good approximation to the energy dependent part of the res-

olution can be calculated using the width of the elastic line. Treating the wavevector

and energy resolutions separately. At a fixed detector position, the uncertainty in

the energy transfer can be expressed as,

δE =
∂E

∂Ei
δEi +

∂E

∂Ef

∂Ef

∂Ei
δEi. (2.64)

In order for neutrons to arrive at the same time t12, from Eq. 2.62, Ei and Ef are

coupled. Using the width of the elastic line, δE0, we can eliminate δEi from Eq. 2.64

to obtain,

δE =
δE0

1 + L1/L2

[
1 +

L1

L2

(
Ef

Ei

)3/2
]
. (2.65)

The wavevector resolution is to mainly dependent on the beam divergence δϕ for

an incident neutron of energy Ei, the wavevector broadening can be approximated

as,

δ|Q| ≈ kiδϕ. (2.66)

Another advantage of time-of-flight measurements is that the excitation spec-

trum can be readily converted into absolute units which can then be compared to

theoretical models. This can be achieved by comparing the data measured to the

same instrument parameter measurements on a standard V calibration.

2.5 Bulk properties measurements

Magnetisation and pyroelectric current measurements are two of many bulk tech-

niques. These two methods were employed in the work presented in this thesis.

Magnetisation measurements are important in characterising the bulk magnetism

of compounds as a function of temperature and applied magnetic field. This can

be used to identify phase transitions and can be combined with neutron scattering
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measurements to provide a more comprehensive understanding of the system. Pyro-

electric current measurements provides us with information about the ferroelectric

order in a compound. This form of measurement probes the dielectric properties of

the material which cannot be deduced from neutron scattering measurements.

2.5.1 SQUID magnetometry

The magnetic susceptibility was measured using a Quantum Design MPMS XL Sup-

erconducting Quantum Interference Device (SQUID). The SQUID magnetometer is

an instrument which is very sensitive to small magnetic fields and operates on the

principle of Josephson junctions to measure trapped flux quanta. The magnetic dy-

namic susceptibility, as measured by neutrons, can be directly related to the static

susceptibility χ′
0 measured in a SQUID magnetometer by [77],

χ′
0 = lim

Q→0

1

π

∫ ∞

−∞

χ′′(Q, E)

E
dE, (2.67)

where we have made use of the Kramers-Kronig relation to relate the real and

imaginary parts of the general susceptibility [52].

The magnetisation of a sample can be measured provided a magnetic field is

applied to induce a net magnetic moment in the sample. The SQUID is capable of

measuring the magnetic susceptibility of samples from 400 K to a base temperature

of 2 K. Measurements can be made in a static magnetic field from about 10 G up to

a maximum of 70000 G.

An assembly of second-derivative detector array, isolation transformer and SQUID

sensors form the basis of the magnetic field measurements. The sample is placed

inside detection loops which are configured as a highly-balanced coil set made from

superconducting wire. Pairs of coils are wounded in opposite senses in order to

reduce noise in the detection unit. The pick-up coils in which a current is induced

by the sample are isolated from the SQUID loop by a transformer. The supercon-

ducting transformer includes a small heater to drive the SQUID input circuit into

the normal state in order to eliminate persistent currents induced in the pick-up

loops when changing the applied magnetic field. The SQUID device then measures

the magnetic flux. A constant biasing current is maintained in the device, the mea-

sured voltage oscillates with changes in phase between two Josephson junctions and

in turn depends on the change in the magnetic flux.

There are several techniques which can be used to measure the sample magneti-

sation. The reciprocating sample option (RSO) and direct current (DC) methods

have been employed in the work presented in this thesis. In RSO measurements, the

sample is oscillated from the centre of the main sensing coils. The DC method in-

volves moving the sample through the detector coils. In both methods, the SQUID

output is measured as a function of the sample’s position. The resulting signal

is fitted using a theoretical curve for a point-like sample. The amplitude of the

recorded signal is taken to be the magnetisation of the sample. Since the sample

is usually mounted inside a plastic straw, moving the sample through the detector



2.5. Bulk properties measurements 56

coils to a large extent eliminates the background contribution from the straw. The

RSO technique is more sensitive and in general is used in preference to the DC

method.

Operating at large applied fields can cause a residual magnetic field to persist in

the superconducting magnet when measuring in low magnetic fields. Therefore, it

is necessary to reset the magnet by heating a small portion of it. A chain reaction

drives the entire magnet into the normal state thereby quenching it. This reduces

the remnant field to less than 2 G.

2.5.2 Measurements of the electric polarisation

Measurements of the electric polarisation involve the measurement of the pyroelec-

tric current as a function of temperature. Small, plate-like samples are used and

electrical contacts are made to opposing flat faces of the crystal. The custom sample

insert has been used together with a Quantum Design PPMS, which acts as a cryo-

stat. The measurements are made as follows. A large electric field is applied using a

high-voltage power supply at a temperature above the ferroelectric phase transition

in the paraelectric phase. The sample is then cooled with the applied electric field

into the ferroelectric phase. On reaching a base temperature, the electric field is

switched off.

It is important to remove the charge deposited onto the surface of the sample

due to the application of the electric field. The sample is therefore usually left

to discharge for approximately 30 min. The sample can then be warmed up and

an electrometer measures the pyroelectric current as function of temperature. The

electrometer is highly sensitive and allows currents of order 10−12 A to be measured.

This introduces practical issues of eliminating possible stray fields or ground loops.

The temperature dependence of the pyroelectric current is measured upon warming

(or cooling) out of the multiferroic phase into the paraelectric one. At the phase

transition, a sharp spike is usually observed in the pyroelectric current Ie. The

electric polarisation Pe can then be found for a parallel plate arrangement by inte-

grating the pyroelectric current measured as a function of time t and temperature

T as,

Pe =
Qe

A

=
1

A

∫
Ie

dt

dT
dT, (2.68)

where Qe and A are total charge released and the surface area of the sample, re-

spectively. The warming (or cooling) rate of the sample after the field has been

removed is set to be very slow e.g. 1 K/min to allow the sample to thermalise and

to obtain more points around the sharp phase transitions. Since the cryostat may

not warm at a uniform rate, especially at the start of the measurement, the rate

of heating (or cooling) has to be accounted for in the integration. A third-order

polynomial has been found to provide a good approximation this effect.
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3.1 Introduction

The evolution from antiferromagnetism to high-temperature superconductivity with

carrier doping of the layered copper oxides [15] has inspired a vast literature on the

electronic, structural, dynamical and chemical properties of related materials. It has

become clear from these studies that superconductivity and commensurate antifer-

romagnetic order are only two out of many different competing ordering tendencies

found in systems of strongly interacting electrons.

Nematic phases in doped Mott insulators are characterised by unidirectional

density-wave states involving combined charge and spin order. Such ‘striped’ phases

were first identified many years ago in hole-doped (La, Nd)2CuO4 (Ref. [78]) and

La2NiO4 (Refs. [79–82]), but their significance for high-temperature superconduc-

tivity has been the subject of a continuing debate. Although much of the focus

has been on the cuprates, the nickelates have contributed to this debate on ac-

count of their relatively well correlated and stable stripe order which is amenable

to experimental investigation. One drawback, however, is that holes localised on

Ni3+ ions in hole-doped La2NiO4 carry a spin which can interact magnetically both

with other spins in the charge stripes and with the surrounding antiferromagnetic

matrix of Ni2+. The influence of these interacting magnetic degrees of freedom on

the properties of stripes in nickelates has yet to be fully evaluated, although spin

correlations associated with both Ni sites have been observed [83] and there remain

some unexplained features in the spin excitation spectra [84].

Recently, evidence has been presented for the existence of stripe phases in the

layered cobaltate system La2−xSrxCoO4 (Ref. [85]), which is isostructural with hole-

doped La2CuO4 and La2NiO4. The cobaltate system has an advantage over the

nickelates in that only the Co2+ site is magnetic. The Co3+ ions adopt the low spin

(S = 0) state at low temperatures and are therefore not magnetically active [86,

87]. Hence, the layered cobaltates offer the chance to investigate the fundamental

interactions and excited states of an ordered stripe phase in which the doped holes

do not possess low-energy spin degrees of freedom.

The aim of the work presented in this chapter is to determine the magnetic

structure of La2CoO4, which is regarded as a canonical S = 3/2 two-dimensional

antiferromagnet. It is interesting to establish whether the magnetic order is a simple

collinear antiferromagnet, as has been assumed up to now, or whether there could

be a more complex non-collinear magnetic order caused by the alternate tilting

of the CoO6 octahedra. Furthermore, in order to understand electronic phases

in La2−xSrxCoO4 we require some basic knowledge of La2CoO4. Although the

structural and magnetic ordering of La2CoO4 has been previously examined, no

measurements of the magnetic excitation spectrum have been reported until now

[88]. Our work has been able to establish the energy scale and characteristics of the

magnetic excitations and to map out the complete spin-wave spectrum in sufficient

detail to extract the values of the dominant exchange interactions.
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3.2 Crystal growth description

A single crystal sample of La2CoO4 with a mass of approximately 5 g was grown in

Oxford by Dr Prabhakaran using the optical floating-zone method. Polycrystalline

La2CoO4 was prepared from high-purity (> 99.99%) La2O3 and Co3O4 by solid-

state reaction. Stoichiometric amounts of the oxides were mixed and reacted at

1050◦C for 48 hours under a flowing atmosphere of CO/CO2 mixed in the ratio 1:10.

A reducing atmosphere is needed to avoid the formation of LaCoO3. The powder

was re-ground and sintered at 1100◦C in a flow of argon for a further 48 hours. No

impurity phases could be detected in the product by x-ray powder diffraction. The

La2CoO4 powder was isostatically pressed into rods of diameter 12 mm and length

120 mm. The rods were sintered in an argon atmosphere at 1250◦C for 24 hours.

Crystal growth was carried out in a four-mirror image furnace (Crystal Systems

Corporation) in flowing argon at a growth speed of approximately 2 mm/hr with

counter-rotation of the feed and seed rods at 25 rpm.

Crystals grown by this method contain an excess of oxygen. To achieve sto-

ichiometry the as-grown crystal was annealed at 850◦C for 72 hours in flowing

CO/CO2 (1:10 ratio). A fragment of the annealed crystal was ground to a powder

and subjected to a thermogravimetric analysis. From the measured weight loss we

determined the oxygen nonstoichiometry to be δ = −0.03±0.02. This suggests that

the crystal is close to the ideal stoichiometry, if anything slightly oxygen-deficient.

3.3 Crystal and magnetic structure of La2CoO4

In common with the stoichiometric La2CuO4 and La2NiO4 compounds, La2CoO4

exhibits three different structural phases [89]:

(i) T > T1 high-temperature tetragonal (HTT), space group I4/mmm;

(ii) T2 < T < T1 low-temperature orthorhombic (LTO) 1 , space group Cmca;

(iii) T < T2 low-temperature tetragonal (LTT), space group P42/ncm.

The tetragonal body-centred unit cell of La2CoO4 is shown in Fig. 3.1(a). The

Co atoms are found in an octahedral environment surrounded by O ions with four

nearest-neighbour O1 sites in the ab-plane of CoO2 and two more displaced O2

ligands along the c direction. The La and Sr atoms are found displaced along the c

direction from the O2 sites which act to separate the CoO2 layers. Throughout this

chapter I shall use the conventional I4/mmm unit cell as a basis for the reciprocal

lattice. The low temperature lattice constants referred to this cell are a = b = 3.91 Å

and c = 12.6 Å.

The structural transition temperatures for La2CoO4 are T1 ≈ 900 K (Ref. [85])

and T2 = 120− 135 K (Ref. [89]). The latter is reported to be first order. The ideal

1The orthorhombic distortion occurs in the ab-plane with cell parameters a and b only differing
by approximately 2%.
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Figure 3.1: Crystal and magnetic structure of La2CoO4. (a) The tetragonal
(I4/mmm) crystal structure of La2CoO4. (b) In-plane magnetic structure of La2CoO4.
The dashed square shows the conventional I4/mmm unit cell of the HTT phase, and
the filled square represents the magnetic unit cell, which coincides with the

√
2 ×

√
2

chemical unit cell of the LTT phase. The exchange interactions used to model the mag-
netic spectrum are indicated. (c) Diagram of the reciprocal space lattice corresponding
to the I4/mmm cell. The filled square indicates the magnetic Brillouin zone centred
on (0.5, 0.5). The dashed lines show the path through reciprocal space along high-
symmetry directions used for detailed analysis of the magnetic excitation spectrum.

Figure 3.2: Tilt of the oxygen octahedra in the LTO phase. The white circles
denote the O located at the vertices of the octahedra surrounding Co ions in La2CoO4.
The red arrows indicates the tilt of the octahedra away from the tetragonal axis and
the conventional unit cell is shown by the dashed line.
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single-layered crystal structure above T1 is distorted by the tilt of the corner-sharing

CoO6 octahedra along the [1, 1, 0] direction, as shown in Fig. 3.2. The rotations

about the [1,−1, 0] direction form an antiferrodistortive structural arrangement

in the LTO and LTT phases. Such tilting is found in other systems of the form

La2MO4 where M is Cu or Ni [89]. The tilted structure forms a periodic arrangement

characterised by a tetragonal unit cell whose in-plane dimensions are
√

2×
√

2 larger

than those of the I4/mmm pseudo-cell. This modulation of the nuclear structure

can be probed by neutron scattering giving rise to weak superlattice reflections.

Refinement of single-crystal neutron diffraction measurements have shown that the

tilt angle is approximately 10◦ for La2CoO4 and 4.2◦ for the related Cu compound

[89]. In the LTT phase the octahedra tilts alternate by 90◦ from one layer to layer

along the c axis.

The transition to magnetic order occurs at TN ≈ 275 K, and a magnetic re-

orientation occurs at T2 coincident with the LTO–LTT structural transition. The

antiferromagnetic structure has an ordering wavevector qm = (0.5, 0.5, 0), with or-

dered moments lying in the CoO2 plane. Assuming collinear order, the difference

between the magnetic structures in the LTT and LTO phases is that in the LTT

phase the moments are perpendicular to qm whereas in the LTO phase they are

are parallel to qm. Another possibility is that the structure is collinear within the

layers but the moment direction rotates by ±90◦ from one layer to the next – fol-

lowing the CoO6 octahedral distortion [89]. In the absence of inter-layer coupling

all these structures have the same energy. Our inelastic neutron scattering measure-

ments (discussed in § 3.7) did not observe any evidence in the excitation spectrum

for inter-layer coupling we will treat the magnetic order as two-dimensional. Fig-

ure 3.1(b) shows the in-plane magnetic order with the moments arbitrarily chosen

to point along the horizontal axis.

3.4 Bulk properties measurements

The temperature dependence of the FC and ZFC susceptibility (χ = M/H) is

shown in Fig. 3.3(a). Both curves show a change in slope at approximately 276 K

consistent with the antiferromagnetic transition, and sharp anomalies at 124 K close

to the temperature T2 at which the LTO–LTT structural transition is expected.

The onset of antiferromagnetism at TN ≈ 276 K is confirmed by the temperature

dependence of the neutron diffraction intensity recorded at the magnetic Bragg peak

positions, shown in Fig. 3.3(b). To estimate TN, the data was fitted to a power law

I ∝ (1 − T/TN)2β, assuming a Gaussian distribution of Néel temperatures about

the mean value ⟨TN⟩ with standard deviation of σT . This function was found to

give a good description of diffraction data near TN in Ref. [89]. The parameters

obtained from our spherical neutron polarimetry data were ⟨TN⟩ = 273.5(5) K, σT =

1.24(7) K and β = 0.186(2). The transition temperatures measured on the La2CoO4

sample are consistent with previously reported values of TN = 275 K and T2 ≈ 135 K

for a nominally stoichiometric crystal [89]. Although there is some discussion in
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Figure 3.3: Temperature dependence of magnetisation in La2CoO4. (a) Field-
cooled (FC) and zero-field-cooled (ZFC) magnetic susceptibility of La2CoO4 recorded
with a measuring field of 1000 Oe applied parallel to the c axis. The magnetic ordering
transition and the LTO–LTT structural transition are indicated by arrows. (b) Tem-
perature dependencies of the (0.5, 0.5, 0) (△, �) and (0.5, 0.5, 1) (•) magnetic Bragg
peak of La2CoO4 showing the onset of magnetic order at TN ≈ 274 K measured in the
xx̄ polarisation channel. The solid blue line shows a power law fit to data with a Gaus-
sian distribution of Néel temperatures. The △ and � symbols denote measurements at
Q = (0.5, 0.5, 0) with lattice parameters corresponding to the LTT and LTO structural
phases, respectively.

the literature about the precise composition of La2CoO4 prepared under different

conditions [89–92], we can at the very least be confident that our crystal is close

in composition to the one used in Ref. [89]. The critical exponent of magnetisation

deduced for La2CoO4 is consistent with materials such as BaNi2(PO4)2, Rb2CrCl4,

K2CuF4 and Cu(pyz)2(BF4)2 which have differing crystallographic structures and

magnetic moments yet have β in the range of 0.18 to 0.26 [93, 94]. Theoretically

it has been demonstrated that β = 0.23 is a universal signature realised in two-

dimensional XY models [93].

The FC and ZFC susceptibility curves separate below 350 K, which is not ex-

pected in the paramagnetic phase. This indicates that the sample contains a small

amount of ferromagnetic impurity. The FC–ZFC separation was not observed in

the as-grown crystal. The most probable explanation is that a tiny amount of ele-

mental Co was formed during the CO/CO2 annealing step. This is consistent with

the slight oxygen deficiency found from the thermogravimetric analysis. As there

is no unexplained secondary signal in the measured neutron scattering spectra this

impurity must be present in very small quantities so is of no consequence to our

neutron results, but it does mean that the susceptibility curves shown in Fig. 3.3(a)

contain a background signal in additional to the signal from pure La2CoO4.
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3.5 Magnetic structure analysis using spherical neutron

polarimetry

Interest in La2CoO4 stems from its crystal structure [Fig. 3.1(a)] which is one of the

isomorphous compounds of La2CuO4. In this section, I shall describe the attempts

to solve the magnetic structure in the LTT and LTO phases using spherical neutron

polarimetry measurements.

3.5.1 Experimental setup

The 5.1 g single-crystal sample was grown by the method described in § 3.2 and is the

same crystal as used for inelastic neutron scattering measurements, § 3.7. The sam-

ple was mounted on a non-magnetic microgoniometer in two orientations to allow

access to (h, h, l) and (h, k, 0) scattering planes. Spherical neutron polarimetry anal-

ysis was carried out using the MuPAD/TASP spectrometer configuration at SINQ,

PSI [76, 95, 96]. The instrument is optimised for neutron wavelength λ = 3.2 Å,

however in order to access high-order reflections, λ = 2.9 Å was also utilised. The

flipping ratio, as measured on the (110) and (002) peaks, was found to be around

17 for both neutron wavelengths used. Therefore, the beam polarisation is suffi-

ciently high that experimental data presented here have not been corrected for this

effect. Furthermore, the high spin-flip ratio demonstrates that the ferromagnetic

impurity found in the susceptibility measurements, shown in Fig. 3.13 (inset), are

negligible. The modelled polarisation matrices take the non-ideal beam polarisation

into account. Complete normal Pαβ and negative P−αβ polarisation matrices were

measured in the LTT phase at 1.6 K and in the LTO phase at 150 K.

3.5.2 Magnetic phase transitions in La2CoO4

Comprehensive analysis of the spin structure has previously been made on a single

crystal of La2CoO4 using unpolarised neutron scattering [89]. It revealed that

La2CoO4 exhibits two antiferromagnetic ordered phases below the Néel temperature

TN and the study attempted to ascertain the details of the crystallographic and

magnetic phases. The nature of the reflections found in La2CoO4 is depicted in

Fig. 3.4. The peaks corresponding to the
√

2 ×
√

2 superstructure are formed by

the tilts of the CoO6 octahedra in the LTO and LTT phases, which breaks the

in-plane symmetry. Owing to the tetragonal crystal lattice symmetry, the magnetic

and superlattice peaks in the LTT phase overlap and since their structure factors

are approximately equal it is difficult to resolve their individual contributions to the

peak intensity when performing unpolarised neutron diffraction. The LTO phase is

simpler in this respect as the magnetic and superlattice peaks will split sufficiently to

be resolved experimentally. The open and filled triangles in Fig. 3.4 denote the two

magnetic domains in La2CoO4 related to each other by a rotation of 90◦ about the c

axis. The measurements by Yamada et al. [89] demonstrate that in the LTO phase,

the magnetic structure is of La2NiO4-type with spins aligned perpendicular to the
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Figure 3.4: Nuclear and magnetic reciprocal lattice of La2CoO4. Schematic
diagram to show the nature of the nuclear and magnetic order present in La2CoO4

in the (h, h, l) scattering plane. The distortion in the ab-plane in the LTO phase is
denoted by the dashed lines forming the reciprocal lattice. In the LTT phase, the
dashed line is coincident with the full line, from Ref. [89].

propagation wavevector qm. The LTT phase is less well understood, it could be

either in the form of a simple collinear La2CuO4 magnetic structure with moments

parallel to qm or more complicated non-collinear spin structure in which moments

along c are rotated by 90◦. A further complication arises due to a residual LTT

structure persisting into the LTO phase and a hysteresis in the LTO phase due to

stacking faults in La2CoO4 [89].

Polarised neutron diffraction measurements collected in the spin-flip and non-

spin-flip x polarisation channels agree with the phase diagram of La2CoO4 proposed

by Yamada et al. [89], see Fig. 3.5. The reflection at Q = (0.5, 0.5, 0) is found to

disappear above the LTT–LTO phase transition. Polarised neutrons confirm that

the peak must be due to magnetic order as, within beam polarisation efficiency

correction, non-spin-flip channel contains negligible counts. The correlation length

is found to be approximately 42 Å along (h, h, 0) and 57 Å along c. This does not

include corrections for the instrumental resolution hence the values of correlation

lengths underestimate the true static correlations. It is therefore clear that the

magnetic order is long-ranged in La2CoO4. No significant change in peak width

(and thus correlation length) has been found in the temperature range investigated,

including close to phase transitions. The temperature evolution of this peak is found

from the counts recorded at the peak position shown in Fig. 3.3(b). The first-order

nature of LTT–LTO phase transition is evident in the sharp discontinuity observed

in the Q = qm. The (h, h, 0) scans in Figs. 3.5(c)–(e) at T > T2 show that the peak
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Figure 3.5: Temperature evolution of superlattice and magnetic order
in La2CoO4 Temperature dependence of reflections at Q = (0.5, 0.5, 0) [(a)–(e)],
(0.5, 0.5, 1) [(f)–(j)] and (0.5, 0.5, 4) [(k)–(o)] from 2 to 300 K. Figures show the the
counts recorded in the non-spin-flip (�) and spin-flip (•) polarisation channels parallel
to Q. Diagram in Fig. 3.4 illustrates that the peaks at Q = (0.5, 0.5, 0) and (0.5, 0.5, 1)
arise from purely magnetic scattering, whereas reflection at (0.5, 0.5, 0) has both nu-
clear and magnetic character. Magnetic phase transition temperature for La2CoO4 are
found to be T2 ≈ 125 K and TN = 234 K.
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does not simply shift in Q but completely vanishes.

The reflection at Q = (0.5, 0.5, 1) does not change significantly at T = T2
and persists in the the LTO phase [Fig. 3.5(f)–(i)]. This peak is also purely of

magnetic origin and therefore reliable when characterising the magnetic structure.

The temperature dependence of this reflection is used to define the onset of magnetic

order in Fig. 3.3(b). Above TN, only weak scattering is observed in the non-spin-flip

channel corresponding to the nuclear superlattice, as shown in Fig. 3.5(o).

Figures 3.5(m) and (n) show that in the LTO phase the magnetic and nuclear

superlattice peaks can be resolved by polarised neutron scattering due to the slight

in-plane orthorhombic distortion of the lattice. This can be understood in terms

of twin domains related by a 90◦ rotation such that the magnetic and structural

distortion modulation wavevectors are orthogonal to one another. In other words,

if it were possible to untwin the crystal in the LTO phase such as by applying uni-

axial pressure, either magnetic or nuclear reflections would appear at (0.5, 0.5, 4).

The transition into the tetragonal phase T < T2 results in nuclear and magnetic

reflections sitting on top of each other and therefore unpolarised neutron scatter-

ing cannot determine the magnetic and nuclear superlattice structure factors at

reflections such as (0.5, 0.5, l) when l is even.

3.5.3 Low-temperature orthorhombic phase, LTO

Polarised neutron scattering measurements were made at 150 K in the (h, h, l) scat-

tering plane. Complete polarisation matrices were shown to have negligible off-

diagonal elements and therefore the measurements have been focused on Pαα com-

ponents only. Measurements were made with incident neutron spin parallel and

antiparallel to the polarisation axes and away from the superlattice reflections de-

picted in Fig. 3.4. In total 30 polarisation matrices were found to give reliable

results with little nuclear contamination, a selection is found in Fig. 3.6. We find

that within the beam polarisation efficiency, the elements take values of ±1. The

reflection measured at Q = (0.5, 0.5, 0) is an exception to this, with elements that

show some depolarisation. However, Fig. 3.5 clearly shows that the reflection at

this position in reciprocal space is extremely weak may not give reliable polarisa-

tion matrix elements.

In trying to understand the spin arrangement we must consider the possible

domains that are energetically equivalent but can give different magnetic struc-

ture factors. To simplify the problem, let us consider a tetragonal crystallographic

structure with magnetic ordering modulated by qm = (0.5, 0.5, 0). From irreducible

representation analysis, the Co2+ magnetic moments are allowed to be orientated

in an arbitrary direction. However, as stated previously, the strong anisotropy con-

strains them to be in the ab-plane. We can consider moments at Co(1): (0, 0, 0)

and Co(2): (0.5, 0.5, 0) within the unit cell to lie either parallel to perpendicular to

qm.

The action of the four-fold rotation about the c-axis allows a magnetic structure

to have qm = (0.5,−0.5, 0) magnetic propagation wavevector, completing the star of
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Figure 3.6: Comparison of polarisation matrices observed and calculated
in the LTO phase. A sample of the polarisation matrices collected at 150 K in the
(h, h, l) scattering plane. The panels to the left show the Pαβ components and on
the right are the respective simulations based on the best fit model described in the
text and corrected for non-ideal beam polarisation. The errors, as deduced from peak
intensities are shown in parenthesis. The red (blue) colours represent +1 (−1) values
of the matrix elements.

the propagation wavevectors. For the LTO phase, we can consider just two magnetic

domains related by a four-fold rotation about c.

The model which best describes the data is shown together with the experi-

mental measurements in Fig. 3.6. The spin structure consists of moments aligned

perpendicular to qm with Co2+ moments at the origin and body centre aligned

ferromagnetically – see Fig. 3.8(b). The magnetic structure model describes the ex-

perimental data with a goodness of fit of χ2
ν ≈ 37. The reflection at Q = (0.5, 0.5, 0)

is predicted to be forbidden. In contrast, experimentally we found a weak reflection

at this position. It is likely to be due to a small amount of LTT magnetic structure

remaining in the LTO phase. Based on the intensity of the (0.5, 0.5, 0) peak, only

approximately 2.5% of the LTT spin structure survives above T2 in the LTO phase.

The incomplete transition was also noted by previous study of La2CoO4 concluding

that a small amount of approximately 5% of residual LTT phase is present above



3.5. Magnetic structure analysis using spherical neutron polarimetry68

T2 [89]. From analysis of the LTT phase, the reflection at Q = qm is also by far

the strongest. The analysis of the polarimetry data recorded at this and other scat-

tering wavevector is thus unlikely to be aversely affected by this contribution. The

best-fit magnetic structure is agrees with that found in Ref. [89].

Other spin structures were also considered but these were found to give signifi-

cantly worse fits. For example, setting the spins to be aligned along the a axis, gives

a fit of χ2
ν = 26000. We can conclude that the the polarisation matrices recorded

in the LTO phase place tight constraints on the magnetic structure.

3.5.4 Low-temperature tetragonal phase, LTT

We now turn to the analysis of the low-temperature tetragonal phase in La2CoO4

below T2 ≈ 125 K. The refinement of the magnetic structure in this phase is more

complicated due to overlap of the superlattice and magnetic reflections (Fig. 3.4).

Complete positive and negative polarisation matrices were recorded at 1.6 K.

Two scattering geometries were employed to probe the (h, h, l) and (h, k, 0) reflec-

tions. Figure 3.7 shows a selection of the polarisation matrices collected. The prop-

agation wavevector in LTT phase is unchanged from LTO but moments at Co(2)

position can be at 90◦ to the moments in the basal plane. Taking non-collinear

magnetic moment arrangement into account means that more domains must be

considered which can give inequivalent magnetic structure factors. The tetragonal

crystal symmetry of La2CoO4 and strong anisotropy restrict the number of pos-

sible domains. The symmetry operations of the identity and mirror plane along

a = b leave the propagation wavevector unchanged. The other κ-domain contains

the four-fold rotation about c-axis and mirror in the ac-plane, which transform the

wavevector into (0.5,−0.5, 0). There are therefore two κ-domains each containing

two spin-domains for a total of four domains that must be taken into account.

The comparison between the magnetic structure model and experiment cannot

be compared without also considering the effect of the superlattice reflections. Po-

larisation matrices measured at Q = (0.5, 0.5, l), where l is even show that Pxx

term in the polarisation matrix is far from −1 as would be expected for scattering

of magnetic origin. Elements of Pxx ≈ 0 signify that the magnetic and superlattice

structure factors are nearly the same. Standard unpolarised neutron scattering,

as employed in Ref. [89], cannot separate the nuclear and magnetic structure fac-

tors. Conveniently, spherical neutron polarimetry can go some way in obtaining

meaningful results.

When a neutron is incident on a sample, the direction of the neutron spin will

not be affected by nuclear scattering whereas the presence of internal magnetic

fields in the sample will flip the neutron spin. Considering just the spin-flip parallel

and anti-parallel to Q, the cross-sections for the non-spin-flip [σ(x, x)] and spin-flip

[σ(x,−x)] polarisation channels are,

σ(x, x) ∝ N2(Q) + bNSF, σ(x,−x) ∝M2
⊥(Q) + bSF, (3.1)
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Figure 3.7: Comparison of polarisation matrices observed and calculated
in the LTT phase. Some of the polarisation matrices collected in the LTT phase
of La2CoO4 at 2 K. The polarisation matrices above and below the horizontal line
represent measurements and simulations in the (h, h, l) and (h, k, 0) scattering planes,
respectively. The panels on the right show the best fit obtained by setting the in-plane
angle ϕ = 23.5◦. The errors, as deduced from peak intensities are shown in parenthesis.
The red (blue) colours represent +1 (−1) values of the matrix elements.

where N2(Q) is the coherent nuclear cross-section and the magnetic structure factor

is M⊥(Q)2. The background can in general be different in each channel and is

denoted by bNSF and bSF. From our measurements we find these terms are negligible

compared to the strength of the nuclear and magnetic signal. Analogously, σ(y, y)

and σ(z, z) will have a N2(Q) dependence. Since polarisation matrix elements

are calculated as the difference between NSF and SF channels, a finite N2(Q)

contribution will depolarise Pαα elements, as found in La2CoO4.

To subtract the nuclear superlattice scattering from the polarisation matrices
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it necessary to correct the intensities for non-ideal beam polarisation in the Blume

frame of reference, as[
σc(α, β)

σc(α,−β)

]
=
[
I − C−1(R)(δαβ , 0)C(R)

] [ σ(α, β)

σ(α,−β)

]
, (3.2)

where I is the identity matrix and C(R) is a 2 × 2 matrix, which is dependent on

the flipping ratio, to correct the number of counts in NSF (SF) channel wrongly

analysed in the SF (NSF) polarisation channel (see § 2.4.3.1).

The full polarisation matrices obtained at Q = (0.5, 0.5, l) for l = 2, 4, 6, shown

in Fig. 3.7, were corrected for the effect of the nuclear superlattice contamination

using Eq. 3.2. Using a data set of 62 complete polarisation matrices collected at

1.7 K it is possible to compare these measurements to theoretical spin structure

models. Setting the moments on Co(1) and Co(2) ions to be parallel, a fit of

χ2
ν = 300 is obtained when the moments are at angle of ψ1 = ψ2 = 23.5◦ to the a

axis. The fitting was done using the simulated annealing algorithm in the MuFit

program [97]. However, an identical fit can be obtained by allowing both Co(1)

and Co(2) moments to rotate. In this case a solution is found when ψ1 = −21.7◦

and ψ2 = 68.7◦, which corresponds to spins in adjacent layers along c to be aligned

perpendicular to one another. A spin structure with spins aligned at ψ1 = 0◦ and

ψ2 = 132.8◦ can also be used to describe the polarimetry data. The goodness-of-fit

may not truly reflect the quality of the fit as errors are assumed to be given by

Poisson statistics. In La2CoO4 it appears that we have reached a limit where the

main source of uncertainty is due to systematic errors on a level of approximately

0.02 demonstrated by off-diagonal polarisation matrix elements in Fig. 3.7.

It does not appear to be possible to deduce which of the spin arrangements is

realised in the LTT phase. The presence of domains ensures that all three structures

are equivalent. The ambiguity was also found in the previous study [89]. It was

found that the tilt of the CoO6 octahedra determined the spin direction in the

LTO phase. In the LTT phase, the octahedra rotate by 90◦ in alternate layers.

Thus it would not seem unreasonable if the spin structure were to follow this in

the low temperature phase. It was not possible to use the polarimetry data at

base temperature to estimate the residual LTO spin structure, from Yamada et

al. [89] this is reported to be about 5%, which should have little bearing on the spin

structure determination presented here.

So far the analysis has focused on symmetry equivalent domains which have

been assumed to occur in equal proportions. Due to the slight structural distortion

in La2CoO4, this assumption may not necessarily hold true. Allowing the spin ori-

entations and domain population to vary independently produces further possible

magnetic structures. However, restricting the spin models to only the La2CuO4-

like structure, where ψ1 = ψ2 = 45◦, and allowing the domain population to vary

does not appear to reproduce polarisation matrices of sufficiently good fit. Simi-

larly staggering the spins from layer to layer along c by a 90◦ rotation with domain

population set as free parameters also does not explain the polarimetry data. We
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Figure 3.8: Magnetic structure of La2CoO4 in the LTT and LTO phases. The
filled circles correspond to the moments in the z = 0 plane and the empty circles denote
moments at the body-centred position, at z = 0.5. (a) Spin arrangement in the LTT
phase deduced from polarimetry. The structure in the LTT phase could not be uniquely
identified, spin arrangement shown here corresponds to the case where the moments
on Co(1) and Co(2) atoms are parallel and at an angle of 23.5◦ to the a-axis. (b)
Magnetic structure of La2CoO4 in the LTO phase with spins aligned perpendicularly
to the propagation wavevector qm. The dashed line shows the crystallographic unit
cell. The filled grey region represents the magnetic unit cell.

can therefore conclude that although it is not possible to rule out other spin ar-

rangements, the data does provide clues on which structures can be ruled out which

would otherwise not be possible using unpolarised neutron scattering.

3.5.5 Discussion

Spherical neutron polarimetry has been used in this section to ascertain the nature

of the magnetic order in the two antiferromagnetic phases of La2CoO4. Directly

below TN, a simple antiferromagnetic spin arrangement develops with moments per-

pendicular to qm and moments on the Co(1) and Co(2) ions parallel, as shown in

Fig. 3.8(b). A first-order structural and magnetic transition is found at T2. The

magnetic structure in the LTT phase is found to be either collinear with a simple

spin-rotation in the ab-plane with angle to the a axis of 23.5◦ [Fig. 3.8(a)], or a non-

collinear arrangment which follows the tilts of the CoO6 octahedra with moments

rotating by 90◦ from layer to layer. The results are consistent with unpolarised neu-

tron scattering measurements on La2CoO4 [89]. A symmetry breaking mechanism

such as application of in-plane magnetic field may resolve the issue of the domain

averaging.

The reason behind the rotation of the spins away from the a axis is unclear

but must be related to competing exchange interactions in the system. In a similar

compound of La3/2Sr1/2CoO4 which orders antiferromagnetically in the basal plane,

polarised neutron scattering measurements have demonstrated that the spin which is

initially aligned along a slowly rotates by an angle of 12◦ on lowering of temperature

[98]. In La2CoO4 the magnetic phase transition is of first order but it may be
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(a) Model A

I II

φ
A

φ
A

(b) Model B

I II

φ
B

φ
B

Figure 3.9: Magnetic structure models for La3/2Sr1/2CoO4. The are cells
shown in the CoO2 plane are of size 2a × 2a × c with spin moments of Co2+ in the
z = 0 plane represented by full circles and z = 0.5 layer denoted by empty circles. The
non-magnetic Cu3+ ions are not shown in this diagram. (a) The angle ϕA at which the
moment lies to the CoO bond is set to 45◦. (b) Alternative model of the groundstate
assumes there are almost equal population of domain BI and BII related to one another
by a mirror plane perpendicular to [1, 1̄, 0] The angle from the a axis is found to be
73.5◦.

possible that the groundstate of La2CoO4 is similar to that of La3/2Sr1/2CoO4.

3.6 La3/2Sr1/2CoO4 examined by spherical neutron po-

larimetry

The crystal structure of La3/2Sr1/2CoO4 can be described by the I4/mmm space

group with cell parameters, a = 3.84 Å and c = 12.5 Å. At this doping, Co2+ and

Co3+ are found in equal proportions and the electrostatic repulsion between ions

results in a checkerboard arrangement of charge and magnetic order. The magnetic

structure consists of collinear moments confined to the ab plane due to strong pla-

nar anisotropy. The spins form antiferromagnetic stripes described by propagation

wavevector κ = (0.25, 0.25, 0) along [1, 1, 0] separated by a body centered Co3+ ion

and ferromagnetic layers along [1, 1̄, 0] modulated by antiferromagnetically aligned

moments with respect to z = 0 plane at body centered position [98]. Previous mea-

surements show that the magnetic order in the z = 1/2 layer is related to z = 0 by

a translation vector (1.5, 0.5, 0.5), however, the precise nature of the in-plane order

has not been established [98]. The magnetisation is found to change as the sample is
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Table 3.1: Comparison of measured and simulated polarisation matrices for
La3/2Sr1/2CoO4 measured at the (h, k, l) scattering wavevector. The incident neu-
tron polarisation vector is denoted by Pi. Models A and B, shown in Fig. 3.9, give
qualitatively good fits demonstrated by χ2

ν = 3.7.
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cooled below 30 K [98]. One possibility is that at lower temperatures the moments

rotate away from the a axis by 12◦ in the ab-plane. However, the neutron data

[98] can also be explained in terms of a change in the population of inequivalent

magnetic domains.

Polarised neutron diffraction is a valuable technique in understanding complex

magnetic structures. Using the MuPAD/TASP instrument at PSI [76, 95, 96],

spherical neutron polarimetry experiment was carried out on La3/2Sr1/2CoO4 single

crystal (0.873 g) with a final neutron wavelength of 3.2 Å. The sample was aligned

in the (h, h, l) scattering plane. The crystal was cooled to 1.6 K at which com-

plete normal and negative polarity polarisation matrices were recorded, shown in

Table 3.1. Background subtraction was carried out away from the Bragg peaks by

approximate displacement of (0.1, 0.1, 0) from the peak centre, however due to the

broad nature of the peaks, in some cases this proved to be insufficient.

We first consider Model A [Fig. 3.9(a)] for which moments lie parallel and per-

pendicular to the propagation vector κ = (0.25, 0.25, 0) along the easy axes of the

system [98]. Such domains AI and AII, shown in Fig. 3.9(a), are not related by

symmetry and therefore will in general be energetically different. The domains in

such a model need not be populated equally and therefore setting this as a free

parameter, we find a fit to the data with χ2
ν = 3.7 where domain AI constitutes

63% and domain AII 37% of the volume of the sample. The simulated polarisation

matrices using this model are shown in Table 3.1.

Representation analysis shows that the little group Gκ contains 8 symmetry

elements that correspond to κ. The star of κ is completed by symmetry opera-

tions contained in {G0 − Gκ} group, which transform the propagation wavevector

into κ′ = (0.25,−0.25, 0). Furthermore, as the spins are assumed to lie in the ab

plane, the relevant symmetry operators are reduced to four per propagation vector.

Therefore, we find that each κ-domain contains two spin-domains, which are found

by time reversal operator. It is therefore sufficient to consider domains BI and BII

[Fig. 3.9(b)] which are related by a mirror plane normal to [1, 1̄, 0] such that a↔ b.

An equally good fit (χ2
ν = 3.7) to model A is found when the domain population is

50:50 and the moments are aligned at angle away from the a axis ϕB = 73.5◦. The

rotation angle ϕB is in good agreement to the previously reported value of 12◦ [98].

However, the polarimetry data does not provide a unique solution to the magnetic

structure. Indeed, simulations of polarisation matrices in other scattering planes

are unable to distinguish between these models.

3.7 Magnetic excitations in La2CoO4

Attempts to understand the electronic phases in La2−xSrxCoO4 will require some

basic knowledge of the parent antiferromagnet La2CoO4. The La2CoO4 system

can then be used in trying to understand the unusual hourglass dispersion found

in La5/3Sr1/3CoO4 described in § 4. Although the crystal structure and magnetic

order of La2CoO4 have been studied in detail [89] no measurements of the magnetic
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excitation spectrum have been reported before now [88].

3.7.1 Experimental setup

Unpolarised-neutron inelastic scattering measurements were performed on the direct-

geometry chopper spectrometer MAPS (shown in Fig. 2.6) at the ISIS facility [99].

Neutron time-of-flight instruments with large position sensitive detector arrays such

as MAPS allow sampling of vast regions of (Q, E) space simultaneously, where Q

and E are respectively the wavevector and energy transferred from the neutron to

the sample. This is very advantageous in studies where the excitation spectrum is

required throughout the Brillouin zone.

In preparation for the inelastic neutron measurements the La2CoO4 crystal

(mass of 5.1 g) was sealed in a thin-walled aluminium can containing helium ex-

change gas and aligned with the c axis parallel to the direction of the incident

neutron beam. Cooling was provided by a closed-cycle refrigerator. Data were col-

lected with incident-neutron energies of 51, 86, 111, 152 and 303 meV. The energy

resolution was typically 5% of the incident energy (full width at half maximum)

at zero energy transfer, decreasing slightly with increasing energy transfer. Under

the chosen experimental conditions the wavevector resolution is largely determined

by the divergence of the incident neutron beam which is approximately 0.5◦. Spec-

tra from La2CoO4 were recorded at several temperatures between 6 K and 300 K.

Separate measurements of a standard vanadium sample were made at each incident

energy to normalise the spectra and place them on an absolute intensity scale.

For presentation and analysis, the neutron data were transformed from raw

time-of-flight spectra into an intensity map as a function of Q and E. With a fixed

sample orientation, only three out of the four components of (Q, E) are indepen-

dent. Setting the two in-plane wavevector components (Qx, Qy) = (h, k) × 2π/a

and energy as the independent variables, means that the out-of-plane wavevector

Qz = l × 2π/c varies implicitly with energy transfer. For a two-dimensional scat-

tering system, however, there is no dispersion in the out-of-plane direction and

the gradual variation of scattering intensity with Qz can be included in a model

(and was done so in this chapter). The justification for treating La2CoO4 as a

two-dimensional magnetic system is that the magnetic spectra show no discernible

periodic modulation in intensity with Qz (i.e. with E).

In order to quantify the magnetic dispersion a series of constant-energy and

constant-wavevector cuts are made through the data volume along high-symmetry

directions [shown in Fig. 3.1(c)] using the MSLICE software [100]. Before perform-

ing these cuts, data at symmetry-equivalent wavevectors were averaged to improve

the signal.

3.7.2 Results

Figure 3.10 provides an overview of the excitation spectrum of La2CoO4 measured

by unpolarised inelastic neutron scattering at 6 K. Panels (a)–(c) are constant-
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Figure 3.10: Measured and simulated magnetic spectra of La2CoO4 at 6K.
Panels (a)–(c) show intensity maps averaged over 2 meV energy ranges centred on
different energies as indicated, with the corresponding calculated spectra shown in (d)–
(f). The magnetic dispersion along two high-symmetry directions is displayed in (g)–
(i), with corresponding simulations in (j)–(l). Data in (a)–(h) were measured with an
incident neutron energy Ei = 86 meV, whilst (i) was measured with Ei = 303 meV. The
units of intensity indicated by the colourbars are mb sr−1 meV−1 f.u.−1. The simulated
spectra are calculated from the spin-orbital spin-wave model. Reprinted figure with
permission from Babkevich et al., Phys. Rev. B 82, 184425 (2010) [88]. Copyright c⃝
(2010) by the American Physical Society.
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Figure 3.11: Constant-Q cuts taken through the measured and simulated
spectra. Panel (a) shows a series of cuts following the dispersion from the zone center
(0.5, 0.5) to the antiferromagnetic zone boundary at (0.75, 0.75) measured with incident
energy 111 meV. Panel (b) shows the spin gap of ∼10 meV at (0.5, 0.5) measured with
an incident energy of 51 meV which gave an improved energy resolution. Panel (c)
shows the measured and simulated excitation mode at ∼ 190 meV. These data were
obtained with Ei = 303 meV. Reprinted figure with permission from Babkevich et al.,
Phys. Rev. B 82, 184425 (2010) [88]. Copyright c⃝ (2010) by the American Physical
Society.

energy transfer E slices at three different energies, and panels (g)–(i) are energy

transfer–Q slices to illustrate the magnetic dispersion. The spectrum is dominated

by a spin-wave-like conical dispersion which rises from the in-plane antiferromag-

netic ordering wavevector qm = (0.5, 0.5) and equivalent positions [the M-points

of the square-lattice Brillouin zone — see Fig. 3.1(c)]. This mode has a gap of

approximately 10 meV at the M-point and rises to a maximum energy of 60 meV

at the Σ-point on the Brillouin zone boundary. A much weaker branch, displaying

an upwards dispersion with a minimum energy at M of 46 meV, corresponds to the

first mode translated by qm. The large splitting of the modes at M shows that the

anisotropy is strongly XY-like. The lower and upper modes correspond to in-plane

and out-of-plane fluctuations, respectively. Fig. 3.10(i) shows data up to the max-

imum energy explored in our experiment. This reveals only one other significant

feature — a band of scattering in a narrow range of energies close to 190 meV.

Figure 3.11 shows examples of constant-Q cuts taken through the data volumes

measured with incident energies Ei = 51, 111 and 303 meV. To extract the magnetic

dispersion in a form suitable for fitting to a model we performed a large number of

such constant-energy cuts at wavevectors along the reciprocal-space paths indicated

in Fig. 3.1(c). The peaks in these as well as some additional constant-wavevector

cuts were fitted with Gaussian functions on a linear background. The peak centres

determined this way are plotted along high-symmetry directions in Figs. 3.14 and

3.15.
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Figure 3.12: Dispersion of the magnon peak along the magnetic zone bound-
ary in La2CoO4. Variation of (a) the peak position and (b) the integrated intensity
of the magnon peak in constant-Q cuts. (c) Constant-Q cuts at Q = (0.75, 0.75)
and (0.5, 1) fitted with Gaussian lineshapes. The data are from the run with incident
energy 111 meV and sample temperature 6 K. Reprinted figure with permission from
Babkevich et al., Phys. Rev. B 82, 184425 (2010) [88]. Copyright c⃝ (2010) by the
American Physical Society.

An interesting behavior is observed along the magnetic zone boundary: the en-

ergy of the magnon branch is not constant but varies by approximately 1.5 meV.

As shall be discussed, this is significant because a dispersion along the zone bound-

ary indicates a need to go beyond a linear spin-wave model with nearest-neighbor

interactions only. This effect is emphasised in Fig. 3.12(a) the energy and (b) the

integrated intensity of the magnon peak along the entire length of a zone boundary

(XΣX). The maximum in the dispersion at Σ is seen to coincide with a minimum in

its intensity. Because the dispersion surface forms a ridge along the zone boundary

care was taken to select an appropriately-sized box in Q over which to average the

data so as to avoid systematic errors from the curvature of the dispersion surface

while at the same time having good enough statistics to extract the peak energies

and integrated intensities. Figure 3.12(c) shows energy cuts taken at an X-point

and a Σ-point to illustrate the difference between the magnon peaks at the zone

corner and zone edge.

Finally, it is worth noting the temperature dependence of the magnetic spec-

trum. Figures 3.13(a)–(c) show maps of the magnetic scattering measured at T = 6,

150 and 300 K, and Fig. 3.13(d) displays constant-Q cuts at the magnetic zone cen-

tre for the same temperatures. On increasing the temperature from 6 to 150 K the

11 meV peak increases in intensity due to the increasing thermal population but

remains at the same energy, while the 46 meV peak broadens and shifts to lower

energy [Fig. 3.13(d) inset]. Although La2CoO4 undergoes a first-order phase tran-

sition coincident with a magnetic reorientation at T2 ≈ 125 K, the in-plane lattice
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Figure 3.13: Temperature dependence of the magnetic spectrum of
La2CoO4. The upper panels (a)–(c) show intensity maps measured at 6, 150 and
300 K along the (h, 0.5) direction. (d) Magnetic spectrum at the antiferromagnetic
ordering wavevector (0.5, 0.5) (M-point) measured at 6, 150 and 300 K. Inset: temper-
ature evolution of the higher-energy magnon mode. Reprinted figure with permission
from Babkevich et al., Phys. Rev. B 82, 184425 (2010) [88]. Copyright c⃝ (2010) by
the American Physical Society.
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parameters in the LTO phase differ only slightly from those in the LTT phase, and

the change in the magnetic structure only affects the stacking along the c axis.

It is not surprising, therefore, that the transition does not significantly affect the

magnetic spectrum. At T = 300 K, the spectrum has become quasielastic and there

are no longer any sharp inelastic peaks. This indicates the absence of long-range

magnetic correlations for T > TN.

3.7.3 Linear spin-wave model

As a suitable starting point in analysing the low energy part of the excitation spec-

trum (E < 60 meV) of La2CoO4 it is worth to consider the standard linear spin-wave

theory for an effective spin-12 antiferromagnet, which neglects the orbital component

of the modes. Using the same model as described in Ref. [98] in which the mag-

netic anisotropy is described by anisotropic nearest-neighbor exchange interactions

Jx = J(1 + ε), Jy = J and Jz = J(1 − δ). The parameters ε and δ control the

in-plane and out-of-plane anisotropy, respectively. The more distant interactions J1
and J2 were included too, but because they are relatively small we treated these as

isotropic. The paths of the exchange interactions are shown in Fig. 3.1(b).

3.7.3.1 Linear spin-wave theory

A more generalised Hamiltonian given in Eq. 1.10 describing the exchange interac-

tion between spins can be expressed as, H =
∑

⟨ij⟩
∑

α JαS
α
i S

α
j , where the summa-

tion is taken over different spatial directions α = x, y and z and includes an exchange

anisotropy. The Hamiltonian Hm of mth magnetic unit cell can be considered to

be due to anisotropic antiferromagnetic interactions (AFM, JA
i ) and ferromagnetic

(FM, JF
i ) between collinear spins, such that

Hm =
∑
r

JA
x S

x
mS

x
m+r + JA

y S
y
mS

y
m+r + JA

z S
z
mS

z
m+r

+
∑
R

JF
x S

x
mS

x
m+R + JF

y S
y
mS

y
m+R + JF

z S
z
mS

z
m+R, (3.3)

where spins of opposing alignment are connected by r and nearest neighbour same

spins are joined by R. The Holstein-Primakoff transformations [10] can be used to

transform the spin operators to Bose operators by considering the spins to lie on

bipartite sublattices A and B such that the exchange interaction is AFM between

A and B and FM within each sublattice. For quantisation axis along x,

Sublattice A Sublattice B

Sx
i = (S − a†iai) Sx

j = −(S − b†jbj)

Sy
i =

√
S/2(ai + a†i ) Sy

j =
√
S/2(bj + b†j)

Sz
i = −i

√
S/2(ai − a†i ) Sz

j = i
√
S/2(bj − b†j).

(3.4)
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Expressing the Hamiltonian in terms of the spin operators up to quadratic terms

followed by the Fourier transform as defined in § A.2 would give the Hamiltonian,

in the general matrix form as,

H = H0 +
1

2

∑
Q

X†
QHQXQ, (3.5)

where XQ is a vector of magnon creation and annihilation operators for the two

sublattices, X†
Q is its transposed Hermitian adjoint. The solution to this type of

problem is known and is described in Ref. [101]. The Hamiltonian HQ of the form of

Eq. 3.5, XQ will in general contain all the appropriate operators and their adjoints.

Thus if XQ is composed of 1 . . . n elements that are independent annihilation (aQ)

and (n+ 1) . . . 2n corresponding to the creation operators (a†−Q)

XQ =
[
a1(Q), . . . , an(Q), a†1(−Q), . . . , a†n(−Q)

]T
, (3.6)

with Boson operators obeying [aα(q), a†β(q′)] = δαβδqq′ then the HQ takes the form,

HQ =

(
H11(Q) H12(Q)

H∗
12(−Q) H∗

11(−Q)

)
, (3.7)

where H11 and H12 are n × n matrices. Quadratic in the bosonic operators, the

Hamiltonian can be diagonalised by a canonical transformation. In order to preserve

the commutation relations, the transformation must preserve the metric g,[
XQ, X

†
Q

]
= g, g =

(
I 0

0 −I

)
, (3.8)

such that I is the n×n identity matrix. New operators X ′
Q may be introduced, such

that XQ = SQX
′
Q. The Hamiltonian can then be solved as an eigenvalue problem,

|gHQSQ − λSQ| = 0.

The total Fourier-transformed Hamiltonian HQ can be expressed in the form of

Eq. 3.5 by considering a set of operators defined in XQ

XQ =


aQ
bQ
a†−Q

b†−Q

 , HQ =


AQ BQ CQ DQ

BQ AQ DQ CQ

CQ DQ AQ BQ

DQ CQ BQ AQ

 (3.9)
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where the Fourier coefficients are found for the case of La2CoO4 to be,

AQ/S = 4Jx − 4J1 − 4J2

+ 2J1 (cos 2Q · a+ cos 2Q · b)
+ 2J2 [cosQ · (a− b) + cosQ · (a+ b)] (3.10)

BQ/S = (Jy − Jz) (cosQ · a+ cosQ · b) (3.11)

CQ/S = 0 (3.12)

DQ/S = (Jy + Jz) (cosQ · a+ cosQ · b) (3.13)

The Hamiltonian can be diagonalised leading to expressions for the two modes with

spin-wave dispersion relations given by,

E±(Q) =
[
(AQ ±BQ)2 − (CQ ±DQ)2

]1/2
. (3.14)

A more comprehensive discussion of applying the linear spin-wave theory is given

in Appendix A.

3.7.3.2 Simulated annealing algorithm

The comparison between a spin-wave model and the measured dispersion can be

made by allowing the exchange interactions to be varied. Such model, however,

suffers from having many free parameters and most standard fitting routines such

as Levenberg-Marquardt or gradient search optimisation algorithms fail to converge

to meaningful solutions as they become quickly trapped in local, rather than global

χ2 minima. A suitable strategy to overcome these problems is to use simulated an-

nealing method, which mimics the process in which materials become ordered when

they are slowly cooled. To do this, the method of importance sampling developed

in Ref. [102] is implemented to allow the solver to explore a larger space of possible

solutions. The difference between the previously ascertained goodness-of-fit χ2
i and

another χ2
j is accepted with a probability function P described by,

P =

{
e−(χ2

i−χ2
j )/θ if (χ2

i − χ2
j ) > 0,

1 otherwise.
(3.15)

A temperature parameter θ is then lowered to slowly allow the system to converge to

the true global minimum, representing the optimal fit of the model to the measured

data.

3.7.3.3 Simulations of the magnetic excitation spectrum using spin-only

spin-wave model

The main features of the low-energy excitation spectrum of La2CoO4 can be cap-

tured by the linear spin-wave model using methods outlined in the preceding sec-

tions. Figure 3.14 shows a fit to the dispersion which qualitatively agrees with the
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Figure 3.14: Simulation of the dispersion relation in La2CoO4 using linear
spin-wave model. Intensity map constructed from measurements made with incident
neutron energies of 51, 86 and 111 meV along high-symmetry directions indicated in
the inset. The open white data points are (Q, E) points used to fit the dispersion
using linear spin-wave model, shown in dashed red lines. The fit parameters were
J = 8.30 meV, J1 = −0.353 meV, J2 = −0.634 meV, ε = 0.0241 and δ = 0.383.

measurements. In fact, an equally good description of the data (as reflected in the

value of χ2) could be found with sets of parameters in which J1 and J2 are both pos-

itive or both negative: (i) J = 9.89(1) meV, J1 = 0.04(1) meV, J2 = 0.13(1) meV,

ε = 0.013(1), δ = 0.283(4), or (ii) J = 8.30(6) meV, J1 = −0.35(2) meV, J2 =

−0.63(3) meV, ε = 0.024(1), δ = 0.383(5). Using the spin-only spin-wave model

to model the dispersion along the magnetic zone boundary, shown in Fig. 3.12(c),

the observation that the mode at X is found to be at lower energy than at Σ, or

EX/EΣ < 1, is satisfied if,

J2 > 2J1 iff J1, J2 > 0, or (3.16)

J2 < 2J1 iff J1, J2 < 0. (3.17)

This demonstrates that in principle there could be other solutions for the exchange

interaction strengths. As will be demonstrated in the next section, a model which

includes the full magnetic degrees of freedom of Co2+ does indeed provide a good

description of the magnetic excitation spectrum. Another drawback of the effective

spin–1
2 linear spin-wave model is that the intensities are not accurately described

because of the neglect of the orbital degrees of freedom.

3.7.4 Spin-orbital many-level model

Magnetism in Co2+ compounds like La2CoO4 is generally influenced to a significant

degree by unquenched orbital angular momentum which is responsible for, among
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other things, the strong anisotropy in the susceptibility observed in many such

compounds. In a recent study [98] of the magnetic excitations in the half-doped

cobaltate La3/2Sr1/2CoO4, which is also an antiferromagnet, a model was developed

to describe the magnetic spectrum including both the spin and orbital angular

momentum of the Co2+ in the high-spin configuration (3d7, S = 3/2, L = 3).

The model is an advance over conventional (spin-only) spin-wave theory, described

in § 3.7.3, in that it includes level-mixing within the 2S+1L term caused by the

ligand and exchange fields, and hence the parameters that describe the single-ion

anisotropy and exchange interactions are physically realistic. As far as the magnetic

spectrum is concerned, the admixture of basis states means that excitations to

levels above the first excited single-ion level can propagate and can be observed by

neutron scattering. Moreover, the orbital component of the single-ion states needs

to be included for an accurate calculation of the neutron cross section.

The model employs the Hamiltonian 2

H =
∑
⟨jk⟩

JjkSj · Sk

+
∑
j

[∑
l,m

Bm
l O

m
l (Lj) + λLj · Sj +Ha

j · Sj

]
. (3.18)

The first term describes an isotropic Heisenberg exchange interaction between pairs

of S = 3/2 spins. For La2CoO4 we include only the nearest-neighbour and next-

nearest-neighbour exchange interactions J , J1 and J2, as defined in Fig. 3.1(b).

The remaining terms in Eq. 3.18 are single-ion terms. The first of these represents

the crystal (ligand) field acting on the Co2+ ions. The Om
l are Stevens operator-

equivalents with Bm
l the corresponding crystal-field parameters. The axially-distor-

ted octahedral crystal field from the neighboring O2− ions is described by the op-

erators O0
2, O0

4 and O4
4. We kept the same values for the parameters B0

4 and B4
4

as found for La1.5Sr0.5CoO4 in Ref. [98]: B0
4 = −1.35 meV and B4

4 = −8.00 meV.

These are estimated from a point-charge calculation and scaled to match the cu-

bic crystal field splitting observed in CoO [103]. The parameter B0
2 controls the

out-of-plane anisotropy and was adjusted to obtain a good fit to the magnetic spec-

trum. Its final value (see below) differs from that deduced for La3/2Sr1/2CoO4 by

only ∼10%. The term λL · S is the spin-orbit coupling. The coupling constant

λ = −18.7 meV used here has been deduced from reflectivity measurements of CoO

by optical spectroscopy [103]. The final term Ha · S represents a small uniaxial

anisotropy which defines the in-plane orientation of the moments and produces a

spin gap at the Γ-point (and, equivalently, the M-point). We chose the moments to

lie along the x axis, and to achieve this the anisotropy field Ha points along +x on

one of the antiferromagnetic sublattices and along −x on the other.

Spherical neutron polarimetry discussed in § 3.5 concluded that the spins are

2The diagonalisation of Eq. 3.18 was carried out using ExcitonQ program written by
A.T. Boothroyd, more details on this are found in Ref. [98].
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aligned parallel or perpendicular to qm in La2CoO4. However, within the spin-wave

models considered here where spins are along a, the inclusion of domains means

that the excitation spectrum appears to be the same whether moments are aligned

along a or lie at ±45◦ to a. Hence, the analysis of the polarimetry and inelastic

neutron scattering experiments are not contradictory.

The partial differential scattering cross-section depends on the response func-

tions Sαα(Q, ω) describing αα magnetic correlations. In the dipole approximation

the relation for one-magnon excitation is [44]

ki
kf

d2σ

dΩdEf
=
(γr0

2

)2
f2(Q) e−2W

∑
α

(1 − Q̂2
α)Sαα(Q, ω), (3.19)

where

Sαα(Q, ω) =
∑
j

|⟨j|Mα(Q)|0⟩|2δ[ω − ωj(Q)]. (3.20)

Here, ki and kf are initial and final neutron wavevectors, (γr0/2)2 = 72.8 mb, f(Q)

is the dipole magnetic form factor of Co2+, e−2W is the Debye-Waller factor which is

close to unity at low temperatures, and Q̂α = Qα/|Q| is the α component of a unit

vector in the direction of Q. The response function (per La2CoO4 f.u.) described in

Eq. 3.20 takes into account both the spin and orbital magnetisationM = −(L+2S)

in the transition matrix element connecting the ground state to an excited mode j.

The procedure to diagonalise the Hamiltonian (3.18) to obtain the dispersion and

response functions of the magnetic modes is described in detail in Ref. [98]. In order

to make a comparison between measured and predicted intensities, it is necessary

to account for the broadening of the spectrum due to the instrumental resolution

effects and also apply corrections for the absorption and self-shielding effects. These

are briefly discussed next.

3.7.4.1 Approximate form of the resolution function

In order to approximate the resolution function of the MAPS spectrometer we can

consider the wavevector and energy broadening separately. Assuming the angular

beam divergence is the limiting broadening with FWHM of δϕ ≈ 0.5◦, for an incident

energy Ei, we can calculate the wavevector-dependent broadening to be δ|Q| ≈
kiδϕ. Using this result we convolute the simulated spectrum by a Gaussian function

with width given by Eq. 3.7.4.1. For Ei = 100 meV, this would correspond to

a broadening of approximately δ|Q| ≈ 0.03 r.l.u. along the a axis. The energy-

dependent broadening is governed by,

δE =
δE0

1 + L1/L2

[
1 +

L1

L2

(
Ei −E

Ei

)3/2
]
, (3.21)

where δE0 is the elastic linewidth and E is the energy transfer, see § 2.4.4 for more

details. For the MAPS spectrometer the target-sample (L1) and sample-detector
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σabs (b) σcoh (b) σinc (b)

La 8.97 8.53 1.13
Co 37.18 0.78 4.8
O 0 4.23 0

La2CoO4 55.1 34.8 7.1

Table 3.2: Absorption, coherent scattering and incoherent scattering cross-sections
given in units of barn. The absorption cross-section is quoted for incident 25 meV
neutrons, from Ref [104].

(L2) distances are assumed to be 12 and 6 m respectively. The full-width at half-

maximum of the elastic peak at (0.5, 0.5) as a function of incident energy are found

to be:

Ei (meV): 51 86 111 303

δE0 (meV): 2.5 4.6 5.9 20.7

Equation 3.21 shows that the resolution of the spectrometer increases at large energy

transfer.

3.7.4.2 Absorption and self-shielding effects

A neutron incident on the sample can be either be absorbed or be scattered multiple

times as it transverses the crystal. Both effects lower the transmission of neutrons

and a correction to the simulated spectrum calculated using Eq. 3.19 must be ap-

plied.

The process of multiple scattering arises when the neutron is scattered more

than once within the bulk of the sample. The most probable process is for two

elastic scattering events as coherent scattering cross-section σcoh are larger than

incoherent σinc ones in general. However, this is irrelevant as we are interested in

the inelastic neutron spectrum. The process in which an elastic scattering event

is either followed or preceded by inelastic event are more problematic. The energy

transfer would appear to be the same as an inelastic scattering event, the direction of

the scattered neutron will differ. Two inelastic scattering events can be considered

to be negligible.

The total cross-section per formula unit σtot(E) of La2CoO4 for neutron of

energy E can be calculated as,

σtot(E) = σabs(E) + σinc + fσcoh, (3.22)

where f relates the fraction of neutrons lost through coherent scattering. Spectra

calculated in this chapter assume f ≈ 0.1. The values of the coherent and incoherent

scattering cross-sections as well as the absorption cross-section σabs are shown in

Table 3.2. The absorption cross-section, in the low energy limit (< 1 eV), is inversely

proportional to the neutron velocity, or σabs ∝ 1/
√
E.
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The transmission function T can be found by considering a uniform rectangular

sample of thickness d in which an incident neutron is scattered, changing energy

from Ei to Ef ,

T =
1

d

∫ d

0
e−nσtot(Ei)xe−nσtot(Ef)(d−x) dx, (3.23)

where n is the number of formula units per unit volume. Neutrons with an incident

energy of 100 meV irradiating a 5 mm thick sample will result in a transmission

factor of 0.82 and 0.64 when E is 10 and 95 meV, respectively.

3.7.4.3 Simulating the magnetic excitations
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Figure 3.15: Spin-wave dispersion calculated using spin-orbital many-level
model for La2CoO4. The lower figure shows the dispersion of the magnetic excita-
tions of La2CoO4 along high symmetry directions in the 2D Brillouin zone defined in
Fig. 3.1(c). Open circles are points extracted from cuts through the measured data
volume. The lines show the dispersion of the modes calculated with the many-level
spin-wave model described in the text. The upper figure shows the response functions
Sαα for each mode calculated from the many-level model. The normalisation of the
response functions is per formula unit of La2CoO4. Reprinted figure with permission
from Babkevich et al., Phys. Rev. B 82, 184425 (2010) [88]. Copyright c⃝ (2010) by
the American Physical Society.
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The parameters of the spin-orbital many-level model were refined from a fit to

the measured dispersion carried out by a simulated-annealing algorithm (§ 3.7.3.2).

Because of the computer time required to diagonalise the Hamiltonian for the com-

plete set of 2 × {(2L + 1)(2S + 1) − 1} = 54 excited states (twice the number of

single-ion excited states because we have two magnetic sublattices) we restricted

the number of observables included in the fit to just enough to represent all the

important features of the data, including the high-energy signal at ∼190 meV.

The parameters varied in the fit were B0
2 , J , J1, J2, and Ha. The best fit was

achieved with parameters B0
2 = 14.6(1) meV, J = 9.69(2) meV, J1 = 0.14(2) meV,

J2 = 0.43(1) meV, and Ha = 0.66(6) meV. By contrast to the spin-only model dis-

cussed in § 3.7.3, the spin-orbital many-level model clearly favours the case with

J1 and J2 both positive. The model can discriminate the two cases because of the

inclusion of the higher excited levels. Only the parameter set with J1 and J2 both

positive fits the low energy modes (E < 60 meV) and reproduces the peak in the

spectrum at ∼190 meV and absence of any other measurable peaks between 60 and

250 meV.

The calculated dispersion and response functions of the magnetic modes are

shown in Fig. 3.15 together with the full set of data points for the lowest energy

modes determined from the measurements. The agreement is seen to be very good.

The fit indicates that the next-nearest-neighbour exchange constants J1 and J2 are

very small but not zero. As a test, the fit was repeated with J1 and J2 fixed to zero.

The quality of best fit in such model worsened, as indicated by the goodness-of-fit

parameter χ2 per degree of freedom which increased from 4.5 to 11.1. Therefore,

the obtained values of J1 and J2, though small compared to the dominant nearest-

neighbour interaction, are still significant.

To further visualise and assess the model intensity maps and cuts have been

calculated to simulate those obtained from the experiment. Figures 3.10 and 3.11

show the simulations alongside the corresponding experimental data. The quantity

plotted is (ki/kf)d
2σ/dΩdEf per formula unit (f.u.), i.e., the partial differential cross

section multiplied by a factor ki/kf as defined in Eq. 3.19. The dipole magnetic

form factor of Co2+ and the direction of Q that determines the weighting of the

different response functions are included in the simulated spectra. The simulations

also take into account a number of other experimental factors: (i) average over a

50:50 mixture of equivalent magnetic domains in which the ordered moments point

along the x and y axes, respectively; (ii) the spectra are broadened in energy and

wavevector by the estimated resolution of the MAPS spectrometer (see § 3.7.4.1);

(iii) an estimate of the absorption and self-shielding of the neutron beam by the

sample is included as well, which reduces the intensity by a factor of typically 0.65–

0.80 depending on the incident neutron energy and E, as described in § 3.7.4.2.

An additional scale factor of 0.4 was applied uniformly to all calculated spectra in

order to match the measured absolute scattering intensity.

The simulations show that the model provides a very good description of the

entire observed spectrum of La2CoO4. The relative intensities of the magnetic ex-

citations are reproduced to within 10–20 %, including the band of scattering at
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∼190 meV, which from Fig. 3.15 is seen to originate from a mode with longitu-

dinal (xx) character together with some less-intense transverse modes. Magnetic

excitations are also present in the model at around ∼115 and ∼165 meV but are

predicted to carry negligible spectral weight and are not observed – see Fig. 3.11(c).

The additional scale factor of 0.4 needed to match the absolute intensity is similar

to that required for La1.5Sr0.5CoO4 (Ref. [98]). It is accounted for partly by the

size of the ordered moment. The observed ordered moment is 2.9µB [89] whereas

the ordered moment in the (ionic) model is 4.1µB. The difference between observed

and calculated moments may be an effect of covalency, which would also modify the

magnetic form factor relative to the free ion form factor in such a way that could

cause an additional reduction in intensity, as recently found in Sr2CuO3 – a cuprate

chain compound [105].

3.7.5 Discussion

It is interesting to compare the magnetic spectrum of La2CoO4 with that of other

two-dimensional, square-lattice, antiferromagnetic insulators, particularly in rela-

tion to the anomalous dispersion along the zone boundary. The anomalous refers to

the zone-boundary dispersion which cannot be described within the framework of an

antiferromagnetic spin-wave model in the linear approximation with only nearest-

neighbour interactions. Inclusion of (i) interactions with more distant neighbours,

or (ii) terms beyond the linear approximation, are two ways in which a zone-

boundary dispersion can be obtained. Other layered antiferromagnets which ex-

hibit zone-boundary dispersion include La2CuO4 (Refs. [106, 107]), Sr2Cu3O4Cl2
(Ref. [108]) and Cu(DCOO)2 · 4D2O (CFTD, Refs. [109, 110]). These are all

realisations of highly two-dimensional, S = 1
2 Heisenberg antiferromagnets with

almost isotropic interactions, and it is thought that the zone-boundary dispersion

is caused by non-linear terms in the nearest-neighbour Heisenberg model. For ex-

ample, in La2CuO4 a model with a four-spin ring exchange was employed [106]

and for CFTD a resonating-valence-bond model describing entangled spin-dimer

states was proposed to explain the data [110]. Interestingly, the behaviour along

the zone boundary is different in these two materials: in La2CuO4 both the energy

and intensity are higher at X than at Σ, whereas in CFTD both the energy and

intensity are higher at Σ than at X. In La2CoO4, on the other hand, the energy is a

maximum at Σ while the intensity is a maximum at X (see Fig. 3.12). By contrast,

there is virtually no zone-boundary dispersion at all in S = 5/2 square-lattice sys-

tem Rb2MnF4 [111]. The analysis of La2CoO4 outlined here suggests that although

the zone boundary dispersion can be satisfactorily reproduced with an appropriate

choice of J1 and J2, the corresponding intensity does not have the deep minimum

at Σ found in the experiment [Fig. 3.12(b)]. Therefore, whether the zone boundary

dispersion of La2CoO4 is due to interactions with more distant spins or arises from

quantum effects in a non-linear nearest-neighbour model remains an open question.
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3.8 Conclusions

In this chapter, we have dealt with the magnetic static order and the spin fluctu-

ations in La2CoO4. Spherical neutron polarimetry was able to demonstrate that a

solution to the magnetic structure in the two magnetic phases of La2CoO4 is possi-

ble. The polarised neutrons allow for a separation of coherent nuclear and magnetic

scattering cross-sections and goes beyond previous experimental work using unpo-

larised neutron scattering. However, the presence of magnetic domains means that

the finding a unique solution is difficult due to several equivalent structures that

can describe the experimental results equally well. The data nevertheless places

tight constraints on any future models of La2CoO4.

The excitation spectrum of single-crystal La2CoO4, an excellent realisation of a

two-dimensional XY antiferromagnet. Using the combination of the experimental

results with numerical simulations it is possible to achieve a very good description

of the magnetic spectrum throughout the entire Brillouin zone, up to an energy

of 250 meV. The magnetic anisotropy is strongly XY-like, but a small uniaxial

anisotropy is present which will make the low temperature magnetic properties

Ising-like. An anomalous dispersion along the antiferromagnetic zone boundary

is observed and can be reproduced by including exchange interactions beyond the

nearest-neighbours but which could also be a manifestation of quantum fluctuations

in a nearest-neighbour model.
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4.1 Introduction

The extent to which stripe correlations are important in high-temperature super-

conducting cuprates is still a matter of controversy. Static magnetic stripe order

competes with superconductivity in the cuprates, suppressing superconductivity

[112, 113]. Conversely, fluctuating stripes are thought by some to play a crucial role

in the mechanism which leads to superconductivity in many unconventional super-

conductors. Inelastic neutron scattering is powerful technique which has shown

that, rather surprisingly many hole-doped layered copper oxide superconductors

exhibit a universal magnetic excitation spectrum which in momentum-energy space

resembles the shape of an hourglass. Its origin has been the subject of debate for

some time depending on whether one considers the system in the local-moment or

itinerant scheme.

In this chapter I shall examine the experimental and theoretical work carried

out on La5/3Sr1/3CoO4. This composition is derived from the parent Mott insulator

La2CoO4 discussed in § 3. The parent compound is an excellent realisation of

two-dimensional antiferromagnet which has been well understood using many-level

spin-orbit model. La5/3Sr1/3CoO4 shares a crystal structure with La2MO4 (M =

Co, Cu, Ni), where planes of CoO2 are well separated along c giving the system

low-dimensional properties. The presence of Co3+, created by doping with Sr,

allows the system to charge order, but importantly, Co3+ does not carry a magnetic

moment and therefore cannot interact magnetically. This creates an ideal model

system which can be used to understand some of the competing interactions in more

complicated copper oxide based systems.

4.2 Crystal Growth

Two single crystals of La5/3Sr1/3CoO4 were studied, with masses 3.7 g and 11.5 g.

The majority of the neutron scattering measurements were made on the smaller

crystal. Cross-checks were made, and results from the two crystals are consistent to

within experimental error. The crystals were grown by D. Prabhakaran in Oxford

by the floating-zone method. Polycrystalline La5/3Sr1/3CoO4 was prepared from

La2O3, SrCO3 and Co3O4 (>99.99% purity) by solid-state reaction. The starting

materials were reacted in air at 1200◦C for 48 hours, reground, and sintered in

air at 1225◦C for 48 hours. No impurity phases were detected in the product by

x-ray powder diffraction. The powder was pressed into rods and sintered in air at

1250◦C for 24 hours. Crystals were grown in a four-mirror image furnace in flowing

argon at a growth speed of 2 mm/hr with counter-rotation of the feed and seed

rods at 25 rpm. Thermogravimetric analysis gave δ = 0.01 ± 0.02 for an assumed

composition La5/3Sr1/3CoO4+δ. The mosaic of the crystals measured in rocking

curves on different reflections by neutron diffraction was in the range 0.6◦ to 0.8◦

(full-width at half-maximum).
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Figure 4.1: Temperature dependence of magnetisation in La5/3Sr1/3CoO4

(a) Magnetic susceptibility (χ ≡M/H) in ZFC and FC protocols in a measuring field
of 1000 Oe. Measurements were performed with the magnetic field in the ab-plane and
parallel to the c axis. (b) Thermo-remnant magnetisation signal was found by cooling
the sample to 2 K in an applied field of 104 Oe in the ab-plane. At 2 K, the field was
turned off and the resultant magnetisation measured as a function of temperature and
time (the inset shows a line of best fit to a stretched exponential). (c)–(e) The hysteresis
measurements on La5/3Sr1/3CoO4 single crystal at 2, 10 and 30 K, the magnetic field
was swept from 0 Oe to 7 × 104 Oe before returning to 0 Oe.

4.3 Bulk properties measurements

The spin states of Co2+ and Co3+ ions in La2−xSrxCoO4 has been studied using a

variety of techniques such as neutron diffraction [89], magnetic susceptibility [86,

114], soft x-ray absorption spectroscopy [87] and neutron spectroscopy [85, 88, 98].

The surrounding oxygen environment creates an axially-distorted octahedral crystal

field which the Co ions experience. An understanding of the electronic structure

of the 3d levels is required in order to understand the Co2+/Co3+ mixed valence

phases in cobaltates [115]. For the Co2+ ions (electronic configuration 3d7), the

crystal field strongly favours the high spin (HS, S = 3/2) state (Fig. 4.2), and

this has been confirmed experimentally. For Co3+ ions (3d6) in this crystal field,

however, there are three spin states with similar energy: low spin (LS, S = 0),

intermediate spin (IS, S = 1) and high spin (HS, S = 2), shown in Fig. 4.2. The LS
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Figure 4.2: Filling of the electronic levels in La5/3Sr1/3CoO4. In an octahedral
crystal field environment surrounding Co atoms the levels are split into a lower t2g
triplet and an eg doublet. In the Co2+ valence state a HS (S = 3/2) spin state is
adopted. Possible spin states for Co3+ are shown in the LS (S = 0), IS (S = 1) and
HS (S = 2) configurations.

Co3+ state is non-magnetic apart from a possible small exchange-induced van Vleck

contribution. Which of these spin states is lowest in energy depends on a delicate

balance between the intra-atomic exchange energy and the crystal field interaction.

Measurements of the magnetic susceptibility led strong support that the Co3+ ions

in La5/3Sr1/3CoO4 are in the LS state [86, 116].

Magnetisation measurements to characterise La5/3Sr1/3CoO4 have been carried

out using a SQUID magnetometer. A crystal of 69 mg was cut from one of the

batches used for the neutron scattering experiments (§ 4.4 and 4.5). The sample

quality and alignment were verified using x-ray Laue diffraction. The sample was

mounted in a plastic straw, from which background contamination is negligible. The

magnetisation data presented here was collected using direct current and recipro-

cating sample methods. The crystal axes were aligned relative to the applied field

to within ∼ 10◦. The protocols for measuring the magnetic susceptibility were: (i)

cooling and measuring on warming the La5/3Sr1/3CoO4 crystal in an applied field of

1000 Oe (Field Cool or FC) or (ii) cooling in a zero field and measuring on warming

in a field of 1000 Oe (Zero Field Cool or ZFC). The magnetic susceptibility tensor

χ relates the response of the magnetisation M to an applied magnetic field H. In

a linear, homogenous, isotropic medium it relates M and H as M = χH. In a

tetragonal crystal structures, the susceptibility tensor reduces to the in-plane (χab)
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and out-of-plane (χc) components as,

χ =

χab 0 0

0 χab 0

0 0 χc

 . (4.1)

Magnetic susceptibility measurements of La5/3Sr1/3CoO4 along mutually perpen-

dicular axes did not show any sign of secondary grains and the in-plane components

were consistent to within 4%, as expected for a tetragonal crystal.

The high temperature (T > 100 K) evolution of the paramagnetic susceptibil-

ity in Fig. 4.1(a) follows approximately a Curie-Weiss law, slowly increasing with

decreasing temperature. In this regime, the susceptibility could be described by

the Curie-Weiss law: χ = C/(T − TC), where C (∝ µ2eff) is the Curie constant and

TC is the Curie temperature. The effective magnetic moments were calculated to

be µeffab ≈ 4.73µB and µeff c ≈ 4.16µB per Co site. This is slightly larger than

values reported for La2−xSrxCoO4 at x = 0.4 and x = 0.5 doping [114]. However,

the susceptibility measurements for 0.4 6 x 6 1.0 reported follow the Curie-Weiss

law much better over 100 < T < 300 K temperature range than was found for

La5/3Sr1/3CoO4.

At 16 K, a cusp is observed in the ZFC protocol in χab and χc, and on further

cooling, there is a rapid divergence between FC and ZFC scans indicating a possible

glassy groundstate. The ZFC sweep shows a small kink at around 5 K, whilst

below the same temperature FC shows an small increase in susceptibility. This

unfortunately is an artifact of a background signal present in the instrument.

Hollmann et al. [86] have demonstrated that the anisotropy in the magnetic

susceptibility of La2−xSrxCoO4 is very sensitive to the spin state of Co3+. The

anisotropy of the susceptibility of La5/3Sr1/3CoO4 [Fig. 4.1(a)] closely resembles

temperature dependence of La2−xSrxCoO4 samples for x > 0.4 reported and there-

fore we can draw some analogies in the analysis of systems of similar doping [86].

Using full atomic multiplet model Hollmann et al. [86] calculated the in-plane (χab)

and out-of-plane (χc) susceptibilities of HS Co2+ and of HS and IS Co3+. The

HS Co2+ state was found to give a strong planar (XY-like) anisotropy (χab > χc),

whereas HS and IS Co3+ both produce anisotropy in the opposite sense (χc > χab).

From analysis of susceptibility data on samples of 0.3 6 x 6 0.8, Hollmann et al. [86]

concluded that the Co3+ ion is in the LS state for x > 0.4. Their conclusions are

supported experimentally for the case of x = 0.5 [87, 98]. It is therefore a reasonable

assumption that Co3+ is also found in the LS state (S = 0) in La5/3Sr1/3CoO4.

Isothermal hysteresis loops [Figs. 4.1(c)–(e)] show that there is irreversibility

when an applied magnetic field is swept from 0 to 7×104 Oe and back to 0 Oe. The

greatest deviation from linear relation between M and H is observed for measure-

ments at T = 2 K for the in-plane magnetisation component, Mab. The hysteresis

loops obtained when the magnetic field applied along c shows little change over the

2 to 30 K temperature range remaining nearly linear. Analogously to the suscepti-

bility measurements, strong anisotropy in the magnetisation is found to be about
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two times greater for Mab than Mc at all temperatures and fields measured.

The ZFC-FC susceptibility splitting is indicative of spin-glass and spin-freezing

behaviour. This suggests that the low temperature state is not in thermodynamic

equilibrium and relaxation may occur on the time scale of experimental measure-

ments. To investigate this, the sample was cooled in a magnetic field of 104 Oe

applied in the ab plane and turned off on reaching 2 K. The remnant magnetisation

shown in inset of Fig. 4.1(b) was measured as a function of time after the field was

switched off. The signal is most pronounced with field applied along the ab plane,

being almost a factor of ten times greater than with the field applied along c. The

response of the decay with c axis parallel to the applied field has the same line-

shape and is likely to be due to a slight misalignment such that there is a small ab

plane contribution. This result further shows that the system is strongly anisotropic

and spins are more easily manipulated by fields parallel to the CoO2 layers. The

remnant magnetisation was sufficiently well fitted by a stretched exponential of the

form, M(t) = M0 exp
(
−αt(1−n)

)
+ Mbg, with n = 0.521(8). For comparison, n is

expected to be 2/3 based on the hypothesis that there exist small local excitations

that drive the system through large number of metastable states to eventually reach

equilibrium that minimises the total energy [117]. Similar memory effect are seen in

La5/3Sr1/3NiO4, however two different relaxation rates were found to dominate at

early and late times [118]. The decay at 2 K is much more rapid in the nickelate –

decreasing by 40% on a timescale of 2 hours, whereas in La5/3Sr1/3CoO4 a decrease

of only 15% is observed in 36 hours of measurement.

Let us now consider the memory effect shown in thermo-remnant magnetisation

data in Fig. 4.1(b). The sample was aligned with the field in the ab plane of

magnitude of 104 Oe and cooled from room temperature to 2 K. At this temperature,

the field was switched off and temperature was swept initially from 2 to 10 K after

which a cooling-reheating loop was made to 2 K and back to 25 K. A decrease in

magnetisation at 5 K corresponds background signal of the instrument recorded in

the susceptibility [Fig. 4.1(a)]. The loop back to 2 K returns to the same thermo-

remnant magnetisation curve at 10 K. The state at 10 K appears to be frozen in,

however above this temperature, the thermal fluctuations allow the system to reach

new states and thereby relax. Above the spin magnetic ordering temperature of

16 K, the remnant magnetisation decreases to about 0.05 emu/mol and continues to

decay slowly with increasing temperature.

Measurements of heat capacity of the La5/3Sr1/3CoO4 sample were made to

look at any possible phase transitions below 20 K. The system was well described

by the usual Debye and electronic terms. The application of a µ0H = 5 T field

parallel to c axis did not induce any phase transitions that could be seen in the

heat capacity. Attempts were made to measure resistivity of the sample using the

four wire method, but the sample appeared to be an extremely good insulator with

a resistance exceeding the sensitivity of the PPMS instrument.
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4.4 Elastic neutron scattering measurements

Coupling between charge and magnetic degrees of freedom in layered cuprates [78]

and in nicklates [79, 80, 119] has attracted a lot of interest due to its possibil-

ity pivotal role in high-temperature superconductors. Doping of holes into the

parent isostructural compounds of La2NiO4 or La2CuO4 suppresses commensurate

antiferromagnetism and causes an incommensurately modulated magnetic struc-

ture to appear which depends on the doping concentration. Approximately 12%

Sr doping is required to drive the magnetism in La2NiO4 to become stripe ordered

[79, 80, 82, 119]. In the cuprates La2−xSrxCuO4, commensurate order is lost above

nominal x = 0.02 doping which has been interpreted in the same stripe order pic-

ture [120]. However, when the hole doping becomes too high x > 0.055, the cuprate

samples become metallic and superconductivity emerges [121].

The interest in La2−xSrxCoO4 is due to the fact that it shares the same tetrag-

onal crystal structure as the Ni- and Cu- based systems and it shows similar spin-

charge stripe phases. Unlike in the much studied nicklates, Co3+ is in the low-spin

state over a wide range of carrier doping [86] and so does not contribute to the

magnetic interactions. Cobaltates are therefore intriguing system to study in or-

der to gain a clearer insight into the stripe order. Evidence for a stripe phase in

La2−xSrxCoO4 has already been examined [85]. Incommensurate magnetic order

was found for samples of x > 0.4, whilst commensurate order is found for Sr dop-

ing of x 6 0.3. This section will deal with the particular case of x = 1/3 doped

compound which has not been previously examined. At this hole concentration,

Coulomb repulsion between Co2+ and Co3+ ions dominates. At sufficiently low

temperatures a nematic charge order phase is established as Co3+ form domain

walls separating Co2+ ions. This unidirectional charge modulation along [1, 1, 0] is

the charge ordered stripe phase. Magnetic interactions are a second order effect and

the groundstate spin structure is formed by adjacent antiferromagnetically aligned

pairs of moments on Co2+ sitting between non-magnetic (S = 0) Co3+ ions.

4.4.1 Experimental setup

The neutron diffraction experiment was performed on two La5/3Sr1/3CoO4 single

crystals of mass of 3.6 g and 11.5 g which within the experimental uncertainty had

the same characteristics. Measurements were made using two triple-axis spectrom-

eters: IN3 and IN8 at Institut Laue-Langevin. The samples were aligned to gain ac-

cess to (h, k, 0) and (h, h, l) reflections. The reciprocal lattice space was indexed by

I4/mmm crystal structure whose cell parameters were refined to be a = b = 3.86 Å

and c = 12.59 Å. No realignment of the crystal was necessary throughout the tem-

perature range studied (2–300 K) as La5/3Sr1/3CoO4 did not show any structural

phase transitions to within the experimental precision.
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Figure 4.3: Incommensurate magnetic order in La5/3Sr1/3CoO4. (a) and
(b) Elastic neutron scattering measurements in the (h, k, 0) scattering plane at 2 and
100 K showing broad magnetic peaks. The dark reds represent large number of counts,
blue conversely represents low number of counts. (c) Shows the plane at 2 K with
background measured at 100 K subtracted.

4.4.2 Evidence for stripe order

Diagonally modulated charge and spin density wave order present at low temper-

atures in La5/3Sr1/3CoO4 gives rise to magnetic diffraction peaks at wavevectors

qm = QAF ± (ε, ε, 0) where 2ε = 1/3 and equivalent positions in reciprocal space

(Fig 4.3), where QAF = (h+ 0.5, k+ 0.5, l) is the antiferromagnetic wavevector and

h, k and l are integers. The antiferromagnetic order can equally well be modulated

along the other diagonal giving peaks at qm = QAF ± (ε,−ε, 0). In reality, peaks

from both orthogonal domains are present in equal proportion.

Figure 4.3(a) shows a map of the (h, k, 0) plane in reciprocal space. The elastic

scattering contains four magnetic peaks centred on the qm positions. Sharp peaks

are found at Q = (1/3, 1/3, 0) and (2/3, 2/3, 0) which persist at 100 K [Fig. 4.3(b)]

– at a temperature above which magnetic order should disappear. From this we

associate these peaks as due to higher-order neutron harmonics such as λ/3 Bragg

reflections from the (1, 1, 0) and (2, 2, 0) planes, rather than corresponding to any

magnetic property of the crystal. The data corrected for this background contribu-

tion is shown in Fig. 4.3(c).

The magnetic peaks are significantly broader than the instrumental resolution

and are elongated in the direction perpendicular to the stripes. From the measured

half-widths, the correlation lengths are found to be ξ∥ ≈ 10 Å and ξ⊥ ≈ 6.5 Å

parallel and perpendicular to the stripes, respectively. This demonstrates that the

system does not possess long-range magnetic order but is rather disordered.

The intensity of the magnetic peaks is modulated in the out-of-plane direction.

This is shown in Fig. 4.4(a), which displays a wavevector scan parallel to (0, 0, l)

passing through a point close to (1/3, 1/3, 0). Measurements were made slightly

away from from (1/3, 1/3, 0) in order not to pick up third-order scattering (λ/3)

from the (1, 1, l) structural Bragg peaks (when l is even integer). The scan shows

a periodic modulation with l which peaks at odd integers of l, consistent with the
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Figure 4.4: Out-of-plane magnetic and superstructure correlations in
La5/3Sr1/3CoO4. The scans displayed in each of the panels are parallel to the (0, 0, l)
direction and were recorded at a temperature of 2 K. (a) Elastic magnetic scattering.
The scan is displaced slightly from the maximum in-plane magnetic signal to avoid
third-order scattering from the (1, 1, l) structural Bragg peaks, shown in Fig. 4.3(b).
(b) Elastic nuclear scattering from the superstructure originating from the tilting CoO6

octahedra. (c) Inelastic magnetic scattering at an energy transfer of E = 5 meV.
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expected stacking of period-3 stripes [122]. Scans along l are broader and magnetic

order is very short-ranged [Fig. 4.4(a)], parameterised by correlation length of just

ξc ≈ 3 Å. This highlights the quasi-two dimensional ordering of moments due to

strong in-plane exchange interactions and very weak out-of-plane coupling. The

magnetism in the related x = 0.5 Sr-doped compound is found be better correlated,

with correlation lengths of ξab ≈ 52 Å and ξc ≈ 12 Å [98].

Figure 4.4(b) shows a similar (0, 0, l) scan, this time passing through (0.5, 0.5, 0).

In this scan the intensity peaks at l = even integer, consistent with the
√

2 ×
√

2

superstructure formed by the tilts of the CoO6 octahedra in the low-temperature

orthorhombic and low-temperature tetragonal phases of La2CoO4 (see § 3). The

superstructure peaks are very broad in the out-of-plane direction, indicating very

weak inter-layer correlations.

The broad nature of the magnetic and superstructure peaks, which overlap,

makes it impossible to obtain reliable integrated intensities and thereby deduce the

precise magnetic structure. Unlike in La3/2Sr1/2CoO4 [98], no appreciable signature

of charge order was found. Let us consider collinear spins lying in the z = 0 plane

as depicted in Fig. 4.8(c). Assuming collinear order, the spins µ(r) at position r

can be related to those displaced by τ , µ(r + τ ) using,

µ(r) = λµ(r + τ ), (4.2)

where λ = ±1 dictates whether moments translated by τ are antiferromagnetically

or ferromagnetically aligned. Under these assumptions, there are 6 possible spin

arrangements for La5/3Sr1/3CoO4. The model where τ = (0.5,−0.5, 0.5) and λ =

−1 gives allowed reflections for (1/3, 1/3, l) where l is odd as expected from the

experiment. However, spin structures τ = (0.5, 0.5, 0.5) and τ = (−0.5,−0.5, 0.5)

for λ = 1 show that the structure factor gives the correct modulation with maxima

at (1/3, 1/3, l) when l is odd but also predict non-zero intensity at (1/3, 1/3, l) when

l is even. A large amount of disorder could well mask the presence of weaker peaks at

even l positions. Based on the neutron scattering data collected for La5/3Sr1/3CoO4

it is not possible to determine which of the three spin arrangements is correct. The

spin structure where the spins are allowed to rotate by 90◦ from z = 0 to z = 0.5

layers can reproduce the correct periodicity found in the l scans [Fig. 4.4(a)], but

the ratios of adjacent peaks tends to unity whilst the absolute magnitude of the

structure factor decreases rapidly on increasing l, not observed in our data.

The temperature dependence of scans along (h, h, 3) and (0.325, 0.325, l) di-

rections in reciprocal space through the (1/3, 1/3, 3) magnetic peak are shown in

Fig. 4.5. The integrated intensity [Fig. 4.5(c)] of the magnetic Bragg peak increases

smoothly with decreasing temperature below about 100 K deduced from in-plane

scans. The transition to the magnetic order is very broad in temperature, indicat-

ing a gradual build-up of magnetic correlations in the time window of 10−12 s of

fluctuations probed by neutron diffraction. This is consistent with a high degree of

disorder, as also indicated by large width of the magnetic peaks and glassy magnetic

susceptibility data shown in Fig. 4.1(a). Bulk magnetisation measurements using
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Figure 4.5: Temperature dependence of the magnetic diffraction inten-
sity. Panels (a) and (b) show cuts through the magnetic peaks along (h, h, 3) and
(0.325, 0.325, l) directions in reciprocal space, respectively. Measurements for the for-
mer scans were made at 4.5, 38, 60 and 120 K, whilst the l-scans were recorded at 9.3,
38 and 100 K. The black lines show Gaussian lineshapes as guides to the eye. (c) Inte-
grated intensities as a function of temperature of the (1/3, 1/3, 3) magnetic Bragg peak
deduced from cuts along (h, h, 0) and (0, 0, l) directions. The intensity was obtained
by fitting constant-Q cuts using a Gaussian function.

SQUID magnetometer probe correlations in the sample on a much longer time-

scale of 10−3 s and due to the glassy nature of the system a transition indicative

of magnetic order is found at much lower temperature of 16 K. Such spin-freezing

behaviour has been found in many other spin-glass material through combination

of bulk properties measurements and elastic neutron diffraction [123–125].

Surprisingly, the correlation lengths were not observed to change within the

measurement accuracy and temperature range measured in contrast to what was

observed in the nickelates [82, 122]. However, correlations appear to evolve differ-

ently along c than in ab plane. From Fig. 4.5(b), we can see that at around 40 K,

the scan along l shows very weak peak whereas in Fig. 4.5(a) at the same temper-

ature strong incommensurate magnetic peaks are present at Q = (1/3, 1/3, 3) and

(2/3, 2/3, 3) in the in-plane scans. Measurements along (h, h, 3) show that there is

still measurable Bragg peaks up to temperatures of around 100 K indicating spin

order in the CoO2 planes is present. In contrast, scans along c at 70 K show no sign

of magnetic order. This would suggest that the magnetic correlations in the CoO2

planes are nearly completely decoupled in the 70 to 100 K temperature range.
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4.5 Hourglass dispersion

We next consider the dynamic properties of La5/3Sr1/3CoO4 and its unusual re-

lation to hole-doped layered copper oxide compounds which exhibit superconduc-

tivity. The precise origin of the superconductive phenomena in cuprates is still

not understood. However, these materials exhibit a richness of electronic be-

haviour not found in conventional superconductors. Doping with charge carriers

into antiferromagnetically-ordered CuO2 layers destroys magnetic order, but strong

spin fluctuations persist throughout the superconducting phase. Inelastic neutron

scattering experiments of hole-doped cuprates have revealed an unusual ‘hourglass’

feature in the momentum-resolved magnetic spectrum in a wide range of supercon-

ducting and non-superconducting materials [126–135]. No conclusive explanation

for this feature has so far been found but the similarity in the magnetic excitation

spectra would suggest that this may be universal in the cuprates [129, 136]. Ex-

periments on La1.875Ba0.125CuO4 lend support to the notion that this comes about

due to charge and spin stripe order [135]. However, an equally valid argument has

been put forward which explains the shape of the dispersion in terms of a weakly

interacting gas of itinerant electrons [137].

In this section I shall discuss the recent experimental and theoretical evidence

that the hourglass spectrum is indeed inherently due to stripe-order in the isostruc-

tural but non-superconducting La5/3Sr1/3CoO4 [116]. The ‘hourglass’ is a term

describing the nature of the magnetic spectrum as a function of wavevector Q and

energy transfer E. At low energies, there is a four-fold pattern of incommensurate

peaks centred on the antiferromagnetic wavevector (QAF) of the parent (undoped)

CuO2 square lattice. On increasing the energy transfer, the peaks disperse inwards

before coalescing at QAF and then dispersing outwards again. A square-shaped

intensity distribution is observed at energies above the meeting point but appears

rotated by 45◦ with respect to the pattern below the meeting point. Such shape is

common to nearly all layered copper-oxides, especially in the underdoped compo-

sitions. The ‘hourglass’ is observed regardless whether the low-energy incommen-

surate peaks are parallel to the CuO2 bonds or at 45◦ to them [132]. However,

superconductivity also plays an important role in its influence on the spin fluc-

tuations and thereby the magnetic spectrum of unconventional superconductors.

For optimally doped cuprates and many other non-copper-based superconductors,

a drastic change in the magnetic scattering is found in the superconducting phase

characterised by the opening of a spin gap. This is a redistribution of the spectral

weight from below to above the gap and the gap size is proportional to the critical

temperature [138]. The spin dynamics of La2−xSrxCoO4 do not exhibit this as the

material is insulating over a wide range of Sr-doping.

4.5.1 Introduction

The preceding section has already discussed the neutron diffraction evidence that

stripe order is very likely to be present in La5/3Sr1/3CoO4. The magnetism in
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La5/3Sr1/3CoO4 is controlled to a large extent by a the self-organisation of holes

(Co3+) into arrays of charge stripes which create antiphase domain walls in the

antiferromagnetic order. The period-3 arrangement contains Co2+ ions which carry

a magnetic moment, as discussed with reference to the diffraction measurements in

§ 4.4.

Figure 4.4(c) shows an out-of-plane scan through (2/3, 2/3, 0) magnetic wave-

vector recorded at an energy transfer of 5 meV. The magnetic modulations in the

corresponding elastic scan [Fig. 4.4(a)] are absent from the inelastic scan, to within

the precision of the measurement. We can therefore conclude that the inter-layer

magnetic correlations are vanishingly small for energy transfers above 5 meV. This

justifies the assumption that the system is two-dimensional to analyse and interpret

the magnetic spectrum of La5/3Sr1/3CoO4.

4.5.2 Data analysis

Inelastic neutron scattering measurements were carried out using the IN8 triple-axis

spectrometer at Institut Laue-Langevin to study a single crystal of La5/3Sr1/3CoO4.

A fixed final energy of either 14.7 meV or 34.8 meV, was set by Bragg reflection from

a graphite analyser. The incident energy was selected by Bragg reflection from a

silicon (E < 35 meV) or copper (E ≥ 35 meV) monochromator. A graphite filter

was placed after the sample to suppress contamination from higher orders. No

collimation was used. The sample was mounted in a helium cryostat and aligned

with the a and b axes in the horizontal scattering plane.

Figure 4.6 is a composite image of the measured magnetic spectrum for the

wavevectors in the (h, k, 0) plane in reciprocal space. At the base of the spectrum is a

map of the background-corrected elastic scattering intensity discussed in § 4.4. The

excitation spectrum appears to evolve from the incommensurate qm positions and

disperse inwards with increasing energy. A small spin-gap is formed at low energy of

approximately 3.5 meV, this is more clearly observed in the data of La3/2Sr1/2CoO4,

where a clear gap of 3 meV was found [98]. Going up in energy, the two branches

meet at approximately 14 meV. The distribution of intensity in the (h, k, 0) plane at

14 meV decreases monotonically with distance away from QAF. The peak at Q =

QAF is broad and has anisotropic cross-section with lines of scattering extending

along the diagonals of the reciprocal lattice. Intensity remains peaked at QAF for

energy transfers of up to about 20 meV, where it begins to disperse outwards again.

The scattering intensity pattern above 20 meV retains the four-fold symmetry but is

rotated by 45◦ with respect to scattering observed below 14 meV, as demonstrated

by the 25 meV cut in Fig. 4.6.

Further details of the magnetic dispersion can be seen in Fig. 4.7 and 4.10(a)–

(d). The constant-energy scans in Fig. 4.7(a) show that the inward dispersion is

not accompanied by outward dispersion as would be expected for usual cone-like

dispersion of spin-waves, such as in La2CoO4 in § 3.7. For energy transfers in the

range of 14 to 20 meV, the dispersion is centred on QAF. Above 20 meV, Fig. 4.7(a)

and (b) show the maximum intensity disperses away from QAF. The peak positions
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Figure 4.6: Neutron scattering intensity maps of the magnetic excitation
spectrum of La5/3Sr1/3CoO4. The constant-energy transfer scans in the (h, k, 0)
scattering plane at E = 0 and 14 meV were centred at Q = (0.5, 0.5, 0); map collected
at E = 25 meV was centred at Q = (1.5, 0.5, 0). The wavevector-energy map was
constructed from a series of constant-energy scans made at 1 meV intervals through
(0.5, 0.5, 0) in the (ε,−ε, 0) direction. All measurements were made at 2 K, but a
background recorded at 100 K was subtracted from the elastic map. The colour scale
shows neutron counts for the 14 meV and diagonal Q-E maps. The elastic and 25 meV
maps were scaled to facilitate comparison on the same colour scale. The sharp peak
near (1.5, 0, 0) is spurious. Reprinted by permission from Macmillan Publishers Ltd:
Nature, Boothroyd et al., Nature 471, 341 (2011) [116], Copyright (2011).
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Figure 4.7: Dispersion of the magnetic excitation spectrum. (a) and (b)
The variation in the scattered intensity with wavevector in diagonal and vertical scans
through QAF for a series of different excitation energies. To close the scattering tri-
angle, scans for energy transfer less that 15 meV were centred on (0.5, 0.5, 0); above
15 meV the scans pass through equivalent point in reciprocal space at (1.5, 0.5, 0). Suc-
cessive scans have been displaced vertically for clarity, and the intensities at 35 meV
and 45 meV have been scaled to facilitate comparison with the lower-energy data. (c)
Dispersion of the intensity in the magnetic spectrum. The symbols represent the cen-
tres of Gaussian or Lorentzian peaks fitted to those constant-energy scans which show
either two clearly resolved peaks or a single central peak, circles from scans parallel to
(ξ,−ξ, 0) and squares from scans parallel to (0, ξ, 0). The colour map is a simulation
from the spin-wave model (§ 4.5.3), colour-coded in arbitrary units. (d) Energy de-
pendence of the magnetic intensity at the magnetic Brillioun zone edge (2, 0.5, 0). A
background measured at (2, 0, 0) has been subtracted. The strong peak at ∼45 meV
corresponds to the top of the magnetic spectrum. All measurements were made at a
temperature of 2 K. Reprinted by permission from Macmillan Publishers Ltd: Nature,
Boothroyd et al., Nature 471, 341 (2011) [116], Copyright (2011).
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Figure 4.8: Models for the magnetic groundstate of La2−xSrxCoO4. Proposed
spin structures of (a) La2CoO4, (b) La3/2Sr1/2CoO4 and (c) La5/3Sr1/3CoO4 in the
CoO2 plane. Empty circles represent the non-magnetic Co3+ sites and the arrows
indicate the magnetic moments on the Co2+ sites. Red dashed lines show the magnetic
unit cell whilst the dashed black outline shows the crystallographic unit cell. The
dominant exchange interactions and their paths are connected by green lines.

are plotted in Fig. 4.7(c) and show the characteristic hourglass spectrum. As the

modes disperse outwards above 30 meV, they eventually reach the antiferromagnetic

zone boundary, as is evident in the enhancement of spectral weight at ∼45 meV from

constant-Q measurement plotted in Fig. 4.7(d).

The dispersion of La5/3Sr1/3CoO4 clearly displays the same features as the mag-

netic spectra of hole-doped cuprates. The shape of the dispersion acquires the same

hourglass-like shape, there is no outward dispersion emerging from QAF as would

be expected for spin-waves and the pattern of spectral weight rotates by 45◦ above

and below the meeting point.

4.5.3 Simulation of the dispersion using a spin-wave model

Since La5/3Sr1/3CoO4 is an insulator, it can be treated as a local-moment system.

As already discussed, magnetism in La5/3Sr1/3CoO4 can be thought of as two-

dimensional as the inter-layer coupling is weak. A many-level spin-wave model as

used to describe the closely related La2CoO4 [88] and La3/2Sr1/2CoO4 [98] compo-

sitions can be applied to try to understand the dynamics in La5/3Sr1/3CoO4. The

magnetic order in the La2CoO4 and La3/2Sr1/2CoO4 compounds is well correlated

and spin-wave theory provides an excellent description of their magnetic spectra.

Figure 4.8 shows the magnetic structures in the z = 0 plane for La2−xSrxCoO4 in the

parent (x = 0) and Sr-doped x = 1/2 and x = 1/3 phases. As was demonstrated

in § 3, the nearest-neighbour exchange interaction J = 9.69(2) meV is dominant

over the next-nearest and next-next-nearest interactions which are over an order of

magnitude weaker, see Fig. 4.8(a). Analysis of the excitation spectrum by Helme et

al. [98] has shown that doping with Sr in a manner as to produce equal Co2+ and

Co3+ valencies, the strongest interaction is the one which relates spins separated

by a hole along the CoO2 bond direction [Fig. 4.8(b)], whose magnitude was calcu-
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Figure 4.9: Calculated spin-wave spectrum for ideal period-3 stripe. Panels
to show the calculations of the dispersion and partial cross-sections employing best-fit
parameters J = 11.5 meV and J ′ = 0.55 meV. The upper panels show the dispersion of
the lowest two modes perpendicular (left) and parallel (right) to the stripe direction.
The lower panels show the response functions Syy(Q, E) and Szz(Q, E) for the same
two modes illustrated in the upper panels as calculated using Eq. 4.4. The correlations
are calculated for coordinate system in which x lies along the ordered moment direction
and z is parallel to the crystallographic c axis.
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Figure 4.10: Simulations of the magnetic spectrum of La5/3Sr1/3CoO4. (a)–
(d) Constant-energy slices in the (h, k, 0) plane through the inelastic neutron scattering
data at energies in the 3 to 45 meV range. The colour scales show neutron counts, but
different counting times were used for each map. Sharp spots at E = 15, 25 and
45 meV are due to spurious scattering. All measurements were made at 2 K. (e)–(l)
The corresponding simulations from the spin-wave model. The exchange parameters
were set to J = 11.5 meV and J ′ = 0.55 meV. To simulate the instrumental resolution
a Gaussian broadening was applied with a standard deviation of 1 meV in energy.
The spectrum was further broadening by convolution with two-dimensional Gaussian
in reciprocal space with standard deviations of σ∥ and σ⊥ parallel and perpendicular
to stripes, respectively. The panels (e)–(h) were broadened by σ∥ = 0.06 r.l.u. and
σ⊥ = 0.09 r.l.u. whereas panels (i)–(j) show the same initial spectrum broadened by
σ∥ = 0.007 r.l.u. and σ⊥ = 0.014 r.l.u. instead. The model includes the Q variation of
the dipole magnetic form factor of Co2+. A common intensity scale given in arbitrary
units is used for (e)–(l), indicated by colour coding.
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lated to be J ′ = 1.4 meV. In La3/2Sr1/2CoO4, interactions J1 and J2 were found to

negligible and the dispersion can be well described assuming no magnetic degrees

of freedom on the Co3+ ions [98].

Therefore, we can try to extend the same treatment of the spin fluctuations to

La5/3Sr1/3CoO4. Neutron diffraction analysis appears to agree well with a stripe-

ordered magnetic groundstate as depicted in Fig. 4.8(c). We can therefore model the

system by considering just the exchange interactions J and J ′ with starting values

for the parameters determined for La2CoO4 and La3/2Sr1/2CoO4, respectively. The

symmetry of the crystal structure allows for four equivalent domains to be present.

Two wavevector domains allow the stripe modulations to be either along (ξ, ξ, 0) or

(ξ,−ξ, 0) directions and two spin domains which allow the ordered spins to align

either along x or y axes. The simulations presented here have been averaged over

an equal population of all four domains.

The model Hamiltonian has the form,

H =
∑
⟨jk⟩

JjkSj · Sk +
∑
j

[∑
l,m

Bm
l O

m
l (Lj) + λLj · Sj

]
. (4.3)

where J and J ′ are the principal exchange parameters as defined in Fig. 4.8(c).

The strong planar single-ion anisotropy of Co2+ is included in the model by the

last two terms. In analogy with § 3.7.4, the ligand field interaction is described by

Stevens operators Om
l and Bm

l are the corresponding parameters. Only three Om
l

operators are required to describe the tetragonal ligand field acting on Co2+ site.

The values used for the non-zero parameters were B0
4 = 1.35 meV, B4

4 = 8.00 meV

and B0
2 = 13.5 meV. The magnetic spectrum is not very sensitive to the first two of

these, and they are fixed to values established for La2CoO4 and La3/2Sr1/2CoO4 as

explained in Refs. [88, 98]. The B0
2 parameter does affect the magnetic spectrum,

through its control of the degree of planar magnetocrystalline anisotropy. However,

since the values of B0
2 determined from the spectra of La2CoO4 and La3/2Sr1/2CoO4

were not very different we can take an average of these weighted by the doping

levels. The the ligand field parameters were not adjusted in the analysis presented

here. The strength of the spin-orbit coupling was taken to be λ = −18.7 meV, as

determined from optical data for CoO [103].

The procedure for diagonalising the Hamiltonian1 in Eq. 4.3 is described in detail

in Ref. [98] and is the same one used in § 3.7.4 for La2CoO4. In order to describe

the spin fluctuations in Figs. 4.7 and 4.10 it is necessary to adjust the values of J

and J ′. A good fit to the hourglass spectrum is obtained when J = 11.5 meV and

J ′ = 0.55 meV. The partial response function Sαα (per La5/3Sr1/3CoO4 f.u.) can

be calculated using,

Sαα(Q, ω) =
∑
j

|⟨j|Mα(Q)|0⟩|2δ[ω − ωj(Q)]. (4.4)

1The diagonalisation of the Eq. 4.3 was carried out using ExcitonQ program written by
A.T. Boothroyd.
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where the spin and orbital magnetisation M = −(L+ 2S) is evaluated for a tran-

sition from the groundstate to an excited mode j. Figure 4.9 shows the dispersion

and partial response functions as a function of in-plane wavevector parallel and

perpendicular to the stripes. The spectrum is shown for a single domain with stripe

modulation along (ξ, ξ, 0) direction as shown in Fig. 4.8(c). The low energy spec-

trum contains two modes at each Q. The low-energy gap of approximately 4 meV

is well reproduced in our model. This arises due to single-ion anisotropy in the

Hamiltonian. The B4
4 term in the crystal field describes a Coulomb potential which

has a four-fold symmetry in the ab plane, therefore there are four potential minima

in this plane. This affects the spatial distribution of the electrons and in turn the

spin direction via the spin-orbit coupling. Thus there is a preferred spin direction

in the plane and this creates a gap in the excitation spectrum corresponding to the

energy required to rotate the spins out of the potential minimum.

Strong single-ion anisotropy splits the magnon modes producing a gap of about

35 meV at magnetic zone centres. Slices along (ξ, ξ, 0) and (ξ, 1 − ξ, 0) show that

a saddle point is formed at Q = (0.5, 0.5, 0) at around 17 meV as the maximum

in the inter-stripe dispersion reaches the minimum in the intra-stripe dispersion.

The intensity close to QAF is the strongest. Hence as the incommensurate branches

below saddle point disperse, the intensity distribution is such that the spectral

weight shifts towards the zone centre. The upper half of the dispersion is formed

by magnon modes, rotated by 45◦, dispersing away from QAF.

This effect is illustrated in Fig. 4.10(i)–(j). Here the wavevector broadening has

been reduced significantly in order to help identify distinct features of the disper-

sion. The magnetic dispersion at low energies (< 15 meV) is cone-like. However,

the difference between J and J ′ causes the elliptical shape. By the saddle point

the intensity is strongly peaked close to the antiferromagnetic ordering wavevec-

tor [Fig. 4.10(f) and (j)], the protrusions along (ξ, ξ, 0) and (ξ,−ξ, 0) are formed

from the finite scattering cross-section of the remaining spin-wave cones. Above the

saddle point a more complicated four-fold pattern is observed as the cone-like dis-

persions originating from qm interfere. Disorder in the system ensures that the finer

details of the magnetic excitations are lost resulting in the pattern in Figs. 4.10(e)–

(h).

Comparison of measured and calculated intensity maps in Fig. 4.10 at different

energies demonstrates that within the experimental limitations the agreement is

generally very good. The 3, 15 and 25 meV maps clearly show the houglass spectrum

and the twist of 45◦ in the intensity distribution above and below the saddle point.

All the prominent features of the data are reproduced by the simulations. The

enhancement of the intensity near the top of the spectrum is due to the planar

anisotropy in La5/3Sr1/3CoO4 which creates a nearly flat dispersion at the highest

energies.

A more quantitative comparison between model and data is found in Fig. 4.7.

The constant-energy cuts along high-symmetry directions shown in panels (a) and

(b) show how the simulated spectrum compares to the data. The amplitude of the

calculated cuts has been scaled to match the data and a linear background added.
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Figure. 4.7(c) the fitted peak positions are superposed on the best-fit model to high-

light the agreement between the data and model throughout the entire spectrum.

4.5.4 Discussion

In modelling the hourglass dispersion in La5/3Sr1/3CoO4 using a spin-wave model,

an assumption was made in that the magnetic order is static. However, the results

should be relevant for slowly fluctuating order too, as is likely for La5/3Sr1/3CoO4

given the short magnetic correlation. In the neutron scattering process, a neutron

will be insensitive to fluctuations on a timescale lower than about ~/∆E, where

∆E ∼ 1 meV is the energy resolution. Therefore, a magnetic order parameter

which fluctuates slower than this will have nearly the same spectrum as one in

which correlations are static.

The analysis presented in this section has shown that in order to fit the ex-

perimental observation of an intensity peak localised at QAF and approximately

15 meV, it is necessary to adjust the exchange interaction parameters J and J ′

from those obtained for La2CoO4 and La3/2Sr1/2CoO4. The dominant exchange in-

teraction J agrees to within about 10% with La2CoO4 but J ′ differs by more than a

factor of 2 from La3/2Sr1/2CoO4. These findings are strong evidence that the basis

of the model, the groundstate, and the important interactions are indeed correct.

Using the values determined independently from the inelastic neutron scattering

data for La5/3Sr1/3CoO4 results in the model predicting the same hourglass shaped

dispersion but with a saddle point located at higher energies of around 20–25 meV,

as opposed to the observed 15–20 meV. The renormalisation of the exchange pa-

rameters is likely to be caused by the breakdown of the linear spin-wave theory at

low energies as magnetic correlations extend over a few unit cells rather than being

long-ranged as assumed in the linear spin-wave theory. Thus, the fitted parame-

ters should be regarded as effective exchange parameters in the model rather than

the true reflection of the coupling strengths. Recent Monte-Carlo simulations have

confirmed that a disordered spin-glass phase can lead to an hourglass dispersion in

La5/3Sr1/3CoO4 [139]. The bulk magnetometry measurements presented in § 4.3

are consistent with the disordered stripe phase groundstate on which this model is

based.

The work presented in this section can be used to explain the absence of an

hourglass feature in the magnetic spectrum of the closely related La2−xSrxNiO4

family of layered nickelates which also have charge and spin stripe phase similar to

La2−xSrxCoO4. The main difference arises due to differing J/J ′ ratios in the two

systems. In La5/3Sr1/3NiO4 the ratio J/J ′ ≈ 2 [84, 140], whereas in La5/3Sr1/3CoO4

J/J ′ ≈ 7 or 30 depending on whether the estimated or fitted exchange parameter

values are taken. The relative magnitudes of J and J ′ determine the spin-wave

spectrum such that when J/J ′ ≈ 2, the maximum of the inter-stripe dispersion is

found at the top of the spectrum. When J/J ′ > 2, a saddle point is formed and

its position in energy decreases relative to the magnon bandwidth with increasing

J/J ′. In the cuprates the saddle point is typically observed around 30–40 meV with
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a band width in the range of 300 meV. Therefore, by comparison this would imply

a much larger J/J ′ ratio for the cuprates.

In addition to coupling of charges and magnetic moments in the cuprates, nick-

elates and cobaltates, the orbital degrees of freedom play a part in the manganites.

Comprehensive neutron diffraction experiments have ascribed stripe-like arrange-

ment of the magnetic and electronic order in the manganites [141]. More recent work

has emerged showing an hourglass dispersion reminiscent of that of La5/3Sr1/3CoO4

in single-layered manganites, Sr1.67Nd0.33MnO4 and Ca1.67Pr0.33MnO4 [142]. In-

elastic neutron scattering measurements to map out the spin fluctuations in the

Ca1.67Pr0.33MnO4 compound have demonstrated the importance of disorder in the

formation of the hourglass spectrum. The outward dispersing branch from the zone

centre of excitations at low-energies from the incommensurate wavevector positions

are suppressed upon heating. At low temperatures the magnetic order is long-

ranged but on warming the correlations lengths decrease to an order of the distance

between charge stripes and concomitantly the dispersion develops the full hourglass

shape.

4.6 Conclusions

In summary, the neutron scattering measurements on insulating La5/3Sr1/3CoO4

provide evidence that the system forms a stripe-ordered phase at low temperatures.

The non-magnetic Co3+ arrange periodically to act as antiphase domain walls be-

tween antiferromagnetically ordered Co2+ ions. The material is found to exhibit

an hourglass spin fluctuation spectrum which is strikingly similar to that observed

in hole-doped layered cuprates. This similarity lends support to the explanation of

the hourglass spectrum in cuprates as arising from dynamical stripes [143]. From

analysis of La5/3Sr1/3CoO4 two key ingredients are necessary to form an hourglass

magnetic spectrum, namely (i) unidirectionally modulated antiferromagnetic corre-

lations and (ii) a large ratio of magnetic couplings parallel and perpendicular to the

stripes. A large degree of broadening is also required in order to smear out the spin-

wave-like dispersion cones. Although spins may well be correlated in copper oxides

at low energies, experiments indicate that the spectrum can appear broadened with

increasing energy [129].

The local-moment picture used here to describe La5/3Sr1/3CoO4 may not neces-

sarily apply to the copper oxide superconductors, since the later are metals. How-

ever, the results of La5/3Sr1/3CoO4 impose tight constraints on any possible future

models and are support interpretation of the hourglass dispersion based on disor-

dered stripe order.
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5.1 Introduction

Research into high-temperature superconductivity has experienced an upheaval in

recent years after the discovery of iron-pnictide superconductors [24, 25]. Ever since,

research into these and related materials has been intense. Several families of Fe-

based superconductors have been discovered typified by LaFeAsO (1111) [24, 25],

SrFe2As2 (122) [144–147], LiFeAs (111) [148–153], Sr2PO3FePn (21311) [154, 155]

and FeySexTe1−x (11) [156–161]. The numbers in the parenthesis are derived from

the elemental ratios in the chemical formula of the parent compound. In most

compounds the superconducting transition temperatures are relatively low with the

record set by Gd1−xThxFeAsO with Tc = 56.3 K [162]. All share a tetragonal crystal

structure at room temperature [24, 152, 163, 164]. These systems raise interesting

questions about the physical origin of superconductivity and their relationship to

the cuprate superconductors. In both Cu- and Fe-based systems, superconductivity

is found in close proximity to a magnetically ordered parent phase. This suggests

that magnetic fluctuations are profoundly linked with superconductivity in these

two families. The superconductivity in the Fe-based family is subject of debate,

but appears to arise from suppression of a semi-metallic 1 magnetic ground state

rather than from doping an antiferromagnetic Mott insulator [158].

The work presented in this section will focus on the FeySexTe1−x system. Al-

though amongst the five types of Fe-based superconductors the maximum Tc of the

11 system is the lowest [165], it is nevertheless of great interest to study. This is

because:

(i) Its crystal structure is simple, meaning it is easier to analyse and model.

(ii) The system does not contain As and is therefore safer to grow and handle. The

only other Fe-based superconductors without As are the phosphides LaFePO

and LaNiPO.

(iii) Importantly, large single-crystal samples can be grown relatively easily over a

wide range of doping.

The availability of large single-crystals is particularly important for neutron

scattering experiments. In this chapter I will discuss the progress that has been

made in the investigation of FeySexTe1−x in the magnetic and superconducting

phases. A useful strategy for tackling this problem is combining neutron scattering

and muon-spin rotation (µSR) measurements on one and the same sample. Neu-

tron scattering provides information on magnetic correlations and on the nature of

the magnetic excitations, while µSR can determine whether static magnetic order

and/or bulk superconductivity exists. The µSR and magnetisation measurements

work presented here has been the result of the collaboration with M. Bendele and

R. Khasanov at Paul Scherrer Institut, culminating in Refs. [160, 166–168].

1This is the term given to a material in which the conduction and valance bands overlap slightly
in energy but are displaced in crystal momentum space, in analogy to a indirect band gap semi-
conductors.
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Figure 5.1: Crystal structure and phase diagram of FeySexTe1−x. (a) Crystal
structure of FeySexTe1−x described by the P4/nmm space group showing the Fe(1)
layers separated by Se/Te atoms along c axis. The faded red atoms denote the inter-
stitial (y − 1) atoms which can also occupy sites between the Fe(1) layers. (b) Phase
diagram showing the temperature dependence of the magnetic (M), paramagnetic (PM)
and superconducting (SC) states in FeySexTe1−x as a function of doping with Se. The
region (M+SC) identifies the phase in which magnetism and partial superconductivity
coexist. Reprinted figure with permission from Khasanov et al., Phys. Rev. B 80,
140511(R) (2009) [160]. Copyright c⃝ (2009) by the American Physical Society.

5.2 Tuning the magnetism and superconductivity in

FeySexTe1−x

The crystal structure of FeySexTe1−x is of anti-PbO-type and is shown in Fig. 5.1(a).

The tetragonal structure belongs to the P4/nmm space group with Fe(1) atoms in

the square basal plane forming a layered structure. Depending on doping, Se or

Te act to separate the Fe(1) planes. High-resolution single-crystal structure refine-

ments of FeSe0.44Te0.56 suggest that due to differing sizes of Te and Se atoms they

are located at different positions along c in the unit cell despite being crystallo-

graphically equivalent [169]. Interstitial Fe(2) atoms are often required to stabilise

the crystal growth and these also occupy positions in between the Fe(1) layers.

The minimum amount of excess interstitial Fe(2) (amounting to y− 1) required de-

creases with increasing x [27]. As will be demonstrated in this chapter, the excess

Fe atoms also influence the phase diagram of FeySexTe1−x by tuning the delicate

balance between magnetism and superconductivity. It must be noted that most of

the FeySexTe1−x compounds tend to have significant nonstoichiometry, disorder and

clustering problems [27]. This results in broad superconducting phase transitions.

Although large single-crystals show bulk superconductivity, careful examination of

the sample compositions have shown that usually they are highly inhomogeneous

[158, 170].

The pure FeSe compound is a superconductor with a transition temperature

of Tc ≈ 8 K [156]. The Tc can be increased by partial substitution of Te for Se
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such that Tc ≈ 14 K for 0.4 . x . 0.8 and y ≈ 0 [160, 161]. The application of

pressure has also been found to raise Tc, with values as high as 37 K observed for

FeSe [171–174]. Compounds with x . 0.4 do not exhibit bulk superconductivity

but order magnetically below a temperature which has a maximum of 67 K at x = 0

and which decreases with x and vanishes at x ≈ 0.4, as illustrated in Fig. 5.1(b).

Recently, evidence was found for coexistence of incommensurate magnetic order

and partial superconductivity for x ∼ 0.25 [160], shown in Fig. 5.1(b). Similar

phase diagrams were obtained and are reported in Refs. [175, 176]. However, the

doping region 0.1 . x . 0.3 is characterised by only partial superconductivity

and a spin-glass regime. The question arises as to whether the magnetism and

superconductivity are truly coexisting or if there is macroscopic phase separation

where magnetism and superconductivity are mutually exclusive [177]. Long-range

antiferromagnetic order ceases for x & 0.1 and structural studies indicate that

the low-temperature structural distortion also disappears at the same x. The phase

diagram shown in Fig. 5.1(b), where superconductivity emerges after the destruction

of long-range antiferromagnetic order, is qualitatively similar to observations in

layered cuprate high-Tc superconductors. This would perhaps suggest a common

electronic or magnetic origin of superconductivity. However, the (semi-)metallic

and insulating parent phases are a significant discriminating feature between the

two classes of superconductors.

5.2.1 Electronic band structure

It is well known that when transition metal ions are in a electronegative environ-

ment, the Coulomb interaction will tend to lift the single-ion d-orbital degeneracy

producing energy levels eg and t2g, as in the case of cobaltates already discussed in

§ 3 and 4. For the cobaltates the split d-orbitals form energetically distinct bands,

whereas for the Fe-based compounds the d bands overlap strongly. The electronic

density of states at the Fermi energy is dominated by the Fe 3d orbital contribution

rather than Te 5p orbitals [27, 178]. The main metallic conduction mechanism is

believed to be due to electrons hopping between Fe atoms, without intermediate

Se/Te atoms along the path. It is widely believed that the superconductivity in the

Fe-based superconductors originates from the electrons of the d-orbitals of Fe [179].

The nature of the electronic band structure at the Fermi surface plays a key role in

determining the magnetic properties in the FeySexTe1−x systems. In the cuprates,

the situation is quite different. Only one Cu 3d-orbital contributes and the strong

antiferromagnetic exchange interactions are mediated along the Cu–O–Cu bonds,

with O 2p orbital contributing to the density of states at Fermi energy.

Density functional calculations have found that the Fermi surfaces of FeySexTe1−x

compounds are broadly similar to the 122 and 1111-type compounds [180]. ARPES

studies of the magnetic and superconducting single-crystals of FeySexTe1−x reveal

in each case a metallic character at the Fermi energy with a Fermi-surface structure

which is typical of most iron-based superconductors [181, 182]. In Fe1+yTe, the hole

pockets are located at (0, 0, 0) and elliptical electron pockets centred on (0.5, 0.5, 0)
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[181]. The number of electrons and holes are found to be the same, as would be

expected for a semi-metal material. The nesting wavevector (0.5, 0.5, 0) connects

the hole and electron pockets. This is usually considered to be favourable for spin

density wave nesting, found in essentially all FeAs-superconductors and has two se-

rious implications on the understanding of FeySexTe1−x. Firstly, experimentally the

antiferromagnetic propagation wavevector is found close to (0.5, 0, 0.5) below the

magnetic ordering temperature. This would suggest that the antiferromagnetic or-

der is not driven by Fermi surface nesting of itinerant electrons/holes but by some

alternate mechanism of which a number have been proposed in Refs. [183–185].

The nature of the magnetic order of FeySexTe1−x will be discussed in more detail

in § 5.3. Secondly, the existence of electron and hole pockets allows for a new type

of superconductivity, known as s± electron pairing [26]. This form of pairing relies

on the semi-metallic Fermi surface such that a pairing interaction between holes

and electrons pockets connected by the nesting wavevector can occur provided the

superconducting order parameter has opposite signs on the hole and electron pock-

ets. The superconducting order parameter can be probed using inelastic neutron

scattering, as will be discussed later in § 5.6.

5.3 Static magnetic order in FeySexTe1−x

Band structure calculations [178] have shown that the ground state of the parent

FeTe phase is a collinear antiferromagnet with large local magnetic moments of

approximately 2.5µB. The collinear antiferromagnetic order is formed from lines of

spins aligned ferromagnetically along one diagonal and antiferromagnetically along

the other diagonal direction in the Fe-Fe square lattice. The composition formed

from FeSe is predicted to form a simple collinear antiferromagnetic groundstate

[178]. The low-temperature magnetic structure of Fe1.125Te was solved nearly four

decades ago [186]. The propagation wavevector was found to be qm = (0.5, 0, 0.5)

with a large ordered magnetic moment of 2.07µB [186], more recent studies on simi-

larly doped compounds have further indicated that the moment is mainly orientated

along the crystallographic b-axis [187–189].

Magnetism probed by bulk magnetisation measurements and µSR provides valu-

able clues to the nature of magnetic correlations in the system. However, neutron

scattering is the technique best suited to study magnetism in single-crystals when

large, good quality samples are available. This section will describe the efforts in

trying to understand the static magnetic order in FeySexTe1−x when either the Se:Te

ratio is varied. Further in § 5.5.3 I shall describe what happens when interstitial Fe

is added or removed.

5.3.1 Experimental details

Single-crystal measurements on several compositions of FeySexTe1−x were carried

out on the triple-axis spectrometer TASP at the SINQ spallation source (Paul Scher-

rer Institut, Switzerland) [95, 96]. In addition, polarised neutron scattering was
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employed using the MuPAD device [76] in order to conclusive ascribe reflections to

be of magnetic origin. In unpolarised neutron scattering measurements, Bragg re-

flections from a pyrolytic graphite PG(002) monochromator and analyser were used

at a fixed final wavevector of 2.66 Å−1. The polarised neutron diffraction measure-

ments were carried out using kf = 1.97 Å−1. A PG filter was used in unpolarised

neutron scattering measurements, placed after the sample to reduce contamina-

tion from higher-order harmonics in the beam and the instrument was set up in

the open–open–open–open collimation with the analyser focusing in the horizontal

plane. The crystal masses were typically in the 2–6 g range. Two scattering geome-

tries were employed to access (h, k, 0) and (h, 0, l) planes in reciprocal space. Here

we index the reciprocal space with respect to the tetragonal unit cell described by

the P4/nmm space group with unit cell parameters a ≈ 3.8 Å and c ≈ 6.1 Å along

the lines joining the nearest neighbour Fe atoms.

Zero-field-cooled magnetisation measurements were performed on a Quantum

Design MPMS magnetometer with a measuring field µ0H = 0.3 mT using the direct

current method. To reduce the effects of demagnetisation, thin plate-like pieces of

FeySexTe1−x, cleaved from the main single crystals, were oriented with the flat

surface (ab plane) parallel to the applied field. Zero-field (ZF) and transverse-field

(TF) muon-spin rotation (µSR) experiments were performed on the πM3 beam

line at SµS (Paul Scherrer Institut, Switzerland). In TF experiments a magnetic

field of 11.8 mT was applied parallel to the crystallographic ab plane of the crystal

and perpendicular to the muon-spin polarisation. The magnetisation and µSR

measurements were performed by M. Bendele and R. Khasanov.

5.3.2 Crystal growth

Single crystals of FeySexTe1−x the results of which are presented in this chapter

were grown by a modified Bridgman method similar to that reported by Ref. [158].

The samples were prepared by E. Pomjakushina and K. Conder at Paul Scherrer

Institut, Switzerland. Powders of Fe, Se and Te of minimum purity 99.99% were

mixed in the appropriate ratios, pressed into a rod 7 mm in diameter, and placed

into an evacuated, double-walled quartz ampule. The rod was first melted and

homogenised at 1200oC for 4 hours and then cooled in a temperature gradient

8◦C/cm at a rate of 4oC/hr down to 750oC followed by 50◦C/hr cooling. The

crystals had mirror like surface and were easily cleaved parallel to the ab planes.

Some of the samples were ground into a powder and analysed using neutron powder

diffraction. The main constituent of the P4/nmm structure was found to occupy

more than 94% of the volume of the crystals analysed. A small amount of impurity

was found of the hexagonal Fe(Se,Te) which has a structure of the P63/mmc space

group.
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Figure 5.2: Temperature dependence of magnetic and superconducting
phase transitions in Fe1.01Se0.50Te0.50 and Fe1.10Se0.25Te0.75. (a) Temper-
ature dependence of the zero-field-cooled magnetisation of Fe1.01Se0.50Te0.50 and
Fe1.10Se0.25Te0.75 normalised to the ideal 1/4π value. The onset Tc

onset of the sup-
erconducting transition is determined from the intersection of straight lines fit to the
data above and below the transition. (b) Temperature-dependent initial TF asymmetry
of the slow relaxing component [ATF

0 and ATF
1 ] for single crystals of Fe1.01Se0.50Te0.50

and Fe1.10Se0.25Te0.75. The onset (TN
onset) and the mid-point (TN

mid) of the magnetic
transition are determined from the intersection of straight lines fit to the data above
and below the transition and as the point where the asymmetry decreases by a factor
of 2 from its maximum value, respectively.

5.3.3 Magnetisation and µSR measurements

Zero-field-cooled magnetisation data normalised to the ideal 1/4π value (χDC) are

shown in Fig. 5.2(a). The Fe1.01Se0.50Te0.50 sample is a bulk superconductor with

the onset of the transition found at Tc
onset ≃ 14.0 K and χDC ≃ −0.8 at T ≃ 2 K.

A value of −1 is expected for an ideal diamagnet. The Fe1.10Se0.25Te0.75 sample

also exhibits superconductivity (Tc
onset ≃ 8.6 K) but has a small superconducting

fraction of order 10% at low temperature.

The evolution of the µ+ spin polarisation is sensitive to the spatial distribution

and dynamical fluctuations of µ+ magnetic environment. If the µ+ is in a static

magnetic field which varies slightly at different µ+ sites, µ+ will precess at slightly

different frequencies. This results in oscillations of the ensemble becoming dephased

and damping of spin polarisation with time is observed [190]. Should the changes in

field from site to site be large, the oscillations will be heavily damped. This can also

be caused by fluctuating internal fields, intrinsic sample properties or µ+ diffusion

[190, 191]. Application of an external magnetic field, such as one perpendicular to

the incident µ+ beam axis (TF-µSR), allows us to distinguish between dynamic and

static internal field distributions [190].

ZF-µSR measurements on the x = 0.5 sample show that the spectra are un-

changed at T = 1.7 K and 20 K and therefore the magnetic state is the same above

and below the superconducting phase transition [166]. The µSR measurements were
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Figure 5.3: Elastic neutron measurements of Fe1.10Se0.25Te0.75 at the fun-
damental reflection q = (0.47, 0, 0.5). (a) Map showing the incommensurate peak
at q in the (h, 0, l) plane at 2 K. (b) Temperature dependence of the magnetic peak
centered on q upon transition through the magnetic ordering temperature. Inset shows
scans along (h, 0, 0.5) measured at 2, 20, 30 and 50 K. A sloping background function
has been subtracted from the data and the dashed lines show a Gaussian fit through
the peaks. For clarity, the scans have been displaced vertically.

consistent with dilute Fe moments as observed in FeSe1−x [192]. At higher temper-

atures an anomalous change in the polarisation is found around 130 K. The origin of

this is uncertain but it could be a Verwey transition like that in Fe3O4 [193] and/or

due to impurity phase of Fe7Se8 which is known to undergo a spin-axis transition

below 130 K [194–196].

Static (within the µSR time window) magnetism in Fe1.10Se0.25Te0.75 is signalled

by a fast drop of both ZF and TF asymmetries within the first 100 ns. The TF

spectrum was found to be well described by two components governing slow and fast

relaxation of the signal. The temperature evolution of ATF
1 , shown in Fig. 5.2(b),

reveals that below 20 K magnetism occupies more than 95% of the whole sample

volume. The corresponding values of the onset and the mid-point of the magnetic

transitions, determined as shown in the figure, are T onset
N ≃ 33.7 K and Tmid

N ≃
27.6 K.

5.3.4 Elastic neutron scattering

Elastic neutron scattering measurements on Fe1.10Se0.25Te0.75 in the (h, 0, l) scat-

tering plane at 2 K, as shown in Fig. 5.3(a), reveal a diffuse magnetic peak centred

on (0.5 − δ, 0, 0.5) with δ ≈ 0.03. The incommensurate peak is much broader than

the resolution of the instrument. From Q scans through the peak we obtain cor-

relation lengths along a and c axes of 13.8(8) Å and 7.5(4) Å respectively at 2 K.

Figure 5.3(b) shows that the magnetic peak develops gradually below TN ≈ 50 K.

The correlation lengths did not change measurably upon warming through the TN,

see Fig. 5.3(b): inset.

Our polarised neutron scattering measurements to study the closely related com-
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position Fe1.03Se0.25Te0.75 revealed that the peak found at Q = (0.5 − δ, 0, 0.5) is

indeed magnetic [160]. Measurements at equivalent positions in reciprocal space

showed that the propagation vector is described by qm = (0.5 − δ, 0,±0.5). The

peaks appear on only one side of the antiferromagnetic wavevector. This was ex-

plained as due to an imbalance of ferromagnetic/antiferromagnetic correlations be-

tween nearest-neighbour spins [197]. Our results are consistent with measurements

on Fe1.07Se0.25Te0.75 for which the incommensurability is found to be δ ≈ 0.04

but the correlation lengths are smaller – 6.1(1) Å and 4.9(1) Å along a and c axes,

respectively [197].

5.3.5 Discussion

The main difference between the Fe1.01Se0.50Te0.50 and Fe1.10Se0.25Te0.75 samples is

that the x = 0.25 sample exhibits short-range static magnetic order with a charac-

teristic wavevector qm = (0.5 − δ, 0,±0.5), δ ≈ 0.03, whereas according to the µSR

data collected on a crystal from the same batch there is no static magnetic order in

the bulk superconductor. The magnetic ordering wavevector qm found at x = 0.25

is the same as that in the parent phase Fe1+yTe. The slight incommensurability is

thought to be caused by the small excess of Fe accommodated in interstitial sites

in the crystal structure [178, 187, 198].

It is also worth commenting on the fact that in the x = 0.25 sample elastic

magnetic peaks are observed below T ≈ 50 K by neutron scattering but static

magnetic order is only detected below T ≈ 35 K by µSR. These observations can be

reconciled by the difference in the fluctuation rates observable by muons (GHz) and

neutrons (THz) below which spin freezing is measured. We infer from this that the

characteristic fluctuations of the spin system lie in the GHz to THz range for 35 K

. T . 50 K. Such a gradual slowing down of the fluctuations could be a consequence

of the quasi-two-dimensional nature of the spin system, which is also indicated by

the persistence of spin correlations to temperatures well above the ordered phase.

It is also interesting that the size of the magnetically ordered domains does not

significantly increase with decreasing temperature, which suggests that the short-

range order is never truly static but fluctuates down to the lowest temperature

investigated. This picture is consistent with the observation of spin-glass behaviour

in FeySexTe1−x for 0.1 < x < 0.3 where y ≈ 0 [175].

5.4 Excitation spectrum in FeySexTe1−x

Many inelastic neutron scattering experiments on Fe-based superconductors have

focused on finding the spin resonance mode which appears below Tc and is com-

mon to hole-doped cuprate and heavy-fermion systems. We shall now turn to the

low-energy excitation spectrum of Fe1.01Se0.50Te0.50 and Fe1.10Se0.25Te0.75 probed

using unpolarised inelastic neutron scattering which reveals stark differences in the

superconducting and magnetic phases. The inelastic magnetic neutron scattering

cross-section is directly proportional to the magnetic response function S(Q, E) –
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Figure 5.4: Inelastic neutron scattering measurements on Fe1.10Se0.25Te0.75
to show dispersion at qm. (a) Constant energy scans collected at 2, 4 and 6 meV and
2 K along (h, 0, 0.6). The data has been shifted in χ′′(Q, E) by arbitrary amounts for
clarity. (b) Constant energy scans collected at 2 meV and temperature of 2 K showing
χ′′(Q, E) along (h, 0, 0.5), (h, 0, 0.7) and (h, 0, 0.9). The plots have been displaced and
the dashed lines show Gaussian peaks through the spectra. (c) Temperature depen-
dence of excitation mode as measured along (0.5, 0, l). Note that a linear background
has been subtracted in all scans. (d) Diagram of the (h, 0, l) plane to show scan direc-
tions denoted by roman numerals. Reprinted from Babkevich et al., J. Phys.: Condens.
Matter 22, 142202 (2010), Copyright (2010) by Institute of Physics Publishing Ltd.

the Fourier transform of the space- and time-dependent spin–spin correlation func-

tion. According to the fluctuation–dissipation theorem (see § 2.2.2.2), the dynamical

part of the response function, S̃(Q, E), is in turn related to the imaginary part of

the dynamical susceptibility χ′′(Q, E) by [46]

S̃(Q, E) =
1

π
[n(E, T ) + 1]χ′′(Q, E). (5.1)

The Bose–Einstein population factor n(E, T ) = [exp(E/kBT ) − 1]−1 takes into ac-

count the increase in scattering from bosonic excitations due to thermal population

at temperatures T > 0. Correction for this factor allows the temperature depen-

dence of χ′′(Q, E) to be studied.

5.4.1 Results of inelastic neutron scattering experiments

Figure 5.4(a) shows background corrected scans along the (h, 0, 0.6) direction at

energy transfers of 2, 4 and 6 meV for the Fe1.10Se0.25Te0.75 crystal. A peak at the
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same position in reciprocal space [i.e. at Q = qm, where qm = (0.47, 0, 0.5)] is

present in each scan, indicating a steeply rising excitation. The broadening of the

dispersion inQmay be due to unresolvable splitting of the mode into two excitations

at higher energies. The measured magnetic response at 2 meV parallel to (1, 0, 0)

for l = 0.5, 0.7 and 0.9, as shown in Fig. 5.4(b), reveals considerable broadening

of χ′′(Q, E) in the out-of-plane direction. Such broadening is characteristic of a

quasi-two-dimensional system with weak interactions along the crystallographic c

axis. Figure 5.4(c) shows that spin fluctuations persist up to at least 150 K, well into

the paramagnetic state. At 40 K, i.e. close to the magnetic ordering temperature,

χ′′(Q, E) is almost the same as at 2 K.

The low-energy excitation spectrum in the vicinity of the antiferromagnetic

wavevector QAF = (0.5, 0.5, 0) is shown in Fig. 5.5. This is the wavevector which

is associated with the connection of the hole-electron pockets on the Fermi surface.

The observation of a resonance at this position provides information related to the

pairing symmetry. Figures 5.5(a) and (b) show maps of χ′′(Q, E) measured along

(h, 1 − h, 0) for Fe1.10Se0.25Te0.75 at 2 and 40 K. The fluctuations measured at 2 K

are consistent with the magnetic excitation spectrum at higher energies reported for

Fe1.03Se0.27Te0.73 [199]. The excitation spectrum at 2 K is characterised by steep

incommensurate branches arising from (0.5 ± ε, 0.5 ∓ ε, 0) where ε ≈ 0.18. The

incommensurate excitations are still present at 40 K. The scans shown in Fig. 5.5(c)
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reveal that at E = 7 meV, the system response is nearly the same at 2 K as at

40 K. The background corrected χ′′(Q, E) for the Fe1.10Se0.25Te0.75 sample does not

appear to change for energies in the 2 to 7 meV range measured at these temper-

atures. This is also the case for measurements along (0.5, 0, l) in Fig. 5.5(c) that

show χ′′(Q, E) data at 2 meV to be similar at 2 and 40 K.

The results obtained for Fe1.01Se0.50Te0.50 greatly differ to those of the non-

superconducting Fe1.10Se0.25Te0.75 sample just described. Figures 5.5(d) and (e)

show maps of the dispersion spectrum as a function of wavevector along (h, 1 −
h, 0) for energies between 2 meV and 7 meV at 2 and 40 K. At 2 K we find a

strong signal in χ′′(Q, E) centred on Q = (0.5, 0.5, 0) and E ≈ 7 meV. This

feature corresponds to the spin resonance reported previously in superconducting

FeSe0.4Te0.6 [200], FeSe0.46Te0.54 [201] and FeSe0.5Te0.5 [202]. However, unlike all

FeAs-superconductors, the spin resonance and magnetic order occur at different

wavevectors. At higher energies, the excitations have been found to disperse away

from (0.5, 0.5, 0) along (1,−1, 0) [201]. However, it is the low energy response of

the system which shows the most dramatic change on transition into the supercon-

ducting state, as may be seen in Fig. 5.5(f). As the sample is cooled from 40 K to

2 K, the integrated intensity of the peak at 7 meV increases by more than a factor

of 2 and decreases in width along (1,−1, 0) by about 30%. Fluctuations continue

to be observed well above Tc.

5.4.2 Discussion

The results presented here establish that the low-energy excitations of FeySexTe1−x

vary strongly with x. The magnetic spectra of the magnetically-ordered compound

(x = 0.25) and the bulk superconductor (x = 0.5) both contain low-energy magnetic

fluctuations in the vicinity of the antiferromagnetic wavevector (0.5, 0.5, 0). How-

ever, at x = 0.25 the fluctuations are incommensurate with wavevector (0.5±ε, 0.5∓
ε, 0), ε ≈ 0.18, whereas at x = 0.5 the strongest magnetic signal is commensurate.

Moreover, at x = 0.5 the magnetic spectrum has a gap of almost 6 meV and the

size of the signal just above the gap increases strongly at low temperatures. This

behaviour is consistent with the superconductivity-induced spin resonance reported

recently in bulk superconducting samples of FeySexTe1−x of similar composition to

ours [200–203], and also in other FeAs-superconductors [188, 204–207].

The elastic and inelastic neutron scattering results suggest that there are two

distinct magnetic ordering tendencies at x = 0.25, one with wavevector (0.5 −
δ, 0,±0.5) and the other with wavevector (0.5±ε, 0.5∓ε, 0). The µSR data indicate

that the volume fraction of magnetically ordered phase is close to 100%, but we

cannot say whether the two characteristic magnetic correlations coexist on an atomic

scale or whether the sample is magnetically inhomogeneous.
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5.5 Coexistence of magnetism and superconductivity

As demonstrated in § 5.4, the magnetic order and excitation spectra of magnetic

and superconducting samples of FeySexTe1−x are quite different. In the non-sup-

erconducting Fe1.10Se0.25Te0.75 sample, magnetic order is observed characterised by

a magnetic Bragg peak in the vicinity of Q = qm = (0.5 − δ, 0, 0.5). A steep mag-

netic dispersion is found to originate from this position in reciprocal space. Incom-

mensurate spin fluctuations are found in scans transverse to QAF = (0.5, 0.5, 0)

in the ab plane. No static magnetic order is observed in the superconducting

Fe1.01Se0.50Te0.50. The magnetic spectrum contains a spin resonance centred on

QAF and E ≈ 6.5 meV which disappears as the temperature is raised above Tc.

It is therefore of interest to investigate the cross-over from the systems displaying

superconductivity to those that do not.

In this section I will deal with the systematic study of FeySe0.25Te0.75 when the

amount of interstitial Fe is varied but Se:Te doping is fixed. The excess Fe turns out

to play an important role in the physical properties of the system. This is especially

significant as it is easier to grow large single crystals of FeySe0.25Te0.75 when y > 1

and these have been examined the most – usually without regard to the possible

effect of the excess Fe content.

5.5.1 Dimensionality of the magnetic excitations

Inelastic neutron scattering measurements on the FeyTe compounds reveal the on-

set of incommensurate magnetic order is concomitant with the vanishing spin gap

at the position of the magnetic Bragg peak [208]. The commensurately ordered

phase of FeyTe possesses spin fluctuations which are three-dimensional in momen-

tum transfer.

One common feature in the phenomenology of both the Fe-based and cuprate

superconductors is a sharp peak in the magnetic spectrum localised in wavevector

and energy which increases in intensity on cooling below Tc (spin resonance) [200].

In superconducting FeySexTe1−x a spin resonance is observed to develop below

Tc = 14 K at an energy of 6.5 meV, centered on the wavevector QAF. The position

of the resonance peak in momentum space carries information about the symmetry

of the superconducting gap ∆(Q). For singlet pairing, the BCS coherence factor

enhances the neutron response function when the superconducting gap changes sign

between the points on the Fermi surface connected by QAF [209]. The FeSe- and

FeAs-based superconducting compounds share a similar crystallographic structure

and have a Fermi surface composed of quasi-two-dimensional electron and hole

pockets at Brillouin zone corner and center points, respectively. This would suggest

that the pairing mechanism is also related in these materials [180].

The spin resonance in FeSe0.4Te0.6 is believed to be of nearly two-dimensional

character with very weak change in energy along c∗ [200]. This is a widely accepted

view which has not been challenged in this family of compounds. The work by

Pratt et al. [210] demonstrates that the resonance in optimally doped BaFe2As2 has



5.5. Coexistence of magnetism and superconductivity 126

very weak out-of-plane dispersion and no static antiferromagnetic ordering. How-

ever, the under-doped compound was found to have both a significant spin resonance

dispersion along c∗ and antiferromagnetic ordering in the ab-plane. This would in-

dicate that interlayer interactions become important in the under-doped BaFe2As2
in the presence of antiferromagnetic order. Our preliminary measurements on bulk

superconducting FeSe0.4Te0.6 have indicated that there is very little if any dispersion

of the resonance along c∗. In addition, elastic neutron measurements on bulk sup-

erconducting Fe1.01Se0.50Te0.50 sample do not show magnetic order, whilst samples

that are underdoped have finite intensity close to (0.5, 0, 0.5) [167, 177]. Therefore

within a region of the phase diagram, there is coexistence of incommensurate mag-

netic order and superconductivity. These properties would strongly suggest that

in such compounds, as in under-doped BaFe2As2, the magnetic fluctuations may

exhibit three-dimensional character or other unique behaviour.

5.5.2 Experimental setup

The FeySe0.25Te0.75 samples were prepared with a wide range of nominal Fe content,

over the 0.9 < y < 1.1 range using the modified Bridgman growth method described

in § 5.3.2. The Se-doping was fixed such that x ≈ 0.25, the samples are therefore

close to the spin-glass phase, shown in Fig. 5.1(b). The single-crystal samples were

prepared in form of rods with masses of approximately 4–7 g for use in the neutron

scattering experiments.

The crystal structure and stoichiometry was examined using single-crystal x-

ray diffraction at room temperature [167]. All samples were found to possess a

tetragonal lattice (space group P4/nmm) with lattice parameters a ≈ 3.8 Å and

c ≈ 6.2 Å and site occupancy in good agreement with the nominal values.

The magnetic susceptibility of FeySe0.25Te0.75 samples was measured using a

Quantum Design (MPMS-XL7) magnetometer. A small measuring field of 3 Oe

was applied to the samples along the ab-plane. This orientation was used as the

crystal cleaves easily perpendicular to the crystallographic c axis and therefore thin,

plate-like samples can be measured in the magnetometer. This experimental setup

geometry was chosen to minimise the effect of diamagnetic shielding – the shielding

currents generated at the sample surface screening the applied field.

To investigate the change in the magnetic correlations with Fe content, elastic

and inelastic neutron scattering measurements were performed on the TASP triple-

axis spectrometer at SINQ [95, 96]. In order to probe the static magnetic order,

the samples were orientated in the (h, 0, l) plane and reoriented to access (h, k, 0)

to probe spin fluctuations close to QAF = (0.5, 0.5, 0). To examine the dispersion of

excitations along c∗, the (h, h, l) scattering plane was also explored. Each sample

was aligned on nuclear Bragg reflections to an accuracy better than 0.008 r.l.u. at

1.5 K.
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Figure 5.6: Nature of the magnetic order in FeySe0.25Te0.75 probed using
magnetometery, µSR and neutron diffraction. (a) Temperature dependence of
the volume susceptibility χDC of representative compositions (y = 0.95, 1.00, and
1.10) of single-crystal FeySe0.25Te0.75. The onset of the superconducting transition
T onset
c and the midpoint corresponding to χDC = −0.5 are indicated. (b) Tempera-

ture dependence of the muon-spin polarisation of the slow relaxing component. The
magnetic transition TN is determined from a fit to a Fermi-type function. Neutron
diffraction from FeySe0.25Te0.75 samples are shown in panels (c) and (d). In both pan-
els the y = 1.00 and y = 1.10 data are displaced vertically for clarity. (c) Profiles along
the (h, 0, 0.5) direction at T = 2 K after subtraction of a background signal measured
at T ≈50 K. The solid line shows a fit to a Lorentzian function convoluted with the
resolution function of the instrument using ResLib [71]. The shading represents the
displacement of the peak from the commensurate position. (d) Temperature depen-
dence of the magnetic reflections centred on Q. Reprinted figure with permission from
Bendele et al., Phys. Rev. B 82, 212504 (2010) [167]. Copyright c⃝ (2010) by the
American Physical Society.
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5.5.3 Static magnetic order

Measurements of the magnetic susceptibility of FeySe0.25Te0.75 samples for y = 0.95,

1.00 and 1.10 are shown in Fig. 5.6(a). We found that bulk superconductivity

develops in the samples with nominal Fe content of 0.90 to 0.98, as indicated by

χDC ≈ −1 found at low temperatures. The onset of superconductivity for these

crystals is found to be typically around 10 K. Conversely, samples with nominal

compositions greater than y ≈ 1, show only traces of superconductivity with volume

fraction of less than 30% at low temperatures. The superconducting volume fraction

decreases with increasing Fe content up to y ≈ 1.1.

The magnetic ordering temperature was investigated using TF-µSR in a similar

fashion to the measurements described in § 5.3. A fast drop of muon polarisation

on incidence with the sample is attributed to the development of magnetism. More

than 60% of the bulk superconducting samples (y = 0.9 and 0.95) were found to

be magnetically ordered at 1.6 K. Increasing the nominal Fe content to more than

0.98 was shown to lead to samples becoming 100% magnetically ordered. The

development of the magnetic order probed by µSR is shown in Fig. 5.6(b). The

ordering temperature TN is found to increase sharply as the interstitial Fe content

is increased from y = 0.98 to 1.03. The transition temperature TN becomes largely

invariant above the y ≈ 1.03 composition.

The magnetic order was further examined using neutron diffraction. Scans in the

(h, 0, l) scattering plane through the fundamental magnetic Bragg peaks at 1.5 K are

shown in Fig. 5.6(c). A background recorded at around 50 K (above the magnetic

ordering temperature) was subtracted in order to isolate the magnetic contribu-

tion to the scattering at 1.5 K. Diffuse incommensurate magnetic peaks centered at

Q = (0.5− δ, 0, 0.5), with δ ≈ 0.03, are observed in all three samples. These results

show that samples in the entire range 0.95 < y < 1.10 have incommensurate mag-

netic order. A possible reduction in incommensurability δ is found for the y = 1.00

sample, however due to the broad nature of the peak, this shift may not be related

to the sample. As can be seen from Fig. 5.6(c), the magnetic peaks along (h, 0, 0.5)

appear to become broader with reduced Fe-content with correlation lengths along

a deduced to be 7.1(5) Å, 8.4(6) Å and 13.8(8) Å for y = 0.95, 1.00 and 1.10 respec-

tively. This would suggest that the magnetic order becomes more disordered on

lowering the Fe content, with magnetic correlations becoming more short-ranged.

The temperature at which magnetic order sets in appears also to be dependent

on y in FeySe0.25Te0.75 as shown in Fig. 5.6(d). In the y = 1.10 sample, magnetic

order is found to develop below about 50 K. However, for y = 1.00 and y = 0.95,

the transition temperature is lowered to nearly 30 K. These results are in good

agreement with the change in TN with doping observed using µSR but due to the

difference in fluctuation rates sampled by neutrons and muons, the temperatures

at which spin freezing occurs are not the same. The spin-glass nature of the order

and different time scales of the microscopy probes (muons and neutrons) ensures

that the ordering temperatures deduced from neutron diffraction and µSR differ,

as already discussed in § 5.3.5.
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Figure 5.7: Spin resonance in Fe0.95Se0.25Te0.75 measured by inelastic neu-
tron scattering. (a) Constant-Q cut at QAF position in reciprocal space. Data was
obtained from measurements at 2 and 20 K and then subtracted to reveal a spin res-
onance centred at E ≈ 5.8 meV. The dashed line shows the spectrum at which the
number of counts at 2 K is equal to those at the same position in (Q, E) at 20 K. (b)
Temperature dependence of the intensity of the spin resonance measured at QAF and
E = 5.8 meV.

5.5.4 Spin fluctuations in FeySe0.25Te0.75

In § 5.4.1 we have dealt with two systems which provide us with contrasting pic-

tures of what the excitation spectra of superconducting and non-superconducting

samples of FeySexTe1−x look like. The evidence found in § 5.5.3 shows that incom-

mensurate magnetic order and superconductivity can coexist in the FeySe0.25Te0.75
systems. Moreover, the physical properties change drastically with small amount

of Fe content variation. Using unpolarised inelastic neutron scattering we have

analysed the same systems to look at what happens when superconductivity and

magnetism coexist in FeySe0.25Te0.75.

Let us first examine the experimental results of Fe0.95Se0.25Te0.75 which is a

bulk superconducting sample with Tc ≈ 10 K [Fig. 5.6(a)]. A peak corresponding to

incommensurate magnetic order was found at Q = (0.46, 0, 0.5). Inelastic neutron

scattering measurements in the (h, 0, l) scattering plane have found that, as in the

Fe1.10Se0.25Te0.75 composition, strongly dispersive excitations arise from this posi-

tion in reciprocal space at the low-energies studied (2–6 meV). These were identical

to measurements on Fe1.10Se0.25Te0.75, shown in Fig. 5.4(a). However, interestingly

the constant-Q scans at the QAF position demonstrate a magnetic spin resonance.

That is, an increase in spectral weight at QAF and E ≈ 5.8 meV. Figure 5.7(a)

shows the change in spectral weight between 2 and 20 K for Fe0.95Se0.25Te0.75.

Intensity below around 4 meV is reduced, whereas an enhancement of the sig-

nal is observed between 4 and 8 meV. This is very much similar to the optimally

doped Fe1.01Se0.50Te0.50 compound whose magnetic excitation spectrum is shown

in Fig. 5.5(f). No static magnetic order was found in the elastic scans close to QAF.
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Figure 5.8: Temperature dependence of magnetic fluctuations in
Fe1.00Se0.25Te0.75. (a) Plot to show the variation of the Q-integrated χ′′ of fluc-
tuations measured at 2 meV as a function of temperature. (b) Constant energy scans
at 2 meV along (h, 0, 0.5) direction in reciprocal space collected at 2, 40 and 290 K.
Solid lines show Gaussian lineshapes as guides to the eye.

The temperature dependence of the resonance peak is depicted in Fig. 5.7(b). The

peak appears to grow at a transition temperature close to the Tc. This measure-

ment was made at a fixed position of QAF and E. Although it may be possible that

softening of the mode occurs, it was not possible to examine this in detail. Such

scenario is unlikely as inelastic neutron scattering studies of bulk superconducting

FeySexTe1−x compounds showed no signs of resonance mode changing position in

(Q, E) space with temperature close to Tc [168, 200].

The non-superconducting y = 1.10 sample at the other end of the FeySe0.25Te0.75
phase diagram has already been discussed in § 5.4.1. The dynamic susceptibility

was found to be unchanged between 2 and 40 K [Fig. 5.5(c)]. In order to obtain

a better understanding of the cross-over in the dynamics between y = 0.95 and

1.10, we have examined the stoichiometric Fe sample, Fe1.00Se0.25Te0.75, shown in

Fig. 5.9. Magnetisation and µSR measurements show that superconductive volume

fraction is approximately 30% with Tc ≈ 9 K but static magnetic order occupies the

bulk of the sample. The build up of magnetic correlations is found from neutron

diffraction to occur below TN ≈ 40 K.

Orientating the sample to access (h, 0, l) reflection plane reveals a magnetic

Bragg peak below the ordering temperature. A strongly dispersive excitation is

found at this position inQ at energies below 6 meV, as also found in Fe1.10Se0.25Te0.75
and Fe0.95Se0.25Te0.75. Due to the broad nature inQ of the spin fluctuations, it is not

possible to say whether they are centred at precisely the commensurate (0.5, 0, 0.5)

position. Strong neutron scattering is expected to occur from magnetic fluctuations

near the critical temperature of a continuous magnetic phase transition [211]. The

Q-integrated dynamic susceptibility χ′′ appears to peak at a temperature close to

the magnetic ordering phase transition, shown in Fig. 5.8(a), could be tentatively a
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sign of a criticality at TN. The resolution of the instrument in the setup used is bet-

ter than 1 meV and therefore the scattering cannot be attributed to leakage of the

elastic signal into the inelastic channel. Magnetic excitations persist well above the

ordering temperature and appear at the maximum temperature of approximately

290 K ≈ 7TN, shown in Fig. 5.8(b). Such paramagnetic excitations have been previ-

ously observed in itinerant electron systems such as Fe and Ni [212–214], although

their precise origin is still unresolved.

Figures 5.9(a) and (b) show low-energy inelastic maps measured transverse to

QAF collected at 2 and 20 K, respectively. A flat background was subtracted from

the raw data and the counts were corrected for the Bose-Einstein thermal popu-

lation factor defined in Eq. 5.1 to deduce χ′′(Q, E). The inelastic spectra shows

at first little change between these two temperatures. The dispersion is dominated

by steeply rising incommensurate excitations, as found in Fe1.10Se0.25Te0.75. Fig-

ure 5.9(d) shows the two columns of excitations more clearly when measured at

6 meV. One of the peaks at h ≈ 0.4 appears to dominate in terms of spectral

weight. The reason for this is unclear but may be due to a slight misalignment in

the ab-plane. Nevertheless, a change with temperature is found above and below Tc.

The difference between χ′′(Q, E) measured at 2 and 20 K is shown in Fig. 5.9(c).

Comparing this to Fig. 5.5(d), the resulting spectrum seems to show similar en-

hancement of signal above approximately 4 meV and diminishing intensity below

it.

This is illustrated more clearly in Fig. 5.9(e) where a cut along (h, 1 − h, 0)

at 6 meV is plotted. The counts measured at 20 K have been subtracted from the

2 K data in this scan. A single peak centred on Q = (0.5, 0.5, 0) is then revealed.

Longitudinal constant energy scans show no other excitation modes, just a single

broad peak at (0.5, 0.5, 0). No static magnetic order was detected close to the QAF

position. Constant-Q scans at (0.5, 0.5, 0) (not shown here) confirm that spectral

weight is enhanced at 6.2 meV below 12 K. As expected from the low superconduct-

ing volume fraction the spin resonance signal is weak but its position in (Q, E) and

temperature dependence suggest this feature is indeed the spin resonance.

5.5.5 Discussion

Using complementary set of experimental techniques, we find evidence that the

magnetic and superconducting properties of FeySexTe1−x system are sensitive to

Fe-content. This is an important result which must be considered in future studies

into this and related systems. The systematic investigation of FeySexTe1−x with

differing nominal Fe content shows that samples where y < 1 are found to be

bulk superconductors with coexisting magnetic order that sets in at temperature

below Tc. Stoichiometric samples (y ≈ 1) show filamentary superconductivity and

magnetic order. Fe-rich samples y > 1 are almost purely magnetic with only traces

of superconductivity. The magnetic order was found to be incommensurate over the

range of dopings examined although correlation length increases with increasing y.

The results presented here indicate that the interstitial Fe content is also important
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Figure 5.9: Low energy magnetic excitation spectrum of Fe1.00Se0.25Te0.75
in the (h, k, 0) plane. (a) and (b) Panels showing the steeply rising excitations
of Fe1.00Se0.25Te0.75 close to QAF measured using inelastic neutron scattering at 2
and 20 K. (c) The variation of χ′′(Q, E) calculated from the difference between scans
measured at 2 and 20 K, shown in (a) and (b) , respectively. Constant energy cuts
through the dispersion at E = 6 meV measured at 2 and 20 K are shown in panel
(d). The change in the magnetic scattering at 6 meV is shown in panel (e). Gaussian
lineshapes serve as guides to the eye.
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to consider when examining the phase diagram of FeySexTe1−x. The systematic

study examining Fe(2) content variation presented here is consistent with studies

on similar compositions [208, 215, 216].

The inelastic neutron scattering experiments allow for a comparison between the

measured samples of FeySe0.25Te0.75 for different Fe content. The results appear to

suggest that the spin resonance, which emerges below Tc, reflects the order parame-

ter which disappears when either temperature is raised above Tc or doping by Fe is

such that suppresses superconductivity. Despite attempts with long counting times,

no measurable spin-resonance dispersion along c∗ was observed in measurements on

Fe1.00Se0.25Te0.75. This could simply be due to the weak signal of the spin resonance

being overwhelmed by the incommensurate excitations nearby and we cannot rule

out that the resonance does not disperse. However, as will be demonstrated in the

next section, the spin fluctuations in the FeSe- and FeAs-systems of superconductors

differ greatly.
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5.6 Spin anisotropy of the resonance peak in supercon-

ducting FeSe0.5Te0.5

In common with the cuprates, the phase diagram of the Fe-based superconductors

shows a suppression of static magnetic order and the emergence of superconductivity

with doping. Also like the cuprates, a spin resonance develops below Tc in the mag-

netic spectrum of the Fe-based superconductors as measured by inelastic neutron

scattering [166, 200–202, 204–207, 217, 218]. The existence of a superconductivity-

induced spin resonance peak has been shown to relate to the superconducting pairing

state and gap symmetry [219, 220].

Inelastic neutron scattering experiments on FeySexTe1−x have shown that the

spin fluctuations extend up to 250 meV [199]. A spin resonance is observed to de-

velop below Tc in FeySexTe1−x at an energy of 6.5 meV, centered on wave vectors of

the form QAF = (0.5, 0.5, l) [166, 200–202, 221]. The resonance peak is quasi-two-

dimensional, as discussed in § 5.5.1, which means that it varies only weakly with

the out-of-plane wavevector component l [200]. The position of the resonance peak

in momentum space carries information about the symmetry of the superconduct-

ing state. For example, for singlet pairing, the BCS coherence factor enhances the

neutron response function when the superconducting gap changes sign between the

points on the Fermi surface connected by QAF [209]. In Fe-based superconductors,

the singlet s± pairing state [26] is consistent with many experimental results in-

cluding the existence of a spin resonance at QAF [204]. However, a spin resonance

at QAF is not particular to s±. It is also predicted, for example, for certain triplet

p-wave states [220].

Until now, inelastic neutron scattering measurements on FeySexTe1−x were per-

formed with an unpolarised neutron beam. However, certain superconducting gap

functions can result in anisotropic spin susceptibilities at the resonance energy

[220, 222]. In this section, I shall present the results of polarised-neutron inelas-

tic scattering measurements on FeSe0.5Te0.5 which determine the anisotropy of the

imaginary part of the dynamical susceptibility χ′′(Q, E).

5.6.1 Experimental setup

The single crystal sample of FeSe0.5Te0.5 was grown by the modified Bridgman

method [158, 167]. Analysis of pulverised crystals from the same batch by x-ray

powder diffraction revealed a composition Fe1.045Se0.406Te0.594 with traces of Fe7Se8
(5% volume fraction) and Fe (≤ 1%) as impurity phases [167]. The magnetometry

measurements on a piece of the same crystal found bulk superconductivity below

Tc = 14 K. The neutron scattering sample was rod-shaped and had a mass of ap-

proximately 5 g. The mosaic spread in the ab-plane was found to be 1.5◦ (full-width

at half-maximum). The same sample was used in unpolarised inelastic neutron

scattering experiments described in § 5.4.

The inelastic neutron scattering measurements were carried out on the IN22

triple-axis spectrometer at the Institut Laue-Langevin, France. The crystal was
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Figure 5.10: Schematic diagram representing the axis convention used in
the polarised neutron scattering experiment. The scattering vector Q de-
fines the x-axis, which in scattering geometry employed is always parallel to the ab
plane. Only the magnetic fluctuations perpendicular to Q are observed. The inci-
dent polarisation vector Pi = (Px, Py, Pz) is spin-flipped by the magnetic fluctuation
component perpendicular to both Q and Pi (red double arrows). Components of the
magnetic fluctuations which are perpendicular to Q but not Pi appear in the non-spin-
flip channel (blue double-arrows). Hence, a separation of the in-plane and out-of-plane
susceptibilities χ′′

ab(Q, E) and χ′′
c (Q, E) can be achieved.

aligned with the c axis perpendicular to the scattering plane and mounted in an

ILL-type orange cryostat. The spectrometer was operated with a fixed final wave-

vector of kf = 2.66 Å−1 and without collimation. A graphite filter was installed in

the scattered beam to suppress contamination by higher-order wavelengths. The

analyser was horizontally-focused to increase intensity. The corresponding energy

resolution with this setup is approximately 0.8 meV at the elastic position.

Longitudinal polarisation analysis was performed with the CryoPAD device [74].

CryoPAD is designed such that the sample is in a zero magnetic-field environment,

and the incident and final neutron polarisation states are controlled with nutation

and precession fields which are decoupled by superconducting Nb shielding. With

a Heusler monochromator and analyser the effective flipping ratio was about 10

as measured on the (110) structural Bragg peak. No corrections were made to

compensate for the non-ideal polarisation.

In total, six neutron cross-sections were measured, denoted by σ(x,±x), σ(y,±y)

and σ(z,±z). The coordinate x is taken along the scattering vector Q, z is per-

pendicular to the scattering plane (here z ∥ c) and y completes the right-handed

Cartesian system – Fig. 5.10. The two indices in σ refer to the direction of the

neutron polarisation before and after the sample, respectively.

The crystal structure of FeSe0.5Te0.5 is tetragonal and so in general χ′′
ab(Q, E)

can be different from χ′′
c (Q, E). Longitudinal polarisation analysis allows a com-
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plete separation of χ′′
ab(Q, E) and χ′′

c (Q, E) because of two properties of the mag-

netic scattering cross-section: (i) neutrons only scatter from spin fluctuations per-

pendicular to Q, and (ii) spin fluctuations perpendicular to the incident neutron

polarisation Pi scatter in the spin-flip (SF) channel, while spin fluctuations parallel

to Pi scatter in the non-spin-flip (NSF) channel. With the geometry chosen for the

present measurements the SF cross-sections are given by [44]

σ(x,−x) ∝ χ′′
ab + χ′′

c + bSF

σ(y,−y) ∝ χ′′
c + bSF

σ(z,−z) ∝ χ′′
ab + bSF, (5.2)

and the NSF cross-sections

σ(x, x) ∝ N2 + bNSF

σ(y, y) ∝ χ′′
ab +N2 + bNSF

σ(z, z) ∝ χ′′
c +N2 + bNSF, (5.3)

where N2 refers to the coherent nuclear cross-section, and bSF and bNSF are the

SF and NSF backgrounds, respectively. To make the notation more clear, the

explicit dependence of χ′′(Q, E) on Q and E, will be omitted from now on. These

scattering processes are represented in Fig. 5.10. The background was found to

be independent of the polarisation in the SF cross-sections to within experimental

error from measurements at Q ≈ (0.1, 0.9, 0) and E ≈ 6 meV.

5.6.2 Results

Figure 5.11(a) shows energy scans performed at QAF = (0.5, 0.5, 0) in the three

spin-flip channels and in the σ(x, x) non-spin-flip channel. The intensity in the

σ(x, x) channel is significant, highlighting the importance of using polarised neutron

scattering to separate the nuclear contribution from the magnetic signal. From

Eq. 5.2, the σ(x,−x) cross-section contains the total magnetic scattering. The

scattering in this channel contains a peak at ~ω0 ≈ 6.5 meV, corresponding to

the spin resonance previously reported by unpolarised inelastic neutron scattering

measurements in compounds of similar composition [166, 200–202, 221] and shown

in Fig. 5.5. Figure 5.11(b) shows the σ(x,−x) cross-section in wavevector scans

along (h, 1 − h, 0) at selected energies. At 3 meV only a flat background is evident.

Above the resonance energy, steeply-rising incommensurate magnetic excitations

are observed. The results are consistent with independent unpolarised neutron

scattering measurements on similar compositions of FeySexTe1−x [201, 202].

The σ(y,−y) and σ(z,−z) spin-flip channels, shown in Fig. 5.11(a), contain

the magnetic scattering from out-of-plane and in-plane fluctuations, respectively as

described by Eq. 5.2. The signal in these channels is very similar throughout the en-

ergy range measured, both channels having a peak at the resonance energy. A small

but statistically significant difference is observed between σ(y,−y) and σ(z,−z) on
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Figure 5.11: Constant energy and wavevector cuts through the spin fluc-
tuations in the superconducting state of FeSe0.5Te0.5. (a) Energy scans at
QAF = (0.5, 0.5, 0) showing the SF channels which contain the magnetic scattering
and the σ(x, x) NSF channel which contains non-magnetic scattering. Lines are visual
guides. (b) Wavevector scans along (h, 1 − h, 0) at energies of 3 to 12 meV (displaced
vertically) showing the σ(x,−x) SF scattering. Solid lines show least-squares fits to
the spectra assuming a Gaussian lineshape. Data in both (a) and (b) were recorded at
a temperature of 2 K. Reprinted figure with permission from Babkevich et al., Phys.
Rev. B 83, 180506(R) (2011) [168]. Copyright c⃝ (2011) by the American Physical
Society.

the resonance peak itself. Using Eq. 5.2 we can eliminate the background contribu-

tion and separate the in-plane and out-of-plane components of magnetic scattering:

χ′′
ab ∝ σ(x,−x) − σ(y,−y) and χ′′

c ∝ σ(x,−x) − σ(z,−z). Figure 5.12(a) shows the

result of this procedure. The resonance peak appears at the same energy to within

an experimental error of 1 meV in both χ′′
ab and χ′′

c . The peak is slightly larger in

χ′′
ab. Either side of the spin resonance energy the intensity is approximately the

same for both channels.

The similarity between the χ′′
ab and χ′′

c components is emphasised in the color

maps shown in Fig. 5.12(b) and (c), which show the intensity distribution as a

function of energy and wavevector along (h, 1 − h, 0). The data plotted in these

maps are the σ(y,−y) and σ(z,−z) cross-sections, which contain the χ′′
c and χ′′

ab

fluctuations, respectively. The overall conclusion from all the T = 2 K data is that

the low-energy spin fluctuations in FeSe0.5Te0.5 are isotropic (χ′′
ab ≈ χ′′

c ) to within

experimental error, except on the resonance peak itself where χ′′
ab is approximately

20% larger than χ′′
c .

Figure 5.13 presents the results of measurements of the temperature depen-

dence of the magnetic fluctuations at QAF = (0.5, 0.5, 0) in FeSe0.5Te0.5. The

measurements at 2 K, shown in Fig. 5.12, have demonstrated that χ′′
ab(QAF, E) ≈

χ′′
c (QAF, E) and therefore from Eq. 5.2, we can study the temperature depen-

dence of σ(x,−x) cross-section. From Eq. 5.1, the measured intensity is propor-

tional to χ′′(QAF, E)/[1−exp(−E/kBT )] and therefore multiplying the intensity by

1 − exp(−E/kBT ) we can compare susceptibilities at different temperatures. The
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Figure 5.12: Spin resonance anisotropy. (a) Comparison of the scattering from
in-plane (χ′′

ab) and out-of-plane (χ′′
c ) magnetic fluctuations in FeSe0.5Te0.5. Solid lines

through the data points are guides to the eye. (b) and (c) Intensity maps showing the
cross-sections σ(y,−y) and σ(z,−z), which contain χ′′

c and χ′′
ab, respectively. All the

data in this figure were recorded at T = 2 K. Reprinted figure with permission from
Babkevich et al., Phys. Rev. B 83, 180506(R) (2011) [168]. Copyright c⃝ (2011) by
the American Physical Society.

resonance peak disappears above Tc = 14 K, while at higher energies the suscepti-

bility remains essentially unchanged. An increase in the response below the spin

gap is found on warming to 16 K.

The temperature evolution of σ(x,−x) cross-section for temperatures from 2 to

13 K is shown in Fig. 5.13(b). A scan measured at 16 K (above Tc) was subtracted

to isolate the spin resonance contribution to the spectral weight. Upon warming,

the intensity of the spin resonance shows little change up to 9 K. When the temper-

ature approaches Tc, the spectral weight diminishes and the spin-gap is gradually

filled. Another notable feature is that the spin resonance does not shift to lower

energies with increasing temperature [Fig. 5.13(c)], as one might expect if the spin

resonance were simply caused by a gap which closes at Tc with temperature. From

our measurements we conclude that the position and the energy width of the spin

resonance are temperature independent up to at least ∼ 0.8Tc. The lack of softening

of the resonance energy with increasing temperature has also been found in inelas-
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Figure 5.13: Temperature dependence of the spin resonance in FeSe0.5Te0.5.
(a) Energy scans at QAF = (0.5, 0.5, 0) showing χ′′ = χ′′

ab + χ′′
c at 2 K and 16 K. The

shaded region highlights the change in the spectrum with temperature. (b) Energy
scans at QAF for a series of temperatures from 2 to 13 K. The scans are displaced ver-
tically. (c) Position of the resonance energy as a function of temperature as determined
from fits show in panel (b). The datum at 16 K represents that the resonance has been
lost. (d) Integrated intensity of the resonance peak as a function of temperature. Data
recorded at 16 K have been subtracted in panels (b)–(d). Solid dashed lines are guides
to the eye. Reprinted figure with permission from Babkevich et al., Phys. Rev. B 83,
180506(R) (2011) [168]. Copyright c⃝ (2011) by the American Physical Society.
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s± χ′′
ab = χ′′

c

s− no peak
px χ′′

ab ≪ χ′′
c

p2x χ′′
ab ≫ χ′′

c

px + ipy no peak

Table 5.1: Theoretical predictions of χ′′
ab and χ′′

c at the resonance position based on
different superconducting gap symmetries. Adapted from Ref. [220].

tic neutron scattering measurements of FeSe0.4Te0.6 [200, 223]. Although Andreev

reflection measurements on a similar composition appear to contradict this and

suggest instead that the superconducting gap energy gradually closes on transition

from superconducting to normal state [224].

Figure 5.13(d) shows the evolution of the integrated intensity of the spin reso-

nance which behaves as an order parameter of the superconducting phase. In the

vicinity of Tc measurements with higher precision are needed to obtain a more quan-

titative estimate of the renormalisation of the inelastic intensity than is available

from the present experiment.

5.6.3 Discussion

The polarised neutron data presented in this section go beyond what is possible

with unpolarised neutron scattering and provide new insights into the magnetic

excitations of FeSe0.5Te0.5. A superconducting wavefunction with purely s± pairing

state would result in an isotropic spin resonance peak [220]. The experimental

results suggest a small anisotropy, in the sense χ′′
ab > χ′′

c . This small anisotropy

cannot readily be explained by the usual anisotropic terms in the spin Hamiltonian

since the magnetic scattering is isotropic above and below the resonance peak.

This would indicate that the spin anisotropy is connected with the superconducting

pairing state. It is possible, therefore, that the superconducting pairing function

contains a minority component with a different symmetry, this is shown in Table 5.1

for a selection of gap function symmetries. For example, a spin-triplet with sign-

reversed p-wave gap is predicted to give a resonance in χ′′
ab, but not in χ′′

c [220].

It is perhaps possible that a small macroscopic region of the sample possesses a

superconducting state with a gap symmetry which is different to s±.

The relatively small anisotropy in the spin resonance of FeSe0.5Te0.5 is in stark

contrast to the results of a study on BaFe1.9Ni0.1As2, which revealed a highly ani-

sotropic spin resonance with only the χ′′
ab component non-zero [225]. The results

also differ from the spin-ladder system Sr14Cu24O41, which also has a resonance-like

coherent singlet–triplet excitation [226]. Firstly, the anisotropy is in the opposite

sense (in Sr14Cu24O41 the out-of-plane fluctuations are stronger than the in-plane

fluctuations), and second, the anisotropy in Sr14Cu24O41 is observed over a range

of energies not just on the peak [227].

Recently, polarised-neutron scattering measurements have been performed on
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YBa2Cu3O6+x [228]. The spin resonance in YBa2Cu3O6.9 at 40 meV, corresponding

to the odd-parity mode, was found to be quasi-isotropic to within the precision

of the measurements. This implies that the resonance peak is predominantly a

singlet–triplet excitation in both FeSe0.5Te0.5 and YBa2Cu3O6+x. Furthermore, the

resonance peaks in these materials do not soften appreciably as the temperature is

increased towards Tc (see Fig. 5.13 and Ref. [229]). These similarities suggest that

the superconducting states in the cuprates and Fe-based superconductors have some

general features in common.

If a spin resonance is associated with a singlet-triplet excitation [230], then

applying a sufficient large magnetic field should result in a Zeeman splitting of the

mode. An externally applied magnetic field has been shown to have an effect on

the superconducting state in the well-known YBa2Cu3O6.6 and La1.82Sr0.18CuO4

[231, 232]. Experimental studies of the magnetic field dependence of the resonance

in FeySexTe1−x have observed a suppression of the signal at the resonance position

in fields up to 16 T [221, 233]. However, an expected change in the resonance

energy or resonance peak broadening has not been found so far. In contrast Zhao et

al. [234] have shown that in BaFe1.9Ni0.1As2 the magnetic spin gap closes with

magnetic field. Furthermore, in zero-field measurements of BaFe2−xCoxAs2, the

resonance softens on increasing the temperature to Tc [207]. The temperature and

field dependence of the resonance energy provides compelling evidence that in the

BaFe2As2-type systems the resonance is indeed related to the superconducting gap.

Although the spin resonance in FeySexTe1−x is also likely to be associated with

the superconducting state, it is less clear why the temperature dependence of the

pairing state would be so different to the BaFe2As2 systems.

The magnetic excitations in FeSe0.5Te0.5 are found to be nearly isotropic χ′′
ab ≈

χ′′
c , both in terms of amplitude of the response and position in energy. Conversely,

polarised inelastic neutron scattering studies of magnetic excitations in non-sup-

erconducting BaFe2As2 compound reveal that there is strong in-plane anisotropy

below TN [235]. The pronounced anisotropy suggests orbital degrees of freedom

are important in FeAs-systems [235] and corroborates with the anisotropy of the

resonance in the superconducting BaFe1.9Ni0.1As2 [225].

One of the most intriguing itinerant antiferromagnets is Cr in which steeply

rising incommensurate dispersion is similar to that observed in the non-supercon-

ducting Fe1.10Se0.25Te0.75 crystal and above the spin resonance energy in supercon-

ducting Fe1.01Se0.50Te0.50. Polarisation analysis of inelastically scattered neutrons

in Cr reveals that the modes at (1 ± δ, 0, 0) in fact consist of longitudinal and

transverse spin density waves [236]. Any anisotropy in the incommensurate spin

fluctuations are important to determine because it could also be relevant to the

mechanism of unconventional pairing. For example, strong anisotropy χ′′
c ≫ χ′′

ab in

the incommensurate spin fluctuations of Sr2RuO4 have been suggested to lead to

triplet pairing [28]. The fact that this is not found in Fe1.01Se0.50Te0.50 compared to

BaFe1.9Ni0.1As2 and Sr2RuO4 would perhaps suggest that anisotropy of spin fluc-

tuations is not crucial to the superconducting pairing mechanism in FeySexTe1−x.
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5.7 Conclusions

We have observed a resonance-like peak at the antiferromagnetic nesting wavevector

(0.5, 0.5, 0) in the low-energy magnetic spectrum of Fe1.01Se0.50Te0.50, and shown

that this feature is absent from the magnetic spectrum of Fe1.10Se0.25Te0.75 which

instead shows incommensurate peaks flanking (0.5, 0.5, 0). The results reveal a clear

distinction between the magnetic excitation spectra of FeySexTe1−x samples which

are magnetically ordered and those which are bulk superconductors. Therefore, the

existence of a resonance peak at the commensurate antiferromagnetic wavevector is

a characteristic of bulk superconductivity in FeySexTe1−x.

In order to understand the spin fluctuations better, we have studied compo-

sitions of FeySexTe1−x which are on the brink of bulk superconductivity. Using

µSR and neutron scattering techniques we find that interstitial Fe content is also

important in determining the physical properties of the system. In the Fe-deficient

samples y . 1, bulk superconductivity and incommensurate magnetic order coexist.

The magnetic excitation spectrum close to the nesting wavevector is incommensu-

rate with branches either side of the QAF position in transverse wavevector scans.

On doping with Fe, the magnetic order becomes correlated over a longer range and

abruptly superconductivity vanishes at around y ≈ 1. A spin resonance emerges as

superconductivity develops in the material.

Finally, using polarised inelastic neutron scattering, we find that the resonance

in the optimally doped Fe1.01Se0.50Te0.50 sample is predominantly isotropic. This

indicates that there is a uniform superconducting gap and provides support for the

s± pairing symmetry in which the superconducting order parameter changes sign

between electron and hole pockets. The small anisotropy observed at the resonance

cannot be readily accounted for in the s± theory or by orbital degree of freedom in

the system.
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a*

c*
b*

π β-

Figure 6.1: Sample quality check and alignment. Neutron Laue pattern of CuO
sample together with the indexation (red dots) to deduce the orientation of the crystal.
The schematic shows the reciprocal lattice vectors which can be found from the pattern.

6.1 Introduction

Materials in which electric and magnetic order parameters couple are of great in-

terest in the application to spintronic devices. Such materials are termed magneto-

electric multiferroics and have been actively studied in recent years. Of particular

interest are the type-II multiferroics in which magnetic order is directly and strongly

coupled to the electric polarisation. The strong coupling is often associated with

non-collinear magnetic structures which originate from competition and frustration

in the magnetic interactions. Most of the strongly coupled multiferroics exhibit

these unusual properties at low temperatures (typically < 40 K). A notable excep-

tion is cupric oxide which develops multiferroic coupling below 230 K [42].

6.2 Sample preparation

The single crystal samples of CuO were prepared in Oxford by D. Prabhakaran

from high-purity powder (99.995%) of CuO using the optical floating-zone furnace

(Crystal System Inc.). The growth process has previously been optimised and

reported in Ref. [237]. The oxygen content was analysed using thermogravimetric

analysis (TGA) on a grounded piece of CuO – pieces from the same initial rod were

used in the experiments described in this chapter. The polycrystalline sample was

then heated in a 5% H2 - 95% N2 atmosphere to break CuO into the constituting

Cu and O elements. The weight of the powder was recorded as a function of

temperature. A breakdown of CuO is found at around 800◦C with just Cu remaining

above this temperature. The mass before and after the breakdown is related to the

ratio of Cu to O. The calculated excess O in CuO1+δ was found to be approximately

δ ≈ −0.03(1) which is very close to stoichiometry.

A piece of CuO was checked using x-ray and neutron Laue. The neutron Laue
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probes the bulk of the sample and is therefore useful in gaining insight into the

quality of the sample as well as its orientation. The neutron Laue measurements

were carried out using OrientExpress instrument at ILL [238]. Figure 6.1 shows a

typical Laue pattern in the backscattering geometry with the b∗ axis aligned parallel

to the neutron beam. To be sure of the orientation, the Bragg peaks were indexed

using the OrientExpress program [239]. The crystal was then aligned on an x-ray

Laue and cut into several pieces. Two flat, rectangular pieces were found to be of

good quality and size and were subsequently coated in 8-10 nm of Cr and 40-50 nm

of Au on opposite sides to act as electrodes in order to apply an electric potential

difference across the sample. A thin layer of Cr is required in order to avoid Au

stripping off too easily from the surface. Care was taken in using a mask to avoid

any short circuits along the sides of the crystals.

6.3 Magnetic susceptibility of CuO

Magnetisation measurements were made using a Superconducting Quantum Inter-

ference Device (SQUID) magnetometer MPMS (Quantum Design). A 0.175 g piece

of CuO was cut from the the same initial rod as examined in § 6.2. The same sample

was used in the electric polarisation measurements described further in § 6.4. The

Cr/Au coating is considered to give negligible contribution to the signal due to the

thinness of the layers. The sample was wrapped in teflon tape to avoid damaging

the Au electrodes and mounted inside a plastic straw with crystal orientation hav-

ing been determined previously using neutron diffraction. The magnetisation was

measured in the following protocols along all the reciprocal lattice axes {a∗, b∗, c∗}:

Zero-field-cool (ZFC) The sample was cooled from the paramagnetic phase in

zero applied field to a specific temperature. Measurements in an applied field

of 1000 Oe were made on warming.

Field-cool (FC) The sample was cooled in a field H from the paramagnetic phase.

Measurements were made in the same field on warming.

Furthermore, to study any possible hysteretic behaviour, magnetic field sweeps

were made at constant temperature. In order to avoid any remnant field contri-

bution coming from the instrument, the shielding was degaussed and magnet reset

prior to taking measurements. The degauss procedure involves oscillating the mag-

netic field rapidly whilst continuously decreasing the magnetic field. The reset is

followed by heating the superconducting magnet above critical temperature to expel

any trapped flux.

Figure 6.2 shows temperature sweeps of magnetic susceptibility recorded along

reciprocal lattice vectors {a∗, b∗, c∗}. A sharp discontinuous transition is observed

in all directions at TN1. Above TN1, the susceptibility increases linearly with tem-

perature up to TN2 ≈ 230 K at which a change of slope is found. The data collected

are in excellent agreement with previously reported results by Kimura et al. [42].
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Figure 6.2: Magnetic susceptibility measurements on CuO. (a) ZFC data
along reciprocal lattice vectors {a∗, b∗, c∗}. Panels (b)-(d) show the temperature scans
through the TN1 transition for applied magnetic fieldH along the reciprocal lattice axes
{a∗, b∗, c∗} as measured in the ZFC and FC protocols with applied fields of 1000 Oe
and 70000 Oe respectively. Lines plotted through the data points are a guide to the
eye.
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The susceptibility obeys a Curie-Weiss law with a paramagnetic temperature of

458 K above 700 K [240]. A broad maximum in susceptibility is found around 540 K

whose origin was proposed to be due to thermal excitations of the triplet molecular

Cu-Cu antiferromagnetism [240, 241]. However, an alternative and more prominent

view is that the paramagnetic susceptibility behaviour is due to low-dimensional

magnetism with strong correlations along certain directions above Néel temperature

[242, 243]. The low-dimensionality explains other unusual properties of CuO, i)

the large superexchange coupling J which is an order of magnitude larger than

expected from value of TN [243]; ii) spin moment of 0.65µB [244, 245] rather than

1µB expected for a Cu2+ ion, although this could also be affected by covalency;

iii) spin correlations along [1, 0, 1̄] direction are far stronger than approximately

perpendicular to it along [1, 0, 1] suggesting CuO behaves as a low-dimensional

antiferromagnet [246, 247]. Therefore, a quasi-one-dimensional antiferromagnet, in

a system which is chemically three-dimensional, seems to consistently explain a lot

of experimental results. From the Anderson model for superexchange interactions,

the antiferromagnetic coupling is strongest for largest bond angle [248]. In CuO,

this is found along the [1, 0, 1̄] direction with Cu–O–Cu angle of 146◦.

The first-order transition at TN1 was studied by making slow scans in tempera-

ture on warming in the ZFC and FC protocols. The corresponding data is shown in

Fig. 6.2(b)-(d). In ZFC runs, the phase transition appears at TN1 = 213.7 K along

each direction measured with field along {a∗, b∗, c∗}. However, cooling from the

paramagnetic phase in a 70000 Oe field, the transition appears to shift in tempera-

ture. For the case of the field applied along a∗ in Fig. 6.2(b), no change is recorded.

The largest change in TN1 comes when the b∗ axis is aligned with the field, such

that the midpoint of the transition is displaced to lower temperature by 0.29(2) K,

see Fig. 6.2(c). Somewhat surprisingly a change in the temperature of the transi-

tion is also found with field along c∗. However, the FC procedure seems to displace

TN1 to a higher temperature albeit by a smaller magnitude of 0.11(2) K. Checks

were made to establish the validity of these results. Measurements along b∗ were

repeated using the same protocol and the change in temperature was found to be

reproducible. Since, a very slow heating rate of 0.01 K/min was employed, it would

seem unlikely that thermal lag of the actual sample temperature could be responsi-

ble. In any case, the measurements were made on warming and for the H parallel

to b∗ measurements, the phase transition appears at a lower temperature. Similar

results have been reported from specific-heat capacity measurements in magnetic

fields of up to 6 T and were explained in terms of two-component Landau theory

[249].

Isothermal measurements of the magnetic response to a magnetic field applied

along the b-axis at 205, 215 and 220 and 240 K are summarised in Fig. 6.3. These

measurements probe the magnetisation in the three magnetic phases of CuO: in

the collinearly ordered AF1 phase (205 K), in the multiferroic AF2 phase (215 and

220 K) and above the magnetic ordering phase transition temperature (240 K). For

each measurement, the sample was cooled from the paramagnetic state in zero

applied field. Once the required temperature has been reached and stabilised, field
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Figure 6.3: Hysteresis loops. Magnetic field sweeps at constant temperature of
205, 215 and 220 K in the antiferromagnetic phase such that H ∥ b∗. The magnetic
response M to an applied field H is shown in panel (a). Panel (b) shows the same data
as in panel (a) but with magnetisation normalised by the magnetic field, χ = M/H as
a function of magnetic field.

was swept from 0 to 2000 Oe to measure the virgin curve. Measurements were

then made from 2000 Oe to −2000 Oe and back to 2000 Oe in steps of 20 Oe. The

resulting plots are shown in Fig. 6.3(a) of magnetisation against magnetic field.

The magnetisation response appears to be proportional to the applied magnetic

field with no hysteretic behaviour. The response is in excellent agreement with

previous measurements of CuO [237, 250].

However, further examination of the magnetic field loops reveal there is very

small hysteresis at fields less that 500 Oe. Figure 6.3(b) shows magnetisation

weighted by the applied magnetic field as a function of applied field. Below ±500 Oe,

a splitting appears between field-sweep-up and field-sweep-down at each tempera-

ture. The irreversibility in magnetisation would posit the existence of a small ferro-

magnetic moment which may be due to small quantity of impurities in the sample.

The expected behaviour of an antiferromagnet would be that the macroscopic mag-

netisation tends to vanish in the low field limit. The figure also shows that the

magnetisation is not exactly linear with an applied field, as we would then expect

the data to fall on a horizontal line. The progressive lack of a response to the applied



6.4. Electric polarisation measurements 149

b*

a c*, *

Ag paste

cathodeanode

Cr/Au coatingCuO

varnish

E

Figure 6.4: Pyrocurrent measurement setup. Schematic diagram of the setup
used to measure pyroelectric current in CuO with the electric field applied parallel to b
direction. The sample is placed on a puck insert for the PPMS (Quantum Design). A
silver paste was applied to the gold coated surfaces of the sample to attach electrodes.

field can also be seen in the temperature scans shown in Fig. 6.2(b)-(d) wherein the

magnetic response at µ0H = 7 T lies somewhat below the ZFC scans. The presence

of the hysteretic behaviour for |H| < 500 Oe in the paramagnetic phase would imply

that it has no relation to the successive magnetic phase transitions in CuO.

Measurements of the field sweeps at constant temperature were made up to

µ0H = 7 T applied along b∗ and reveal no deviation from a (nearly) linear relation

between M and H. This was also found in the study of polycrystalline CuO sample

reported by Wang et al. (Ref. [250]) with a field applied up to 13 T. The authors

concluded that weak coupling between ferroelectricity and magnetic order results in

a negligible magnetoelectric effect. Indeed in MnWO4, whose phase diagram closely

resembles that of CuO, a spin flop transition was induced by a magnetic field applied

along the ferroelectric axis [251]. This is due to the relatively weak anisotropy in

MnWO4 which is of order 2 T [252] and therefore moderately weak magnetic fields

can be applied to manipulate the magnetic spin structure and thereby the ferro-

electricity. Our and reported [250] magnetometery data for CuO do not show any

anomalies which could be associated with a spin flop. This is consistent with a larger

anisotropic interaction, which from theoretical models [253], gives a magnetic field

of approximately 37 T that would be required to overcome the anisotropy. There-

fore, the magnetic structure is effectively too stable to be perturbed by magnetic

fields of 13 T.

6.4 Electric polarisation measurements

A piece of the same initial crystal rod as that used in the polarised neutron scattering

measurements described in § 6.6 was used in the measurements of the pyroelectric

current. The parallel faces have a surface area of 10.0 mm3 perpendicular to b and
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Figure 6.5: Measurements of the electric polarisation in CuO. Electric poling
field of 106 V/mm was applied along b axis and pyroelectric current measured through
the TN1 and TN2 phase transitions. The reversal of the electric polarisation is shown
when poling field in the opposing direction is applied. The dashed grey line corresponds
to electric polarisation measurements on warming after the sample was field cooled to
200 K. The circular data points show integrated intensity as a function of temperature of
the incommensurate Bragg peak using unpolarised neutron scattering, from Ref. [244].

a thickness of 1.7 mm. The sample was mounted vertically between the electrodes.

Electrical contact with the sample’s Cr/Au thin-film coating was made using Ag

epoxy. A similar setup using Cu wires to make the contacts was found to give

significant background contribution to the signal, most likely due to an induction of

a small thermoelectric current. A custom setup for measuring pyroelectric current

was used inside a PPMS (Quantum Design) acting only as a cryostat. The sample

insert was connected to a high-voltage power supply such that an electric field of

106 V/mm was applied along b. The experimental setup of these measurements is

illustrated in Fig. 6.4 and is discussed in greater detail in § 2.5.2.

The multiferroic phase in CuO exists within a narrow range of temperature,

namely between TN1 and TN2 as found using magnetometery data described in

§ 6.3. To infer the electric polarisation Pe in this phase, measurements were carried

out using the following protocol. The sample was cooled in an applied electric

field E from the paraelectic phase at 250 K to the multiferroic phase at 220 K. At

the settling point, the electric field was removed from the sample. However, it

is important to remove any effects due to the surface charge built up on the Au

plates. The plates were therefore allowed to discharge through the power supply

for a period of approximately 30 min. Following this, the sample was connected to

an electrometer to measure the pyroelectric current.

Measurements showing the ferroelectric response in CuO are shown in Fig. 6.5.
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A correction was made for a small background current which had a linear depen-

dence on temperature. On cooling from the paraelectric phase, a sharp increase in

the polarisation at 230 K is observed. The polarisation then increases almost lin-

early up to 213 K. A very sharp discontinuous transition is observed close to 213 K

below which no electric polarisation signal is measured. The pyroelectric current

measurements were repeated with a poling field applied in the reverse bias. The

electric polarisation was found to be switchable when electric field in the oppo-

site direction was applied. The transition temperatures at which the ferroelectric

response was measured were found to closely agree with the magnetic phase transi-

tions measured, as shown in Fig. 6.2. The trend of the polarisation closely follows

that of the neutron scattering integrated intensity when measured at Q = qicm,

the incommensurate Bragg peak [244]. This is as expected for a multiferroic where

the onset of ferroelectricity is coupled to the magnetic order and therefore the elec-

tric polarisation should scale as the square of the magnetisation, Pe ∝ |M |2 and

hence proportionally to the intensity. This relationship has been found in other

magnetically ordered incommensurate systems [254–256].

The maximum electric polarisation attained was Pe ≈ 90µC/m2. The pyroelec-

tric current measurements were reproducible but did not exceed this electric polar-

isation value. This is comparable to the previously reported electric polarisation

measurements with a maximum approximately 150µC/m2 [42]. The discrepancy

may be due to incomplete coating of the sample to make electrical contact. If not

all of the surface is coated by Cr/Au film, the edges of the crystal will experience a

lower electric field.

First principle density functional theory calculations of CuO reproduce the ex-

perimentally obtained value of Pe using the Berry phase method, showing that the

electronic contribution to the polarisation is an order of magnitude greater than the

lattice effects [253]. However, similar microscopic calculation performed by Jin et

al. [257] find that the electronic and ionic contributions are comparable.

Intriguingly, CuO was found to display a form of memory effect. The sample

was first field cooled from well above TN2 (250 K) to well below TN1 (200 K). At

200 K, the field was removed and the pyroelectric current measured on warming

back to 250 K. For a truly paralectric AF1 phase below TN1, one would expect there

to be no response. However, as shown in Fig. 6.5, we instead recover approximately

half of the electric polarisation response in the multiferroic AF2 phase. The crystal

therefore memorises the electric polarisation which was previously induced. Such

behaviour has been reported for CuO [258] but is also found in other multiferroic

non-collinear magnets such as TbMnO3 [259], MnWO4 [260] and CuFe1−xGaxO2

[261]. The origin of the memory effect in CuO has been studied in detail using soft

x-ray diffraction by Wu et al. [258]. The measurements show that a finite compo-

nent of magnetisation in the ac-plane exists in the collinearly ordered phase below

TN1. Such nanoregions occupy a small fraction of the total volume of the sample

compared to the purely collinear regions and hence are not detected in neutron

scattering experiments or in the electric polarisation measurements. The spin-flip

is energetically unfavourable and the electric polarisation remains unchanged. The
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Figure 6.6: Crystallographic structure of CuO. The crystal structure is shown
in (a) three-dimensions and viewed in the (b) ac- and (c) bc-plane. The black outline
represents the conventional unit cell within which the Cu atoms are situated at 1.
(0.25, 0.25, 0), 2. (0.25, 0.75, 0.5), 3. (0.75, 0.75, 0) and 4. (0.75, 0.25, 0.5).

helicoidally ordered spin moments in the multiferroic nanoregions provide a prefer-

ence in the domains when the sample is warmed above TN1. This process appears

to be analogous to polar nanoregions observed in relaxor ferroelectrics [262].

6.5 Representation analysis of magnetic structures in

CuO

The symmetry of the space group constrains the possible magnetic structures of a

system. I have previously discussed the methods in applying representation analysis

to find the basis vectors in § 2.3. In this section I shall apply the representation

analysis to find possible magnetic structures of CuO. In order to do so, we require

knowledge of the magnetic propagation wavevector κ, the crystallographic space

group and the atomic coordinates of the magnetic atoms in the paramagnetic state.

From previous studies of CuO, it has been well established that the propagation

wavevector has the form, κ = (κx, 0, κz) in the commensurate and incommensurate

magnetic phases [244, 245, 263–266].

The crystal structure of CuO can be described using the monoclinic space group

C2/c with setting of a unique axis along b, see Fig. 6.6. High-resolution x-ray

diffraction measurements over a temperature range from 100 to 1000 K have shown

that below 300 K the crystal retains the C2/c space group [267]. The Cu2+ and

O2− ions occupy the symmetry sites 4(c): (0.25, 0.25, 0) and 4(e): (0, y, 0.25) where

y = 0.4184 respectively. Each Cu atom is connected to four (nearly) equidistant O

atoms which mediate the superexchange. Within the conventional unit cell, there

are four Cu and four O atoms. Since only Cu atoms carry a magnetic moment, our

discussion will therefore focus on irreducible representational analysis (IR) of the

Cu site.

The symmetry elements gn of C2/c space group forming group G0 are shown in

Table 6.1. The symmetry can be described by a combination of a unitary transfor-
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Element Symbol Rotation matrix IT notation Jones symbol
gn R gn = {R | τ }

g1 E

1 0 0
0 1 0
0 0 1

 {E|0, 0, 0} x, y, z

g2 C2y

1̄ 0 0
0 1 0
0 0 1̄

 {C2y|0, 0, 0.5} −x, y,−z + 1
2

g3 I

1̄ 0 0
0 1̄ 0
0 0 1̄

 {I|0, 0, 0} −x,−y,−z

g4 σy

1 0 0
0 1̄ 0
0 0 1

 {σy|0, 0, 0.5} x,−y, z + 1
2

Table 6.1: Symmetry operators for the space group C2/c (G0). The notation using
the International Tables is separated into the R rotational and τ translational parts,
from Ref. [66].

(a)

Ch g1 g4

Γ1 (Ag) 1 1
Γ2 (Au) 1 1̄

(b)

Gκ g1 g4

Γ1 1 φ
Γ2 1 φ̄

Table 6.2: (a) Character table showing the irreducible representations of the Ch point
group. (b) Irreducible representations of space group C2/c where the phasing due to
the translational τ part of g4 symmetry element is φ = exp(iκ · τ ).

mation matrix R and a translation τ , such that the position x can be related to x′

by x′ = {R|τ}x = Rx+ τ . Although the conventional unit cell, shown in Fig. 6.6,

contains four Cu and O atoms, it is possible to relate atoms 1 and 2 to 3 and 4 by a

translation of τc = (0.5, 0.5, 0). The primitive unit cell can therefore be used in the

representation analysis which contains just two Cu atoms. The magnetic moments

on sites 3 and 4 can then be related to those on sites 1 and 2 by a phase factor of

κ · τc to obtain the magnetic structure within the conventional unit cell.

The little group Gκ contains the symmetry elements of G0 which leave the

propagation vector invariant under operation R. From Table 6.1, the little group

for both the commensurate and incommensurate magnetic structures contains el-

ements g1 and g4. The irreducible representations of Gκ will therefore be of Ch

point group modified by a phase factor φ, shown in Table 6.2. There must be two

one-dimensional representations corresponding to g1 and g4 and hence the two ir-

reducible representations, Γ1 and Γ2. The g4 symmetry operation corresponds to
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gn Γperm χperm Γaxial χaxial χmag

g1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 4

1 0 0
0 1 0
0 0 1

 3 12

g2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 0

1 0 0
0 1̄ 0
0 0 1

 1 0

g3


0 0 1 0
0 0 0 b̄
1 0 0 0
0 b̄ 0 0

 0

1 0 0
0 1 0
0 0 1

 3 0

g4


0 0 0 1
0 0 b 0
0 1 0 0
b 0 0 0

 0

1̄ 0 0
0 1 0
0 0 1̄

 -1 0

Table 6.3: Table showing the permutation and axial vector representation together
with the corresponding character of the representations of symmetry operations of G0.
The action of operation g4 takes atoms at (−0.25, 0.25, 0.5) and (0.25,−0.25, 0.5) out
of the zeroth cell by (0, 0, 1). The phase change is then such that b = exp(2πiκz),
where κz is the z-component of the propagation vector κ.

a glide plane which is composed of a mirror plane perpendicular to b and a trans-

lation of (0, 0, 0.5). The translation part of the symmetry operation results in the

additional phase of exp(iκ · τ ) which is included in Table 6.2(b).

The magnetic representation Γmag is the result of the symmetry operations on

magnetic (axial) and position (polar) vectors. The two effects are independent and

can be treated separately. The matrix which identifies the permutation of atom

labels and a phase change is the permutation representation Γperm. The general case

of swapping atom labels to find the permutation representation for the G0 group is

shown in Table 6.3. However, in order to deduce the magnetic representation, we

need to consider just the interchange of atoms generated by g1 and g4 symmetry

operations whose permutation representation is found in Table 6.4.

The axial representation Γaxial relates how the moment vector is altered by the

symmetry operations and is a 3×3 matrix. The character of permutation and axial

vector representations is simply given by the trace of the respective representations

and these results are shown in Table 6.3. The magnetic representation of CuO

structure can then be found by using Eq. 2.46 and details given in Tables 6.2 and

6.4 to be,

Γmag = 3Γ1 + 3Γ2. (6.1)

For each representation there are three distinct basis vectors. The basis vectors
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Gκ Γperm χperm χaxial χmag

g1

(
1 0
0 1

)
2 3 6

g4

(
0 1
b 0

)
0 -1 0

Table 6.4: Character table of the little group Gκ.

g1 g4

Γ1 1 φ

χ∗
1Γaxial

1 0 0
0 1 0
0 0 1

 φ∗

1 0 0
0 1̄ 0
0 0 1


ψ1 (1, 0, 0) (φ∗, 0, 0)
ψ2 (0, 1, 0) −(0, φ∗, 0)
ψ3 (0, 0, 1) (0, 0, φ∗)

g1 g4

Γ2 1 −φ

χ∗
2Γaxial

1 0 0
0 1 0
0 0 1

 φ∗

1̄ 0 0
0 1 0
0 0 1̄


ψ1 (1, 0, 0) −(φ∗, 0, 0)
ψ2 (0, 1, 0) (0, φ∗, 0)
ψ3 (0, 0, 1) −(0, 0, φ∗)

Table 6.5: Table to show the calculation of the basis vectors for atomic positions
(x, y, z) and (x,−y, z+1/2) related by symmetry operators g1 and g4 respectively. The
basis vectors ψ are calculated for irreducible representations Γ1 and Γ2 and projected
onto the crystallographic axes {a, b, c}. The phasing is given by φ = eiκ·(g1−g4)x,
where Cu atom position is x = (0.25, 0.25, 0).

can be found using the standard method of projection operator technique. The

projection operator is defined as an operator which transforms one basis vector

into another basis vector of the same irreducible representation Γν . To do this we

can use trial functions along crystallographic axes ma = (1, 0, 0), mb = (0, 1, 0)

and mc = (0, 0, 1). The projection operator formula to find the basis vector ψ for

magnetic representation Γν is given as,

ψαν =
∑
g∈Gκ

χ∗
ν(g)

∑
n

δn,gnΓaxial(g)mα (6.2)

where χ(g) is the character of the little group Gκ defined in Table 6.2(b).

The derivation of the basis vectors of CuO magnetic structure is found in Ta-

ble 6.5. We find that the basis vectors in the mirror plane (which is perpendicular to

b) transform in the same way, whereas the magnetic moment perpendicular to the

mirror plane (along b) will transform in the opposite sense. As expected from the

relation in Eq. 6.1, there are three basis vectors per irreducible representation. Any

linear combination of the basis vectors will have the symmetry of the irreducible

representation. The analysis shows that the moment can in general be orientated

along any direction. We find that the basis vectors can in general be complex,

whereas magnetic moments must be real vectors. If we consider the sum of the lin-

ear basis vectors and their respective complex conjugates, the moment distribution
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Mj of the jth atom can be written as,

Mj =
∑
α

(
Cαψαe

−iκ·τ + C∗
αψ

∗
αe

iκ·τ ) , (6.3)

which is equivalent to,

Mj = 2
∑
α

|Cα|v̂α cos (κ · τ + ωα + θα) , (6.4)

where the basis vectors in a direction v̂ can be expressed as ψ = e−iωv̂ and the

complex coefficient as C = |C|e−iθ. The phase contribution ω is restricted by the

symmetry of the space group whereas θ is a free parameter.

6.5.1 Application of irreducible representation to CuO

The irreducible representations can be applied to magnetic order in the AF1 and

AF2 phases of CuO as described in § 6.5. The magnetic representation analysis does

not significantly constrain the possible magnetic structures as the spin direction on

Cu site can be orientated in an arbitrary direction. Possible collinear, helicoidal

and cycloidal arrangements are in principle allowed. However, the relative phases

between Cu sites are fixed and this information together with some experimental

results will be shown to provide a unique solution to the AF1 and AF2 magnetic

structures of CuO. Neutron diffraction experiments described in Refs. [264, 265]

show that the commensurate phase below TN1 is characterised by a propagation

vector qcm = (0.5, 0,−0.5) and Cu moments lie parallel to the b direction. Helical

order is observed in the AF2 phase with magnetic order modulated by qicm =

(0.506, 0,−0.483) propagation vector and moments rotating in the plane containing

the real space vectors b̂ and 0.48â+ 0.96ĉ [265].

From Table 6.5, the phase factor in both the commensurate and incommen-

surate magnetic structures is given by φ∗ = e−iκzπ. Combining the experimental

observations together with magnetic irreducible representation analysis, leads to the

possible magnetic structure defined in Table 6.6 projected onto the b and ac-plane

containing the moments. The application of the rotational part of the g4 symmetry

operation on the structure in Table 6.6 gives as expected, Rψ = ±φψ, where the

+ (−) sign corresponds to the Γ1 (Γ2) representation and the translational part of

g4 determines the phase factor φ.

The following analysis is limited to the special case where each basis vector can

only have a particular symmetry, i.e. magnetisation component along b or in the

ac-plane has either Γ1 or Γ2 irreducible representation but not a mixture of Γ1 and

Γ2 for the same basis vector. The condition that the moments on each of the Cu

ions are the same imposes the constraint that the common phase θb = π/4 for the

AF1 magnetic structure.

To correctly describe the AF2 spin structure we set θb = 0 and θac = π/2 so that

the spins rotate with a circular envelope, as observed experimentally. For each Cu
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j Mb Mac

Γ1

1. 2C cos(2πκ · τ + θb) 2C cos(2πκ · τ + θac)
2. 2C cos(2πκ · τ + κzπ + θb) −2C cos(2πκ · τ + κzπ + θac)
3. 2C cos(2πκ · τ + κxπ + θb) 2C cos(2πκ · τ + κxπ + θac)
4. 2C cos(2πκ · τ + κxπ + κzπ + θb) −2C cos(2πκ · τ + κxπ + κzπ + θac)

Γ2

1. 2C cos(2πκ · τ + θb) 2C cos(2πκ · τ + θac)
2. −2C cos(2πκ · τ + κzπ + θb) 2C cos(2πκ · τ + κzπ + θac)
3. 2C cos(2πκ · τ + κxπ + θb) 2C cos(2πκ · τ + κxπ + θac)
4. −2C cos(2πκ · τ + κxπ + κzπ + θb) 2C cos(2πκ · τ + κxπ + κzπ + θac)

Table 6.6: The magnetic irreducible representations result in the possible magnetic
structure for CuO as shown in the table. The helical structure can be resolved into
magnetisation along b (Mb) and in the a-c (Mac) plane. The moments of atoms outside
of the primitive unit cell is found using the C-centering τc = (0.5, 0.5, 0) translation,
resulting in an additional phase of κ · τc for atoms 3 and 4. The jth atomic positions
are 1. (0.25, 0.25, 0), 2. (0.25, 0.75, 0.5), 3. (0.75, 0.75, 0) and 4. (0.75, 0.25, 0.5). The
constant factor of 2C defines the magnitude of the magnetisation in a given direction
whose precise value is not important in the context discussed. The phase factors are
set as θb = π/4 in the AF1 and θb = 0 and θac = π/2 in the AF2 magnetic phases.

site, the magnetic moment along b or in ac-plane can have either Γ1 or Γ2 symmetry.

This leads to 4 possible magnetic spin structures, as shown in Fig. 6.7. Taking the

basis vectors from the same irreducible representation, M
(1)
b ◦M (1)

ac or M
(2)
b ◦M (2)

ac is

shown schematically in Fig. 6.7. It is therefore evident that in such cases there will

be effectively two helical chains, originating from either Cu(1) or Cu(2) inequivalent

sites, with opposing senses of rotation. This results in zero net electric polarisation

in the unit cell assuming the magnetoelectric coupling depends on the spin current

Si × Sj . The system is ‘antiferroelectric’ in analogy to antiferromagnetism and no

macroscopic electric polarisation is possible for such mixing of basis vectors in CuO.

A polar state is allowed if we consider the b-component of the magnetisation to

be of Γ1 and at the same site the ac-component to be of Γ2 symmetry, or vice versa.

In such mixing all the moments in the unit cell will rotate in the same sense. A

ferroelectric response will then, in principle, exist. As will be demonstrated in the

following sections, only the M
(1)
b ◦M (2)

ac mixing of basis vectors produces a magnetic

structure consistent with the experimental results.

6.5.2 Fourier transform of the magnetisation density

The magnetisation M in unit cell τ can in general be described by the relation,

M(r + τ ) = A(r) cos(κ · τ + θ(r)) +B(r) sin(κ · τ + θ(r)), (6.5)

for the case of a single propagation vector κ and moments A(r) and B(r) are along

orthogonal directions at positions within the unit cell r. In addition there may be

a phase dependence accounted for by θ(r). Equivalently, the magnetisation density
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Figure 6.7: Possible magnetic structure of CuO from mixing of irreducible
representations. Figure shows schematically the possible magnetic structure of the
4 Cu atoms in the conventional unit cell described by irreducible representations in

Table 6.6. The superscript of M
(i)
b (M

(i)
ac ) defines the Γi to which the the b (a-c)

component of helix belongs to. The blue arrows indicate a sense of the rotation of the
structure on each Cu site when propagating the magnetic structure into an adjacent
unit cell.

can be expressed as

M(r + τ ) =
1

2
[A(r) + iB(r)] e−iκ·τ−iθ(r) +

1

2
[A(r) − iB(r)] eiκ·τ+iθ(r), (6.6)

which is equivalent to Eq. 6.3 defined previously, hence collecting all the r-dependent

terms, Ψ(r) = 1
2 [A(r)+iB(r)]e−iθ(r), we obtain the relation equivalent to Eq. 2.49,

M(r + τ ) = Ψ(r)e−iκ·τ + Ψ∗(r)eiκ·τ . (6.7)

The Fourier transform of the magnetisation can then be calculated from M(±Q) =∑
rM(r + τ )e±iQ·(r+τ ), where the argument of M refers to the sign in the expo-
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nential term in the summation,

M(−Q) =

(∑
r

Ψ(r)e−iQ·r

)
δ(G+Q+ κ) +

(∑
r

Ψ∗(r)e−iQ·r

)
δ(G+Q− κ)

(6.8)

M(Q) =

(∑
r

Ψ(r)eiQ·r

)
δ(G−Q+κ) +

(∑
r

Ψ∗(r)eiQ·r

)
δ(G−Q−κ) (6.9)

where G is the reciprocal lattice vector and has the property τ ·G = 2π. From these

relations, it is trivial to show that when Q = G−κ, M(−Q) = M∗(Q) or that in

general M(−Q) ̸= M(Q). For the case when reflections from the wavevector pair

(κ,−κ) superpose Q = Q′ where G− κ = G′ + κ,

M(−Q) =
∑
r

[A(r) cos θ(r) +B(r) sin θ(r)] e−iQ·r. (6.10)

6.5.3 Comparison to previous work on determination of the mag-
netic structure

One of the first neutron diffraction studies of CuO was carried out by Brockhouse

[263] on a polycrystalline sample was able to identify only the fundamental reflec-

tion which was indexed as (0.5, 0,−0.5). Detailed single crystal neutron scattering

measurements reported by Forsyth et al. [245] and Yang et al. [244] were able to iden-

tify the low-temperature T < TN1 (AF1), intermediate-temperature TN1 < T < TN2

(AF2) and paramagnetic T > TN2 (PM) phases in CuO. Strong spin-lattice coupling

is observed through changes in the lattice parameters at magnetic phase transitions

TN1 and TN2 [267]. The AF1 and AF2 phases were found to correspond to commen-

surate and incommensurate phases, respectively. The ordered moment in the AF1

phase was initially constrained to the lower limit of 0.5µB [263], however further

measurements set the moment to be close to 0.69µB [244, 245] and orientated along

b.

A detailed analysis of the CuO magnetic structure derived from minimisation of

the Hamiltonian and group theory by Aı̈n et al. [265] concluded that the magnetic

moments in cell τ are arranged as given in Table 6.7(a). In the AF2 phase the

ac-plane component of the magnetisation derives from the same irreducible repre-

sentation as the component along b. From Eq. 6.9 the magnetisation at scattering

wavevector Q = κ can then be simplified to,

M(κ) =
∑
r

1

2
[A(r) + iB(r)] eiκ·r−iθ(r). (6.11)

Therefore, taking the sum over r in Eq. 6.11 and assuming a spherically symmetric

magnetic form factor, the Aı̈n model predicts zero intensity. This is inconsistent

with neutron diffraction measurements. Furthermore, this magnetic structure can-

not generate an electric polarisation according to symmetry arguments outlined in

§ 6.5.1.
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(a) Aı̈n et al. model

j rj Mb Mac θj κ · rj

1
(
1
4 ,

1
4 , 0
)

S0 −S0 0 1
2πκx

2
(
1
4 ,

1̄
4 ,

1
2

)
−S0 −S0 πκz

1
2πκx + πκz

3
(
3
4 ,

3
4 , 0
)

−S0 S0 πκx
3
2πκx

4
(
3
4 ,

1
4 ,

1
2

)
S0 S0 π(κx + κz) 3

2πκx + πκz

(b) M
(1)
b ◦M (2)

ac

j M
(1)
b M

(2)
ac θj

1 2C −2C 0

2 2C −2C πκz

3 2C −2C πκx

4 2C −2C π(κx + κz)

(c) M
(2)
b ◦M (1)

ac

j M
(2)
b M

(1)
ac θ(rj)

1 2C −2C 0

2 −2C 2C πκz

3 2C −2C πκx

4 −2C 2C π(κx + κz)

Table 6.7: (a) Magnetic structure of CuO in the incommensurate phase according to
symmetry analysis by Äın et. al [265]. The helix is defined to lie in the (p, q) plane,

where p = b̂ and q = 0.48â+ 0.96ĉ which corresponds to p̂ · q̂ = 0. Panels (b) and (c)
show the magnetic structure of CuO in the AF2 phase according to symmetry analysis
described in § 6.5.1. The magnetic moment component along b and in the ac-plane are
described through mixing of irreducible representations Γ1 and Γ2 denoted by M (1)

and M (2), respectively. The jth moment is given by, Mj = M
(n)
b (rj)p cos(2πκ · τ +

θj) +M
(m)
ac (rj)q sin(2πκ · τ + θj).

6.6 Polarised neutron scattering measurements

To examine the effect of an externally applied electric field along the ferroelectric

axis, a CuO single-crystal sample of mass 0.175 g was employed. The sample was

prepared as described in § 6.2. The CuO piece used was cut to minimise the

thickness along b to allow large electric fields to be applied and maximised in surface

area normal to b, thereby increasing sample volume probed by the neutrons. The

surface perpendicular to b was 20.9 mm2 with thickness of 0.9 mm. In order to

examine the crystal using spherical neutron polarimetry the sample has to be very

precisely aligned to better than 0.5 ◦. Initial analysis of the crystal on ORION

diffractometer at SINQ, PSI [95] revealed that the sample quality was very high with

a secondary grain constituting approximately 3% of the volume fraction present and

sufficiently far away in the rocking scans not to pose any problems. The sample was

orientated to allow for the inspection of the a∗-c∗ scattering plane and attached to

an Al spacer with Ag apoxy which was attached to a non-magnetic goniometer, as
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Figure 6.8: Sample setup for spherical neutron polarimetry measurements
on MuPAD/TASP. The left panel shows the sample mounted on a goniometer and
attached to the sample stick. The right panel is a view of the electrode attached to the
surface of the sample by Ag epoxy.

shown in Fig. 6.8. An electrode was attached to the Au surface using Ag epoxy.

The entire apparatus was then sealed with In inside an Al vacuum can, which was

evacuated. A layer of Cd was wrapped around the outside of the can and held in

place by Al to shield the goniometer from the neutron beam and reduce background.

Spherical neutron polarimetry allows us to examine the complete polarisation

matrix. Polarisation analysis of CuO was carried out using the MuPAD [76] instru-

ment mounted on TASP, SINQ, PSI [95, 96] with incident neutron wavevector of

1.97 Å−1. We employ the convention where the scattering wavevector is defined as

Q = ki − kf . The scattering geometry and theoretical modelling employ the stan-

dard coordinate system wherein the x component is defined along the wavevector

Q, z is perpendicular to the scattering plane (therefore along b∗) and y completes

the right-handed coordinate system.

The sample was aligned using (2, 0, 0) and (0, 0, 2) nuclear Bragg peaks. The

lattice parameters were found to be a = 4.72(2) Å and c = 5.18(1) Å with β = 99.54◦

at 218 K. The parameters are in good agreement with the values reported [267] and

the small difference could be attributed to not taking the resolution function into

consideration. The flipping ratio R = Iαα/Iαᾱ, where Iαᾱ (Iαα) is the intensity

in the (non)-spin-flip channel, was measured on the nuclear reflections and found

to be approximately 17, corresponding to 94% beam polarisation efficiency. The

polarimetry data presented hereafter has not been corrected for the non-ideal beam

polarisation but the models take this effect into account. The background signal

in different polarisation channels was measured at positions away from the Bragg

peaks and found to be negligible. The signal-to-background ratio in the vicinity of

a magnetic peak was found to be of around 200 using unpolarised neutron beam.

This gives us confidence that the measured results are of very high quality and

corrections for the background are not necessary.
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6.6.1 Lessons learned from initial study using polarised neutron
analysis

Initial study of the electric field dependence of the domains in the AF2 phase

of CuO was attempted at SINQ [95] using polarised neutron analysis setup of

MuPAD/TASP [76, 96]. A single crystal CuO sample was attached to a sapphire

plate in an alignment to access (h, 0, l) scattering plane. Electrodes were also at-

tached to the sapphire plate above and below the sample but crucially did not make

direct contact with the surface of the CuO. An electric potential difference could

then be applied across the gap containing CuO and parallel to the b-axis. Sapphire

was chosen as it is a poor electric conductor but a relatively good thermal con-

ductor. The arrangement was then placed inside a vacuum Al can and evacuated

to avoid dissociation of He gas and thereby allow the application of large electric

fields. The inherent disadvantage of this experimental setup is that exchange gas

is at a low pressure inside the Al can and therefore cooling and warming rates are

very slow as thermal coupling to the cryostat is low.

The chiral term Pxy was monitored during different heating and cooling scans.

Large changes in Pxy were observed, however, they did not appear to be correlated

with the direction or magnitude of the applied electric field. The domain population

appeared to vary randomly on each entry into the incommensurate phase.

The absence of electric field switching was rather puzzling as the applied electric

field was sufficiently large for the effect to be observed according to published results

[42]. The likely explanation for the failure of the experiment was due to presence

of free electrons in CuO. The potential difference across the sample created surface

charges which effectively screened the bulk of the sample from the electric field.

This problem was overcome by applying the electrodes directly to the surface of the

sample such that the charge on the surface could be removed. The results of the

experiment using this sample environment are discussed § 6.6.4.

6.6.2 Polarisation matrix determination

Using the group theory analysis outlined in § 6.5, we can therefore describe the

magnetic structure and compare it to experimental results. To begin with an ac-

count of the means of calculating the polarisation matrix is given which forms the

basis for analysis of polarimetry data in the AF1 and AF2 magnetic phases. All the

measurements on MuPAD have been carried out looking at the qicm or qcm position

in reciprocal space. Taking the expression defined in Eq. 6.9 for Q = κ, we find the

Fourier transform of the magnetisation M(Q) as,

M(Q) =
1

2

∑
r

[A(r) + iB(r)] eiQ·r−iθ(r) = A(Q) + iB(Q), (6.12)

where A(r) and B(r) are orthogonal components with phase θ(r) of magnetic

moment at position r within the unit cell. Equivalently, the magnetisation can be

resolved into Fourier terms A(Q) and B(Q) which in general are complex. The
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magnetic interaction vector M⊥ is the component of M(Q) perpendicular to the

scattering wavevector Q, given by M⊥(Q) = Q̂×M(Q)× Q̂, and related to A(Q)

and B(Q) as,

M⊥(Q) = A⊥(Q) + iB⊥(Q), (6.13)

where in the scattering geometry employed in the polarised neutron experiment,

A⊥(Q) is the projection of the A(Q) Fourier term onto ẑ, which is perpendicular

to Q and parallel to the b∗-axis. The B⊥(Q) component is defined to be projected

onto the ŷ axis and is both perpendicular to Q and in the scattering plane.

The Pauli spin matrices are defined for a spin-1/2 particle to be,

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
, (6.14)

where the eigenstates of σz are | ↑z⟩ = (1, 0) and | ↓z⟩ = (0, 1) in the spinor

representation and correspond to spins pointing either parallel or antiparallel to z,

the corresponding eigenstates for x, y and z are listed below,

| ↑x⟩ =
1√
2

(
1

1

)
, | ↑y⟩ =

1√
2

(
1

i

)
, | ↑z⟩ =

(
1

0

)
,

| ↓x⟩ =
1√
2

(
1

−1

)
, | ↓y⟩ =

1√
2

(
1

−i

)
, | ↓z⟩ =

(
0

1

)
. (6.15)

A general state is the linear combination of spin-up and spin-down states along z.

An incident neutron can be considered to be a dipolar moment which experiences a

magnetic field inside the sample. The Fourier transform of this interaction potential

is V (Q) ∝ σ ·M⊥(Q), where the neutron only senses the perpendicular component

of the magnetisation inside the sample. Therefore, using the convention previously

defined, the interaction potential may be expressed as,

σ ·M⊥(Q) =

(
A⊥ B⊥

−B⊥ −A⊥

)
. (6.16)

Finally, the polarisation matrix Pαβ where a neutron with initial spin state |β⟩ (or

spin-flip state |β̄⟩) given in Eq. 6.15 scatters from the interacting potential defined

in Eq. 6.16 into a final state |α⟩ is found as,

Pαβ =
|⟨α|σ ·M⊥|β⟩|2 − |⟨α|σ ·M⊥|β̄⟩|2

|⟨α|σ ·M⊥|β⟩|2 + |⟨α|σ ·M⊥|β̄⟩|2
, (6.17)

where the cross-section Iαβ = |⟨α|σ·M⊥|β⟩|2 can be measured in a polarised neutron

scattering experiment and the weighted difference between non-spin-flip and spin-

flip channels compared to magnetic structure models. Using this nomenclature the

polarisation matrix in the absence of nuclear interference and the special case of a
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single domain is,

P =

−1 0 0

H −K L

H L K

 (6.18)

HD = A∗
⊥B⊥ +A⊥B

∗
⊥,

KD = A2
⊥ −B2

⊥,

LD = i (A∗
⊥B⊥ −A⊥B

∗
⊥) ,

D = A2
⊥ +B2

⊥. (6.19)

The precession of the neutron moment about an internal magnetic field generates

a spin-flip state resulting in Pxx = −1 when measured on a magnetic Bragg peak.

The existence of a non-zero ‘chiral’ term H in the polarisation matrix implies a non-

collinear magnetic structure that is, by definition, constructed from orthogonal, out-

of-phase components, such as a helix or cycloid. Therefore, H = 0 in the collinear

AF1 structure of CuO, and in the AF2 phase, left- and right-handed chiral domains

will give H < 0 and H > 0, respectively. Equivalently, if we measure the Pyx and

Pzx elements on a magnetic reflection we can determine the relative proportions of

the two chiral domains.

The parameters H and K can be calculated from Eqs. 6.19 for a general he-

licoidal magnetic structure. For the particular case when the spins rotate with a

circular envelope in a plane perpendicular to κ, the values for the reflection Q = κ

are H = ±1 and K = 0. In the AF2 phase of CuO, the propagation vector qicm is

not perpendicular to the plane of rotation of the spins, but rather lies at an angle

of 107◦ to it. For Q = κ this results in a small but non-zero value of K, and a

magnitude of H which is slightly less than 1 for a single chiral domain.

It is not possible to extract the absolute magnitude of the magnetic moment on

a Cu ion. Therefore, without a loss in generality it is possible to transform A⊥ =

cos(ψ)eiϕA and B⊥ = sin(ψ)eiϕB such that the projected magnetisation M(Q) lies

at an angle ψ in the yz plane and there is a phase difference ϕA − ϕB between

components along y and z. The elements in the matrix can be understood in terms

of these relations such that Eq. 6.18 becomes,

H = cos(ϕA − ϕB) sin 2ψ,

K = cos 2ψ,

L = sin(ϕA − ϕB) sin 2ψ. (6.20)

In general, the relation,

H2 +K2 + L2 = 1, (6.21)

will hold for a magnetic reflection of a single domain. The presence of domains will

however generate an additional source for depolarisation. In the case of domains in

CuO related to each other by a spatial inversion, the H and L terms in the matrix
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Figure 6.9: Temperature evolution of magnetism close to TN1. (a) Temper-
ature dependence of the Q-integrated intensity of the magnetic Bragg peaks at com-
mensurate (Q = qcm) and incommensurate (Q = qicm) positions. The full symbols
(�) denote the measurements carried out on cooling, conversely the open symbols (⃝)
are measurements done on warming. The grey line shows the sharp change in slope
at TN1 as found from magnetic susceptibility measurements. (b) Typical Q scans in
the xx̄ channel used to construct panel (a) close to TN1. The cut through reciprocal
space was made along wavevector Q ≈ qcm + ξ(qicm − qcm). Solid lines show Gaussian
lineshapes acting as a guide to the eye.

will vanish.

The neutron-nucleus interaction potential does not contain operators which act

on the neutron spin and therefore the spin state will be preserved. The polarisation

matrix for purely nuclear scattering is then Pαβ = δαβ . This property allows for

polarised neutron scattering to unambiguously separate the coherent nuclear and

magnetic contributions to the scattering cross-section. 1 Tuning of the relative

values of magnetisation and nuclear scattering amplitudes makes the production

of polarised neutrons possible by reflections from single-crystals [56]. In addition,

experimentally it is never possible to achieve 100% neutron beam polarisation in-

cident on a sample and analogously maintain the beam after scattering with the

sample due to stray magnetic fields. However, by measuring reflections which are

known to be of purely magnetic or nuclear origin it is possible to make corrections

for this effect for each polarisation channel. This is quantified by a flipping ratio,

defined for a nuclear Bragg peak as the ratio of the scattering intensity measured

in the non-spin-flip to spin-flip channel, R = Iαα/Iαᾱ.

6.6.3 Experimental results

After the initial setup of sample alignment, we checked the positions of the mag-

netic reflections in the xx̄-channel which contains purely magnetic contribution to

1Nuclear spin incoherent scattering is negligible in the measurements performed on CuO.
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the signal. The magnetic peak at 200 K, in the AF1 phase, was found to be cen-

tred on Q = (0.497(2), 0,−0.5041(1)). Upon warming into the multiferroic phase

(AF2) at 215 K, the structure becomes modulated by wavevector corresponding

to Q = (0.5075(3), 0,−0.4865(2)). The coordinates in reciprocal space are in-

dexed with respect to the real space lattice belonging to C2/c space group with

lattice parameters measured at 218 K. The peak positions closely match the pre-

viously reported values for propagation vectors qcm = (0.5, 0,−0.5) (AF1) and

qicm = (0.506, 0,−0.483) (AF2) [264, 265]. No magnetic order was observed above

230 K in the paramagnetic phase (PM).

Figure 6.9 shows the temperature evolution of the magnetic order close to the

AF1-AF2 phase transition. The scans were recorded along the line in recipro-

cal space connecting wavevectors associated with magnetic order in the AF1 and

AF2 phases, Q = qcm and Q = qicm in the xx̄ channel. Only a magnetic sig-

nal can contribute to this polarisation channel. The magnetic phase transition at

TN1 = 213.7 K, found from bulk magnetisation measurements in § 6.3, closely coin-

cides with the abrupt change in the magnetic structure. The integrated intensity

of the peaks is found to slowly increase with decreasing temperature as the size of

the ordered magnetic moment increases – Fig. 6.9(a). The trend is very similar to

analogous scans already reported [244, 245]. However, Yang et al. [244] also found

significant hysteresis around the TN1 transition – the phase transition was shifted

by ∼ 5 K to a lower temperature during measurements on cooling compared to

those on warming. This would be expected from a first-order transition and was

attributed so by the authors. We do not find the same behaviour in our neutron

data. The transition seems to appear at the same temperature on warming and

cooling runs. Careful measurements of this effect were confirmed by SQUID mag-

netometery with a measuring field of 1000 Oe. Using very slow heating and cooling

rates of 0.01 K/min, the transition was found to be the same to within 0.1 K. The

particularly sharp nature of the transition is evident in Fig. 6.9(b) where the com-

mensurate magnetic peak at Q = qcm becomes incommensurate Q = qicm within

a very small temperature range. This demonstrates the first-order nature of TN1

phase transition. Measurements at higher and lower temperatures show that there

is no noticeable change in peak positions in the temperature range of interest in the

experiment.

6.6.3.1 Commensurate magnetic structure, AF1

Commensurate, antiferromagnetic AF1 magnetic phase observed below TN1 contains

moments along b with no magnetic moment in the ac-plane. Indeed, polarised

neutron scattering measurements constrain the moment in the ac-plane to be less

than 5% of the ordered moment along b [264]. According to representation analysis

of magnetic structure of CuO, there are 2 possible structures corresponding to Γ1

and Γ2 as shown in Table 6.6. The inversion operation in the group G0 changes

the propagation vector qcm. This results in a κ-domain described by propagation

wavevector −qcm which is energetically equivalent but distinguishable from the
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Figure 6.10: Magnetic structure in the commensurate magnetic phase AF1.
(a) The calculation corresponds to the Γ1 irreducible representation with moments
along b. A spherically symmetric magnetic form factor for Cu2+ is assumed together
with a moment of 0.76µB per Cu site. The measured single-crystal data were recorded
by Forsyth et al. [245]. (b) Proposed magnetic and nuclear structure of CuO in the
a-c plane. The black outline shows the conventional unit cell and the colors denote
the orientation of the moments on Cu sites. The O atoms are plotted in grey.

symmetry of the lattice.

Calculation of the magnetic structure factor based on Γ1 irreducible represen-

tation is shown in Fig. 6.10. In order to compare the theoretical model with the

experimental data recorded for 59 magnetic reflections by Forsyth et al. [245], one

has to make assumptions about the magnetic form factor and magnetic moment

size. Previous measurements in the commensurate phase find in agreement a value

of the magnetic moment on each Cu site of 0.69µB [244, 245]. The lowest order

approximation to the form factor is spherically symmetric, based on this, the model

predicts the structure factors plotted in Fig. 6.10(a). The poor goodness of fit

(χ2
ν = 119) is in fact comparable to fit obtained by Forsyth et al. [245] (χ2

ν = 139)

under the same assumptions. A slight improvement in the quality of fit (χ2
ν = 88)

is possible by setting the moment to be 0.76µB on each Cu ion. Extinction and

self absorption effects will also be important but it is not clear from Ref. [245] to

what extent this was taken into account. The projection of the magnetisation by

the same authors shows that the moment on Cu is not spherically symmetric, but

extends in the [1, 0, 0] direction. A small amount of the magnetic moment is found

to reside on the O2− sites. Taking the moment distribution into account has been

shown to give a significant improvement to the goodness of the fit (χ2
ν = 9) [245].

However, this was done ad hoc by adding many different components of the spher-

ical harmonics to obtain a fit. A more realistic model is to consider the 3d electron

density of Cu2+ in a dx2−y2 orbital whose Fourier transform will exhibit consider-

able anisotropy resulting in a magnetic form factor dependence on direction as well
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magnitude of Q. The plane of the orbital has four-fold symmetry and these lobes

extend along orthogonal directions connecting Cu to the nearest and next-nearest

O atoms. Surprisingly, however, no improvement in the fit quality was achieved

under these assumptions compared to the spherically symmetric form factor.

Polarised neutron diffraction partly overcomes this difficulty as by taking the

ratio of intensities, we lose information of channel independent multiplication factors

in the magnetic structure factor. Measurements of the full polarisation matrix at

200 K,

Pmeasured =

−0.839(9) −0.048(17) 0.105(17)

0.075(18) −0.848(9) −0.034(17)

0.033(17) −0.036(17) 0.854(9)

 ,

show that only the diagonal terms are non-zero within experimental error and the

polarisation in the z channel is not spin-flipped. It is unclear what the origin of

the anomalously large Pxz term is but could be due to slight misalignment of the

crystal. The matrix is representative of measurements at other temperatures in the

AF1 phase that were obtained in our measurements. Previous polarised neutron

scattering experiments have shown that the polarisation matrices in the AF1 phase

in the a∗-c∗ scattering plane appear to be the same, that is in the ac-plane the

magnetic structure looks the same [264]. Hence, these measurements place an upper

bound on the possible moment in the ac-plane to 3% of the total moment. Using

Γ1 irreducible representation presented in Table 6.6 for Mb, one can simulate the

polarisation matrix at Q = qcm,

Pmodel =

−0.846 0.000 0.000

0.000 −0.846 0.000

0.000 0.000 0.846

 .

A correction is made for the loss of the beam polarisation due to external sources

assuming a spin-flip ratio of 12, corresponding to 92% beam polarisation efficiency.

The symmetry analysis produces a magnetic structure consisting of three Cu atoms

with an identical direction and magnitude and a forth Cu atom with a moment

of the same magnitude but in the opposite direction within the conventional unit

cell, as shown in Fig. 6.10(b). This forms a stripe-like periodic arrangement of

moments where spins at the same position in b are antiferromagnetically arranged

along the Cu–O–Cu chain direction [1, 0, 1̄]. Previous neutron diffraction studies of

single-crystal and powder samples of CuO come to the same conclusion based on

their experimental evidence [244, 245, 266].

Turning to the Γ2 representation, we find that neither the unpolarised diffraction

[245] nor the polarimetry data [264] can be fitted. Hence, only the Γ1 representation

appears to describe our data.
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Figure 6.11: Helical magnetic order in the AF2 phase. Magnetic moment
arrangement shown in the ac-plane in the incommensurate phase. The structure is

based on the M
(1)
b ◦M (2)

ac representation wherein the magnetisation components along
b and in ac-plane are derived from Γ1 and Γ2 irreducible representations, respectively.
The O atoms are shown in grey and the Cu atoms are coloured such that to represent
component of magnetisation along b. The moments lie in the planes indicated by the
lines going through the atoms, which contain the b̂ and 0.48â + 0.96ĉ vectors. The
AF2 structure has two domains of opposite handedness. The left-handed domain is
shown here.

6.6.3.2 Incommensurate magnetic structure, AF2

In trying to model the incommensurate AF2 phase using the group theory approach,

we must consider the two possible magnetic structures obtained from irreducible

representations in Table 6.6 which allow for a polar state to develop. The magnetic

structure deduced from mixing of the irreducible representations is shown in Ta-

ble 6.7(b) and 6.7(c) with magnetic moment projected along axes defining the plane

of the rotation. Assuming the Mb and Mac components can each be described by a

single irreducible representation, Γ1 or Γ2, there are four possible magnetic struc-

tures which we denote by M
(n)
b ◦M (m)

ac . These structures are chiral, so each has two

domains of opposite handedness related by spatial inversion. When the b and ac

magnetic components belong to the same irreducible representation, i.e. M
(1)
b ◦M (1)

ac

or M
(2)
b ◦M (2)

ac , this corresponds to a spin arrangement in which the spins on sites

1 and 3 rotate in the opposite sense along the a axis to those on sites 2 and 4. This

results in zero net electric polarisation in the unit cell assuming the magnetoelec-

tric coupling depends on the spin current S1 × S2. The two magnetic structures

with different symmetry for the b and ac magnetic components (M
(1)
b ◦ M (2)

ac or

M
(2)
b ◦M (1)

ac ) do have a net electric polarisation in the spin current model.

Further evidence against a magnetic structure originating from the same irre-

ducible representation for Mb and Mac comes from the polarimetry data recorded

in the incommensurate phase by Brown et al. [264] for 7 magnetic Bragg peaks.

The structure M
(1)
b ◦M (1)

ac produces a fit whose goodness of fit is χ2
ν ≈ 180 whilst

basis vectors corresponding to the Γ2 representation give χ2
ν ≈ 870. On comparison,



6.6. Polarised neutron scattering measurements 170

R
e
fl

e
c
ti

o
n

 (
h

 k
 l

)

�
��
�
�

�
��
��
�
�

��
��
	
�

�
��


�

�
��
�
�

��
��
�
�

�
��
�
�

�
��
�
�

�
��
�



�
��
�



�
��
�

�
�
��
�



�
��
�



�
��
�

�
�
��

��
�

��
��
�
�

��
��
	
�

�
��
�
�

�
��
�
�

��
��
�
	

�
��
�
�



�
��
�



�
��
	



�
��
�



�
��
�



�
��
�



�
��
�

��
��
�
�

�
��
�



�
��
	
	

�
��
�
�

�
��
�
�

�
��
�
	



�
��
�



�
��
�



�
��
�



�
��
�



�
��
�



�
��
	

��
��
�
�

�
�
��
�
�

��
��
�



�
��
�
�

��
��
�
�

��
��
�
�

�
��
�
�

�
��
�
�

�
��
�



�
��
�



�
��
�

�
�
��
�



�
��
�



�
��
�

�
�
��
�
��
�

��
��
�
�

��
��
	



��
��
�



�
��
�
�

��
��
�
	

�
��
�
�



�
��
�



�
��
	



�
��
�



�
��
�



�
��
�



�
��
�

��
��
�
�

��
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
	



�
��
�



�
��
�



�
��
�



�
��
�



�
��
�



�
��
	

�
��
�
�

�
�
��
�
	

��
��
�
�

�
��
�
	

�
��
�
�

��
��
�
�

�
��
�
�

�
��
�
�

�
��
�

�
��
�

�
��
�

�
	
�	
�

�
��
�

�
��
�

�
�
��
�
�


��
�
��

��
�

��
��
�
�

��
��
�
�

��
��
�
�

�
��
�
�

��
��
�
�

�
��
�
�

�
��
�

�
��
�

�
��
�

�
��
�

�
	
�	
�

�
��
�

�
��


�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�

�
��
�

�
	
�	
�

�
��
�

�
��
�

�
��
�

�
��
�
�

�
�

��
�
�

��
�	
�
�

�
��


	

�
��
�
�

��
��
�
�

�
��
�
�

�
��
�
�

�
�

�

�
��
�

�
��
�

�
�
��



�
��
�

�
��
�

�
�
��
�
�
�

��
�
��

��
�

��
��
�
�

��
��
�
�

�
��
�
�

�
��
�
�

��
��
�
�

�
��
�
�

�
��
�

�
�

�

�
��
�

�
��
�

�


��
�

�
��
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�

�
��
�

�


��
�

�
��
�

�
��
�

�
�

�

�
��
�
�

�
��
��
�
	

��
�	
�
�

�
��
�
�

�
��
	
�

��
��
�
�

�
��
�
�

�
��
�
�



��
�

�
�
��
�

�
�
��
�



�
��
�

�
�
��
�

�
�
��
�

�
�
��


�
�

��
�
��

��
�

�
��
�
�

��
��
�
�

�
��
�
	

�
��
�
�

��
��
�
	

�
��
�
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
	

�
�
��
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
	

�
�
��
�

�
�
��
�

�
�
��
	

�
�
��
�

�
�
��
�

�
�
��
�

�
��
�
�

�
�
��
�
�

��
�	
�



�
��
�
�

�
��
�
�

��
��
�
�

�
��
�
�

�
��
�
�



��
�

�
�
��
�

�
�
��
�



�
��
�

�
�
��
�

�
�
��
�

�
�
��


�
�
��
�
��

��
�

�
��
�



��
��
�
�

�
��
�



�
��
�
�

��
�

�
	

�
��
�
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
	
�	
�

�
�
��
�

�
��


	

�
��
�
�

�
�

�
�

�
��
�
�

�
��
�
�

�
�

�
	

�
�
��
�

�
�
��
�

�
	
�	
�

�
�
��
�

�
�
��
�

�
�
��
�

O
b

se
r
v
e
d

C
a

lc
u

la
te

d
C

a
lc

u
la

te
d

 I
(�

, 
�

)
C

a
lc

u
la

te
d

 I
(�

, 
–
�

)

�
��


	

�
��
�
�

�
�

�
�

�
��
�
�

�
��
�
�

�
�

�
	

�
�
��
�

�
�
��
�

�
	
�	
�

�
�
��
�

�
�
��
�

�
�
��
�

�
��
�
�

�


��
�
�

��
�	
	
�

�
��
�
�

��
��
�



��
��
�
�

�
��
�
�

�
��
�
�

�
��



�
��



�
��



	
��
�

�
��



�
��



�
�
��


�


��
�
��

��
�

�
��
�
�

��
�	
�
�

��
��
�
�

�
��
�
�

��
�	
�
�

�
��
�
�

�
��



�
��
�

�
��



�
��



	
��
�

�
��



�
��
�
�

�
��
�
�

�
�	





�
��
�
�

�
��
�
�

�
�	
�
�

�
��



�
��



	
��
�

�
��



�
��



�
��
�

��
��

��
��

��
��

��
��

��
�


�
��

�
�


�
��

�
��

�
��

�
��

Table 6.8: Table to show the comparison between the measured polarisation matrices

recorded by Brown et al. [264] and calculation based on the M
(1)
b ◦M (2)

ac model. The
model fits the data with a goodness-of-fit of χ2

ν = 5.4. The calculated intensity I in the
spin-flip (α, β) and non-spin-flip (α,−β) channel is given in units of barns. The colour
scale denotes the magnitude of the P (α, β) components, ranging from −1 to +1.
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the M
(1)
b ◦M (2)

ac structure gives excellent agreement to the polarisation matrices as

shown in Table 6.8. The simulation includes the depolarisation effect by the domains

which are weighted equally, hence the terms H (from Eq. 6.18) are equal to zero for

all reflections. Measurements of the polarisation matrix at Q = (002)+qicm contain

only non-zero terms along the diagonal. The components Pxx = Pyy ≈ −0.85 and

Pzz = 0.85 indicate that only magnetisation along b∗ (equivalently z) is causing

a spin flip. The magnitude of Pαα is not ±1 due to non-ideal beam polarisation

and is taken account in the model by assuming a flipping ratio of 12. From this

matrix, we can therefore ascertain that the rotation plane must lie very close to the

plane defined by reciprocal space wavevectors (002) + κ and b∗. The experimental

polarisation matrices are found to have a decreasing component Pxx with larger Q

which cannot be accounted for by the model. This was attributed to significant

unpolarised background which affects weaker reflections [264]. Measurements of

the polarisation matrix at Q = qicm, which is nearly perpendicular to the rotation

plane of the moments, shows that only the Pxx contains the full polarisation. The

small values of Pyy and Pzz are related to the fact that magnetisation along y and

z axes are almost equal. A non-zero value is expected as the projection of B on z

is such that B⊥/A⊥ = 0.96. Further refinement of the magnetic structure is possi-

ble by allowing the domain population to vary slightly and lift the restriction of a

circular envelope of moment rotation as proposed by Brown et al. [264]. However,

the improvement in the fit quality in such case is negligible and therefore to a good

approximation, a circular envelope is sufficient to describe the magnetic structure.

Under these assumptions, the magnetic structure M
(1)
b ◦M (2)

ac gives a fit of χ2
ν = 5.4.

Therefore, we obtain a magnetic structure illustrated in Fig. 6.11 for a left-

handed domain whose propagation wavevector is given by qicm. Neglecting the

small incommensurate component of the magnetic structure, we find stripes of mag-

netic moments. The moments along [1, 0, 1] are found parallel to one another. The

structure is modulated antiferromagnetically along [1, 0, 1̄], with moments on dif-

ferent stripes related by a displacement of [0, 0.5, 0.5], found almost orthogonal to

each other. This is precisely the magnetic spin configuration predicted by ab initio

calculations for the AF2 phase in CuO and predict the emergence of ferroelec-

tricity in the AF2 phase [253, 257]. The antiferromagnetic exchange interaction

along [1, 0, 1̄] path is predicted to be around 5 times larger than any other compet-

ing interactions. In both studies, the magnetic structure is found to be stabilised

by the inverse Dzyaloshinskii-Moriya interaction. Rather surprisingly, the small

incommensurability in the AF2 phase is not important to the emergence of the

ferroelectricity, whereas non-collinearity plays a crucial role.

6.6.4 Electric field control of domains in CuO

The preceding sections demonstrate that the group theoretical approach to deriving

a magnetic structure of CuO in the AF1 and AF2 phases provides magnetic struc-

tures in excellent agreement with the reported experimental results. This gives us

confidence in applying these models to look at the switching of the chiral domain
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Figure 6.12: Electric field dependence of the chiral Pyx polarisation matrix
term. Panel (a) shows the temperature dependence of the coercive field measured by
neutron polarimetry. Electric field sweeps at fixed temperatures of (a) 214.3(6) K, (b)
219.3(6) K and (c) 227.1(22) K. Upper panels show the variation in the Pyx component
as a function of applied electric field E swept from +830 V/mm to −830 V/mm and
back to +850 V/mm. The lower panels correspond to normalised counts at Q = qicm
of the yx scattering cross-section σ (•) and its complimentary spin-flip component yx̄
(�) as a function of applied field.
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population in CuO when an in situ electric field is applied. The symmetry of the

space group only allows two chiral domains related to each other by an inversion.

For consistency, domain D1 is defined as having a propagation vector +qicm and

domain D2 a propagation vector of −qicm. In the cycloidal scenario, proposed by

Kimura et al. [42], D1 corresponds to a clockwise propagating cycloid whose prop-

agation wavevector is qicm − qcm. The second domain D2 consists of spins rotating

in the opposite sense to D1. As discussed previously in § 6.6.2, neutron polarimetry

can be used to determine the relative proportions of the chiral domains in CuO.

Any changes in domain population induced by an applied electric field will affect the

Pyx and Pzx elements in the polarisation matrix while leaving the other elements

unchanged.

The change in Pyx when an electric field is applied is shown in Fig. 6.12(b)-(d)

in the multiferroic AF2 phase. A hysteresis is found to develop when the sample

is cooled below TN2 ≈ 230 K, shown in Fig. 6.12(d). The component Pyx was

measured as a function of the electric field at 214.3(6), 219.3(5) and 227.1(22) K.

We find that by sweeping the electric field, which is in the opposite direction to

the crystallographic b direction, from +830 V/mm to −830 V/mm and back to

+830 V/mm we observe a change in sign and magnitude of Pyx. It follows that the

electric field must be coupled to the chiral magnetic domains. The magnitude of

Pyx in the AF2 phase never reaches the maximal value of around ±1 as expected

for the case of a single magnetic domain. Even at large electric fields a significant

depolarisation is observed such that |Pyx| < 0.6. To verify that the electric field

switching of the magnetic domains exists only in the incommensurate AF2 phase,

hysteresis loops were also made at 240 K (centred on qicm) and 210 K (centred on

qicm and qcm). These measurements showed field-independent behaviour of Pyx,

confirming that these phases do not possess a magnetoelectric coupling.

The coercive field, defined as the electric field at which the chiral domains are

equally populated is shown in Fig. 6.12(a). This is proportional to the width of the

hysteresis loops shown in Figs. 6.12(b)-(d). The coercive field in CuO is found to

increase with decreasing temperature – a larger field is required to switch the domain

population at lower temperature. The system becomes softer at higher temperatures

and therefore the electric field required to balance the domain population is reduced

up to the point of the phase transition at 230 K. No hysteresis and hence no coercive

field is found in the collinear AF1 or paramagnetic phases.

The Pyx component of the polarisation matrix is related to the number of

counts in the non-spin-flip σ(y, x) and spin-flip σ(y, x̄) channels from Eq. 6.17 as

Pyx = [σ(y, x) − σ(y, x̄)]/[σ(y, x) + σ(y, x̄)]. The lower panels of Fig. 6.12 show

the normalised counts of the scattering measured in σ(y, x) and σ(y, x̄) channels as

a function of electric field and temperature. When the domains are equally pop-

ulated, the signal observed in the non-spin-flip and spin-flip channels will be the

same. As will be demonstrated later, D1 contributes to a large extent to the σ(y, x)

cross-section, such that σ(y, x) ≫ σ(y, x̄). The reverse is true when D2 dominates.

As the temperature decreases, the ordered magnetic moment increases, hence the

signal in σ(y, x) and σ(y, x̄) becomes greater.
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Figure 6.13: Spherical neutron polarimetry data for CuO with an applied
electric field at 220K. Panel (a) shows the Pyx component of the polarisation matrix
during an electric field sweep at a fixed temperature of 220 K. Panels (b) and (c) repre-
sent the complete polarisation matrix at qicm = (0.506, 0,−0.483) with applied field E
of −670 V/mm and +670 V/mm, respectively. The colour bars are the measurements,

and the symbols (◦) are calculated assuming the M
(1)
b ◦M (2)

v AF2 magnetic structure
and taking into account the non-ideal neutron beam polarisation. The fitted popula-
tions of the two chiral magnetic domains are indicated. Panels (d) and (e) show rocking
scans through the magnetic peak as measured in the yx and yx polarisation channels.
Measurements were made at constant applied electric field of −670 V/mm (panel d)
and +670 V/mm (panel e). Reprinted figure with permission from Babkevich et al.,
Phys. Rev. B 85, 134428 (2012) [268]. Copyright c⃝ (2012) by the American Physical
Society.

Figure 6.13 shows the polarimetry data recorded at 220 K. Even at large electric

fields a significant depolarisation is observed such that a saturation value of Pyx ≈
±0.5 is reached at around ±500 V/mm, as shown in Fig. 6.13(a). The coercive field

at this temperature is found to be approximately 90 V/mm. Reported results [42]

for the electric polarisation dependence on the electric field at this temperature find

instead that the coercive field is closer to 55 V/mm. The difference could be slight

differences in the temperatures at which the loops were made.

To examine what happens at the saturating fields we performed rocking scans

through the Bragg peak at qicm. Figure 6.13(a) and (b) show the number of counts

in the spin-flip and non-spin-flip yx polarisation channels at the extrema of the

hysteresis loop. We would expect the left-handed helical domain (i.e. that shown in
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Fig. 6.11) to scatter mainly into the yx̄ channel. Taking into account the non-ideal

beam polarisation in the experiment, we calculate the ratio of σ(y, x)/σ(y, x̄) to be

15 for a single magnetic domain. However, from Fig. 6.13(d) this ratio is closer to

3.4.

The significant depolarisation of the Pyx term can be attributed to the following,

not mutually exclusive factors:

(i) There exists an imbalance of chiral domain population even at saturation field.

(ii) The assumed magnetic structure for the AF2 phase is incorrect. However, the

envelope of the rotation plane has been tightly constrained by Aı̈n et al. [265],

Brown et al. [264] and our own measurements with all studies concluding that

the non-collinear structure is helicoidal with a (nearly) circular envelope.

(iii) There is a phase difference between A⊥(Q) and B⊥(Q). The effect of this

can be found from relations defined in Eqs. 6.20. This also seems unlikely as

group theory shows that the phases are tightly constrained. However, even if

irreducible representation analysis is not considered, we find no evidence of a

finite Pyz and Pzy polarisation matrix elements which are also sensitive to the

phase differences.

We can therefore conclude that the most adequate explanation for the depolarisation

is that complete switching from one domain into another cannot be achieved.

Complete polarisation matrices Pαβ measured with an applied external electric

field of ±670 V/mm, at 220 K, are shown in Figs. 6.13(b) and (c). The data clearly

shows a reversal in the sign of Pyx and Pzx. A decrease in the xx component is

anomalous. Its origin is unclear but may be due to a small misalignment of the

crystal with respect to the polarisation axes which also causes the Pxz term to be

non-zero. It can be shown from Eq. 6.21 that P 2
yx + P 2

yy + P 2
yz = 1 for a single

domain of any magnetic structure. This relation is not satisfied by our data and

therefore this adds weight to the notion that the presence of domains is responsible

for the reduced values of Pyx and Pzx.

To quantify our data, we have the model for the AF2 magnetic structure where

the basis vectors along b correspond to Γ1 representation and the basis vectors in

the ac-plane to Γ2. A correction was made to the simulations to account for the non-

ideal beam polarisation assuming beam polarisation efficiency of 94% (based on a

flipping ratio of 17). The polarisation matrices were fitted allowing just the domain

fraction to vary. The domains D1 and D2 correspond to left- and right-handed spin

structure, respectively. The electric field switches between the domains, with a large

positive electric field yielding a predominantly left-handed domain and conversely a

large negative field promoting the right-handed domain. The switching by applied

electric fields has been observed in several materials with non-collinear magnetic

ordering such as Ni3V2O8, MnWO4, LuCu2O2 and TbMnO3 [269–272].

We find that typically, in the AF2 phase, at electric fields approaching saturation

in Pyx, the magnetic domains are populated in approximately 80:20 proportion. We
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Figure 6.14: Symmetry operation effect on the magnetic structure. Diagram
to show the how the magnetic moments on Cu atoms are related to each other by the
{σy|0, 0, 0.5} symmetry of the space group. The moments in the mirror a-c plane are
transformed in the opposite sense to the moments along b when the mirror plane (σy)
or mirror plane together with a time reversal (σ′

y) is applied. The translational part of
the symmetry operation τ adds an additional phase change ∆φ = κ · τ .

have observed, therefore, that the electric field does not induce a single magnetic

domain. Possible reasons for this are, (i) crystal defects acting to pin the magnetic

structure and prevent full domain reversal, (ii) the high-temperature of the multi-

ferroic phase causing thermal relaxation of the domain population in the time frame

of the experiment, (iii) a reduced electric field strength near the edges of the crystal

caused by the incomplete coating of the surfaces with the gold electrodes, or (iv)

leakage currents could be responsible for partially screening the ferroelectric state.

6.6.5 Discussion

The measurements collected for CuO using polarised neutron scattering show that

an electric field applied along the ferroelectric axis is able to switch the magnetic do-

mains in the multiferroic AF2 phase. The results unambiguously demonstrate that

the magnetic and ferroelectric degrees of freedom are strongly coupled as predicted

by theoretical models [253, 257, 273]. The magnitude of Pe predicted is consistent

with the experimental bulk value of approximately 90µC/m2. Furthermore, we

observe that the direction of Pe is along +b for the left-handed domain.

The AF2 structure which can produce a net ferroelectric polarisation requires

the mixing of basis vectors symmetries. This can be understood qualitatively from

Fig. 6.14. The symmetry operation {σy|0, 0, 0.5} acts on Cu site 1 to generate

Cu at site 2. Meanwhile, the magnetic structure transforms according to character

Table 6.2(b). From Table 6.6, we find that in the Γ1 representation, the b-component

of the magnetic moment is parallel for sites 1 and 2 but the ac-component reverses

direction. Conversely, in the Γ1 representation, the ac-component is unchanged

whereas the b-component is. This is qualitatively described in Fig. 6.14. The

magnetic moments are axial vectors and therefore the mirror plane σy in the Γ1

symmetry, leaves moments along b unchanged but flips the magnetic moment in

the ac-plane. The Γ2 symmetry can be composed of a mirror plane as well as
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time inversion, this will cause the spins in the ac-plane to be unaltered but the

moment along b will be reversed. Therefore, the moments on the two Cu sites in the

primitive unit cell will always rotate in opposing senses if we take the basis vectors

to belong to the same single irreducible representation. This results in zero net

electric polarisation in the unit cell assuming the magnetoelectric coupling depends

on the spin current Si×Sj . The mixing of basis vector symmetries ensures the spins

rotate in the same sense and will generate a net ferroelectric response assuming this

mechanism.

The magnetically-induced ferroelectric polarisation in CuO has been explained

through a number of models, all of which are based upon the inverse Dzyaloshinskii-

Moriya interaction between nearest-neighbour, non-collinear spins [35, 36]. This is

a relativistic correction to the usual superexchange interaction whose Hamlitonian

takes the form,

HDM =
∑
i,j

Dij · (Si × Sj) (6.22)

when acting between ith and jth spins separated by bond vector rij . It is evident

from this relation that the interaction favours non-collinear spins. The Dzyaloshin-

skii vector Dij is material specific and in general can be decomposed into compo-

nents parallel and perpendicular to rij as Dij = σijrij +Pij×rij , respectively [274].

The quantities Pij and σij are a polar vector and pseudoscalar 2 , respectively. In

CuO, Pij is proportional to a local electric polarisation and σij is related to the

magnetic chirality.

The cycloidal model (σij = 0), where Pe ∝ qc×Si×Sj and qc is the propagation

vector of the cycloid predicts that for high-symmetry cases the electric polarisation is

perpendicular to the rotation plane of the spins and to the direction of propagation

[37, 275]. This model can be extended for more complicated crystal structures

with lower symmetry possessing general helicoidal magnetic moment arrangements.

In such case, the electric polarisation and the propagation wavevector need not be

perpendicular, nor the propagation vector should be restricted to the rotation plane.

However, the electric polarisation will be constrained to lie in the plane containing

the rotating moments [274]. This approach was used to explain the direction of

the electric polarisation in the first study of multiferroic behaviour in CuO, by

considering a cycloid propagating as modulated by qc = qicm−qcm, which is almost

parallel to the ac component of the rotation plane [42]. Such analysis does indeed

predict a polarisation along b axis but relies on the fact that the magnetic structure

is incommensurate in the AF2 phase. Subsequent theoretical models [253, 257,

273] find that the important magnetoelectric interaction is between approximately

perpendicular spins on neighbouring chains of Cu atoms running along the [1, 0, 1]

direction and does not depend on the incommensurate modulation.

It has recently been shown that the chirality σij of a magnetic structure can

induce an electric polarisation through coupling to a unique structural rotation

[274]. In Cu3Nb2O8 the electric polarisation emerges perpendicular to the rotation

2A pseudoscalar is a scalar which changes sign under a spatial inversion.
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plane and the mechanism involving coupling of the chirality to the crystal structure

has been used to predict that Pe ∝ σA, whereA is an axial vector along the rotation

axis [274]. Such coupling is limited to a small class of crystal structures which

are termed ferroaxial [274]. CuO adopts the space group C2/c, a member of the

ferroaxial crystal class, with a two-fold rotation axis parallel to the crystallographic

b-axis. Coupling between the magnetic chirality and the crystal structure could

therefore result in an electric polarisation parallel to the b-axis, as observed. It

would be of interest to include this chiral term in future DFT calculations. However,

as existing calculations predict an electric polarisation close to that observed in the

experiments, its contribution may well be small.

A recent study of the bulk magnetoelectric properties of polycrystalline CuO

showed that the application of a magnetic field has little effect on the ferroelectricity

and concluded that the magnetoelectric coupling is very weak [250]. Our method of

applying an electric field and measuring the effect on the magnetic structure shows

that the magnetoelectric coupling is in fact strong. The difference between these ex-

periments is that in our work we are probing the coupling between the macroscopic

polarisation and a spatially-varying magnetisation, whereas in Ref. [250] the cou-

pling is between the macroscopic polarisation and a uniform magnetisation. These

studies are therefore complementary, not contradictory.

6.7 Conclusion

Spherical neutron polarimetry has been employed to study the high-temperature

multiferroic phase of CuO. The application of an external electric field along the

ferroelectric b axis has been found to be able to switch between chiral magnetic

domains. These results demonstrate that the ferroelectric polarisation is directly

coupled to the magnetic order. Magnetic representation analysis has been used to

solve the magnetic structure in the multiferroic phase and was found to be consistent

with experimental results. From symmetry considerations this magnetic structure

allows for a ferroelectric polarisation to develop based on the spin current model.

The microscopic origin of the ferroelectricity is consistent with models based on the

inverse Dzyaloshinskii-Moriya mechanism [253, 257, 273].



Chapter 7

Concluding remarks and

outlook

In this thesis a number of compounds have been investigated primarily using neutron

scattering. The systems looked at can be classed into three distinct systems: (i)

Mott insulating La2−xSrxCoO4 which share the same crystallographic structure

as La2CuO4 based superconductors, (ii) FeSexTe1−x, which belong to the newly

discovered family of high-temperature superconductors and (iii) CuO which is a

building block of La2CuO4 but exhibits multiferroicity at high temperatures.

The work on La2CoO4 has examined the magnetic structure and fluctuations.

The magnetic fluctuations in the entire Brillouin zone were found to be well de-

scribed by a two-dimensional XY-like model. An anomalous antiferromagnetic zone

boundary dispersion was observed. This provides evidence of more distant interac-

tions in the system beyond the nearest neighbour ones. Spherical neutron polarime-

try was employed to try to refine the magnetic structure in the two antiferromagnetic

phases in La2CoO4. The magnetic structure in the low-temperature orthorhombic

phase was found to be identical to that of La2NiO4. The low-temperature tetrag-

onal phase is less well understood. Our measurements do not provide a unique

solution to the magnetic structure. However, more work could be envisaged in de-

termining the magnetic structure in this phase. At low temperatures, the tilting

of the O octahedra creates a lattice distortion whose modulation is concomitant

with the antiferromagnetic order. This makes magnetic structure determination

difficult. Although polarised neutrons allow for the separation of the nuclear and

magnetic contributions to the signal, perhaps an alternative method could be used

to verify these results. A possible candidate is x-ray diffraction. The presence of

equivalent domains also makes magnetic structure determination complicated. One

could try to break the symmetry in the low temperature phase in some way such

by application of an in-plane magnetic field or uniaxial pressure.

An important result presented in this thesis is the observation of an hourglass

dispersion in the stripe ordered La5/3Sr1/3CoO4. The exchange interactions ob-

tained from analysis of the magnetic fluctuations in La2CoO4 and La3/2Sr1/2CoO4

[98] provide us with an excellent model of dynamics in La5/3Sr1/3CoO4. A quanti-

tative model of the dispersion is useful in guiding possible future experiments. The

phase diagram of La2−xSrxCoO4 still requires some work and it would be useful to

look at compounds with similar doping to La5/3Sr1/3CoO4 to see how the incom-

mensurate magnetic peaks evolve with doping and the effect on the dispersion. One

of the key assumptions in the spin-wave model is the notion that the system becomes
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charge ordered. However, this fact has not been verified directly in La5/3Sr1/3CoO4.

Since the material contains a mixture of Co valence states and these reside inside

a crystal field environment, the difference in charge on Co would create slight dis-

tortion of the crystal structure. Periodic arrangement of charges should therefore

lead to periodic structural distortion and this can be probed by x-ray diffraction.

However, as the system is highly disordered and the distortion is likely to be small,

this would present a formidable experiment challenge. An alternative would be

to examine La5/3Sr1/3CoO4, as well as other systems of La2−xSrxCoO4 using the

µSR technique. The implanted muons carry positive charge and therefore would be

more strongly repelled by the Co3+ than by Co2+. Provided the stopping site can be

found, it would serve to provide an alternative quantitative test of the Hamiltonian

that we have considered.

Although some evidence exists that magnetic stripe order exists in cuprates,

it is believed that the stripes run parallel to the Cu–O bonds, rather than along

the diagonals as found in La5/3Sr1/3CoO4, or similarly doped nickelates. It would

therefore be interesting to look for insulators with vertical stripe order.

We have closely examined a range of compounds of the FeSexTe1−x type to

look at the change in the low-energy magnetic fluctuations with temperature and

doping. A localised mode in momentum and energy transfer appears below Tc
in the superconducting samples. In contrast, strongly dispersive, incommensurate

branches are found in the non-superconducting samples.

We have examined the resonance peak in FeSe0.5Te0.5 using polarised inelas-

tic neutron scattering. One of the outstanding questions in the superconducting

FeSe0.5Te0.5 sample is the appearance of a small anisotropy between the in-plane

and out-of-plane components of spin fluctuations at the resonance position. This

could serve as a motivation to look at the origin of this feature more closely using

polarised neutron scattering. If the anisotropy is connected with some sort of orbital

degree of freedom, it should change with wavevector. Therefore, measurements at

inequivalent positions could be made in the (h, k, 0) and (h, h, l) scattering planes for

example. The behaviour could also be studied by examining non-superconducting

samples to see if there is any change in the anisotropy of the magnetic fluctuations.

Recently, evidence has emerged that of an unconventional phonon broadening

in the Raman spectrum of FeSexTe1−x which has been suggested to be a signature

of the opening of spin-density-wave gap [276]. Neutron scattering is well suited to

the study of lattice excitations and could be utilised in looking at how the phonon

spectrum changes between the superconducting and non-superconducting samples.

The effect is likely to be very weak and therefore high-energy resolution could be

provided by using the spin-echo setup.

In comparison to the cuprates, the field of Fe-based superconductors, although

hotly pursued, is still new and rapidly developing. A new compound, based on FeSe

has emerged with a dramatically higher phase transition temperature of Tc ≈ 30 K.

This system has the form AxFe2Se2, where A is an alkali metal ion. It pos-

sesses many unusual properties and the comparison between this compound and

FeSexTe1−x could shed light on some new physics. It would seem very likely that
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more Fe-based superconductors are yet to be discovered and this may well change

the course of the field.

Our work on the multiferroic CuO has demonstrated that there is strong cou-

pling between magnetism and ferroelectricity at high temperature. Many theoretical

studies have been made using DFT to calculate the exchange interactions. However,

there are considerable variations in the ab-initio values of the exchange parameters.

These are important in trying to understand the high temperature at which the

multiferroic phase occurs and the mechanism leading to ferroelectricity from the

non-collinear magnetic structure. However, no complete map of the magnetic ex-

citation spectrum has yet been reported for CuO. It would be an important step

in characterising the dispersion and extracting the exchange interactions in CuO.

The dominant interaction along the CuO chains with the largest Cu–O–Cu bond

angle is already known to be antiferromagnetic and large. This strong interaction

could exhibit some interesting one-dimensional-like properties such as spin-chains

or spin-ladder. Such a study would also be important in the context of trying to

relate how the interactions in CuO affect more complicated cuprate compounds.



Appendix A

Linear spin-wave theory

A.1 Introduction

In § 3.7.3 we have considered the linear spin-wave model to account for magnetic

excitation spectrum of La2CoO4. In this Appendix, I shall further examine the key

results of the linear spin-wave theory relating to antiferromagnets.

Figure A.1 shows how an antiferromagnet can be separated into two sublat-

tices A and B. Within each sublattice the magnetic moments are ferromagnetically

aligned and we shall consider a ferromagnetic interaction JF between spins con-

nected by R. Antiferromagnetic coupling JA exists between sublattices A and B.

The sublattice A and B can be connected by an inter-lattice vector r. The Hamil-

tonian Hm of mth magnetic unit cell is given in Eq. 3.3 as,

Hm =
∑
r
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x S
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The spin operator components for the two sublattices can be represented using

the Holstein-Primakoff transformation [10], defined exactly in natural units, for

J
A

J
F

A

B

m

R

r

Figure A.1: Exchange interactions between sublattices A and B. The inter-
actions within sublattice A or B are ferromagnetic and are denoted by an exchange
interaction JF with spins connected by vector R. Sublattice A and B are antiferro-
magnetically arranged with exchange interaction JA along the r bonds.
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(a) La2CoO4

a

a

J

J’

(b) Exchange interactions within mth unit cell

J

AB and BA AA BB

J’ J’

Figure A.2: Magnetic structure of La2CoO4 showing the dominant exchange
interactions. (a) Groundstate spin structure of La2CoO4 with exchange interactions
considered in the linear spin-wave model. The black outline shows the crystallographic
unit cell, whilst the red represents the magnetic unit cell. (b) Exchange interactions
between A and B sublattices, A and A: FM interactions and B and B: FM interactions
to calculate the Hamiltonian. Black box is the magnetic unit cell, whilst the box in
dashed outline represents the (m+ 1)th unit cell.

quantisation axis along x as,

Sx
i = (S − a†iai),

S+
i = Sy

i + iSz
i = (2S − a†iai)

1/2ai, (A.2)

S−
i = Sy

i − iSz
i = a†i (2S − a†iai)

1/2.

The Bose operators obey [ai, a
†
j ] = δij , while the spin operator commutes as [Si, Sj ] =

iεijkSk as usual. The terms a†a are introduced as magnon occupation number. A

transformation using Dyson-Maleev transformations give the same results for the

case of linear spin wave theory as Holstein-Primakoff version. However, the Holstein-

Primakoff approach becomes reasonable in the quasi-classical limit of S ≫ 1. This

is of fundamental importance in the theory of antiferromagnetism [3]. In the ap-

proximation of ⟨a†iai⟩ ≪ S,

(2S − a†iai)
1/2 ≈ (2S)1/2

[
1 −

a†iai
4S

−
(a†iai)

2

32S2
−O

(
1

S3

)]
, (A.3)
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the expansion is in 1/S and is expected to converge rapidly for a large-spin sys-

tem. For the case of two sublattices and keeping terms only bilinear in ⟨a†iai⟩, the

Holstein-Primakoff transformations are,

Sublattice A Sublattice B

Sx
i = (S − a†iai) Sx

j = −(S − b†jbj)

Sy
i =

√
S/2(ai + a†i ) Sy

j =
√
S/2(bj + b†j)

Sz
i = −i

√
S/2(ai − a†i ) Sz

j = i
√
S/2(bj − b†j),

(A.4)

where a†i (b
†
j) creates a spin deviation on site i(j) of sublattice A(B). The Hamilto-

nian defined in Eq. A.1 can then be suitably transformed into a form containing just

the Bose operators. Following this, the Hamiltonian can be Fourier transformed,

as described in § A.2. Keeping only the quadratic terms in the operators, gives a

Hamiltonian in the form of Eq. 3.5,

H = H0 +
1

2

∑
Q

X†
QHQXQ. (A.5)

The solution to such a problem is known (Ref. [101]) and has already been described

in § 3.7.3 by Eqs. 3.5–3.9. This methodology can be applied for the case of La2CoO4.

For simplicity, I shall only consider nearest and next-nearest neighbour interactions,

J and J ′. The antiferromagnetic exchange J is taken to be anisotropic and the more

distant J ′ we shall assume can be considered to be isotropic. Figure A.2 shows these

exchange interactions. The interactions within and with neighbouring magnetic unit

cells as shown in Fig. A.2(b) for the case of La2CoO4, the Hamiltonian for mth unit

cell is Hm = HAB
m + (HAA

m + HBB
m )/2. The factor of 1/2 is due to the sharing

of bonds between adjacent cells. The Hamiltonian defined in Eq. A.1 can be can

be simplified for the case of isotropic and centrosymmetric and isotropic exchange

interaction J ′, from derivation of Eqs. A.28 and A.29,

HAB
m =

∑
r

Jx

(
−S2 + Sa†mam + Sb†m+rbm+r

)
+
JyS

2

(
ambm+r + amb

†
m+r + a†mbm+r + a†mb

†
m+r

)
+
JzS

2

(
ambm+r − amb

†
m+r − a†mbm+r + a†mb

†
m+r

)
(A.6)

HAA
m = J ′

∑
R

(
S2 − Sa†mam − Sa†m+Ram+R

)
+
S

2

(
amam+R + ama

†
m+R + a†mam+R + a†ma

†
m+R

)
−S

2

(
amam+R − ama

†
m+R − a†mam+R + a†ma

†
m+R

)
(A.7)
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HBB
m = J ′

∑
R

(
S2 − Sb†mbm − Sb†m+Rbm+R

)
+
S

2

(
bmbm+R + bmb

†
m+R + b†mbm+R + b†mb

†
m+R

)
−S

2

(
bmbm+R − bmb

†
m+R − b†mbm+R + b†mb

†
m+R

)
(A.8)

The Fourier transform of this Hamiltonian (see § A.2) is then,

HAB
Q = −4NJx(0)S2 + S

∑
Q

4Jx(0)
(
a†QaQ + b†QbQ

)
+

1

2
[Jy(Q) + Jz(Q)]

(
aQb−Q + a†Qb

†
−Q

)
+

1

2
[Jy(Q) − Jz(Q)]

(
aQb

†
Q + a†QbQ

)
, (A.9)

1

2

(
HAA

Q + HBB
Q

)
= 4NJ ′(0)S2 + S

∑
Q

−4J ′(0)
(
a†QaQ + b†QbQ

)
+J ′(Q)

(
a†QaQ + b†QbQ + 1

)
, (A.10)

The total Fourier-transformed Hamiltonian HQ can be expressed in the form of

Eq. A.5 by considering a set of operators defined in XQ

XQ =


aQ
bQ
a†−Q

b†−Q

 HQ =


AQ BQ CQ DQ

BQ AQ DQ CQ

CQ DQ AQ BQ

DQ CQ BQ AQ

 (A.11)

where1

AQ = 4SJx(0) − 4SJ ′(0) + SJ ′(Q) (A.12)

BQ =
1

2
S [Jy(Q) − Jz(Q)] (A.13)

CQ = 0 (A.14)

DQ =
1

2
S [Jy(Q) + Jz(Q)] (A.15)

The Hamiltonian can be diagonalised leading to expressions for the two modes with

spin-wave dispersion relations given by,

E+(Q) =
[
(AQ +BQ)2 − (CQ +DQ)2

]1/2
(A.16)

E−(Q) =
[
(AQ −BQ)2 − (CQ −DQ)2

]1/2
(A.17)

1Note that in the derivation, we have assumed that exchange interactions are centrosymmetric
(Jr = J−r) and used the fact that independent operators commute, i.e. [a†

Q, bQ] = 0.
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The Fourier transforms of the exchange interactions are found to be,

Jα(Q) = 2Ji(0) (cosQ · a+ cosQ · b) (A.18)

J ′(Q) = 2J ′(0) (cosQ · (a+ b) + cosQ · (a− b)) , (A.19)

where the anisotropic nearest-neighbour exchange interaction J has components

along α = {x, y, z}.

A.2 Fourier transform of Hamiltonian

The Bose operators defined in Eq. A.4 can be expressed in terms of their Fourier

transforms as,

aj =
1√
N

∑
Q

eiQ·rjaQ a†j =
1√
N

∑
Q

e−iQ·rja†Q (A.20)

bj =
1√
N

∑
Q

eiQ·rjbQ b†j =
1√
N

∑
Q

e−iQ·rjb†Q, (A.21)

where N is the number of atoms on each sublattice and wavevector Q is defined

in to the magnetic Brillioun zone. Must also define the Fourier transform of the

δ-function as,

δq+q′,0 =
1

N

N∑
j=1

ei(q+q′)·rj =

{
1 iff q + q′ = 0

0 iff q + q′ ̸= 0
(A.22)

Applying these definitions to the spin-wave operators, yields identities such as,

a†mam =
1

N

∑
QQ′

eiQ·me−iQ′·ma†QaQ′ ⇒
∑
m

a†mam =
∑
Q

a†QaQ. (A.23)

The completed list of Fourier transform identities is found in Table A.1. Applying

these results to Eqs. A.6–A.8 and summing over all magnetic unit cells,∑
m

HAB
m =

∑
m

∑
r

−JA
x S

2

+
∑
Q

∑
r

JA
x

(
Sa†QaQ + Sb†QbQ

)
+
JA
y S

2

(
e−iQ·raQb−Q + e−iQ·raQb

†
Q + eiQ·ra†QbQ + eiQ·ra†Qb

†
−Q

)
+
JA
z S

2

(
e−iQ·raQb−Q − e−iQ·raQb

†
Q − eiQ·ra†QbQ + eiQ·ra†Qb

†
−Q

)
.

(A.24)

The above result can be simplified as the first summation is taken over all magnetic

unit cells and all bonds connected by JA
x . Furthermore, we define the Fourier
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transform of the exchange interactions as, J(Q) =
∑

r Jre
iQ·r. Such that,∑

m

HAB
m = −NzrJA

x (0)S2

+S
∑
Q

zrJ
A
x (0)

(
a†QaQ + b†QbQ

)
+

1

2

[
JA
y (−Q) + JA

z (−Q)
]
aQb−Q +

1

2

[
JA
y (Q) + JA

z (Q)
]
a†Qb

†
−Q

+
1

2

[
JA
y (−Q) − JA

z (−Q)
]
aQb

†
Q +

1

2

[
JA
y (Q) − JA

z (Q)
]
a†QbQ,

(A.25)

where zr is the number of AFM spins connected by r and analogously, zR is the

number of FM exchange bonds. In the case of anisoptropic FM exchange interaction

between spins on sublattices A and B, in the case of La2CoO4, Eqs. A.7 and A.8

can be generalised as

HAA
m =

∑
R

JF
x

(
S2 − Sa†mam − Sa†m+Ram+R

)
+
JF
y S

2

(
amam+R + ama

†
m+R + a†mam+R + a†ma

†
m+R

)
−J

F
z S

2

(
amam+R − ama

†
m+R − a†mam+R + a†ma

†
m+R

)
(A.26)

HBB
m =

∑
R

JF
x

(
S2 − Sb†mbm − Sb†m+Rbm+R

)
+
JF
y S

2

(
bmbm+R + bmb

†
m+R + b†mbm+R + b†mb

†
m+R

)
−J

F
z S

2

(
bmbm+R − bmb

†
m+R − b†mbm+R + b†mb

†
m+R

)
(A.27)

∑
m

HAA
m = NzRJ

F
x (0)S2

+S
∑
Q

−2zRJ
F
x (0)a†QaQ

+
1

2

[
JF
y (−Q) − JF

z (−Q)
]
aQa−Q +

1

2

[
JF
y (Q) − JF

z (Q)
]
a†Qa

†
−Q

+
1

2

[
JF
y (−Q) + JF

z (−Q)
]
aQa

†
Q +

1

2

[
JF
y (Q) + JF

z (Q)
]
a†QaQ

(A.28)
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∑
m

HBB
m = NzRJ

F
x (0)S2

+S
∑
Q

−2zRJ
F
x (0)b†QbQ

+
1

2

[
JF
y (−Q) − JF

z (−Q)
]
bQb−Q +

1

2

[
JF
y (Q) − JF

z (Q)
]
b†Qb

†
−Q

+
1

2

[
JF
y (−Q) + JF

z (−Q)
]
bQb

†
Q +

1

2

[
JF
y (Q) + JF

z (Q)
]
b†QbQ

(A.29)
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[73] F. Tasset, E. Lelièvre-Berna, T. W. Roberts, E. Bourgeat-Lami, S. Pujol, and

M. Thomas. Physica B, 241:177–179, 1997.

[74] L. P. Regnault, B. Geffray, P. Fouilloux, B. Longuet, F. Mantegezza, F. Tasset,
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