
Polarised neutron diffraction

measurements of PrBa2Cu3O6+x

and the Bayesian statistical

analysis of such data

Anders Johannes Markvardsen

St. Edmund Hall

A thesis submitted for the degree of

Doctor of Philosophy at the

University of Oxford

Clarendon Laboratory

September 2000



To

My Parents



Polarised neutron diffraction measurements of

PrBa2Cu3O6+x and the Bayesian statistical

analysis of such data

Anders J. Markvardsen, St. Edmund Hall, University of Oxford

Thesis submitted for the degree of Doctor of Philosophy, September 2000

Abstract

The physics of the series PryY1−yBa2Cu3O6+x, and ability of Pr to suppress

superconductivity, has been a subject of frequent discussions in the literature

for more than a decade. This thesis describes a polarised neutron diffraction

(PND) experiment performed on PrBa2Cu3O6.24 designed to find out something

about the electron structure. This experiment pushed the limits of what can

be done using the PND technique. The problem is one of a limited number

of measured Fourier components that need to be inverted to form a real space

image. To accomplish this inversion the maximum entropy technique has been

employed. In some cases, the maximum entropy technique has the ability to

increase the resolution of ‘inverted’ data immensely, but this ability is found to

depend critically on the choice of constants used in the method. To investigate

this a Bayesian robustness analysis of the maximum entropy method is carried

out, resulting in an improvement of the maximum entropy technique for analysing

PND data. Some results for nickel in the literature have been re-analysed and a

comparison is made with different maximum entropy algorithms.

Equipped with an improved data analysis technique and carefully measured

PND data for PrBa2Cu3O6.24 a number of new interesting features are observed,

putting constraints on existing theoretical models of PryY1−yBa2Cu3O6+x and

leaving room for more questions to be answered.
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Introduction

One of the most engaging problems that has emerged from the study of cuprate

high TC superconductors is the suppression of superconductivity that occurs when

Pr is substituted for other lanthanide ions in certain compounds. The effect is

best known when Pr is doped into YBa2Cu3O6+x, where the superconducting

transition temperature, TC , decreases as the amount of Pr increases until super-

conductivity is entirely surpressed. This is in contrast with the substitution of

most other rare earths into YBa2Cu3O6+x, which has little effect on TC .1

The anomalous electrical and magnetic properties of (PryY1−y)Ba2Cu3O6+x

have been studied by many research groups for over a decade and the problem

has recently been highlighted by reports of superconductivity in a single crystal

of PrBa2Cu3O6+x grown under special conditions (for a recent review paper see

Ref. [1]), a result which may provide help in the understanding of why samples

prepared by standard methods do not superconduct.

Many theories have been put forward to explain the reason for Pr having an

adverse effect on superconductivity. The majority of these focus on an interaction

between Pr and the superconducting cuprate planes. It is the test of such models

which is the aim of the polarised neutron diffraction experiment on PrBa2Cu3O6.24

described in this thesis.

Polarised neutron diffraction is a technique for revealing the magnetization

density distribution induced by a magnetic field in a single crystal. Unfortunately

the small cross-section for scattering neutrons by magnetic moments in the sample

1Don’t give up there are only 6 chapters and about 200 pages left to read:-)
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results in data sets which are much smaller than those obtained from other types

of diffraction techniques (e.g. standard X-ray diffraction). To assist the data

analysis of the PND data the so-called maximum entropy technique has been

employed.

Maximum entropy methods existed before their first application in data anal-

ysis. The maximum entropy method as defined in statistical or information the-

oretical textbooks is a method for selecting a probability distribution from a set

of possible distributions, and in this context the maximum entropy method is

abbreviated as MEM. Its first application in data analysis was in the spectral

analysis of time series [2] and in the following years it evolved into forms which,

in many cases, no longer justify a link to the original concept of a MEM. There-

fore, in this thesis a different abbreviation, MEMx, is used to represent the way

the maximum entropy method is used in image analysis today. The MEMx tech-

nique is critically analysed by a Bayesian robustness analysis and the result is an

improved data analysis technique tuned to ‘invert’ PND data into magnetization

density. The thesis is structured as follows:

Chapter 1 and 2. Two introductory chapters are included. The first

deals with the PND experimental technique. This will be particular useful

when reading Chap. 5 and Chap. 6. The second introductory chapter is an

introduction to Bayesian statistics with an emphasis on the topics relevant

for understanding Chap. 3 and Chap. 4. Further, it includes the proba-

bilistic notation used in this thesis, such as, the concept of a ‘prior model

constant’, a constant that is part of a prior probability expression. These

two introductory chapters cover two research areas that are not normally

seen together and many researchers will be familiar with one, but not both.

Chapter 3. Contains a summary of important early works on the max-

imum entropy method. It complements two papers from the literature

which review the use of the maximum entropy method in data analysis (see
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Sec. 3.4), as it includes early works that are not discussed in these review

papers, but does not discuss the practical implication of the maximum en-

tropy method. Moreover, the definition for MEMx is given in Sec. 3.3.3;

the technique which will be the subject of a critical Bayesian analysis in

the following chapter.

Chapter 4. A Bayesian robustness analysis of the MEMx technique is per-

formed and the end result is a data analysis method tuned for the analysis

of PND data. These results are summarized in Sec. 4.7.

Chapter 5. Perhaps the main chapter of the thesis. The Bayesian image

analysis technique described in Chap. 4 is applied on PND data measured

on PrBa2Cu3O6.24. A number of new features are observed in the induced

magnetization density, these are discussed in relation to previous experi-

ment and theoretical works.

Chapter 6. MEMx algorithms are compared for the analysis of PND data

measured on nickel. The works of Papoular et al. and Sakata et al. are

reviewed in detail. These works are compared to each other and to the

work of this thesis. The induced magnetization density of nickel is also

discussed.

To briefly summarise what is novel in this thesis: i) The highly critical and

detailed study of the maximum entropy method in Chap. 4 provides a new MEMx

recipe tuned to the analysis of PND data, and is a more efficient and rigorous

method for analysing such data. ii) Chap. 3 is a review chapter giving a dis-

cussion of early maximum entropy work, some of which has not been reviewed

previously. iii) PND data of PrBa2Cu3O6.24 collected at ILL, Grenoble are stud-

ied in Chap. 5. The induced magnetization density near the Pr site can be largely

accounted for within a crystal field model, when comparing it to a theoretical cal-

culation performed using such a model. However, a number of other features are

3



observed in various different places within the unit cell, where none of these can

be explained within existing theoretical models, and these provide ideas for fur-

ther investigations. iv) Previously collected PND data of nickel are re-analysed

in Chap. 6. The work in Chap. 4 is compared with previous maximum entropy

work done on nickel PND data, in order to illustrate possible differences, and to

show that the data analysis method of Chap. 4 provides an improvement to the

MEMx analysis of PND data. Given the accuracy of the nickel data, this chapter

also reveals new features of the negative magnetization density distribution of

nickel.

4



Chapter 1

Polarised neutron diffraction

(PND)

A number of good textbooks exist on thermal neutron scattering for instance

those of Squires and Lovesey [3],[4]. For a textbook which specifically deals

with polarised neutrons see Ref. [5]. The neutron scattering theory relevant for

understanding the polarised neutron diffraction experiments presented in this

thesis will be discussed here. This discussion will be centered around coherent

elastic scattering of polarised neutrons by a crystal.

1.1 Flipping ratios

When neutrons are scattered by condensed matter the scattering is caused by

the strong nuclear force between neutron and atomic nuclei, and the interaction

between the neutron’s magnetic moment and any electrons with a moment in the

target material. Thus, neutron scattering can provide useful information about

the positions of the atoms and about their magnetic properties.

Scattering is described in physics by counting the number of particles (in this

case neutrons) scattered into some solid angle ∆Ω with energy between E and
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E+∆E. Mathematically we write this as I0(
d2σ

dΩdE
)∆Ω∆E, where I0 is the incident

flux and the quantity of interest d2σ
dΩdE

is the partial differential cross-section (or

just referred to as cross-section in short hand notation). Since, in this thesis, we

are only concerned with coherent elastic scattering it is sufficient to consider the

cross-section dσ
dΩ

1, which does not discriminate the scattered neutron’s energy.

Taking into account that thermal neutrons only interact weakly with con-

densed matter, we can describe the cross-section within the Born approximation.

The coherent, elastic, nuclear cross-section for a target crystal of volume V in

this approximation is calculated to be

dσ

dΩ
= N

(2π)3

V

∑
K

δ(q−K)|FN(K)|2, (1.1)

where K is a reciprocal lattice vector. q is the scattering vector equal to the

difference between the wave vector of the incoming and outgoing plane wave:

q = k − k′. As seen from Eq. (1.1), the delta function means that the cross-

section for elastic scattering is zero unless q = K, this is the condition for Bragg

scattering. The cross-section in Eq. (1.1) assumes that the crystal is a rigid

lattice. In a real crystal, the thermal motion of atoms around their equilibrium

position changes the magnitude of the observed cross-section. To account for

this, Eq. (1.1) must be multiplied by a Debye-Waller factor. Also, since Eq. (1.1)

is calculated within the Born approximation, the neutrons are assumed not to

make more than one collision before escaping the sample. In a real experiment

multiple scattering does occur, and this phenomenon is referred to as extinction.

Depending on the experimental conditions and the nature of the crystal the degree

of extinction varies. Extinction cannot be avoided but reliable methods exist to

correct the observed structure factors for this multiple scattering phenomenon.

The main interest here is the use of thermal neutrons to probe the magnetic

structure of crystals. It is the neutron spin σ that allows the interaction between

the incident neutrons and the magnetic electrons of the scattering material. The

1Strictly speaking
(

dσ
dΩ

)
coh

but for convenience we write it as dσ
dΩ .
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interaction potential is written as VM = −γµNσ ·B, where

B = −µ0µB

2π

(
∇×

(
S×R

R3

)
+

1

~
p×R

R3

)
(1.2)

is the total magnetic field due to an electron with momentum p and spin S 2.

From the expression in Eq. (1.2) we see that the first term results from the

interaction of the neutron with the electron spin, and the second is due to the

orbital angular momentum. Within the Born approximation the coherent elastic

cross section for magnetic scattering from a crystal may be written as
(

dσ

dΩ

)

σ→σ′
=

(
γr0

2µB

)2

N
(2π)3

V

∑
K

δ(q−K) |〈σ|σ · FM⊥(K)|σ′〉|2 , (1.3)

where r0 is the classical electron radius and

FM⊥ = q̂× (FM × q̂) = FM − q̂(FM · q̂) (1.4)

and FM is a magnetic structure factor. FM contains a spin and an orbital part

corresponding to the terms in Eq. (1.2). From Eq. (1.4) we see the significance of

the subscript ⊥ in Eq. (1.3); FM⊥ is the vector projection of FM on to the plane

perpendicular to the scattering vector q, and it is only this component of FM

that is measured. As for the nuclear scattering, the magnetic cross section should

include the Debye-Waller factor to account for the thermal motion of atoms in a

real crystal.

In contrast to coherent nuclear scattering, the coherent magnetic scattering

is sensitive to the spin direction of the incoming (and outgoing) neutrons. This

is emphasized by explicitly including the Dirac bra σ and ket σ′ in Eq. (1.3).

Combining Eq. (1.1) and Eq. (1.3) we see that the total coherent elastic scattering

from a crystal with magnetic order is3

(
dσ

dΩ

)

σ→σ′
= N

(2π)3

V

∑
K

δ(q−K)

∣∣∣∣〈σ|FN(K) +
γr0

2µB

σ · FM⊥(K)|σ′〉
∣∣∣∣
2

. (1.5)

2R is the displacement from the electron.
3The relative sign of the nuclear and magnetic scattering is obtained by comparing page 181

and 134 in Squires [3].
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To calculate the cross section, measured using the instrument described in

the next section, we will consider in more detail cross sections with specific final

and starting neutron spin states σ′ and σ in Eq. (1.5). The neutron has spin 1
2

and we denote its two spin states by u and d. They may be regarded as ’spin up’

and ’spin down’ relative to a specified axis which is taken to be the z axis. By

going through some elementary quantum mechanic algebra it can be shown that

〈u|FN + aσ · FM⊥|u〉 = FN + aFM⊥z

〈d|FN + aσ · FM⊥|d〉 = FN − aFM⊥z

〈d|FN + aσ · FM⊥|u〉 = a(FM⊥x
+ iFM⊥y

)

〈u|FN + aσ · FM⊥|d〉 = a(FM⊥x
− iFM⊥y

) , (1.6)

where a = γr0

2µB
. If the incident beam is fully polarised i.e. either with all the

incoming neutrons in spin state u or d, and the detector is impartial to the

different spin states of scattered neutrons, the cross sections which are measured

are
(

dσ
dΩ

)
u

=
(

dσ
dΩ

)
u→u

+
(

dσ
dΩ

)
u→d

and
(

dσ
dΩ

)
d

=
(

dσ
dΩ

)
d→u

+
(

dσ
dΩ

)
d→d

. Using the

expression for the matrix elements in Eq. (1.6) we have

(
dσ

dΩ

)

u

= N
(2π)3

V

∑
K

δ(q−K)
[|(FN + aFM⊥z

)|2 + a2|FM⊥x
+ iFM⊥y

|2] (1.7)

and

(
dσ

dΩ

)

d

= N
(2π)3

V

∑
K

δ(q−K)
[|(FN − aFM⊥z

)|2 + a2|FM⊥x
+ iFM⊥y

|2] . (1.8)

It will be seen from Eq. (1.7) and Eq. (1.8) that the u and d cross-sections

differ. This difference enables us to use a polarised incident beam to distinguish

the magnetic scattering from the scattering of the nuclei (nuclear scattering).

The method is as follows. In a polarised neutron diffraction experiment the

polarisation of the incident neutron beam is either with all the neutrons in spin

state u or d. For each Bragg reflection the scattered intensity is then measured

with both polarisations of the incident beam, and the ratio of the intensities

8



is recorded: R(K) = Iu/Id. It is the measurement of these so-called flipping

ratios which characterize a polarised neutron diffraction experiment. Measuring

flipping ratios increases the sensitivity to the magnetic scattered neutrons. This is

especially true when the FM ’s are small relative to the FN ’s. A polarised neutron

experiment is, however, time consuming compared to an unpolarised diffraction

experiment4 and is therefore not recommended, for example, to measure the

magnetic ordering of an antiferromagnetic compound, but is ideal for measuring

the magnetization density in a paramagnet5 like PrBa2Cu3O6.24.

If we assume that the incident neutron beam has perfect polarisation, the

crystal is centrosymmetric6 and that FM(K) is everywhere parallel to the direc-

tion of the polarisation vector and perpendicular to the scattering vector q then

the flipping ratio takes on the particular simple form

R =
(FN + aFM)2

(FN − aFM)2
. (1.9)

Under the conditions satisfied by Eq. (1.9), and together with knowledge of FN a

magnetic structure factor FM can be calculated from each flipping ratio measured

using Eq. (1.9).

A nuclear structure factor FN is equal to the Fourier transform of the nu-

clear density in the crystal. Similarly a magnetic structure FM is related to the

magnetic vector density M(r) of a unit cell by

FM(K) =

∫

cell

M(r)eiK·rd3r . (1.10)

It is knowledge about the magnetisation (vector) density that we aim to obtain

through rigorous PND measurements, see Chap. 5, and by analysing such data

4Because of a factor of two caused by the selection of neutrons in a specific spin state from

the incoming reactor neutron beam and a factor of ∼ 2 because the material used for selecting

neutrons in a specific spin state typically has a reflectivity of ∼ 50%.
5For temperatures larger than the Néel temperature (TN ) of the magnetically ordered Pr

moments in PrBa2Cu3O6.24, Pr is described as a paramagnetic ion in that compound. Hence, for

T > TN and from the point of view of Pr, PrBa2Cu3O6.24 may be referred to as a paramagnet.
6This condition ensures that FM is real.
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using the Bayesian data analysis technique developed in Chap. 4. For the majority

of applications it is assumed that the vector field M(r) is pointing in the same

direction everywhere and that it is this component which is measured7. M(r) is

almost always treated as a scalar field M(r) where M(r) is assumed to point in

some known direction.

From Eq. (1.2) it is evident that we may write the magnetisation density as

the sum of two terms: M = MS+ML, where MS is the term arising from the spin

of the magnetic electrons and ML from the orbital magnetic moments. The spin

magnetisation density can be written as MS = −2µBρS, where ρS is the electron

spin density. Therefore the spin magnetisation density is proportional to the

electron density of the magnetic electrons in the crystal. ML cannot be directly

associated with electron density. It may be written as ∇×ML = ∇φ− j, where

j is the current density due to the orbital moment, φ, the so-called conduction

current density (see Squires).

1.2 The D3 instrument at ILL

The polarised neutron diffraction data which will be presented in Chap. 5 were

collected on the D3 instrument at the Institut Laue-Langevin (ILL), Grenoble.

A drawing of the instrument is shown in Fig. 1.1 and the picture, except for a few

modifications, is a copy of a picture taken from the D3/ILL web-site www.ill.fr.

In this figure the horizontal neutron beam appears from the left. The beam

originates from a 58MW high flux nuclear reactor. The initial polarisation of the

beam is achieved by the polarising monochromator indicated in the figure. A

monochromator of either Co0.92Fe0.08 or Cu2MnAl (Heusler) is used. Both these

crystals are ferromagnets and have the property that their magnetic cross section

is equal in magnitude to their nuclear cross section. Thus, if a B field is applied

perpendicular to the scattering plane then only the non spin flip cross sections are

7For a further discussion of this see e.g. Squires page 186-8.
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Figure 1.1: The layout of the D3 instrument at Ill, Grenoble.
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non-zero (see Eq. (1.6)) and in addition one of these non spin flip cross sections

will be zero where the nuclear and magnetic terms cancel out. This is how a

polarised neutron beam is generated on D3.

The direction of polarisation of the incident beam is controlled by a cryoflip-

per. The cryoflipper consists of two magnetic field guides positioned closely either

side of a thin sheet of superconducting niobium foil which lies transverse to the

beam. In the flipper ‘on’ state the fields lie anti-parallel to each other and the

neutrons will experience a rapid reversal of field across the narrow width of the

superconducting foil. These conditions cause a change in neutron spin state rel-

ative to the field. In the flipper ‘off’ state the fields lie parallel and no reversal of

field occurs across the superconducting foil. Hence, with the cryoflipper we can

choose the neutron spin state to be either u or d before they hit the sample.

The scattered neutrons are detected using a single 3He detector. To provide

the low-temperature and high-field sample conditions a 4.6T Oxford instrument

cryomagnet is used, providing stable sample conditions from 1.5K to 273K and

from 1.5T to 4.6T .

The instrument at ILL differs from the example described in the textbooks by

Squires and Lovesey8 as it includes an additional flipper plus an analyser between

the sample and detector, this adds the possibility of selecting scattered neutrons

in a specific spin state. The detected signal on D3 therefore includes neutrons

in both spin states and for a general instrument geometry the two cross sections

which can be measured on D3 are those in Eqs. (1.7-1.8).

8where the instrument at Oak Ridge National Laboratory is used as an example.
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Chapter 2

Bayesian statistics

This chapter provides some background material on statistics and probability

theory. There are many monographs on statistics, some of which are mentioned

in Sec. 2.4, the last section of this chapter. In this brief general introduction to

Bayesian statistics the emphasis will be on topics of statistics relavant to later

parts of the thesis.

2.1 General introduction

Probability theory has a long and controversial history, and can be dated back

to a gambler’s dispute in 1654 discussed by two French mathematicians, Blaise

Pascal and Pierre de Fermat. Founders of the Bayesian approach are Thomas

Bayes who died in 1761 at the age of 59 and Pierre Simon Laplace (1749-1827)1.

The further development of the Bayesian approach led to the branch of ’applied

probability’ which we now refer to as statistics; the subject of probability theory

is therefore the foundation upon which statistics is built. An illustration of the

different tasks of modern probability theory and statistics is found when tossing

1There are numerous historical accounts of probability theory, in which the authors do

not alway agree upon the significance of individual scientist’s contributions, see references in

Sec. 2.4.
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a coin once. The outcome of a coin experiment is either head, H, or tail, T . If we

feel that the coin is unbiased so that there is no a priori reason to prefer heads

or tails, it seems natural to assign

Pr(H) = Pr(T ) = 1/2 .

For a given coin however, there is no mathematical way to determine whether

the coin is “really” unbiased. But, if we believe the coin is unbiased then we

can deduce the logical consequences of this assumption. Probability theory does

not assess the validity of such a choice, but is used instead in the study of log-

ical consequences that can be derived once an initial probability assignment is

given. On the contrary, statistics is about assessing the hypothesis of the coin

being unbiased or the (Bayesian) probability that it is unbiased. This is done by

performing a number of experiments with the coin and studying the agreement

between theory and empirical evidence. Statistics can be referred to as the art

of making inferences about unknown parameters from incomplete data.

A number of textbooks treat probability on an axiomatic basis. Since this

idea was first proposed2 the ideas have been refined somewhat and mathematical

probability is now part of a more general discipline known as measure theory.

Although it is beyond the context of this thesis to outline this approach, it is

still interesting that such an approach exists; it has the property that it defines

probability without a reference to a specific interpretation of probability, and is

concerned only that the probabilities are defined by a function satisfying some

axioms (see e.g. [7] and [6]). As long as we are dealing with, in particular, the

more mathematical aspect of probability theory, this procedure is fine. However,

when applying statistics we may come across problems where it is necessary to

attach an interpretation to the meaning of probabilities, and this choice can

affect the final outcome of our statistical analysis. The two most well-known

interpretations are

2By a Russian mathematician A. Kolmogorov in 1933 (see e.g. [6] and [7]).
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• Frequency interpretation of probability: The probability of an event

is defined as the limiting proportion of times the event occurs in an infinite

sequence of independent repetitions of the experiment. In this interpreta-

tion, probabilities only make sense in connection with experiments which

can (at least conceptually) be repeated.

• Subjective (or Bayesian) interpretation of probability: Subjective

probability concerns the assessments of a given person(“You”) about things

which are not known with certainty, in the presence of partial information.

Think of Pr(A) as Your personal probability assessment of an ’event’ A,

an numerical measure of the strength of Your degree of belief that A will

occur, in the light of available information. Bayesian probability can be

associated with a wider class of events than those to which the frequency

interpretation of probability pertains. In addition to the outcome of a

repeatable experiment we can ask for the probability of the outcome of a

non-repeatable experiment (e.g. that Denmark will beat England in football

in the next European Championship) or propositions about nature (e.g.

this surgical procedure results in increased life expectancy over the current

procedure for disease X).

The Bayesian approach can be justified from various points of view. For instance

from a set of reasonable requirements for how to reason in the presence of un-

certainty while avoiding internal inconsistencies. It can be shown that for such

requirements3 to be satisfied we must perform inference according to the usual

rules of probability. This gives credibility towards defining probability in the

broader sense, hence as subjective probability.

3There exist various methods of axiomatizing these requirements, see e.g. Refs. [8],[9] and

references therein.
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2.1.1 The choice of notation used in this thesis

The notation used in this chapter and the rest of this thesis is a compromise be-

tween the notations found in textbooks on statistics (such as [6],[10],[11],[8],[9],[12],[13])

for students reading for a degree in statistics and the notation often employed by

scientist in other fields.

Let the probability of an event A be denoted as Pr(A). Mathematically a

random variable(r.v.) is defined as a function which maps the space of all possible

events into the real numbers. For our purpose here we will think of a r.v. in the

rather broad sense of any real-valued variable to which a probability distribution

is associated. Let x be a r.v. and lets say x can take on the values X = {1, 2, 3
and 4} only. Then the probability that x takes on the value x = 1 is written

as Pr(x = 1), and to each of the possible outcomes of x there is associated a

probability of that outcome. It is standard to introduce the “point” probability

function p(x) of a r.v. x. For the example above p(x) is the function defined

as p(i) = Pr(x = i), i = 1, 2, 3, 4. We will refer to p(x) as the probability

density function or just as the probability density (p.d.)4. We also say that

a r.v. x is distributed as p, which is written in shorthand notation as x ∼ p,

and refer alternatively to p(x) as the probability distribution of x. Therefore

the abbreviation p.d. can be read either as ’probability density’ or ’probability

distribution’.

The difference between p and its ‘big-brother’ Pr is from a simplified point of

view that Pr can handle more complicated arguments. Using Pr the probability

of the event 1 ≤ x ≤ 3 is written as Pr(1 ≤ x ≤ 3), on the other hand, using the

4A common alternative notation is to refer to p(x) as the probability mass function when x

is a discrete r.v. and probability density function when x is a continuous r.v., but p(x) is chosen

to be called a probability density (function) whether or not x is is discrete or continuous r.v..

This is also the notation used in Ref. [13].
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p.d. to obtain the probability of this event we must perform the sum,

Pr(1 ≤ x ≤ 3) =
3∑

i=1

p(i) .

For mathematicians this distinction between a probability5 Pr(A) and a probabil-

ity density p(x) is important, and to make our notation compatible this notation

is also adopted. For a one-dimensional continuous r.v. the probability and its

probability density is related as

Pr(a ≤ x ≤ b) =

∫ b

a

p(x)dx .

2.1.2 Parametric model

Lets us denote the unknown state of nature by θ and use capital Θ to denote the

set of all possible states of nature. Typically, when experiments are performed to

obtain information about θ, the experiments are designed so that the observations

are distributed according to some probability distribution which has θ as an

unknown parameter. In such situations θ will be called the parameter and Θ

the parameter space. A statistical parametric model for observation x we write as

p(x|θ), where θ is a parameter. For a given value of θ the data x is then predicted

to be distributed as p(x|θ).

2.1.3 Bayes’ theorem

For a one-dimensional continuous parameter space Θ Bayes’s theorem reads

p(θ|x) =
p(θ)p(x|θ)∫
p(θ)p(x|θ)dθ

. (2.1)

Obviously if Θ is discrete the integral in the denominator becomes a sum. θ

denotes our unknown state of nature and x an observation. Bayes’ theorem then

5Mathematicians refer to Pr as a measure - a positive finite-additive set function, which also

satisfies Pr(S) = 1, where S is the set (sample space) of all conceivable outcomes.
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describes how to update our prior belief, p(θ), in the light of data (observations)

to give us p(θ|x). The terminology used for the different entries in Bayes’ theorem

is as follows

• p(θ), the p.d. of θ before the data are observed, is called the prior proba-

bility density or just the prior.

• p(x|θ), the p.d. of the data given a value for θ, this is called the likelihood

(function). This is because we may think of p(x|θ) as a function of θ for a

fixed observation x, which is how a likelihood function is defined.

• p(θ|x), the p.d. of θ given the data, is called the posterior probability

density or just the posterior.

From elementary probability theory the joint distribution of θ and x is p(θ, x) =

p(θ)p(x|θ). A marginal distribution is obtained by integrating out one of its

arguments, e.g., the marginal p.d. of x is

p(x) =

∫
p(θ)p(x|θ)dθ , (2.2)

Hence, we see that the denominator in Bayes’ theorem is the marginal p.d. p(x),

the unconditional probability density of x. For a fixed data set p(x) is a constant

and acts as a normalisation constant.

It is trivial to derive Bayes’ theorem from modern axiomatized probability the-

ory6. However, it appears as a major conceptual step in the history of statistics,

being the first inversion of probabilities; since it aims at retrieving the param-

eters which characterize the object under study from ’effects’ (observations), by

obtaining the posterior p(θ|x) from p(θ) and p(x|θ). While this inversion theorem

is quite natural from a probabilistic point of view, it contains another important

element, the prior density p(θ). It is based on the idea of putting causes (param-

eters) and effects (observations) on the same conceptual level, since here both of

6Use p(x|θ)p(θ) = p(θ, x) = p(θ|x)p(x) and Eq. (2.2).
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them have probability distributions. Thus, from a statistical modeling viewpoint

there is little difference between observations and parameters, since conditional

manipulations allow for an interplay of their respective roles. Finally we observe

that a Bayesian parametric statistical model is then made up of a parametric

statistical model, p(x|θ) for the data, and a prior distribution on the parameters,

p(θ).

2.1.4 Nuisance parameters

Suppose θ = (γ1, γ2) has two components. In some settings one component, γ1

say, will be of primary interest. The second component is then often described as

a nuisance parameter. Given data x, one obtains the joint posterior p((γ1, γ2)|x)

of (γ1, γ2) via Bayes’ theorem. If γ1 is the focus of interest, beliefs about γ1 are

described by the marginal posterior of γ1

p(γ1|x) =

∫
p((γ1, γ2)|x)dγ2 .

Thus, in the Bayesian framework, one handles nuisance parameters simply by

integrating them out of the posterior.

2.2 Prior Distributions

From an applied viewpoint what makes the main difference between Bayesian

statistics and non-Bayesian statistics is that in a Bayesian analysis we assign a

prior distribution.

2.2.1 Subjective determination of the prior

In the subjective Bayes world, the prior distribution is intended to capture the

information available about the parameter θ before the data is observed. For a dis-

crete parameter space one needs to determine the subjective probability assigned
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to each event of the parameter space Θ, which is in principle straightforward.

For a continuous parameter space, however, several approaches are possible. For

instance a continuous prior can be achieved by the histogram approach: If Θ is an

interval of the real line, one can discretize Θ and assess a subjective probability

for each discrete sub-interval. This histogram (a step function) may be used as

a continuous prior or a smoothed version of the histogram.

Alternatively, the prior can be matched to a particular functional form by

restricting it to a particular family of distributions. Say, as an example, that θ is

normally distributed (same as Gaussian distributed) with mean µ and standard

deviation σ, i.e.

p(θ) =
1√
2πσ

exp(−1

2

(θ − µ)2

σ2
) . (2.3)

Then by providing values of µ and σ a prior assignment is made. In Eq. (2.3)

µ and σ are constants rather than parameters, as θ is. To make this absolutely

explicit we may write p(θ|µ, σ) instead of p(θ) in Eq. (2.3), i.e.

p(θ|µ, σ) =
1√
2πσ

exp(−1

2

(θ − µ)2

σ2
) . (2.4)

µ and σ are referred to as prior model constants in this thesis, and in Eq. (2.3)

and Eq. (2.4) we therefore have the following items in the prior distribution

• µ and σ are both prior model constants.

• θ is a parameter.

Hence, before a Bayesian analysis with a prior of the type in Eq. (2.4) can be

started, values for both µ and σ must be provided. In later chapters it will be

important to keep in mind the difference between what are prior model constants

and parameters in the prior distribution, as e.g. in Chap. 4. In addition it is

possible to change a prior model constant, for example σ, into a parameter.

Obviously this must require a change in the prior p.d. in Eq. (2.4), such that

p(θ|µ, σ) becomes p(θ, σ|µ). The prior then contains two parameters and by
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the elementary probability relation for conditional probabilities this prior can be

decomposed into

p(θ, σ|µ) = p(σ|µ)p(θ|µ, σ) . (2.5)

Of the two terms on the right hand side of Eq. (2.5) we already know p(θ|µ, σ)

from Eq. (2.4). Hence, to complete the transformation of σ from a prior model

constant into a parameter we have to supply the p.d. p(σ|µ).

It is in general desirable that small changes in the choices of prior model con-

stants do not largely affect the conclusions drawn from the posterior distribution.

It is therefore important to assess the sensitivity of the conclusions to aspects of

the prior, e.g. to analyse how changes in the choices of the prior model constants

affect the posterior. Such a study may be difficult to perform depending on

the dimensionality and analytical complexity of the posterior (e.g. characterizing

how changes in a prior model constant a affect a posterior of the form e−(x−a)2 is

clearly simpler than a posterior with the form e−
PI

i=1 xi sinh−1(xi/a)), this is called a

robustness analysis. More precisely, for the purpose of this thesis, a robustness

analysis is the functional investigation of the posterior distribution as a function

of its prior model constant(s). In Chap. 4 the MaxEnt method is studied from the

point of view of the mode of a posterior probability distribution, and a robust-

ness analysis is performed. Such an analysis is novel in the context of MaxEnt

and provides an insight into improving the overall performance of the “MaxEnt”

technique when used in connection with polarised neutron diffraction data and

possibly other types of diffraction data.

2.2.2 Non-informative priors

An interesting class of priors are the so-called non-informative priors. Such a

prior can be appropriate in situations in which little is known about a parameter

θ, and it is hard to justify one particular density assignment p(θ) from any other

assignment p′(θ) 6= p(θ). We may therefore take another point of view and try to
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aim for a prior assignment which “favours” no particular value of the parameter

over any other; this is what we refer to as a non-informative prior assignment. If

the parameter space Θ is finite, with n elements, then the obvious non-informative

prior places mass n−1 at each possible parameter value, p(θ) = 1
n

for all θ in Θ.

If Θ is infinite, it turns out that there are several senses in which one might seek

a non-informative prior. Hence, there may be distinct priors which each claim to

be non-informative.

One characteristic of non-informative assignments for infinite parameter spaces

is that the resulting prior is often what is called improper. This means that it

cannot be normalized to unity, i.e.
∫

p(θ)dθ integrates, or
∑

p(θ) sums, to infin-

ity. Such a prior cannot be classified as a probability distribution since formally

for a distribution to be a probability density it must be normalizable. However,

it still makes sense to apply such priors as long as the posterior distribution is

normalizable in θ.

The two most common non-informative priors for a continuous parameter

space are

Non-informative priors for location parameters

7 Suppose the parameter space Θ is continuous. If the p.d. of x given θ is of the

form f(x−θ), so that it depends only on the difference between x and θ, the p.d.

is said to be a location p.d., and θ is called a location parameter.

To derive a non-informative prior for θ, consider observing y = x+ c for some

fixed c. If γ ≡ θ + c, it is clear that y has p.d. f(y − γ). The (x, θ) and (y, γ)

problems are thus similar in structure. Further, if Θ is equal to the real line,

i.e. θ ∈ Θ = R, then both problems also have the same parameter space, and

it may therefore seem natural to insist that a prior should be the same in each

problem. This implies that the form of the function p(θ) stays the same under

7This sub-section is slightly technical and may be skipped.
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the coordinate transformation θ → γ = θ+c, hence, p(θ)dθ = p(γ)dγ, where p(θ)

and p(γ) have the same form (e.g. p(θ) = θ3 implies p(γ) = γ3 and vice versa).

But by direct substitution θ → γ = θ + c: p(θ)dθ = p(γ − c)dγ, which together

with p(θ)dθ = p(γ)dγ means that the function p must satisfy p(γ) = p(γ − c) for

all real values of c. Only if p is a constant function is this satisfied. Hence, for a

location parameter a ’natural’ non-informative prior is

p(θ) = const. θ ∈ R , (2.6)

which is improper.

Non-informative prior for scale parameter

8 The family of p.d. 1
σ
p
(

x
σ

)
, indexed by σ, where σ > 0, is called a scale family and

a member of the family a scale p.d.. The parameter σ is called a scale parameter.

To derive a non-informative prior for σ we follow the same procedure which

leads to the assignment of a location parameter in Eq. (2.6). Consider y = cx

where c > 0. If γ = cσ, it follows that y has the p.d. 1
γ
p
(

y
γ

)
. The (x, σ) and

(y, γ) problems now have the same structure. It can therefore be argued that they

should then have the same prior, i.e. p(σ)dσ = p(γ)dγ. Further the coordinate

transformation σ → γ = cσ implies p(σ)dσ = 1
c
p
(

γ
c

)
dγ. This requires

p(γ) =
1

c
p
(γ

c

)

for arbitrary values of c. Only functions p ∝ 1
γ

satisfy this. Hence, for a scale

parameter we may assign the following non-informative prior assignment

p(σ) =
1

σ
, σ > 0 , (2.7)

which, like the prior in Eq. (2.6), also is improper.

8This sub-section is slightly technical and may be skipped.
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As an example of a scale family we have the normal distribution N(θ, σ2),

indexed by the scale parameter σ - the standard deviation9. Likewise, N(θ, σ2)

can also be looked upon as a location p.d. with θ as the location parameter.

Together N(θ, σ2) may therefore be referred to as a location-scale p.d..

For further information on non-information priors see, for example, [8],[12],[9]

and references therein.

2.3 Chi-square random variable and PND data

2.3.1 Chi-square distributions

Chi-square distributions appear most often in the context of normally (or Gaus-

sian) distributed r.v.. If x is a standard normal r.v., i.e. x ∼ N(0, 1), the p.d.

of u = x2 is called the chi-square distribution with 1 degree of freedom, and is

denoted χ2
1. It is useful to note that if x ∼ N(θ, σ2), then x−θ

σ
∼ N(0, 1), and

therefore [x−θ
σ

]2 ∼ χ2
1.

Further if u1, u2, . . . , un are independent chi-square r.v. with 1 degree of free-

dom, then the distribution of the statistic10 v = u1 + u2 + · · · + un is called the

chi-square density with n degrees of freedom and is denoted by χ2
n, and

χ2
n(v) =

vn/2−1

2n/2Γ(n/2)
e−v/2 , v ≥ 0 . (2.8)

Γ(n) is the gamma function.

2.3.2 PND data and its likelihood

Take the example of a polarized neutron diffraction (PND) experiment. A de-

scription of the PND technique is given in Chap. 1. For the purpose here it is

9Statisticians often use the shorthand notation N(θ, σ2) for the normal distribution (same

as the Gaussian distribution).
10A r.v. formed from a set of other r.v. is often referred to as a statistic. The idea of a

statistic is to find an efficient way of summarizing the information contained in a set of r.v..
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enough to know that a PND experiment is designed such that information about

a number of magnetic structure factors, where P is the number of data points, is

obtained by counting the number of neutrons, in a given time-interval, entering

into a detector at P distinct points in space - at P so-called Bragg positions. To

each Bragg position we have an unknown parameter, a magnetic structure factor

F . By counting the number of neutrons entering the detector at a fixed Bragg

position and doing some magic black-box pre-data processing we obtain an ob-

served magnetic structure factor value, denoted by F obs, and associated with this

measurement a standard deviation σ. To summarize this observation we write

down the p.d. of F obs given a value of the parameter F , the likelihood,

p(F obs|F, σ) =
1√
2πσ

exp

(
−1

2

(F obs − F )2

σ2

)
, (2.9)

or alternatively we may write F obs ∼ N(F, σ2). The likelihood in Eq. (2.9)

is somewhat non-standard because the standard deviation σ is a quantity not

known before F obs is observed and should therefore, in principle, not appear on

the right hand side of the vertical line in the argument of p(F obs|F, σ) in Eq. (2.9),

but instead on the left hand side together with F obs. However the parametric

statistical model in Eq. (2.9) is the one always used for the analysis of PND data,

and we will also use this expression for the likelihood, but it may be possible to

improve on Eq. (2.9) in the future.

In a full PND experiment P observations are obtained. Index these obser-

vations as Fobs = (F obs
1 , F obs

2 , . . . , F obs
P ), σ = (σ1, σ2, . . . , σP ), and parameters

as F = (F1, F2, . . . , FP ). The likelihood for P independent observed magnetic

structure factor values follows directly from Eq. (2.9) and is

p(Fobs|F) ≡ p(Fobs|F,σ) =
1

(2π)P/2
∏P

i=1 σi

exp(−1

2
Q) , (2.10)

where the statistic (or r.v.) Q is

Q =
P∑

i=1

(
F obs

i − Fi

σi

)2

. (2.11)
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In the remainder of this thesis σ will be suppressed in the argument of the

likelihood in Eq. (2.10) and will be assumed ’given’. The likelihood in Eq. (2.10) is

an example of what is called a multivariate normal distribution, and in this simple

case consists of a product of P independent normal distributions. Occasionally

it is found to be advantageous to write Eq. (2.10) in the vector-matrix form

p(Fobs|F) =
1

(2π)P/2
√
|Σ| exp

[−1/2(Fobs − F)TΣ−1(Fobs − F)
]

, (2.12)

where Σ is called the covariance matrix, because its elements σij are the variances

and covariances of the density in Eq. (2.12),

〈(F obs
i − Fi)(F

obs
j − Fj)〉p(Fobs|F) = σij . (2.13)

For the parametric statistical model in Eq. (2.10) and Eq. (2.12) the covariance

matrix elements are

σij = 0 i 6= j

σij = σ2
i i = j

This vector-matrix notation will be used in Chap. 4. Also, the multivariate

normal distribution in Eq. (2.12) can be written in shorthand notation as Fobs ∼
N(F,Σ).

2.3.3 Chi-square constraint and PND data

From the likelihood function in Eq. (2.10) it is clear that
F obs

i −Fi

σi
∼ N(0, 1)

for all i = 1, 2, . . . , P , thus, each of the terms in the sum of the statistic Q

in Eq. (2.11) is chi-squared distributed with 1 degree of freedom and therefore

Q ∼ χ2
P . The statistic Q is one example of a statistic which can be used to indicate

how well a given data set F obs
1 , F obs

2 , . . . , F obs
P fits a given set of parameter values

F1, F2, . . . , FP (and a set of standard deviations σ1, σ2, . . . , σP ). Q is called a chi-

square statistic, for obvious reasons, and is probably the most common summary

statistic used in experimental physics.
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Figure 2.1: The chi-square distribution with 14 degrees of freedom, χ2
14. For

our example Q = 10. The area of the shaded portion of the distribution is the

probability that we would have observed a smaller value of Q than Q = 10 if the

model were correct.

Intuition tells us that the larger the value of Q, the worse the fit between

data and parameters is. This picture fits in well with the following example.

Let the number of data collected be P = 14 and the value of Q for this data

set be Q = 10 relative to a particular model. Q is distributed as χ2
14 and this

distribution is shown in Fig. 2.1. It depicts the probabilities of observing various

values of Q if a given model was correct (F plus σ given). From this graph it is

seen that values of 10-20, say, would not be unusual if the model were correct.

Thus, the observation of a Q value between 10 and 20 would not give reason to

seriously doubt the model. However, suppose a value of 28 is observed; since

values this large or larger would rarely occur if the model was correct, such a

value may cast doubt on the adequacy of the model. In general, if Q is observed

to take on the value γ, for instance, an often used Frequentist measure of evidence
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against the model is the p-value,

p-value = Pr(Q > γ|model is correct) .

In the case at hand, numerical evaluation of the p-value corresponding to Q = 10

gives p-value = 0.76. In other words, if the model were correct, Q values as large

or larger than the Q=10 would take place 76% of the time if one repeated the

experiment many times. Therefore from a Frequentist point of view there is little

reason to doubt the model on the basis of the chi-square statistic Q.

In fitting a model to diffraction data the chi-square statistic Q is often used to

put a constraint on the likelihood in Eq. (2.10), by typically requiring that we can

only accept a likelihood with Q values less than or equal to the number of data

points P , or the stronger constraint that Q must be equal to P . Such a constraint

is often referred to in the scientific literature as a chi-square constraint.

The χ2
P distribution has the mean value P and standard deviation

√
2P , and

in addition if P →∞ then χ2
P → N(P, 2P ). This is illustrated in Fig. 2.2 which

shows the chi-square distribution with 10, 100 and 1000 degrees of freedom. As is

seen from these figures, χ2
P gradually becomes more sharply distributed around

P and with a peak shape resampling that of a Gaussian distribution. However,

even when P is large, for any one given data set there is no guarantee that this

particular data set has a Q ' P relative to the true model. Hence, the use of

a systematic Q constraint in a Bayesian statistical analysis, for example Q = P ,

should be justified before use. For the case of the MaxEnt method this issue is

discussed in detail in Chap. 4.

2.3.4 Posterior distribution and PND data

For a PND data set Bayes’ theorem reads

p(F|Fobs) ∝ p(F)p(Fobs|F) , (2.14)
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Figure 2.2: The chi-square distribution with 10, 100 and 1000 degrees of freedom.
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where the marginal p.d. p(F obs) is a constant (for a fixed data set). In Bayesian

analysis obtaining an expression for the posterior distribution is, in principle, the

final stage of the analysis. If the parameter space is one, two, or maybe even

three dimensional we can simply present our posterior belief of the parameters,

given the data, by plotting out the posterior in a graph. However, when the

parameter space becomes of dimension 4 or higher, this task becomes increasingly

difficult and other means for summarizing the posterior density must be used.

To summarize a multi-dimensional posterior it is typical to use so-called ‘point

estimates’ of the posterior, like the mode and the mean; the mode of a p.d. is

just another name for the maximum of a p.d..

Intuitively the mode gives us the “most likely” value of the parameters given

the data, and is sometimes called the maximum Bayesian likelihood estimator [8]

or alternatively it may be referred to as the maximum a posterior estimator. In

this thesis, the maximum a posterior estimator of a parameter will be denoted

by the superscript ‘max’, like θmax or Fmax.

2.4 References to textbooks in statistics

An introduction to Bayesian statistics for experimental physicists is Ref. [14].

As an example of a more advanced and detailed Bayesian textbook is Ref. [8].

A good, short and pure mathematical introduction to probability theory can be

found in chapter 13 and 14 of Ref. [7]. Finally, Ref. [6] is an example of a well

written modern textbook on statistics used at the statistical and mathematical

departments of Oxford. Ref. [7] and Ref. [6] have the characteristic that they

leave out any discussion about how to interpret probability, contrary to the first

two where the Bayesian probability interpretation is preferred. The advantage of

defining probability on an axiomatic basis is that it gives no opinion about how

to interpret a probability and within the same textbook both Bayesian statistical

methods and non-Bayesian methods are discussed. Other good references are the
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thesis by Johnston [15] and the thesis by Macaulay [16]. Further, I would like to

make references to the following textbooks and theses I have read in connection

with this thesis [10],[17],[18],[11],[19],[20],[21]. In addition to my supervisors I

would also like to thank Dr. Peter Clifford (stat. dep., Oxford) for interesting

discussion on Bayesian statistic and Dr. Mario C. Borja (also stat. dep., Oxford).
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Chapter 3

MEM in data analysis

3.1 Introduction

The aim of this chapter is to survey some important papers describing the max-

imum entropy method (MEM) in data analysis. The main emphasis will be on

physical problems where the quantity of interest, say an object O, is linearly

related to a set of measured data. In general we can write such a linear relation

between data d1, d2, . . . , dM and object as

dm =

∫

D

Am(x)O(x)dx , (3.1)

where O(x) is zero outside the known region D, and the function Am(x) may

be referred to as the measurement kernel of a physical problem. Later on in

this thesis I will discuss the example where dm represent magnetic structure data

obtained by polarized neutron diffraction, O is the magnetization density in the

unit cell of a crystal, and A is a complex exponential, so that the integral is a

Fourier transform.

The object O in Eq. (3.1) is introduced as a one-dimensional continuous func-

tion, but it could just as well be a discrete function and/or of a higher dimension
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than one. The discrete version of Eq. (3.1) may be written as

dm =
I∑

i=1

AmiOi , (3.2)

where Ami is a matrix element of a M × I measurement kernel matrix A.

The specific form of the measurement kernel Am(x) depends on the appli-

cation. Problems of this type have arisen in a number of diverse fields; ra-

dio astronomy, crystallography, optics and so on. As mentioned above taking

Am(x) = exp(ikmx) reduces Eq. (3.1) to a Fourier transform, representing the

physical situation which applies for example, to polarised neutron diffraction. If

we let Am(x) = A(xm − x) then the data dm measures the convolution of two

functions A(x) and O(x), a physical situation which often arises in optics where

A(x) becomes a point spread function. The terminology used above is partly

borrowed from optics, but we will also refer to O(x) as an image (or picture) or

any other quantity which is linearly related to its measured data. The process of

obtaining an estimate of O is often referred to as a reconstruction process: if O is

the true physical object then we would like to find the most likely reconstruction

Ô, of O, that the data can support.

This chapter will not exclusively be concerned with linear problems of the

type in Eq. (3.1). The reason for this is that, historically, MEM was first applied

in data analysis to the spectral analysis of time series. Here a measured time

series x0, x1, . . . , xn, . . ., and its individual data points xn are not linearly related

to its so-called power spectrum S(ω). Instead, the power spectrum is given in

terms of expectation values 〈xn+ixn〉 = R(i), where R(i) is the autocorrelation

function and

R(m) =
1

2π

∫ π

−π

S(ω)eimωdω , (3.3)

and in Eq. (3.3) it is assumed that the time series x0, x1, . . . is measured at times

t = 0, 1, . . ..

Objects described by Eq. (3.1) are estimated using different methods and

algorithms than objects described by Eq. (3.3), as discussed in detail later.
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We will find that MEM consideration together with a few extra assumptions,

leads to an expression for the entropy of a time series as H ∝ ∫
ln S(ω)dω,

whereas for problems of the type in Eq. (3.1) the entropy is often expressed as

H ∝ ∫
O(x) ln O(x)dx. Today a relatively large number of papers are regu-

larly published which are either developments or applications of a method called

“MEM” in solving problems of the type in Eq. (3.1). The reason for putting

MEM in quotation-marks here is that often these newer papers no longer use

the MEM in terms of the textbook definition of the MEM (see next section),

but instead are applications of Bayes law or ’regularizer’ methods or other meth-

ods. For this reason, in Sec. 3.3.3, another definition of the maximum entropy

method is introduced to encapsulate how the maximum entropy method is most

frequently employed in data analysis today.

3.1.1 Textbook definition of MEM

The MEM has existed since before its first application in data analysis. The MEM

as defined in statistical or information theoretical textbooks is a method, for

deciding which probability distribution should be chosen among a set of possible

distributions; i.e. MEM is a statistical tool.

To introduce MEM, consider the example of tossing a die. Define the discrete

random variable (abbreviated as r.v.) x which can take the values one to six.

Assume we do not know whether the die is fair, i.e. we do not know the prob-

ability of one coming up, two coming up and so on. Instead we are given only

the information that the mean value of any number coming up when throwing

the dice is equal to x̄. Then among the infinite number of possible distributions

which satisfy the normalization constraint
∑6

i=1 p(xi) = 1 and mean value con-

straint
∑6

i=1 xip(xi) = x̄, the maximum entropy method1 selects the maximum

1Or principle, depending on textbook; in the context of statistical mechanics it is often

referred to as a principle rather than method. See e.g. Ref. [22], [23], [24], which all use [25] as
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entropy distribution (MED), which is defined as the distribution that maximizes

the functional H[p] = −∑
i p(xi) ln p(xi) subject to the normalization and mean

value constraints.

In general, we define the (information) entropy of a discrete r.v. x with range

X as

H[p] = −
∑
x∈X

p(x) ln p(x) . (3.4)

Hence, using Eq. (3.4) we associate a number H[p] with any possible probability

distribution p(x). Given that we know a set of properties about p(x) of the linear

form
∑
x∈X

gk(x)p(x) = 〈gk(x)〉p = ωk , k = 1, 2, . . . , K , (3.5)

then we introduce our first definition of MEM

Definition 1 (Discrete variable MEM) The MEM for a discrete r.v. x is to

choose, from all distributions which satisfy constraint equations of the type in

Eq. (3.5), the distribution p∗(x) that maximizes the entropy H[p] in Eq. (3.4).

p∗(x) is referred to as the maximum entropy distribution (MED).

The solution to the maximization problem in the above definition is well known.

By forming the functional

J [p] = H[p] + λ0

∑
x∈X

p(x) +
K∑

k=1

λk

∑
x∈X

p(x)gk(x) (3.6)

and by setting ∂J/∂p(x) equal to zero we obtain the following form of the MED

p∗(x) = exp(λ0 − 1 +
K∑

k=1

λkgk(x)) , (3.7)

where the Lagrangian multipliers λ0, λ1, . . . , λK are chosen so that p∗ satisfies

the normalization condition and the K constraints in Eq. (3.5). Normalization is

automatically satisfied if we write the MED as

p∗(x) =
exp(

∑K
k=1 λkgk(x))∑

x∈X exp(
∑K

k=1 λkgk(x))
. (3.8)

their main reference, when referring to MEM as the “maximum entropy principle”.
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There is some controversy with respect to the definition of the MEM for a

continuous r.v.. Without going too much into this issue, for future reference, the

MEM for a continuous r.v. will be defined in the following three ways. Firstly,

as a simple extension of the definition of entropy in Eq. (3.4) we could define the

entropy for a continuous r.v. x as [See e.g [26], [27]]

h[p] = −
∫

X
p(x) ln p(x)dx , (3.9)

where p(x) is equal to zero outside the continuous support set X . Our second

definition then follows

Definition 2 (Continuous variable MEM) The definition of the MEM for a

continuous r.v. x is the same as for a discrete variable MEM except that we max-

imize the continuous entropy in Eq. (3.9), subject to constraints
∫

x∈X gi(x)p(x) =

ωi, i = 1, 2, . . . , K. As in definition 1 we denote MED by p∗(x).

A difference between the discrete entropy in Eq. (3.4) and the definition of con-

tinuous entropy in Eq. (3.9) is that in the discrete case the measure of entropy

is invariant under change of variables (x → y = f(x)), whereas the continuous

entropy in Eq. (3.9) will, in general, change under coordinate transformation,

for more details see [26]. Jaynes [28][29] argued in favour of using the following

definition of entropy for a continuous random variable, which is invariant under

coordinate transformations,

h[p; p0] = −
∫

X
p(x) ln

p(x)

p0(x)
dx , (3.10)

where p0 is a so-called natural ‘invariant’ non-informative prior p0 for the problem.

The modulus of the integral in Eq. (3.10) is known under other names, including

the relative entropy, Kullback Leibler distance [27][30] and entropy distance[8]

and is denoted in this context as D(p||p0) = −h[p; p0]. One may also come

across names such as cross entropy, information divergence and information for

discrimination [27]. Unfortunately, non-informative distributions, such as p0,
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are often highly non-trivial to assign, this makes the definition of entropy in

Eq. (3.10) somewhat ambiguous [9],[12],[8]. However, it may still be useful, as

articulated strongly in Jaynes’ publications [28],[29],[31], and references therein.

The definition of entropy in Eq. (3.10) leads us to

Definition 3 (Relative entropy MEM) The same as for a continuous vari-

able MEM except that we need to supply a non-informative distribution p0, and

maximize the entropy h[p; p0] in Eq. (3.10) instead of the entropy h[p] in Eq. (3.9).

Notice, if p0 is the uniform distribution then definition 3 and 2 are equivalent.

If we have no information of the form in Eq. (3.5) then the MED becomes p∗(x) ∝
p0(x). Jaynes [29] used this observation to argue that the intuitive meaning of p0

is a distribution describing “complete ignorance”; hence, a non-informative prior2.

An alternative to Jaynes’ interpretation, which we will come across a number of

times later in this thesis, is to interpret the reference distribution p0 not as being

some non-informative distribution but as a density which summarizes any prior

knowledge which we have before we are given the data. By this interpretation

the MEM takes on the role of Bayes theorem; updating prior information, p0,

with additional data to obtain p∗. This may seem an appealing thing to do,

but it is neither Bayesian statistics nor any kind of Frequentist approach. The

notion that the MEM can update prior information p0, with new data to obtain p∗

could, perhaps, be classified as MEM-inference or MEM-statistics - as opposed to

Bayesian statistics, which uses Bayes’ theorem to update information as explained

in Chap. 2. We define our last definition of MEM as

Definition 4 (Bayes law MEM) Same as the relative entropy definition of

MEM, but where p0 can now summarize any available information for a given

problem.

2Non-informative priors are described in detail in, for example [12] or [8] and Chap. 2 in

this thesis.
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The credibility of the MED is a matter of opinion. The explanation for this

is that the MED is ultimately connected with the choice of a distribution from a

set of possible ones, and the MEM does not by itself offer any means of testing

this choice. The significance of a MED, therefore depends on one’s personal

belief in the credibility of such a distribution; i.e. is it believed that MED is

the only possible distribution one can accept, or is the MED interpreted as a

sensible distribution to use and one which should be compared with other possible

choices? For instance, if we chose p(x) 6= p∗(x) then what is the quantitative

‘error’ associated with this choice as opposed to choosing p(x) = p∗(x).

One limitation of the MEM is that there exist very few cases in practice where

there is information available strictly of the form in Eq. (3.5). However, if we

include noise corrupted data which are of the form in Eq. (3.5) with additional

noise term, em, and neglect such noise terms, then we can apply MEM using

these noise-free data as MEM-constraints.

Let us use the MEM in a couple of examples.

Example 1: The throwing of a die with no constraints on the probability dis-

tribution other than normalization. In this case the sum over k in Eq. (3.7)

vanishes, and the distribution that maximizes the entropy is the uniform distri-

bution, p∗(xi) = 1/6.

Example 2: If we have the constraints 〈x〉p = µ and 〈(x−µ)2〉p = σ2. Applying

these constraints to Eq. (3.8) and generalising to a continuous distribution we

find that the MED is

p∗(x) =
1√
2πσ

exp(−1

2

(x− µ)2

σ2
)

which is the Gaussian (or normal) distribution.

3.1.2 Boltzmann and entropy

Boltzmann in 1877 was the first to write down a function of the form
∑

x ln x,

and to associate it with Clausius’s thermodynamic definition of entropy. In doing
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that he introduced a statistical model for a dilute gas in a box, which may be

regarded as essentially the same model to be used in later sections and chapters

of this thesis. To illustrate this we will discuss some of Boltzmann’s important

work.

In 1872, Boltzmann wrote down the equation that bears his name to describe

the evolution of the particle distribution of a diluted gas. The particle distribution

f is defined such that f(r,p, t)drdp is the number of molecules which, at time

t, have positions lying within a volume element dr about r and momenta lying

within a momentum-space element dp about p3. In addition he associated with

f a quantity, HBol =
∫

f(r,p, t) ln f(r,p, t)drdp, which, apart from the sign and

perhaps additive and multiplying constants, is identified as Clausius’s definition of

entropy. To understand this quantity, and his celebrated H-theorem and equation,

he studied the following problem in 1877.

The physical system is a gas in a isolated box of unit volume containing N0

molecules4. Before treating this problem Boltzmann considered an urn containing

an equal number of white, black, red etc spheres. He noted that the probability

of drawing N0 spheres with replacement, such that nw are white, nb black, etc,

is N0!
nw!nb!nr!··· times as large as the probability of drawing N0 spheres of only one

colour. Without loss of much generality lets assume that all of the N0 molecules

are confined to a finite region of momentum-space. Together the momentum-

region and box-region form the phase-space region (momentum-position region)

in which each of the N0 molecules is confined. Boltzmann now made the impor-

tant step of dividing the one-molecule phase-space region into equal-size volume

elements (cells), say I of these, and made the assumption that the probability

3In the usual sense, the volume elements dr and dp are not to be taken literally as mathe-

matically infinitesimal quantities. They are finite volume elements which are large enough to

contain a very large number of molecules and yet small enough so that compared to macroscopic

dimensions they are essentially points.
4See Part I, Chapter I, §6 in Ref. [32].
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of finding the molecule in any of the equal-sized cells is the same. We can now

relate the problem of the gas in a box to that of the urn: Instead of nw, the

number of drawings of white spheres, we denote n1 the number of molecules in

cell 1 having momentum p1 = v1m and position r1 and so on. Furthermore,

let xi represent the position in phase-space of the ith molecule, where the range

of xi is X = {1, 2, . . . I}. Each micro-state (x1, x2, . . . , xN0) is equally probable

and the probability of some macro-state (n1, n2, . . . , nI) is equal to the number

of possible micro-states which have the numbers n1, n2, . . . , nI , which is sim-

ply N0!/(n1!n2! · · ·nI !) multiplied by the probability of one micro-state, which is

(1/I)N0 , i.e. (n1, n2, . . . , nI) is given by the multinomial distribution

p(n1, n2, . . . , nI |N0) =
N0!

n1!n2! · · ·nI !

1

IN0
. (3.11)

We define Boltzmann’s statistical model as

Definition 5 (Boltzmann’s stat-model) Boltzmann’s statistical model consists

of converting a phase-space region into I discrete cells and assigning equal prob-

ability to a molecule being located in any of these cells. Mathematically, this

means that N0 molecules, represented by N0 r.v. x1, x2, . . . , xN0, each having the

range X = {1, 2, . . . , I} and each being uniformly distributed as p(xi) = 1
I
, for

all i = 1, 2, . . . N0. As a result, the probability of a macro-state (n1, n2, . . . , nI) is

given by Eq. (3.11).

If the only thing we know is that the molecules are confined to a box region

and some region of momentum space then obviously the most probable macro-

state will be the one where all the ni’s are equal and5 ni = N0/I. However the

gas container may be isolated such that the energy E of the N0 molecules is

conserved. The energy is given by E =
∑I

i=1 niεi, where εi is the energy of a

molecule in the ith cell and the interaction energy of molecules with each other is

neglected. Boltzmann now argued that if N0 is large enough then the macro-state

5Assuming N0 is a multiple of I
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that satisfies this energy constraint and maximizes the expression in Eq. (3.11)

will be sharply distributed, meaning that any other macro-state will be far less

probable. In fact what can be shown ([27] and references therein) is that the

probability of the gas not being distributed in any finite neighbourhood of its

most probable macro-state goes towards zero as N0 goes to infinity (see App. A).

We aim to find the most probable macro-state which maximizes the proba-

bility distribution in Eq. (3.11) subject to constraints on the phase-space occu-

pation numbers n1, n2, . . . , nI . Since N0 is astronomically large for any macro-

scopic system of reasonable size6, Boltzmann applied the Stirling approximation

N0! ' NN0
0 e−N0 and the probability in Eq. (3.11) becomes

p(n1, n2, . . . , nI |N0) ' Nn1+n2+···+nI
0 e−N0

∏
nni

i e−ni

1

IN0

=
1

IN0
e
−N0

PI
i=1

ni
N0

ln
ni
N0 . (3.12)

By introducing v the volume of a cell, we can write the discrete single-particle

density as fi = ni/v, i = 1, 2, . . . , I. We see from Eq. (3.12) that maximiz-

ing the probability in Eq. (3.11) is replaced by minimizing Boltzmann’s Hbol =
∑I

i=1 fi ln fi or alternatively maximizing a macro-state entropy of the form

He(
n1

N0

,
n2

N0

, . . . ,
nI

N0

) = −
I∑

i=1

ni

N0

ln
ni

N0

, (3.13)

Hence, Boltzmann interpreted his Hbol, and therefore also entropy, as a measure

of likelihood[24]; the gas is more likely to be distributed as f = (f1, . . . , fI) rather

than f ′ = (f ′1, . . . , f
′
I) if Hbol(f) < Hbol(f

′) or equivalently if the entropy He of f

is higher than the entropy of f ′.

As explained in the text following Def. 1, Lagrangian multipliers are intro-

duced to form the functional

J [n/N0] = He[n/N0] + λ0N0

I∑
i=1

ni/N0 − βN0

I∑
i=1

εini/N0 , (3.14)

6Under standard conditions there are about 3× 1019 molecules/cm3 in a gas [33].
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where n = (n1, n2, . . . nI). By comparing Eq. (3.14) and Eq. (3.6) we see from

Eq. (3.8) that the Boltzmann most probable macro-state is

nbol
i = N0

exp(−βεi)∑I
i=1 exp(−βεi)

. (3.15)

Take the example of an equilibrium distribution for a dilute gas without the pres-

ence of an external force field, where εi = mv2
i /2. Recognizing β = −1/(kT ) it is

clear that inserting this expression for εi into Eq. (3.15) and using an appropriate

normalization constant, the famous Maxwell-Boltzmann distribution is obtained,

see e.g. Ref. [24], Chap. 4 for more information and examples.

Notice that Boltzmann’s reasoning can be cast into the form of Bayes’s the-

orem. This is simply achieved by taking Boltzmann’s statistical model in Def. 5

as the prior probability distribution and the likelihood function to be the delta-

function p(E|n, N0) = δ(
∑I

i=1 niεi−E). We obtain the following posterior prob-

ability distribution for Boltzmann’s dilute gas

p(n|E, N0) =
p(n|N0)p(E|n, N0)

p(E|N0)

∝ eN0Heδ(
I∑

i=1

niεi − E)δ(
I∑

i=1

ni −N0) , (3.16)

where we have written the prior p(n|N0) as in the Stirling approximation in

Eq. (3.12), the last delta-function on the right hand side of Eq. (3.16) is included

to emphasize that N0 is a known fixed value.

The mode of the posterior in Eq. (3.16) is exactly equal to Boltzmann’s most

probable macro-state in Eq. (3.15).

3.1.3 Shannon and communication theory

In 1948 Shannon introduced the concept of entropy in communication theory

[34],[26]. He showed that entropy naturally enters into the expression for channel

capacity and quantified entropy as a measure of uncertainty and information in

communication theory. Shannon, for instance, showed that the number of bits
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on average required to describe a discrete r.v. x with probability function p(x)

is H2[p] = −∑
x∈X p(x) log2 p(x). Hence, the more uncertain you are about a

r.v. the more bits are needed to describe it, in this sense H2[p] is a measure of

uncertainty. To identify entropy as a measure of information, in contrast to a

measure of uncertainty, envision an experiment in which the r.v. x is witnessed

by an observer, who subsequently transmits the observed value to you. Before

you are provided with this information, the uncertainty is H2(x). Upon receipt

of the information, the uncertainty is zero. Interpreting “information” as the

removal of uncertainty, then H2(x) is a natural measure of information. Shannon

also showed that it is possible to derive the expression for entropy from a set of

reasonable requirements. Looking for something which measures the information

content of a r.v. x ∼ p it is reasonable to require the following properties of it

(following Ref. [34])

1. H should be a continuous function of p(x), for each x ∈ X .

2. If p is uniform on X , p(x) = 1/I, then H should be a monotonic increasing

function of I.

3. If a reasoning can be broken down into successive choices, the original H

should be the weighted sum of the individual values of H. (For more details

illustrating this assumption see Ref. [34], or any textbook on information

theory).

It can then by shown that the only H satisfying the three above assumptions is

of the form H ∝ −∑
x∈X p(x) ln p(x), i.e. of the entropy form. It is worth men-

tioning that Shannon did not in any way consider the above axiomatic derivation

of entropy as a necessary part of his theories, but given chiefly to lend a cer-

tain plausibility to some of his later definitions7. Later Jaynes [25] re-interpreted

7In Ref. [34] Shannon writes “This theorem, and the assumptions required for its proof, are

in no way necessary for the present theory. It is chiefly to lend a certain plausibility to some
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Shannon’s definition of entropy to be the measure of uncertainty instead of a

measure of uncertainty. Jaynes insisted on the interpretation of entropy as the

measure of uncertainty and the unquestionable starting point for further infer-

ence. For example, Jaynes writes in [25]: “Now, however, we can take entropy as

our starting concept, and the fact that a probability distribution maximizes the

entropy subject to certain constraints becomes the essential fact which justifies

use of that distribution for inference”8. From Jaynes point of view his maxi-

mum entropy principle (or MEM) was regarded as a very high principle; he saw

statistical mechanics as an application of this principle [25], for example.

3.2 MEM in spectral analysis

9The first application of MEM was in spectral analysis of time series. A sequence

of observations made at equidistant time steps is referred to as a discrete time

series. Thus x0, x1, . . . is a time series composed of measurements at times t =

0, 1, . . . (after a suitable rescaling of the time axis if necessary). To model the

uncertainty of a time series each of the measurements xn is described as a realized

value of a r.v. xn (the same notation for a r.v. and its realized values is used, see

Chap. 2), and associated with the time series as a whole is the set of r.v. x0, x1, . . .

called a random sequence (or process). These r.v. might be correlated with each

other (e.g. the measurement at time t = n may depend on the value measured

at time t = n − 1 etc.) and p(x0, x1, . . .) is the joint probability density for the

of our later definitions. The real justification of these definitions, however, will reside in their

implications.”.
8Also, in Ref. [28], Jaynes writes “It is by now amply demonstrated by many workers that

the “information measure” introduced by Shannon has special properties of consistency and

uniqueness which make it the correct measure of ’amount of uncertainty’ in a probability dis-

tribution.”.
9This section can be omitted without loss of continuity, particularly if you are not concerned

with MEM applied to spectral analysis.
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process as a whole. In a variety of applications, it is desirable to characterize

what is called a zero-mean weakly stationary time series (WSS)10 through its

associated spectral density representation. This representation is useful in those

situations where the time series is thought to contain hidden periodicities.

The spectral density (or power density) is formally given for a digital (or

discrete-time) process by

S(ω) =
∞∑

m=−∞
R(m)eimω , (3.17)

where R(m) is the autocorrelation function and for a WSS process R(m) ≡
R(i + m, i) = 〈xi+mxi〉p. In real applications a finite time series is measured

x0, x1, . . . , xN . The aim is to determine a power spectrum S(ω) for this time

series. From Eq. (3.17) it is seen that this requires the knowledge of an infinite

number of autocorrelation coefficients R(m). However, given only a finite time se-

ries it is not obvious how to obtain an infinite number of R(m)’s; we can only hope

to get good estimates of a finite number of R(m)’s, say R(0), R(1), . . . , R(M).

Hence, the following question arises: given a finite number of R(m) how are we

going to calculate S(ω)? Ideas on how to tackle this problem are dealt with in

some of the spectral analysis literature. Lets assume that we can obtain good es-

timates of the first M +1 values of R(m) and the underlying stochastical process

is the infinite WSS random sequence x0, x1, . . .. To follow the original approach

by Burg[2] lets further assume that the joint probability distribution of the un-

derlying process is multivariate normal with zero mean values. For the finite set

of r.v’s x = x0, x1, . . . , xN , this implies

p(x0, x1, . . . , xN) =
1

(2π)(N+1)/2|R(N+1)|1/2
exp(−1

2
xR−1

(N+1)x
T ) , (3.18)

where the elements of the N + 1 by N + 1 matrix R(N+1) are the autocorrelation

coefficients R(i, j), and because the process is WSS R(i, j) = R(i−j) then R(N+1)

10A stochastic process x0, x1, . . . is called weakly stationary if its mean is constant 〈xi〉 = µi

= µ = constant, and its autocorrelation depends only on m = n2 − n1: R(i + m, i) = R(m).

For non-stationary processes the notion of a spectrum is of limited interest.
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is Toeplitz11 with entries R(0), R(1), . . . , R(N) along the top row. In the spirit of

information theory and channel capacity the entropy rate of a random sequence

x0, x1, . . . is defined as

h̄[p] = lim
N→∞

1

N
h[p(x0, x1, . . . , xN−1)] . (3.19)

It can then be shown under the assumption that the underlying probability den-

sity for the process x0, x1, . . . is a multivariate normal, that the entropy rate for

this process is

h̄[p] = ln
√

2πe
1

4π

∫ π

−π

ln S(ω)dω . (3.20)

This is obtained by substituting p in Eq. (3.18) into the expression for the entropy

in Eq. (3.9) and taking the limit N →∞ as prescribed in Eq. (3.19).

Hence, we see that Burg’s assumption that the underlying probability density

is multivariate normal has transformed the problem of finding the probability

density p which maximizes the entropy into that of optimizing the entropy rate

in Eq. (3.20) with respect to S(ω). This solution is fairly easy to find. The first

M +1 values of R(m) are assumed to be known. The entropy rate h̄ then depends

on the unspecified values of R(m), |m| > M and it is maximum if ∂h̄/∂R(m) = 0

for all |m| > M i.e. ∫ π

−π

1

S(ω)
e−imωdω = 0

for all |m| > M . This shows that the coefficients of the Fourier series expansion

of 1/S(ω) are zero for |m| > M . Hence,

1/S(ω) =
M∑

k=−M

cke
−ikω (3.21)

with ck = c∗−k to guarantee that 1/S(ω) is a real quantity. The M +1 independent

coefficients ck can be found by inserting the expression for the entropy rate in

Eq. (3.21) into M + 1 equations of the kind in Eq. (3.3) one for each of the

11Toeplitz; means that it is symmetrical with respect to its leading diagonal, and the elements

of a Toeplitz matrix satisfy: aij = ai−1,j−1 for i, j = 2, 3, . . . , N .
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good estimated values of R(m). Further, by using the property that S(ω) ≥ 0

it is possible to reduce the task of finding S(ω) to a purely linear problem [2].

To summarize Burg’s paper, under the assumption that the underlying process

is modeled to have the p.d. in Eq. (3.18), then this implies that the entropy

rate is related to S(ω) as in Eq. (3.20), and Burg chooses to represent the data

using the power spectrum which maximizes this entropy rate subject to keep the

first M +1 autocorrelation coefficients R(0), R(1), . . . , R(M) being fixed. This is

Burg’s estimate for S(ω).

For a collection of papers following up Burg’s work see [35]. Alternative deriva-

tions of Burg’s method are presented in Ref. [36] and Ref. [37]. These references

claim that in deriving Burg’s expression for S(ω) it is not necessary to assume

that the underlying stochastical process is multivariate Gaussian with zero means.

Instead it is assumed that all the autocorrelation coefficients R(0), R(1), . . . are

known, in the sense that the sequence of constraint equation R(m) = 〈xixi+m〉p
is imposed which the underlying statistical probability distribution p must sat-

isfy. The only distribution, according to MEM, which satisfies such constraints,

is clearly the multivariate Gaussian distribution used by Burg. If the coefficients

R(0), R(1), . . . had been assumed to be related to any other expectation values

but R(m) = 〈xixi+m〉p, then according to MEM p would not have been multivari-

ate Gaussian distributed. Hence, the claim made by the authors of Ref. [36] and

Ref. [37] that they have managed to arrive at the conclusion that the underlying

stochastical process is multivariate Gaussian, without any extra assumptions, is

not true in my opinion. Because assuming the relations R(m) = 〈xixi+m〉p and

using MEM is the same as assigning p to be multivariate Gaussian distributed in

the first place.
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3.3 MEM for image reconstruction

3.3.1 The approach of Gordon & Herman

The suggestion to use MEM for image reconstruction first appeared in the open

literature in 1970-71, [38],[39]. In these papers the authors aim to find best

reconstructions of a picture from measured projections of the picture. As an

example, their work is applicable to the problem of finding the three dimensional

density in space of an object being viewed with an electron microscope. The focus

of both papers is on reconstruction of discrete two-dimensional (2D) pictures from

projections. We can describe a square discrete 2D picture by specifying
√

I×√I

numbers; say, nij, i, j = 1, 2, . . . ,
√

I. Gordon & Herman refer in Ref. [39] to nij

as the grey-level of the picture at the matrix position (i, j), and in the same paper

so-called ‘upper-bound-cell’ quantized pictures are considered where the nij are

restricted to the integer gray-level values

0 ≤ nij ≤ l − 1, i, j = 1, 2, . . . ,
√

I , (3.22)

where ‘upper-bound-cell’ refers to the quantization scheme in Eq. (3.22). A pro-

jection of a 2D picture is, for example, the set of row sums r1, r2, . . . , r√I where

ri =

√
I∑

j=1

nij , i = 1, 2, . . . ,
√

I . (3.23)

Another example of a projection could be the set of column sums cj =
∑√

I
i=1 nij , j =

1, 2, . . . ,
√

I and so on. For each picture, a projection can be considered to be a set

of
√

I linear equations in I unknown numbers {nij} ≡ {nij , i, j = 1, 2, . . . ,
√

I}.
If we take m distinct projections, we have m

√
I simultaneous linear equations in

I unknowns. If m <
√

I there will generally be more than one solution; i.e., more

than one picture with exactly the same projection. To find the best reconstruc-

tion from projections Gordon & Herman present in Ref. [39] three Monte Carlo

algorithms for quantizised pictures and in Ref. [38] Gordon, Bender & Herman
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present two direct methods called Algebraic Reconstruction Techniques (ART)

for non-quantizised images. Here I will focus my attention on the three Monte

Carlo algorithms12. These algorithms distribute bits (equal to 1 gray-level unit

each) randomly over the I cells. The first two algorithms keep distributing bits

randomly until the projection constraints are satisfied, using similar techniques.

Gordon & Herman associate with a picture the entropy-like function

HGH = −
√

I∑
i,j=1

nij ln nij . (3.24)

They observed that if a number of independent reconstructions are averaged

then the entropy of this averaged image asymptotically increases towards a cer-

tain value, where this certain value is the maximum value HGH can take on in

Eq. (3.24), call this value Hmax
GH , where the picture-values {nij} satisfy a number

of projection constraints of the type in Eq. (3.23). This observation led Gordon

& Herman to suggest the first example (to our knowledge) of a MEM (or a Maxi-

mum Entropy-like Method) in image reconstruction, which is an algorithm where

bits are distributed randomly (Monte Carlo) until the projection constraints are

satisfied and HGH has reached its maximum value, Hmax
GH .

Gordon & Herman did have some technical problems with their algorithm,

which are all very well described in Ref. [39]. In appendix I of Ref. [39], Gordon

& Herman give a lengthy discussion towards finding a mathematical justification

of their method. Their search for such a justification leads them into an impres-

sive variety of fields, including “information theory, integer programming, numer-

ical integration, adaptive search processes, chemical reaction systems, statistical

mechanics, thermodynamics and many-dimensional geometry”. As the conclu-

sion of all this they write “Although these studies have increased and sometimes

corrected our intuition, we still have no clear proof of why our method works”.

I find this appendix interesting reading, but would argue that they could have

12Also notice that, these algorithms were studied before the ART algorithms, even though

they appeared in the open literature later (see text in [38]).
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made their argument simpler. Instead of going into the objections to and justi-

fications for the so-called ’maximum entropy principle’, they could have omitted

any discussion about such a principle and noted the following. If one or more

projections is given it follows from Eq. (3.23) that the total number of bits is

known, N0 =
∑√

I
i,j=1 nij. The probability for any picture {nij} is proportional to

the number of possible ways of generating that picture by distributing randomly

N0 bits. This is just a multinomial coefficient, and,

p({nij}) =
N0!∏√
I

i,j=1 nij!

1

A
, (3.25)

where A is the total number of ways of distributing N0 bits among I cells. The

extra upper-bound-cell constraints in Eq. (3.22) limits A because each of the

nij must be smaller than13 l − 1. What we can do now is simply use p({nij})
in Eq. (3.25) to calculate which picture {nij} satisfies the given projection con-

straints and is most likely to be generated by a random distribution of N bits.

We can draw a parallel from this situation to Boltzmann’s reasoning in Sec. 3.1.2

and also to App. A. We may include the I upper-bound-cell constraints as data

of the type

nkk′ =

√
I∑

i,j=1

nijgkk′(nij) ≤ l − 1 , k, k′ = 1, 2, . . . ,
√

I ,

and the function gkk′(nij) has the special form gkk′(nij) = 1 if k = i and k′ = j

and zero otherwise. Hence, the macro-state (or image) which maximizes the

probability in Eq. (3.25) can be described by a Boltzmann’s most probably macro-

state {nij}bol and this macro-state will also, by definition, have the highest macro-

state entropy Hmax
e = Hmax

GH of all macro-states that satisfy the I upper-bound-cell

constraints and available projection constraints. It is therefore obvious that as

more and more pictures, randomly generated by Gordon & Herman’s algorithm 1

and 2, are averaged, then if the number of bits is large the entropy of this averaged

13Obviously if l ≥ N0 then A = IN0 and Eq. (3.25) is a multinomial distribution.
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picture must approach Hmax
GH from below. This gives a simple ‘mathematical

justification’ for why Gordon & Herman’s method works.

3.3.2 The approach of Frieden

An alternative way of introducing MEM into image reconstruction was presented

by Frieden 1972 [40]. Frieden was interested in optics, particularly in estimating

a most likely object given a number of sample image values of an incoherent

object scene O(x), which is a spatial radiance distribution. One of the main

tasks of Frieden’s 1972 paper is to associate a probability distribution with a

spatial radiance distribution O(x) and then to use the MEM (as e.g. in Def. 1) to

assign the ‘best’ reconstructed object as a MED. His justification for comparing

O(x) with a probability distribution is firstly that O(x) is non-negative for all

values of x and secondly based on a comparison to the work in Ref. [29] and Ref.

[41].

Frieden considered the following model to justify associating O(x) with a

probability distribution and the use of MEM in image reconstruction. First the

object splits into discrete cells that are indexed i = 1, 2, . . . I. An object is then

fully specified by the I object values O1, O2, . . . , OI . Denote the total radiant

power as P0 and now the assumption that P0 originates from N0 smaller amounts

of equal size ∆O: P0 = N0∆O. Each of the elements can be positioned in any of

the I cells, and the number of elements in the ith cell is Oi/∆O. Using this model

as his starting point, Frieden goes through arguments similar to the ones in [29]

and proposes a parallel between O(x) and a probability distribution and the use

of a MEM to estimate the ‘most uncertain’ O(x) given the data. Associating

O1

P0
, O2

P0
, . . . , OI

P0
with a p.d. Frieden formulated the MEM as that of maximizing

(see also [42]14)

HF1 = −
I∑

i=1

Oi ln Oi (3.26)

14Be aware that Frieden refers to capital O as o in Ref. [42], and vice versa.
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subject to constraints of the form

dm =
I∑

i=1

OiSmi , m = 1, 2, . . . , M . (3.27)

Smi is a point-spread function for the system15. The relation between the mea-

sured data and object in Eq. (3.27) assumes the data are noise-free. Let us denote

the noise of each data point by the noise term em. Frieden treated not only the

object O as a probability distribution but also the noise. Frieden added a con-

stant to all noise values to ensure that all Em = em + B are positive. And finally

Frieden suggest the following procedure for finding the most likely estimate for

O by optimizing an object-error entropy of the form

HF2 = −
I∑

i=1

Oi ln Oi − ρ

M∑
m=1

Em ln Em , (3.28)

where ρ is an additional parameter. Subject to the constraints

dm =
I∑

i=1

OiS(ym, xi) + Em −B ,m = 1, 2, . . . , M , (3.29)

and P0 =
∑I

i=1 Oi. The additional parameters B in Eq. (3.29) and ρ in Eq. (3.28)

are regarded as experimental inputs that supplement the data dm and the known

total radiant power P0 [40].

For an application of this MEM16 in optics to the restoration of pictures taken

of one of the moons of Jupiter, Ganymede, see Ref. [43].

In summary, the Frieden approach is to interpret the image (here a spatial

radiance distribution) as a probability function, and to select the one possible

probability distribution according to the MEM, where the data have the role of

constraint equations on the probability distribution. To my knowledge, Frieden

was the first to draw a parallel between a picture and a probability distribution in

image analysis, and today many papers on maximum entropy in image analysis

also perceive an image in this way (see Chap. 6 for some examples).

15To compare more easily Eq. (3.26-3.27) with the definition of the MEM in Def. 1 notice

that HF1 = −∑
i Qi ln Qi = −P0

∑
i

Qi

P0
ln Qi

P0
− P0 ln P0, and the last term is a constant.

16In the form of Eq. (3.26) and Eq. (3.27) I believe.
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3.3.3 The approach of D’Addario

In the brief conference paper entitled “Maximum a posterior probability and

maximum entropy reconstruction” [44], D’Addario discusses the work of Frieden

and Gordon & Herman in the context of Bayes theorem and Bayesian statistics.

Frieden’s model, used to justify the use of MEM, is introduced in the context of

a prior probability function and as a possible statistical model for an image. The

total integrated intensity (equivalent to Frieden’s P0) in the picture is assumed

known and is divided into N0 = S/∆S units of size ∆S. If the N0 units are

distributed at random among I cells of a discrete picture, then we know from

Eq. (3.11), for example, that the probability of obtaining the picture with n1

units in cell 1, n2 in cell 2, etc. is given by the multinomial distribution and in

the Stirling approximation (see Eq. (3.12)) has logarithm proportional to

H1 = −
I∑

i=1

ρi log ρi + const , (3.30)

where ρi = ni∆S. This provides D’Addario with a prior probability distribution.

At this point D’Addario notices a difficulty with the prior distribution in the

above equation, which is its dependence on the quantization chosen. A part of

Chap. 4 addresses this issue for a statistical model of a picture which contains

regions of both positive and negative intensity.

In applying Bayes theorem D’Addario maximizes the posterior probability

distribution, whose logarithm is given by

f(ρ) = H1(ρ)− λ

P∑
m=1

|dobs
m − dm(ρ)|2

σ2
m

, (3.31)

where the notation in Eq. (3.2) has been used to denote dobs
i as the ith observed

data point and di is related to ρ = (ρ1, ρ2, . . . ρI) as dm =
∑I

i=1 Amiρi. σm is the

standard deviation of the mth independent measured Gaussian data point, and λ

is known if the quantization of the statistical model is specified.

D’Addario’s aim is to find the map ρ which maximizes f in Eq. (3.31). He

53



notices that this is actually a ‘maximum a posterior’ probability method based on

the statistical model of the object studied - rather than an application of MEM.

Finally, optimizing Eq. (3.31) is equivalent to maximizing H1 subject to the

constraint
P∑

m=1

|dobs
m − dcal

m (ρ)|2
σ2

m

= const , (3.32)

where λ becomes a Lagrangian multiplier.

To my knowledge D’Addario never optimized f in Eq. (3.31) for a real exam-

ple. However, the scenario where an
∑

x ln x quantity is optimized subject to a

constraint on a chi-squared like function (as in Eq. (3.32)) is today the colloquial

definition of the maximum entropy method in image analysis. To distinguish it

from the MEM as defined in Sec. 3.1.1 it will be abbreviated as MEMx. Let us

define MEMx as

Definition 6 (MEMx) MEMx is the optimizion of a function of the form
∑I

i=1 xi ln xi,

where xi is real and positive (xi ∈ R+), or the form
∑I

i=1 xi sinh−1 xi, where xi

is either real and positive or xi is defined over the whole real line (xi ∈ R).

In both cases, subject to a constraint on the xi’s of the type Q(x1, x2, . . . , xI) =
∑P

i=1(d
obs
i − dcal

i (x1, x2, . . . , xI))
2/σ2

i = constant.

Often xi in Def. 6 represents the amount of image material or probability associ-

ated with the ith discrete cell of the image, or xi may be the square of the amount

of image material in the ith cell and so on. Q(x1, x2, . . . , xI) in Def. 6 is called a

chi-squared like statistic, because if the data represent P independent Gaussian

observations, then Q is distributed as the chi-square probability distributed with

P degrees of freedom, see Chap. 2, Sec. 2.3. In Def. 6 the ‘
∑I

i=1 xi sinh−1 xi’ is in-

serted for later convenience, such as in Sec. 4.2. In fact ‘
∑I

i=1 xi sinh−1 xi’ is more

precisely written as
∑I

i=1[xi sinh−1 xi/A −
√

x2
i + A2], where A is a constant to

be specified, and this functional form has been applied where xi is a real number

or real and positive (the magnitude of a complex quantity, see Chap. 4, Sec. 4.3).

A function of the form ‘
∑I

i=1 xi ln xi’ in Def. 6 may be written more generally

54



as
∑I

i=1[xi ln xi/A + const] or
∑I

i=1[xi ln xi/A− xi + const] (see references in the

two review papers cited in the next section), where A is again a constant to be

specified, and xi must be real and positive.

In Ref. [45] D’Addario gives a short review of Fourier reconstruction tech-

niques in radio astronomy. In Ref. [46] Wernecke and D’Addario actually apply

maximum entropy image reconstruction in a form very similar to Frieden’s, with

the only difference being the use of a
∑

i ln xi ‘entropy’ rather than a
∑

i xi ln xi

‘entropy’. Also, interesting enough in the work [46] this approach is referred to

as non-Bayesian.

3.4 Summary

The broad definition in Def. 6 of MEMx is an attempt to encapsulate what is

meant by maximum entropy in image analysis in papers on this subject following

the work of Gordon & Herman, Frieden and D’Addario. For a review of MEMx

see Ref. [47], which has a special emphasis on NMR, and Ref. [48], which has a

special emphasis on Astronomy. Neither of these review papers mention the work

by Gordon & Herman and D’Addario, but provide a detailed account of how

MEMx has been implemented in practice and many more MEMx publications

dated after 1975. In Ref. [49] a quantitative analysis of the
∑

i xi ln xi ‘entropy’

is given. In the same journal of [49] there follows a discussion of this paper and

MEMx in general, presented as 16 individual comments by 16 authors. Reading

these comments is interesting (and can also be rather entertaining) because it

shows how well-known scientists disagree totally upon how to perceive the MEMx

method and how to use it, and it illustrates some of the difficulties of this subject.

In this thesis the MEMx method is considered from a pragmatic viewpoint and

although the MEMx method is critically analysed from a Bayesian statistical

approach in Chap. 4, the results are applicable irrespective of how the MEMx

method is perceived.
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Of particular interest to this thesis is to apply MEMx to the study of images

containing both positive and negative image material (papers on this subject are

compared in Sec. 4.3, Chap. 4). This is done by considering the positive and neg-

ative material in the image separately optimizing the sum of two functions of the

form
∑I

i=1 xi ln xi +
∑I

i=1 yi ln yi, where xi represents positive image material and

yi negative image material, instead of just one function of the type
∑I

i=1 xi ln xi.

The definition of MEMx in Def. 6 can be viewed as encapsulating both cases,

i.e. optimization of functions of the form
∑I

i=1 xi ln xi and
∑J

j=1

∑I
i=1 xij ln xij,

where all the xij are positive numbers (for
∑J

j=1

∑I
i=1 xij sinh−1 xij, where all

the xij are any real numbers or magnitudes of complex numbers) and the differ-

ent j’s represent different types of material (for the case of J = 2, then j = 1

could represent positive image material and j = 2 could represent negative image

material).
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Chapter 4

Data analysis technique used to

analyze PND data

The purpose of this chapter is to introduce the technique used to transform mag-

netic structure factors into magnetization density maps. This technique may be

categorized under the group of techniques labelled Maximum Entropy methods,

sometimes abbreviated as MaxEnt or MEED, or MEMx as done in Chap. 3.

The MEMx method will be presented as an application of Bayes’ theorem with

no references to any maximum entropy concept or quantity. For that reason, it

is argued that for the presentation of the MEMx method given here, the name

MEMx can be misleading. However, this is the label used in the literature for

techniques that are similar or the same, and the name also used here.

The chapter will provide a rigorous and critical analysis of the MEMx method

when used to construct images in which the values of the image can take both

positive and negative values (to be referred to as a pos/neg image), with special

emphasis on Polarized Neutron Diffraction (PND) data. In this process, it is

found that the MEMx method depends crucially on the choice of its prior model
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constants1, and the output of the MEMx method is critically analysed in terms

of these constants. These prior model constants have been discussed previously,

see e.g. [50],[51],[52],[53],[54],[55] and [56], where a variety of different names for

these prior model constants have been used. In Sec. 4.1 the prior model constant

M̄ s is defined and the following names and notations have been used for M̄ s: In

Ref. [51] scalar parameter (β); In Ref. [57] default value (def ); In Ref. [54] default

parameter (b); In Ref. [52] model (m); In Ref. [55] a priori estimator (Qk) and

so on. None of the references cited above go into a detailed study of prior model

constants, but a number of different strategies for selecting them are suggested

and different degrees of significance are attributed to these prior constants2. Per-

haps the most detailed of these studies is found in Ref. [57], Chapter 5, where the

following conclusion is drawn: “to achieve visually stunning MEMx reconstruc-

tions: Choose C0
3sufficiently large to suppress all the features you don’t like

and def 4sufficiently small to smooth the points between the surviving features.”.

One purpose of this chapter may therefore be said to be to quantify the pro-

cess proposed in the above citation, such that “stunning” MEMx reconstructions

can be achieved by an automated procedure which would require a minimum of

‘subjective’ selections of prior model constants from the user. This is done by

studying in painstaking detail how the prior model constants effect the MEMx

output. In the terminology of Bayesian statistics such an analysis is referred to

as a robustness analysis. This analysis provides a robust Bayesian image analysis

method for the analysis of PND data, and other types of data where a parallel

can be drawn to this work.

1Prior model constants is the term used for the constants making up the prior probability

expression, see Chap. 2, Sec. 2.2.1.
2As will be shown later in this chapter, the effect of the prior model constants on the

MEMx output depends on the nature and quality of the data, which may partly account for

the differences in opinions.
3C0 is equivalent to Q in this thesis, see Sec. 4.2.
4def is equivalent to M̄s, see Sec. 4.1.
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Brief summary of chapter

The chapter is organized as follows. Sec. 4.1 provides a discussion of prior dis-

tributions which can be related to the MEMx technique. It contains most of

the necessary mathematics, and Eq. (4.12) gives the prior probability distribu-

tion which will be used thereafter. Sec. 4.2 defines the Bayesian image analysis

technique and MEMx method. A number of papers on MEMx are compared in

Sec. 4.3. In Sec. 4.4 the output of the MEMx method is studied as a function of

its prior model constants. Based on the results in Sec. 4.4, possible options for

selection of good values for these prior model constants are discussed in Sec. 4.5.

Sec. 4.6 shows how to calculate uncertainty estimates for any feature in the re-

construction, and Sec. 4.7 provides a summary and conclusions.

4.1 Prior distribution

The MEMx method as explained in detail in Chap. 3 is a somewhat confusing

concept because different people perceive it in different ways. However, for the

MEMx method(s), which is the optimization of a posterior probability, we can

talk about a MEMx prior, the prior function in such a posterior distribution.

Such a prior may be deduced in several ways. The approach followed here is

to think of a MEMx prior as originating from a statistical model for an image.

In the context of maximum entropy in image reconstruction, this approach was

first proposed by D’Addario [44], see also Chap. 3. The work of D’Addario’s and

others is concerned with a strictly positive image (see Chap. 3). In deducing

a MEMx prior for a pos/neg image, e.g. a magnetisation density, a procedure

closely related to that of Buck & Macaulay [50],[51],[16] will be followed. The

derivation in this section differs from that of previous work in its rigorous detail

of the derivation and it also provides comments on priors, closely related to the

MEMx prior, which could be used in image reconstruction.

The aim is to obtain a prior which is based on a simple idea involving the
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generation of an image assuming as little as possible about how the image may

look. In subsection 4.1.2 a possibility for adding more detailed information about

the image into the prior will be discussed.

Start with the following statistical model for a positive image. Let us assume

that the image is built up of N0 quanta of equal magnitude ε. If the image is

discretized into I equal size bins then the probability of having the configuration

with n1 quanta in bin 1, n2 quanta in bin 2, ..., and nI quanta in bin I, is simply

given by the multinomial distribution, i.e.

p(n|N0) =
N0!

n1! · · ·nI !

1

IN0
, (4.1)

where the notation n = (n1, n2, . . . , nI) denotes a configuration for the N0 quanta

in the I bins.

A statistical model slightly different from Eq. (4.1) is to let the total number of

quanta N =
∑

ni be Poisson distributed with some mean value N̄ , i.e. p(N |N̄) =

N̄N

N !
e−N̄ , rather than fixing the total number of quanta to the value N0 as in

Eq. (4.1). Adding the information that p(N |N̄) is Poisson distributed to the

prior in Eq. (4.1) results in the analytically more convenient expression

p(n|N̄) = p(N |N̄)p(n|N) =
I∏

i=1

(N̄/I)ni

ni!
e−N̄/I (4.2)

i.e. the product of I independent and identical Poisson distributions each with

mean value N̄/I.

Our purpose is to extend the statistical Poisson model in Eq. (4.2) to enable

us to handle a pos/neg image. Imagine now that we have two sets of quanta all

of equal magnitude but one of the two sets we associate with positive material

and the other set with negative material. Say we have the Poisson mean value

N̄+ for the total number of positive type quanta and N̄− for the total number

of negative type quanta. Then this statistical model simply results in the prior

distribution

p(n+,n−|N̄+, N̄−) =
I∏

i=1

(N̄+/I)n+
i

n+
i !

e−N̄+/I

I∏
i=1

(N̄−/I)n−i

n−i !
e−N̄−/I , (4.3)
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where the vectors n+ = (n+
1 , n+

2 , . . . , n+
I ) and n− = (n−1 , n−2 , . . . , n−I ) denote a

possible configuration of the two types of quanta. Typically, and in particular in

analysis of PND data, we are only interested in knowing the difference between

the number of positive and negative type quanta in each of the I bins. Therefore,

make the change of variable n = n+ +n− to obtain the sum image map and q =

n+ − n− to obtain the difference image map. From the probability distribution

in Eq. (4.3) a prior expression can be obtained solely in terms of the difference

image parameters q = (q1, q2, . . . , qI), using the marginalising procedure shown

in App. B. The marginal distribution for q becomes

p(q|N̄+, N̄−) =
I∏

i=1

(
N̄+

N̄−

)qi/2

Iqi
(
2
√

N̄+N̄−

I
)e−(N̄++N̄−)/I , (4.4)

where Iqi
is the modified Bessel function of order qi. This distribution was studied

in 1937, see for example Ref. [58] or Ref. [59] and references therein, and in the

context of MEMx by Buck & Macaulay [50],[51]. The modified Bessel distribution

in Eq. (4.4) does not occur often in literature, and so a brief discussion of some of

its properties will be presented here. To this end it is convenient to first change

the prior model constants N̄+ and N̄− in Eq. (4.4) to

N̄ s = N̄+ + N̄−

N̄d = N̄+ − N̄− , (4.5)

where, since both N̄+ and N̄− are greater than zero, |N̄d| < N̄ s. Eq. (4.4) then

reads

p(q|N̄ s, N̄d) =
I∏

i=1

(
N̄ s + N̄d

N̄ s − N̄d

)qi/2

Iqi
(

√
N̄ s2 − N̄d2

I
)e−N̄s/I . (4.6)

In App. B it is shown that the expectation value of qi is

〈qi〉 = N̄d/I , i = 1, 2, . . . , I (4.7)

with variance

〈(qi − 〈qi〉)2〉 = N̄ s/I , i = 1, 2, . . . , I . (4.8)
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This means that the expected value of the sum of the qi’s is N̄d, i.e. 〈∑i qi〉 = N̄d,

and using the results in App. B it follows that
∑

i qi has variance N̄ s. Hence, in the

same manner as we are accustomed to summarize a Gaussian distribution by its

mean and standard deviation, we can summarize the modified Bessel distribution

by its mean value N̄d and standard deviation
√

N̄ s.

The prior in Eq. (4.6) is a discrete prior, its parameters q1, q2, . . . , qI are in-

tegers. To transform p(q|N̄ s, N̄d) into a recognizeable MEMx prior we aim to

expand p(q|N̄ s, N̄d) to a continuous probability distribution. The most obvious

such transition simply involves replacing the discrete qi’s in Eq. (4.6) by contin-

uous ones, hence the transformation

qi → xi , i = 1, 2, . . . , I (4.9)

p(q|N̄ s, N̄d) → p(x|N̄ s, N̄d) =
1

A

I∏
i=1

(
N̄ s + N̄d

N̄ s − N̄d

)xi/2

I|xi|(

√
N̄ s2 − N̄d2

I
) ,

where the xi’s are real numbers and A is an appropriate normalization constant.

This continuous analogue to the discrete prior in Eq. (4.6) could be used right-

away as a prior. It has been implemented and tested and for the tests it was

applied to, it did not make a significant improvement to the image analysis as

compared to using the MEMx prior in Eq. (4.12) to be introduced shortly. Notice

also that, rather than using the continuous Bessel prior in Eq. (4.9) the discrete

Bessel prior in Eq. (4.6) is an interesting alternative. However, to limit the discus-

sion in this thesis, the prior in Eq. (4.9) will not be discussed further, and to move

forward in deducing a MEMx prior consider asymptotic expansions of the modi-

fied Bessel function as a function of the order parameter5. As a first asymptotic

approximation to the modified Bessel function use6 Ix(z) ∼ e
√

x2
i +z2−xi sinh−1(xi/z).

5The order parameter of a modified Bessel function Ix(z) is x, and z is its argument.
6See the books on special functions in Refs. [60],[61],[62].
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Figure 4.1: f(x) = [x2 + z2]−1/4e
√

x2+z2+x(sinh−1(N̄d/z)−sinh−1(x/z)) with N̄d = 100

and z =

√
N̄ s2 − N̄d2

= 0.001. f(x) is obtained by inserting Ix(z) = 1√
2π

[x2 +

z2]−1/4e
√

x2+z2−x sinh−1(x/z) into Eq. (4.9) and not including the normalization con-

stant A in that equation.

The prior in Eq. (4.9) becomes,

p(x|N̄ s, N̄d) =
1

B

I∏
i=1

e

r
x2

i + N̄s2− ¯
Nd2

I2 +xi

 
sinh−1(

¯
Nd√

N̄s2− ¯
Nd2

)−sinh−1(
xiI√

N̄s2− ¯
Nd2

)

!
,

(4.10)

where B is a normalization constant and the relation
(

N̄s+N̄d

N̄s−N̄d

)x/2

= exp(x sinh−1

( N̄d√
N̄s2−N̄d2

)) has been used. Before continuing with Eq. (4.10) to deduce a MEMx

prior, as a curiosity, consider briefly the alternative asymptotic approximation

Ix(z) ∼ 1√
2π

[x2+z2]−1/4e
√

x2+z2−x sinh−1(x/z), the only difference to the first approx-

imation being of the factor 1√
2π

[x2 + z2]−1/4. Interestingly enough, it seems that

this second approximation, though a more accurate representation of the modi-

fied Bessel function, when inserted into Eq. (4.9) leads to a prior that is physically

not acceptable. For instance, the case with N̄d = 100,

√
N̄ s2 − N̄d

2
= 0.001 and

I = 1 is drawn for this prior in Fig. 4.1, where the region close to the origin

is emphasized. Clearly a continuous analogue of Eq. (4.6) must be a monoton-
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ically increasing function for x < N̄d and a monotonically decreasing function

for x > N̄d. As seen in Fig. 4.1 this is not satisfied because of the sharp peak

around x = 0. This feature can be attributed to the factor [x2 + z2]−1/4 and

to the fact that this prior is not strictly concave everywhere, in contrast to the

priors in Eq. (4.9) and in Eq. (4.10).

In Fig. 4.2, the continuous priors in Eq. (4.9) and Eq. (4.10) are compared

with their discrete analogue in Eq. (4.6), with N̄d kept equal to zero. It might be

surprising to notice that the sinh−1 prior in Eq. (4.10) seems in general to be a

‘better’ continuous analogue to the discrete prior than the modified Bessel prior

in Eq. (4.9). Also shown in Fig. (4.2) is the Gaussian distribution with a mean

value of zero and variance N̄ s. As might have been expected, for N̄ s values of

about 10 or greater the Gaussian distribution begins to become indistinguishable

from the priors in Eq. (4.9-4.10), a property which will be used to explain later

observations, in Sec. 4.4 for example.

The final task in obtaining an appropriate prior is to introduce the quantum

magnitude ε into the sinh−1 prior in Eq. (4.10). Since we will be dealing almost

exclusively with images that are naturally represented by a density, in particu-

lar a magnetization density, the transition from dimensionless variables (xi’s) to

dimensional ones is written by means of the substitution m = εx/v, where the

quantum ε is measured in the magnetic unit µB (Bohr magneton) and v is the

volume of an image bin, so that the elements of the vector m have units of mag-

netization density; Bohr magneton per unit volume. The probability distribution

for m is

p(m|ε, N̄ s, N̄d) =
1

B(N̄ s, N̄d)

vI

εI

×
I∏

i=1

e

v
ε

 r
m2

i +
ε2(N̄s2− ¯

Nd2
)

v2I2 +mi(sinh−1(
¯

Nd√
N̄s2− ¯

Nd2
)−sinh−1(

vmiI/ε√
N̄s2− ¯

Nd2
))

! , (4.11)
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Figure 4.2: A number of the priors in the text are compared for three different

values of N̄ s while N̄d is kept equal to zero. In the top figure N̄ s = 0.1, in the

middle figure N̄ s = 1 and in the bottom figure N̄ s = 10. The discrete prior in

Eq. (4.6) is plotted with a cross for each of its integer arguments and the crosses

are connected with straight dotted lines. The continuous analogues in Eq. (4.9)

and Eq. (4.10) are plotted as the dashed and solid graphs respectively. Also, the

Gaussian distribution with mean zero and standard deviation N̄ s is plotted as

the dash-dotted graph. It is seen that when N̄ s = 10, any of the priors can be

approximated well with a Gaussian distribution.

65



where (v/ε)I is the determinant of the Jacobian for the coordinate transformation

m = εx/v. In addition the dimensionless prior constants N̄ s and N̄d can be

replaced with the dimensional ones M̄ s = εN̄ s and M̄d = εN̄d so that Eq. (4.11)

reads

p(m|ε, M̄ s, M̄d) =
1

B(M̄ s/ε, M̄d/ε)

vI

εI

×
I∏

i=1

e

v
ε

 r
m2

i + M̄s2− ¯
Md2

V 2 +mi(sinh−1(
¯

Md√
M̄s2− ¯

Md2
)−sinh−1(

V mi√
M̄s2− ¯

Md2
))

! , (4.12)

where V = vI is the volume of the unit cell. The priors in Eq. (4.11) and

Eq. (4.12) are of course identical, since fixing ε and N̄ s is equivalent to fixing ε and

M̄ s (or N̄ s and M̄ s), because these 3 quantities are constrained by the relation

M̄ s = εN̄ s. The prior in Eq. (4.11) and Eq. (4.12) will mainly be discussed

in terms of the prior model constants M̄ s and M̄d but occasionally it will be

convenient to discuss it in terms of the dimensionless constants N̄ s and N̄d. This

prior, when written in the form of Eq. (4.12), is referred to as a MEMx prior

in Refs. [50],[51] and Refs. [52],[53] (with M̄d = 0). To compare easier the prior

expression in Eq. (4.12) with that of Buck & Macaulay [50],[51] we may write

Eq. (4.12) as

p(m|ε, M̄ s, M̄d) =
1

B̃(M̄ s/ε, M̄d/ε)

vI

εI

×
I∏

i=1

e

v
ε

 r
m2

i + M̄s2− ¯
Md2

V 2 − M̄s

V
+mi(sinh−1(

¯
Md√

M̄s2− ¯
Md2

)−sinh−1(
V mi√

M̄s2− ¯
Md2

))

! ,

(4.13)

where the term eI v
ε

M̄s

V = eN̄s
has been extracted from the normalization constant

B, and B = B̃eN̄s
. Eq. (4.12) is the MEMx prior which will be of the main focus

in this thesis. It will form part of a posterior distribution in Sec. 4.2 and the
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resulting MEMx technique will be studied critically by a robustness analysis etc.,

and used in the analysis of real data in Chap. 5-6.

In a statistical sense the sinh−1 prior in Eq. (4.11-4.12) is a distribution that

has been studied even less well than the modified Bessel distribution in Eq. (4.6).

Moreover, it is not easy to describe its properties, because neither the normaliza-

tion constant B, nor its mean values or variances can be written down in closed

form. However, since the sinh−1 prior is a continuous analogue of the discrete

Bessel prior and by comparing it with Eqs. (4.7,4.8), we may expect that, in

particular when N̄ s/I À 1, the approximate mean value for mi is given by

〈mi〉 ' M̄d/V , i = 1, 2, . . . , I (4.14)

with variance

〈(mi − 〈mi〉)2〉 ' εM̄ s/(v2I) , i = 1, 2, . . . , I . (4.15)

Hence, the expected value of the total amount of material (i.e. v
∑I

i=1 mi) is

approximately M̄d with variance εM̄ s.

Observe also that the mode of the sinh−1 distribution in Eq. (4.12) is mi =

M̄d/V , i = 1, 2, . . . , I. In the context of MEMx the mode of the prior is often

referred to as the ’default model’, see e.g. Ref. [51] and see Sec. 4.4.6. In the

interpretation of MEMx where we are not searching for the probability of an

image p(m), but where the image itself is interpreted as a probability distribution,

the mode of the prior is often referred to as the prior itself! See Chap. 3 for more

details on this.

In this subsection the MEMx prior in Eq. (4.12) was deduced. Note that, in

this process MEM as described in Sec. 3.1.1 was not applied and no reference was

made to any maximum entropy principle. For this reason the prior in Eq. (4.12)

would arguably be better referred to simply as a possible Bayesian image prior,

rather than a MEMx prior. Also, referring to Eq. (4.12) as a possible Bayesian

image prior puts it on equal footing with other possible priors, meaning that there
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may be more appropriate priors to use than the prior in Eq. (4.12) depending on

the system under consideration. This contradicts the notion sometimes found in

MEMx literature that the MEMx prior is the prior which must always be used

to describe a pos/neg image or pos image (see e.g. Refs. [63],[64] and references

therein and Chap. 3).

4.1.1 An alternative continuous analogue

In this subsection an alternative MEMx prior7 for a pos/neg image is deduced

which is different from the MEMx prior given by Eq. (4.12).

Consider the discrete prior in Eq. (4.3) again. This time aim to find a con-

tinuous analogue to Eq. (4.3) directly without first marginalising out redundant

parameters (to obtain Eq. (4.4)). Following the same procedure as was used to

get from Eq. (4.6) to Eq. (4.10), firstly a continuous analogue to Eq. (4.3) is

suggested,

n+
i → x+

i , i = 1, 2, . . . , I

n−i → x−i , i = 1, 2, . . . , I (4.16)

p(n+,n−|N̄+, N̄−) → p(x+,x−|N̄+, N̄−) =
1

C

I∏
i=1

ex+
i ln(N̄+/I)+x−i ln(N̄−/I)

Γ(x+
i + 1)Γ(x−i + 1)

,

where Γ(x) is the gamma function, and x+
i , x−i are non-negative real numbers.

Using the Stirling’s asymptotic series for the gamma function, we can write Γ(x+

1) ∼ xxe−x and rewrite Eq. (4.16) in the form

p(x+,x−|N̄+, N̄−) =
1

D

I∏
i=1

ex+
i +x−i −x+

i ln(
x+

i
I

N̄+ )−x−i ln(
x−

i
I

N̄− ) , (4.17)

where D is an appropriate normalization constant. If, instead of substituting for

the Gamma function using Γ(x + 1) ∼ xxe−x we use the Stirling series approxi-

mation Γ(x+1) ∼ √
2πxxxe−x, the result is a continuous analogue not acceptable

7A MEMx prior may be defined as any prior which can be related to a prior in literature

where it is used as part of a maximum entropy technique.
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because the additional factor of
√

2πx causes a 1/
√

x singularity at the origin of

Eq. (4.16). As an example, when the Poisson mean values N̄+ and N̄− are huge

we expect the prior to have its maximum near N̄+ and N̄−, but because of the

1/
√

x singularity this will clearly not be the case.

Introducing the dimensional vector maps m+ = εx+/v and m− = εx−/v

representing positive and negative magnetization density respectively, as well as

M̄+ = εN̄+ and M̄− = εN̄−, then Eq. (4.17) can be written as

p(m+,m−|M̄+M̄−) =
1

D

vI

εI

I∏
i=1

e
v
ε (m+

i +m−
i −m+

i ln(V m+
i /M̄+)−m−

i ln(V m−
i /M̄−)) .

(4.18)

In Refs. [65],[66],[67] the logarithm of the prior in Eq. (4.18) is referred to as

an ‘entropy’ for a pos/neg image, where this ‘entropy’ forms part of a maximum

entropy technique8, and Eq. (4.18) is said to be a MEMx prior. The MEMx priors

in Eq. (4.18) and Eq. (4.12) are different, since it is not mathematically possible

to connect these two priors by performing a marginalization9. But when these

two priors are used as part of two MEMx techniques using data that depends

only on the difference map m = m+ −m+, it will be shown in Sec. 4.3 that the

same results are obtained10.

4.1.2 Adding more information to the statistical model

A possibility of adding more information to the statistical model in Eq. (4.4) is

considered. Suppose that it is known, or at least a good guess can be made at

the Poisson mean values of n+
i and n−i for all i = 1, 2, . . . , I bins. Denote these

values as n̄+ = (n̄+
1 , n̄+

2 , . . . , n̄+
I ) and n̄− = (n̄−1 , n̄−2 , . . . , n̄−I ) respectively. Then

8See also Sec. 4.2-4.3 and in Chap. 6 Papoular et al. [66] and Sakata et al. [67] works are

discussed in more detail.
9The integrals necessary for performing the marginalisation of the components of m+ +m−

in Eq. (4.18) cannot be evaluated analytically.
10Provided also matching prior model constants are used, see Sec. 4.3, and for a practical

demonstration see end of Sec. 6.3, Chap. 6.
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for such a statistical model the resulting prior distribution reads11

p(n+n−|n̄+n̄−) =
I∏

i=1

(n̄+
i )n+

i

n+
i !

e−n̄+
i

I∏
i=1

(n̄−i )n−i

n−i !
e−n̄−i . (4.19)

To transfer the discrete prior in Eq. (4.19) to a continuous analogue repeat

the steps from Eq. (4.6) to Eq. (4.10). Introducing the dimensional Poisson mean

value maps m̄s = ε(n̄+ + n̄−)/v and m̄d = ε(n̄+ − n̄−)/v we obtain

p(m|ε, m̄s, m̄d) = (4.20)

1

B̃

vI

εI

I∏
i=1

e

v
ε

 √
m2

i +(m̄s
i )

2−(m̄d
i )2−m̄s

i +mi(sinh−1(
m̄d

i√
(m̄s

i
)2−(m̄d

i
)2

)−sinh−1(
mi√

(m̄s
i
)2−(m̄d

i
)2

))

!
.

which reduces to the distribution in Eq. (4.13) when m̄s
i = M̄ s/V and m̄d

i =

M̄d/V , i = 1, 2, . . . , I.

There may be physical situations where the use of the prior in Eq. (4.20) can

be rigorously justified. However, it is definitely not applicable to the modelling

of magnetization density images, simply because we do not have a priori such

a large amount of information available before a PND experiment. In attempts

where Eq. (4.20) is used it should be mentioned that, in general, very good

data is needed if the results are not going to be dominated by the choice of the

prior model maps m̄s and m̄d. Also, if there is not a general agreement for the

choice of the Prior model maps m̄s and m̄d then the final output can result in

different conclusions about the physical system under consideration given the

same measured data set.

4.2 Bayesian image analysis method and MEMx

A Bayesian image analysis method is typically achieved by firstly setting up a

posterior probability distribution. For a fixed data set the posterior is propor-

tional to the product of the prior and likelihood function, see Chap. 2. The prior

11Eq. (4.19) reduces to Eq. (4.3) when n̄+
i = N̄+/I and n̄−i = N̄−/I for all i = 1, 2, . . . I.
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distribution is taken to be the sinh−1 prior in Eq. (4.12) suitable for the image

analysis problem of polarised neutron diffraction and similar physical systems

involving the reconstruction of pos/neg images. The likelihood function is taken

to be the product of P univariate Gaussian distributions, one for each data point,

and the likelihood function reads

p(Fobs|m) =
1

(2π)P/2
∏P

i=1 σi

exp(−1

2
Q(m)) , (4.21)

where Q(m) is

Q(m) =
P∑

i=1

(F obs
i − Fi)

2

σ2
i

. (4.22)

F obs
i is the ith observed structure factor and Fobs is shorthand for Fobs = (F obs

1 ,

F obs
2 , . . . , F obs

P ). Fi is referred to as the ith ‘calculated’ structure factor (as opposed

to the ith ‘observed’ structure factor) and is related to m through the linear

transformation F = Am, where the P×I image to data Fourier12 transformation

matrix A has the elements

Aij = v exp(2πiKi · rj) . (4.23)

The posterior which will studied in this chapter and used in Chap. 5-6 has, for a

given fixed data set, the following relation

p(m|Fobs, ε, M̄ s, M̄d) ∝ p(m|ε, M̄ s, M̄d)p(Fobs|m) , (4.24)

where the first term is the prior in Eq. (4.12) and the second term the likelihood

in Eq. (4.21). The posterior in Eq. (4.24) contains all the information needed,

12The Fourier transform can be written as

Fi =
∫

cell

m(r) exp(2πiKi · r)dr

where Ki is a reciprocal lattice vector and the integral is calculated as

Fi = v

I∑

j=1

mi exp(2πiKi · rj) ,

i.e. in the usual discrete Fourier series approximation of the Fourier transform.
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but since the image m may easily consist of 10000 or more image bins it is not

possible to comprehend all this information in one go. The reason for using a

‘point estimate’ of multi-dimensional probability distributions, as discussed in

Chap. 2, is to choose from Eq. (4.24) the information which best characterizes

this probability distribution in a form which we can comprehend (i.e. is practically

useful). If the posterior in Eq. (4.24) is chosen to be summarized by the image (m)

which maximizes it (hence its mode) then the result is a Bayesian image analysis

technique can be compared to MEMx techniques in literature, and define the

following Bayesian image analysis method

Definition 7 (Bayesian image analysis method) Consist of summarising the

posterior in Eq. (4.24) by its mode.

In Sec. 4.6 it will be shown how information from the posterior, other then its

mode13, can be taken advantage of in the data analysis process. However, before

Sec. 4.6 the focus will be on the analysis of the mode of the posterior in Eq. (4.24).

Def. 7 is in agreement with the broad definition of MEMx in Def. 6, Chap. 3,

which attempts to cover how MEMx is used and defined in the literature. To see

this more clearly we write the sinh−1 prior in Eq. (4.12) in the form p(m|ε, M̄ s, M̄d) ∝
exp(v

ε
S(m)) where

S(m) =
I∑

i=1

{
[m2

i + (M̄ s2 − M̄d2
)/V 2]1/2 + mi

(
sinh−1(M̄d/[M̄ s2 − M̄d2

]1/2)

− sinh−1(V mi/[M̄ s2 − M̄d
2
]1/2)

)}
, (4.25)

Maximizing the posterior in Eq. (4.24) is the same as maximizing the logarithm of

the posterior and the logarithm of the posterior is, using the notation of Eq. (4.25)

(and Eq. (4.22)), proportional to

logP(m) =
v

ε
S(m)− 1

2
Q(m) . (4.26)

13Information about the sharpness of the posterior distribution around its mode will be used

to calculate error estimation, see Sec. 4.6.
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Considering the likelihood function in Eq. (4.21) by itself, then the statistic Q

in Eq. (4.22) is χ2 distributed with P degrees of freedom, provided that m is

the true image (see Chap. 2, Sec. 2.3). For this reason, a constraint on Q,

i.e. Q = some constant, is often referred to as a chi-squared constraint, (see

Sec. 2.3.3). Furthermore, v
ε

in Eq. (4.26) may be intepreted as a Lagrangian

multiplier and optimizing Eq. (4.26) can be perceived as maximizing S(m), an

‘entropy’, subject to a chi-squared constraint, Q = come constant. This is how

the MEMx technique is most frequently thought of and how it is defined in Def. 6,

Chap. 3.

In addition, the maximizing problem of Def. 7 can be perceived as a regularizer

method, where S(m) is the regularizer and the degree of regularizing or smoothing

is determined by the constraint equation involving Q(m), see Refs. [63],[64] for a

detailed explanation of this. If the posterior in Eq. (4.24) had been chosen to be

summarized not by its mode, but by its mean for example, then the comparison

to MEMx and the broad definition of MEMx in Def. 6, Chap. 3 could not have

been made.

The number of prior model constants of the MEMx method of Def. 7 is three:

ε, M̄ s and M̄d. A value for each of these three constants needs to be specified

before the MEMx method can be used. Rather then specifying a ε value as

explained above and seen from the expression in Eq. (4.26), ε can alternatively

be interpreted as a Lagrangian multiplier which is determined from a specified

constraint value on Q. This is preferable because one generally has a stronger

intuition about a quantity such as Q compared to quantity such as ε, also using

Q (to fix a value for ε) is the familiar approach in MEMx literature. Sec. 4.4-4.5

provides a rigorous study of the MEMx method as a function of its prior model

constants Q, M̄ s and M̄d, which is called an robustness analysis in Bayesian

statistics (see Sec. 2.2.1, Chap. 2).
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4.3 Comparing MEMx publications

Although the MEMx method is supposedly just one technique in image analysis,

it is interesting to note that the relatively large number of papers with “MEMx”

in the title can be separated into many smaller sets which do not cite one another.

Only MEMx papers used to reconstruct pos/neg images will be briefly reviewed

here, see Chap. 3 for a general discussion of early maximum entropy related

works.

Buck & Macaulay, in Refs. [50],[51], used the prior in Eq. (4.12) (or Eq. (4.20))

to analyse solar magnetic cycles from sunspot data and to construct neutron

charge density maps from elastic electron scattering cross-sections. It must be

noted that Buck & Macaulay use a notation, explained in App. C, adapted from

papers of Skilling (see App. C), which can be confusing. This notation introduces

a so-called metric as part of the prior expression which may lead to the illusion

that this metric is a real physical quantity and that the optimization problem

that is treated by Buck & Macaulay is different from the one in Def. 7; This is not

the case (see App. C for a discussion of this). From a Bayesian statistical point

of view Buck & Macaulay [50],[51] were the first to marginalise out redundant

parameters to obtain the modified Bessel function expression in Eq. (4.4) in the

context of a MEMx analysis.

Consider the following selection of papers: Laue et al. [65],[68]; David [55],[69];

Papoular et al. [66],[70]; and Sakata et al. [67]. Laue et al. studied NMR data

and were the first to use a MEMx method for reconstructing pos/neg images

and their work will be discussed further at the end of this section. David was

interested in solving crystal structures from powder diffraction data and this work

involves obtaining Patterson maps, which for neutron powder diffraction data is

a pos/neg image. The work of Papoular et al. and Sakata et al. will be discussed

in more detail in Chap. 6. Common to these approaches is the use of what may

be called a ‘double ln entropy’. It is therefore of interest to study briefly whether
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the output from the MEMx method differs as a result of using a double ln entropy

rather than a sinh−1 entropy. Take the double ln entropy to be the exponential

of the double ln prior in Eq. (4.18)

S(m+,m−) =
I∑

i=1

[m+
i + m−

i −m+
i ln(

V m+
i

M̄+
)−m−

i ln(
V m−

i

M̄− )] . (4.27)

If the data only depends on the difference map m = m+ −m− (as is the case

for data measured to obtain the magnetization density of a unit cell) then the

resulting MEMx optimization problem may be defined as the maximization of

logP(m+,m−) =
v

ε
S(m+,m−)− 1

2
Q(m+ −m−) (4.28)

subject to a constraint on Q, where Q is a chi-squared like function such as Q

in Eq. (4.22). Eq. (4.28) is the equivalent of Eq. (4.26) in the previous section

except for the use of the double ln prior instead of the sinh−1 prior. It will now

be shown that optimizations of Eq. (4.28) and Eq. (4.26) yield exactly the same

output provided equivalent prior model constants are used14.

For notational convenience (and without loss of generality) assume that we

have just one bin (I = 1) with volume v = 1. Changing the variables to sum

density ms = m+ + m− and difference density m = m+ −m− and logP(m+,m−)

in Eq. (4.28) reads

logP(m+,m−) = ms − (1/2)ms ln[((ms)2 −m2)/(4M̄+M̄−)]−Q(m)/2

−(1/2)m ln[(ms + m)M̄−/((ms −m)M̄+)] . (4.29)

To optimize logP(m+,m−) take the derivative of this expression first with respect

to ms. This first derivative is equal to zero when (ms)2 = 4M̄+M̄−+m2. Inserting

this value for ms into the expression in Eq. (4.29) and using the relations between

the prior model constants M̄ s = M̄+ + M̄− and M̄d = M̄+− M̄− (see Eqs. (4.5))

14A similar observation has been noted previously, for instance see Refs. [56],[52] and [14],

page 152.

75



and sinh−1 x = ln(x+
√

x2 + 1) it can be deduced that logP(m+,m−) in Eq. (4.29)

reduces to exactly logP(m) in Eq. (4.26) with I = 1 (and v = 1). Hence, it has

been shown that the MEMx optimization of Eq. (4.28) and Eq. (4.26) result in

exactly the same solution. This shows that it is possible to relate publications on

MEMx which use the double ln prior and publications which use the sinh−1 prior

directly, as will also be illustrated in Chap. 6, where Papoular et al. [66],[70] and

Sakata et al. [67] are discussed in more detail.

In the work of Laue et al. [65],[68] the MEMx method was used to obtain NMR

frequency spectra containing both positive and negative peaks or even complex

NMR spectra15. Following the work of Laue et al. and others, and based on

the particular physics of a NMR experiment, it was argued by Daniell & Hore

in Ref. [54] that for the purpose of analysing NMR data, a sinh−1 entropy is

advantageous to use, where this sinh−1 entropy is a function of magnitudes of

complex numbers16. For a quantitative comparison of the work of Daniell &

Hore and Laue et al. see Ref. [56], where it is concluded that for the analysis of

NMR data the approach of Daniell & Hore seems to give the best results.

A recent paper on MEMx is Maisinger et al. [52],[53], who study cosmic

microwave background radiation data. In Maisinger et al. [52],[53] the sinh−1

prior expression is used (use in Ref. [52] in Eq. (8) of this work that ln(x +
√

x2 + 1) = sinh−1 x).

Practical applications of MEMx applied to the study of PND data is found

in Refs. [74], [75], [76], [77], [78], [79], [80], [81] and [82]. Refs. [80], [81] will be

discussed in more detail in Chap. 6, and Ref. [82] in Chap. 5.

15A large class of techniques known as two-dimensional NMR return frequency spectra, which,

in general, may need to be described as 2D-complex spectra. An example of such a NMR

technique is COSY, see e.g. Ref. [71].
16In Refs. [54],[72],[73] the entropy used is S1/2 = −∑

[|Mi| sinh−1 |Mi|/b −
√

b2 + |Mi|2],
where |Mi| is the modulus of a complex magnetization. S1/2 has exactly the same form as

S(m) (with M̄d = 0) in Eq. (4.25). For more details see the cited papers.
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4.4 Robustness analysis of mode of posterior

This section contains a rigorous analysis of the Bayesian image analysis method

as defined in Def. 7 as a function of the methods prior model constants for a

fixed data set. In Bayesian statistics this is called a robustness analysis. Such an

analysis has never been carried out previously in the context of the posterior in

Eq. (4.24) and the MEMx technique.

The analysis aims to reconstruct a known model from an incomplete data

set generated by that model. The model which will be used for this purpose is

described in Sec. 4.4.2. Since the data is generated from a known source, different

choices of the prior model constant, and the resemblance of the resulting mode

of the posterior to the actual model can be compared. Such analysis may be

referred to as a simulation. Before performing any simulations a number of

possible numerical algorithms for carrying out MEMx optimization are discussed

first.

4.4.1 Numerical consideration

The numerical problem of finding the mode of a posterior in Eq. (4.24) for given

prior model constants is in general a fairly straightforward one. The main rea-

son for this is that the posterior is strictly concave and therefore has only one

maximum, the mode of the posterior, and no additional local extrema. Also,

the gradient and Hessian matrix can be calculated with relative ease. On the

other hand, since the number of variables of the posterior function, I (equal to

the number of bins), may be of the order of a million or more, the discussion

will be limited to algorithms which require storage of the order I rather than I2.

Further, finding the mode of the posterior is the same as finding the maximum

of the logarithm of the posterior, and the later is computationally favourable.

An obvious first candidate to try is the conjugate gradient method. The

reason for this is that the logarithm of the posterior is expected not to deviate too
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much from a quadratic form, since the likelihood has a Gaussian distribution (see

Eq. (4.21)), for a broad range of prior model constants. The closer the posterior

is to being a multivariate Gaussian the more efficient the conjugate gradient

method will be. Described shortly, this search algorithm finds the maximum of a

function along a set of conjugate search directions, one search direction at a time.

The so-called Polak-Risiere variant of the conjugate gradient method has been

implemented following Press et. al. [83]. The method has worked satisfactorily

for the cases to which it was applied. In general this algorithm was used together

with the algorithm described below in order to make absolutely sure that the

correct answers are obtained.

The first algorithm that was used was a copy of a program used previously by

Buck & Macaulay to study sunspots and nuclear charge densities in Refs. [50],[51],

it is described in some detail in appendix A of Macaulay’s thesis [16]. The pro-

gram follows the method of Skilling & Bryan described in Ref. [84], a specialized

algorithm to deal with the optimization problem related to that of Eq. (4.26) (or

Eq. (4.28)). The method resembles a steepest descent method but is somewhat

more involved. First, a number of search directions are selected. Typically three

search directions are used, where one direction is the gradient of the posterior.

Then, a second order Taylor expansion of the logarithm of the posterior is made

along these search directions, and the image is found that optimizes the Taylor

approximated posterior within the three-dimensional search space. Finally, reset

the old image with the newly found image. This iterative process is repeated until

the maximum value for the posterior is reached. In addition Skilling & Bryan use

a metric in their algorithm to adjust the search directions and the step-size in

each iterative step. They find that choosing the metric to be equal to the inverse

of the Laplacian of the logarithm of the prior is a particularly useful choice.

Recently the Newton-Raphson method was used in Refs. [52],[53] to calculate

the MEMx Problem. The Newton-Raphson iterative process updates the image
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using

mn+1
i = mn

i − γ

(
∂f/∂mi|mn

i

∂2f/∂m2
i |mn

i

)
, (4.30)

where f is the logarithm of the posterior in Eq. (4.24) and an appropriate value

for γ is chosen for each iteration to maximize speed and stability.

Freely available MEMx programs exist on the web. For instance, a MEMx

program which is an extended version of the program in Ref. [85] can be down-

loaded from the web-side “http://www.uni-tuebingen.de/uni/pki”. For a full

description of the web-program see Ref. [86]. This program differs from the ones

described above by not keeping the MEMx prior model constants fixed in the

iteration search algorithm it is using (except for the equivalent quantity to Q in

Eq. (4.22)). This is a consequence of an approximation that is applied which is

referred to as the zeroth-order single-pixel approximation, for more details see

Ref. [87] and Sec. 6.2 in this thesis. Thus, this type of algorithm is not ap-

propriate for the analysis carried out in this chapter. Another example, of a

freely available MEMx software is described in Ref. [88], which is available from

hoch@rowland.org.

The code which was obtained from Buck & Macaulay together with an al-

ternative code that was written by myself are very solid and complement each

other very well. The program includes a simple interface and will be made freely

available to anyone interested.

My general experience is that the overall speed depends heavily on the choice

of the prior model constants used relative to the data set, and that each algorithm

has preferred regions of prior models constants. However this subject has not been

studied exhaustively.

4.4.2 Thesis model used for simulations

The model chosen here for studying the robustness of the posterior distribution

in Eq. (4.24) has a degree of randomness to it, and could reflect a real physical
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system. It is a 2D model rather than a 3D model simply because 2D images are

easier to visualize, however it does originate from a 3D charge density model of

one of the crystal structures that was studied experimentally.

The unit cell is chosen to be rectangular with point group mm17 and with

lattice parameters a = 3.9Å and b = 11.8Å. The image density within the 2D-unit

cell consists of a collection of densities centered around a set of crystallographic

sites specified as fractional coordinates in table 4.1. These local densities are

generated by the same function for all the sites, and are given by the values in a

plane though the center of the Pr 4f charge density taken from Ref. [89]. Taking

an atomic unit to be AU= 0.528Å, this density in Cartesian coordinates is

ρ(x, y, z) =
1

4π(AU)3
(r/AU)6 [902.183 exp(−10.271 r/AU) +

129.67688 exp(−5.828 r/AU) + 20.006113 exp(−3.885 r/AU) +

0.52792993 exp(−2.125 r/AU)] , (4.31)

where r =
√

x2 + y2 + z2 is in units of Å, and the density ρ satisfies
∫
R3 ρ dxdydz

= 1. The magnetization at any point in the 2D-unit cell is then given by the sum

over the atomic sites in table 4.1

mmodel(x, y) =
9∑

i=1

Ai

∑
j

ρ(x− xij, y − yij, z = 0) , (4.32)

where (xij, yij) is the position of the ith atom at the jth symmetry site (e.g. atom

i = 2 has the symmetry equivalent positions (0, 0.45), (0, 0.55), (1, 0.45) and

(1, 0.55)). Ai is a relative intensity coefficient in units of µBÅ and the density

m(x, y) is then in units of µBÅ−2. This choice of units is made because the main

focus here is on the analysis of polarized neutron diffraction data.

The model in Eq. (4.32) is transformed into a discrete 64 × 128 grid which

will be referred to as the thesis model; it is then defined by specifying a magne-

tization density for each of the 64 × 128 bins: mmodel(0, 0), mmodel( 1
64

a, 0), . . .,

mmodel(63
64

a, 0) , mmodel(0, 1
128

b), . . ., mmodel(63
64

a, 127
128

b), as shown in Fig. 4.3.

17The mm point group has two mirror lines through the center of the cell.
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Atom name Position Intensity coefficient

i x (units of a) y (units of b) A [µBÅ] No. of atoms

1 0.5 0.5 1 1

2 0 0.45 -0.08 2

3 0.5 0.37 -0.05 2

4 0 0.36 0.02 2

5 0.5 0.18 0.18 2

6 0 0.15 0.20 2

7 0.5 0.09 -0.04 2

8 0.5 0 0.04 1

9 0 0 0.06 1

Table 4.1: The fractional coordinates together with the intensity coefficients of

the thesis model. The thesis model is shown in Fig. 4.3. The last column shows

the number of atoms of each type in the unit cell.

From the thesis model a set of structure factors can be generated. An in-

complete data set is selected including all structure factors where the absolute

values of the Miller indices |h| and |k| are smaller than, or equal to, 2 and 4

respectively. Hence, there are a total of 45 structure factors. However, because

the unit cell has point group symmetry mm some of the 45 structure factors are

symmetry related, so the total number of unique structure factors is 15, these

are the structure factors listed as Fmodel
hk in table 4.2. Each of the 45 structure

factors is associated with a Gaussian standard deviation σ = 0.01µB. Mock data

is generated in accordance with the σ = 0.01µB standard deviations using a nu-

merical Gaussian sampling routine. The resulting data set is shown in columns

4 and 5 in table 4.2 and has Q = 18.2 relative to the model. The standard

deviations in column 5 appear to be smaller than σ = 0.01µB, this is because

the standard deviations listed refer to ’Gaussian averaged’ standard deviations.

For instance, the standard deviation σ12 = 0.005µB in table 4.2 is the average
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Miller indices

h k Fmodel
hk [µB] F obs

hk [µB] σhk [µB] F obs
hk [µB] σhk [µB]

0 0 2.012013 2.021786 0.010000 1.490494 1.0000

0 1 -0.488527 -0.496344 0.007071 -1.774944 0.7071

0 2 0.711790 0.723847 0.007071 1.134492 0.7071

0 3 -1.792406 -1.796752 0.007071 -2.907177 0.7071

0 4 0.806576 0.809126 0.007071 1.124114 0.7071

1 0 -1.004830 -1.009398 0.007071 -0.580080 0.7071

2 0 1.251381 1.270658 0.007071 1.185319 0.7071

1 1 1.382979 1.383121 0.005000 1.384047 0.5000

1 2 -1.065333 -1.057195 0.005000 -1.699958 0.5000

1 3 1.202411 1.198062 0.005000 1.269323 0.5000

1 4 -1.366915 -1.370709 0.005000 -1.460932 0.5000

2 1 -0.304160 -0.305367 0.005000 0.856251 0.5000

2 2 0.444078 0.447442 0.005000 0.229245 0.5000

2 3 -1.121853 -1.119203 0.005000 -1.091098 0.5000

2 4 0.506383 0.506306 0.005000 0.046348 0.5000

Table 4.2: The table lists a set of 15 unique model structure factors in column 3

and two mock data sets in columns 4-5 and 6-7 respectively. See text for more

information.
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standard deviation of the four symmetry equivalent structure factors with Miller

indices (h, k) = (1, 2), (−1, 2), (−1,−2), (1,−2). Since we assign the Gaussian

standard deviation σ = 0.01µB to each of these structure factors, the average

standard deviation is σ12 = 0.01/
√

4 = 0.005µB.

The mock data set in columns 6 and 7 is generated in the same way as above,

but with the higher standard deviation, σ = 0.5µB, on each of the 45 structure

factors. For this mock data set Q = 15.1.

4.4.3 Varying M̄ s

The first robustness analysis of the MEMx method of Def. 7 concerns the sen-

sitivity of the mode of the posterior in Eq. (4.24) to changes of the prior model

constant, M̄ s. To study this, the series of figures from Fig. 4.11 to Fig. 4.13 show

reconstructions of the data in columns 4 and 5 of table 4.2 for fixed Q = 15 and

varying values of M̄ s, starting from M̄ s = 100µB moving down to M̄ s = 10−5µB.

In this section M̄d is kept equal to zero, the behaviour of the mode of the posterior

as a function of M̄d will be studied in Sec. 4.4.6.

In Figs. 4.11-4.13 the mode is visualized as follows. The graphs to the left-

hand side of these figures show the mode as magnetization density surface plots

and represent mmax. The following notation is introduced to explain the graphs

to the right-hand side of these figures

• Fmax are the structure factors obtained by taking the Fourier transform of

mmax, i.e. Fmax = Ammax, where A is defined in Eq. (4.23). Thus, Fmax

is just another representation of the mode but in ‘data space’.

• Fmodel is the vector representing the structure factors which is the Fourier

transform of the model in Eq. (4.32).

• Fobs represents the observed structure factors, here the mock data in columns

4 and 5 in table 4.2.
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Figure 4.3: The figure shows the thesis model described below Eq. (4.32).
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Figure 4.4: (a) shows the same magnetization density image as in Fig. 4.3, and

is included to make it easier to compare the thesis model with reconstructions in

Fig. 4.11-4.30. (b) shows the Fourier transform of the mock data mapped onto a

16× 32 grid.

In the figures to the right-hand side the mode Fmax is plotted, as circles, as

a function of the scattering length q = 2π
√

(h/a)2 + (k/b)2. To compare the

calculated structure factors Fmax with the observed and model structure factors,

Fobs are plotted as the big crosses and Fmodel as the small crosses.

To aid the comparison of a reconstruction with the thesis model in ‘magneti-

zation density space’, the thesis model is plotted in Fig. 4.4(a) to the same scale

as the magnetization density pictures in Figs. 4.11-4.13.

From Figs. 4.11-4.13 first observe the following. It is clear from the structure

factor pictures that we have lost most of the fine structure contained in the

structure factors with q > 3.86Å−1 because only data with scattering vector up

to q = 2π
√

( 2
a
)2 + (4

b
)2 ' 3.86Å−1 are included in table 4.2. It is not possible

to apply our Bayesian analysis in Def. 7 in order to recover such fine details. It

is also clear from the magnetization density plots (when compared to the thesis

model) that fine details, on a scale smaller than 1/4 along the x-direction and 1/8
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along the y-direction, are not reconstructed. This is for the simple reason that

such information is not present in the input data and is certainly not present in

the prior.

Comparing the reconstruction in the top left-hand figure in Fig. 4.11, where

the prior constant M̄ s is equal to 100µB, with the inverse-Fourier density map in

Fig. 4.4(b), these two maps look essentially identical. Hence when M̄ s = 100µB is

chosen as the prior constant, it is sufficient to take simply the Fourier transform

of the data, rather than spending time calculating the mode of the posterior in

Eq. (4.24). This is because when M̄ s and, in particular, N̄ s is large, we know

from consideration of Fig. 4.2 that it becomes valid to approximate the sinh−1

prior with a Gaussian distribution, i.e.

p(m|ε, M̄ s) =
1

[2πεM̄ s/(v2I)]I/2
exp

(
− v2I

2εM̄ s

I∑
i=1

m2
i

)
. (4.33)

Using Eq. (4.33) in the posterior instead of the sinh−1 prior in Eq. (4.12) an

analytical solution for mmax is found by changing to data space coordinates using

Fcal = Am and the relation v2I
∑I

i=1 m2
i =

∑I
i=1(F

cal
i )2. The mode of the

posterior with a Gaussian prior is18 (see also App. D)

Fmax
i =





F obs
i

1+
σ2

i
εM̄s

for Miller indices inside Fobs

0 otherwise

. (4.34)

Here two things are observed. By using a Gaussian prior it is not possible to

generate a reconstruction which has non-zero calculated structure factors outside

the region of structure factors in Fobs and, in addition, when M̄ s = 100µB,

σ2

εM̄s = σ2N̄s

(M̄s)2
= 0.012∗959400

1002 ' 0.0096 << 1 (see Eq. (4.34) and N̄ s is quoted in

the top left-hand figure in Fig. 4.11), which explains the reconstruction observed

with M̄ s = 100µB.

As M̄ s is reduced from 100µB to 1µB, the resemblance of the reconstructed

magnetization density maps to the thesis model is improved and the Bayesian

18Unit cell is centrosymmetric and Fi = F ∗i
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image analysis method also returns calculated structure factor values which are

non-zero outside the region of structure factors in Fobs. Although this is a

subjective judgment, the best overall reconstructions are found in the interval

M̄ s ∈ [0.1; 2]µB. Furthermore, observe that, as M̄ s is lowered, the areas with

non-zero density are truncated to gradually smaller areas and hence more spiky

maps appear. This behaviour is also seen for example, by following the calculated

structure factors in the right-hand side figures in Fig. 4.13, as M̄ s decreases.

The main purpose of these figures is to obtain an idea of the sensitivity of the

mode of the posterior to changes in M̄ s. As is observed, the prior constant M̄ s

does indeed play an important role in determining the quality of the reconstruc-

tion. It shows that a prior model constant like M̄ s cannot be ignored, it must be

clearly specified to ensure that the prior information in the MEMx application is

fully specified.

Although some details may be different the overall behaviour which is observed

in Figs. 4.11-4.13 will apply in general. The exception is when I = P and possibly

when I is very close to P 19 but the I = P case is unlikely to be of practical interest.

Possible options for selecting good M̄ s values will be discussed in Sec. 4.5.2.

4.4.4 Varying Q with smaller errorbars

As for the experiment (i.e. picture series) discussed in the previous subsection

the data in columns 4 and 5 in table 4.2 with the smaller errorbars (smaller

σ’s) is used and Fig. 4.14 and Fig. 4.15 show reconstructions with Q fixed and

M̄ s varying. In Fig. 4.14 Q = 1500 and in Fig. 4.15 Q = 0.15. The observed

behaviour is exactly the same as that described in Sec. 4.4.3 and indicates that

the reconstructed magnetization densities are independent of the choice of Q.

19The exception to this rule is when I = P , or I slightly bigger than P , then the likeli-

hood part of the posterior is expected to completely dominate the posterior and therefore be

independent of any prior model constants.
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This is supported by the series of pictures in Figs. 4.16-4.17, where M̄ s = 2µB

throughout, and Q is changed from 0.0015 to 1500, an increase of 6 orders of

magnitude. Only as Q approaches 1500 do small changes in the reconstructed

magnetization density images appear. Therefore, from Figs. 4.14-4.17 it is fair

to conclude that the overall structure of the reconstruction for this range of Q

values is independent of the value of Q when using the thesis data in table 4.2

with the smaller errorbars.

4.4.5 Varying Q with larger errorbars

The mock data used in the previous section was the data in columns 4 and 5 in

table 4.2. This data set has σ
F obs ratios of the order of 0.01. The conclusion of

the previous section remains the same for any data set which is measured with

an accuracy equal to or better than this. For data of poorer quality, and higher

σ
F obs ratios, the mode of the posterior will start to be less robust to changes in Q.

This will happen for gradually smaller values of Q as the quality of the data is

reduced.

That behaviour can be understood from the form of the posterior. If the

posterior is written in structure factor coordinates, achieved by substituting the

mi’s with Fi’s using F = Am, then it should be clear that the likelihood part of

the posterior depends only on the structure factors whose Miller indices match

those of the observed structure factors, call these Fi’s the ‘observed’ Fi’s, whereas,

the prior part of the posterior depends on all the Fi’s (not only the ‘observed’

Fi). From the point of view of the prior the effect of a Q constraint is to impose

limits on the ‘observed’ Fi’s. If the Q constraint is Q = 0 the prior must ‘select’

maps such that Fi = F obs
i for all the ‘observed’ Fi, and the remaining Fi values

(which may be called the ‘unobserved’ Fi’s) are chosen according to the prior

and prior model constant M̄ s while keeping Fi = F obs
i for all i’s belonging to

Fobs. Consequently, if the σi

F obs
i

’s ratios are small, say smaller than 0.01, then
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changing the Q constraint from Q = 0 to Q = P implies that the ‘observed’

Fi’s on an average must be F obs
i ±σi, which means the ‘constraints’ on these Fi’s

stay effectively unchanged as compared to the constraints on these values when

Q = 0. As an example, say the ith structure factor has F obs
i = 1 with σ = 0.01.

Then Q = 0 implies Fi = F obs
i = 1 and using Q = P implies Fi ∼ 1± 0.01. Thus

from the point of view of the prior Fi is constrained to approximately the same

value. Generalizing this argument for all i = 1, 2, . . . , P data points gives that

the reconstruction with Q = 0 and Q = P will be basically the same (keeping M̄ s

fixed). From the argument above it is expected that the mode of the posterior

will not change significantly as long as the data and value of Q implies that the

‘observed’ Fi’s stay close, on an absolute scale, to the observed structure factors.

More specifically, if the ‘observed’ Fi’s on an average are allowed to vary more

than say 10% from the F obs
i ’s, then a notable difference can be observed in the

reconstructed image. Using this approximate thumbrule, we have, for Q values

smaller than about

Q =
P∑

i=1

(F obs
i − 0.9Fi)

2

σ2
i

=
P∑

i=1

(0.1F obs
i )2

σ2
i

, (4.35)

the mode of the posterior will change little as Q is reduced below that value.

Making the assumption that the σi

F obs
i

ratios are of about the same magnitude for

all measured data points and let σ
F obs represent a typical such value then Q in

Eq. (4.35) simplifies to

Q = P (0.1F obs/σ)2 . (4.36)

For such data conditions the level of robustness of the mode of the posterior to

variations in Q can be estimated according to Eq. (4.36). For Q values such that

σ
√

Q

F obs
√

P
< 0.1 the mode of posterior is not sensitive to changes in Q, i.e. it is

robust to changes in Q (as was the case in the previous subsection). But, for

values such that σ
√

Q

F obs
√

P
≥ 0.1 the reconstructed maps can depend strongly on

the choice of Q, this is illustrated below.
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Figs. 4.18-4.20 represent an experiment similar to that explained in the pre-

vious sub-section, but the mock data in columns 6 and 7 is used instead of the

mock data in columns 4 and 5 in table 4.2. This data has larger errorbars (larger

standard deviations). In the first four frames of Figs. 4.18-4.20 M̄ s = 0.01µB and

Q is varied. These data have σi/F
obs
i ratios of the order one. Therefore, accord-

ing to Eq. (4.36), the mode of the posterior will depend significantly on Q, for Q

values bigger than Q ' P (0.1)2 = 0.15. The reconstructed image changes only

a little as Q is increased from Q = 0.1 to Q = 1, but already for Q = 15 a big

difference is seen. As explained in the text above, this is because the larger σ
F obs

means that the prior at Q = 15 gets a lot more flexibility, on an absolute scale, to

‘select’ values for the ‘observed’ structure factors. Frames 5 to 8 in Figs. 4.18-4.20

are the same as frames 1 to 4 but with the more optimal M̄ s value of 0.5µB, and

the same pattern is observed. Note also that, as in Sec. 4.4.3, the M̄ s = 0.01µB

reconstructions appear artificially spiky as compared to the M̄ s = 0.5µB recon-

structions. The last frame in the picture series Figs. 4.18-4.20 shows the mode

with the high M̄ s value of 100µB and small value Q of 0.01. As expected from

the discussion in Sec. 4.4.3, the resulting reconstruction is basically the same as

that obtained by taking the Fourier transform of the mock data.

Based on the observation in Sec. 4.4.4-4.4.5 the prior model constants Q will

be discussed further in Sec. 4.5.1.

4.4.6 Without the zero-q structure factor and M̄d

The last prior model constant of the MEMx method to be studied is M̄d. It will

be argued that the best choice is to select M̄d to zero for the type of data and

systems considered in this thesis. M̄d differs from Q and M̄ s in that, in theory,

it is possible to relate it to a physical measurable quantity (at least for the case

of reconstructing a magnetization density). This will be discussed below.

In a PND experiment it is not possible to measure the zero-q structure factor
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which is equal to the total magnetic moment in the unit cell. However, this value

can be obtained from a magnetic susceptibility measurement, or alternatively the

physics of the system, or a conservation law, may imply that the total moment

is known to be exactly equal to a certain value, in which case the probability

distribution for the total magnetic moment is a delta function. However, for the

data in columns 4 and 5 of table 4.2 such a data point is included and the zero-q

structure factor F obs
00 is Gaussian distributed with mean value F obs

00 = 2.021786µB

and standard deviation σ00 = 0.01µB.

Information about the total magnetic moment in the cell is also contained

in the prior model constant M̄d, in the form of the highly non-standard sinh−1

distribution in Eq. (4.12). This is reflected by the fact that, if no data were

available, the MEMx method would output an image with a moment equal to M̄d,

as discussed in Sec. 4.1. For this reason, it is sometimes found in MEMx literature

that a quantity such as M̄d is referred to as a default model. In which case, the

default model relates to the idea of putting M̄d equal to the magnetic moment

which was expected before the data was measured. Although this seems sensible

at first sight it actually turns out not to be such a good idea, see discussion of

the picture series Figs. 4.25-4.26 below.

In summary, it is seen that the information in M̄d and information about the

value of the total moment in the likelihood (represented by F obs
00 and σ00) are

expected to overlap somewhat. It would therefore be interesting to study them

together. At this point one may ask the following questions: i) How is information

on M̄d linked with information on F00? ii) For the case where no information

is available about the total moment, what value should be chosen for M̄d? iii)

If information is available about the total moment should this information be

included in M̄d or in the likelihood or both?

In the picture series Figs. 4.21-4.22 the experiment illustrated in Sec. 4.4.3

is repeated, still with M̄d = 0, but the zero-q structure factor in column 4 of

table 4.2 is excluded. Hence, for these reconstructions the data contains no
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information about the total moment. What then is the effect of keeping M̄d = 0?

We may have expected that the reconstructed images would have had a total

calculated moment of zero; this is clearly not the case as seen from Figs. 4.21-4.22,

and can be understood from the form of the prior and from the following example.

The prior can be written as a product of I identical terms (see Eq. (4.12)). The

purpose of each of these terms is to set the magnetic moment in each of the I

bins to zero when M̄d = 0. Therefore the prior function works by attempting

to make the moment as small as possible in each bin. As an example consider

data which contains evidence of a positive moment around the center of the unit

cell and nowhere else, let this data be without a zero-q structure factor and put

M̄d = 0. However, the mode of the posterior will have a positive peak at the

center of the unit cell and be zero everywhere else. Thus, the reconstruction

has a positive total moment. This shows that as soon as any data are available,

even data containing no information about the total moment, then there is a

non-straightforward relation between M̄d and the calculated total moment of the

mode. Only when we have no data do we know that M̄d is equal to the total

calculated moment of the mode.

It is observed from the figures in Figs. 4.21-4.22 that, as M̄ s is reduced,

the total calculated moment goes up until a saturation point, and thereafter

it remains almost constant but may eventually start to decrease slowly as M̄ s

becomes very small. This behaviour is illustrated in fig. 4.5 which shows M̄ s

versus the calculated total moment. Here again we see that despite the lack of a

zero-q structure factor in the data and the fact that M̄d = 0, the total calculated

moment is not implicitly zero, even when the likelihood contains no information

about the total moment.

Otherwise, except for the total magnetic moment, the reconstructions for

various values of M̄ s look the same with or without the zero-q structure fac-

tor, as long as M̄ s ≥ 0.1µB. Also note that adding a constant background of

2.012013µB/(3.9Å ∗ 11.8Å) ' 0.044µBÅ−2 is the same as adding 2.012013µB to
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Figure 4.5: A plot of the total calculated moment as a function of M̄ s with

M̄d = 0, Q = 15 and the mock data in the 4th and 5th column in table 4.2

without the zero-q structure factor. This is shown for the unit cell divided into

8× 16 , 16× 32 and 32× 64 discrete bins.
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the unit cell. If M̄ s is below about M̄ s = 0.1µB, the resulting magnetization den-

sity maps start to decline in quality relative to their counterparts in Sec. 4.4.3.

This is seen, for instance, by comparing the bottom magnetization density map

in Fig. 4.22 with the bottom left-hand figure in Fig. 4.13.

To generate the plots in Fig. 4.23-4.24 the zero-q structure factor is once again

included in the data, and in addition M̄d is fixed to be equal to the total moment

of the thesis model, i.e. M̄d = 2.012013µB, instead of M̄d = 0. Information

about the total moment is then available in the form of the Gaussian data point

F00 = 2.021786µB with σ00 = 0.01µB and in the prior as M̄d = 2.012013µB.

In Fig. 4.23-4.24 the prior constant M̄ s is reduced from M̄ s = 10µB to M̄ s =

2.01202µB (recall that M̄ s must be bigger than the absolute value of M̄d, see

below Eq. (4.5)). Probably the most interesting observation here is that contrary

to the equivalent reconstructions with M̄d = 0, the total calculated moment for

these magnetization density maps is slightly larger rather than slightly smaller.

For instance, with M̄ s = 5µB and M̄d = 0µB the calculated total moment of

2.009µB (see title of top figures in Fig. 4.12) is obtained whereas, with M̄ s = 5µB

and M̄d = 2.012013µB a moment of 2.032µB is obtained (see title of middle

figures Fig. 4.23).

Finally, in the picture series in Figs. 4.25-4.26 the same experiment as above

is repeated, but this time with the zero-q data point excluded from the data and

a value of M̄d equal to the total moment of the thesis model is used. It is ob-

served that the total calculated moments are larger than M̄d = 2.012013µB, start-

ing from v
∑

i m
max
i = 2.598µB, when M̄ s = 10µB, increasing to v

∑
i m

max
i =

4.347µB, when M̄ s = 2.0121µB. Comparison with the calculated moments in

Figs. 4.11-4.13 shows that the total calculated moment when M̄d = 2.0121013µB

is approximately equal to 2.0121013µB plus the total moment calculated when

M̄d = 0, keeping M̄ s and Q the same.

There is clear indication from the pictures presented in this subsection that

if information about the total moment is available either from an experiment
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or other source, then this information should be included as a constraint in the

likelihood rather than as a non-zero value for M̄d. There are a number of reasons

for this. One is a pragmatic reason: It has been found that choosing a non-zero

value for M̄d does not make a significant improvement to the reconstruction.

Hence, for simplicity, keep M̄d = 0. If a non-zero value for M̄d was used, then

what value should be chosen? An intuitive choice would be to take M̄d to be

equal to the known total moment. But as we saw in Fig. 4.25-4.26 this results

in a reconstruction that is worse than the reconstruction with M̄d = 0. Hence,

because no evidence has been found to suggest otherwise, the use of M̄d = 0

appears to be the best choice and M̄d = 0 will therefore be used for the rest of

this thesis.

4.4.7 Different grids

Our purpose in this subsection is to show that observations made in the previous

subsections are not affected by the use of different grids. This is what is expected

from the mode of the posterior in Eq. (4.24). Finding the mode of Eq. (4.24)

is the same as optimizing the expression in Eq. (4.26). It is the term v
ε
S(m) of

Eq. (4.26) which could depend on I. However, for fixed prior model constants

ε, M̄ s and M̄d we have v
ε
S(m) ∝ 1

I
S(m) is approximately independent of I for

m’s close to mmax. This can be seen from the form of S(m) in Eq. (4.25) and

prefactor 1
I
. Hence, the mode of the posterior in Eq. (4.24) will basically be

independent of the choice of grid, as observed in Fig. 4.27-4.30.

4.5 Best choices for the prior model constants

M̄ s and Q

As has been seen in previous sections, the mode of the posterior is in general

critically affected by the choice of M̄ s Q and, depending on the ‘quality’ of the
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data, may be sensitive to the choice of Q. In this section, possible options will

be investigated for assigning values to M̄ s and Q based on the results in the

previous section with the aim of selecting prior model constants such that the

balance between prior and likelihood result in the best possible output. In all

that follows it is assumed that M̄d = 0 for reasons explained in Sec. 4.4.6.

4.5.1 Searching for an estimate of Q

According to Sec. 4.4, for the case where the structure factors are measured

within 1% accuracy (i.e. σ/F < 0.01), the MEMx reconstruction is basically

independent of the choice of Q, for any reasonable value of Q, which is say

Q ∈ [0; 100P ]. However, when some or all of the measured data are of poor

quality then the MEMx reconstruction will start to depend on Q, as was seen in

Sec. 4.4.5. Therefore the problem of selecting a value for Q in such a case needs

to be addressed.

The fact that the mode of the posterior is independent of Q for good measured

data may come as a surprise considering how a statistical quantity such as Q is

used in other fields. For instance, in crystal structure determination from powder

or single crystal diffraction data, a Q-like statistic is often monitored as part of a

crystal structure refinement process. Here the number of parameters to be refined

is much smaller than the number of data points (i.e. structure factor values) and

a crystal structure is said to be solved when a set of values for the parameters

(lattice parameters, atomic positions etc.) result in a Q value which is small

enough, say, for example when Q < P (where P = number of data points).

However for the MEMx problem there are typically many more parameters than

data points. This implies that for any choice of Q there will in general be an

infinite number of parameter solutions which satisfy that Q constraint, where

some of these can be classified as ‘good’ and some as ‘bad’ solutions. A purpose

of applying the MEMx method is to try to select the ‘best’ solution among all

96



the solutions which satisfy a given Q value. Hence, a ‘good’ solution may be

obtained from a large range of Q values using the MEMx, and it may happen as

was the seen for the data discussed in Sec. 4.4.4 that this ‘good’ solution remains

basically unchanged throughout such a Q interval.

The problem of selecting a Q value for a MEMx reconstruction has been

discussed in a number of publications. For those papers which actually quote

the value of Q used, the most commonly used value by far is Q = P . Hence,

for those papers where a value of Q is not quoted it is likely that Q = P was

used. The argument for using the Q = P comes from the fact that given just

the likelihood probability distribution, the statistic Q is χ2
P distributed with P

degrees of freedom, see Chap. 2. Hence, for any moderate size P , χ2
P peaks at

Q = P , so a Q = P constraint is employed.

To my knowledge, the best known attempt for coming up with an alternative

to the Q = P option is by Gull & Skilling [90],[91],[92]. These authors go so far

as to use different MEMx names depending on how Q is selected. They refer to

”Historic” maximum entropy when Q = P is used. When following their alterna-

tive way of selecting a value for Q the name ”Classical” maximum entropy is used

[91],[92]. Gull & Skilling use a Bayesian probability analysis to come up with an

alternative to Q = P . Although this approach is potentially sound, findings in

the following subsections show that it is not to be recommended. Furthermore,

various other alternatives for selecting a value for Q have been tested but none of

these have been satisfactory. The reason for this is partly related to a property

of the prior which is not shared by the mode of the posterior as will be demon-

strated. Consequently, at the end of the discussion in the following subsections

the use of Q = P method for selecting a value for Q will be recommended, simply

because this method appears to be the best choice when compared to possible

alternatives.

The discussion in the remainder of this section (until Sec. 4.5.2) can be omitted

without loss of continuity.
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Obtaining p(Fobs|M̄ s, ε)

Gull & Skilling in Ref. [91],[92] have worked on finding an alternative to the most

commonly used constraint equation involving Q, which is Q = P , using Bayesian

statistical reasoning. The idea is a fairly standard approach in Bayesian statistical

applications, that of using the observed data itself to select a value for Q, which

can potentially be a good idea for obtaining a good and objective estimate for Q.

The aim is to calculate the probability distribution for prior model constants given

the observed data, this function can be written symbolically as the probability

p(prior model constants|data). Gull & Skilling [91],[92] explore this density where

the prior model constant is ε, or equivalently Q. The probability they explore

is therefore p(ε|data). This will be extended to the discussion of p(M̄ s, ε|data)

and to investigating whether this probability can provide us with any useful

information.

As previously, the data is denoted by Fobs and the aim is to calculate p(M̄ s, ε|Fobs).

Using Bayes’ theorem we get

p(M̄ s, ε|Fobs) =
p(M̄ s, ε)p(Fobs|M̄ s, ε)

p(Fobs)
. (4.37)

p(Fobs) is a constant for a given fixed data set. If we don’t have any idea a priori

about what the prior model constants ε and M̄ s might be, then this is reflected by

assuming p(M̄ s, ε) to be uniformly distributed or at least approximately uniformly

distributed, so that in Eq. (4.37) the dominant term is p(Fobs|M̄ s, ε) 20. With

p(M̄ s, ε) constant Eq. (4.37) reads

p(M̄ s, ε|Fobs) ∝ p(Fobs|M̄ s, ε) . (4.38)

By calculating p(Fobs|M̄ s, ε) a relative probability distribution for p(M̄ s, ε|Fobs)

is obtained. Consider the joint probability distribution p(Fobs,m|M̄ s, ε) which

20Other options for assigning a distribution to p(M̄s, ε) could be a Jeffreys (or scale) prior

or other non-informative priors, see Chap. 2. It is always possible to go back and check if any

such choice for p(M̄s, ε) changes the conclusions drawn by using Eq. (4.38).
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can be written as

p(Fobs,m|M̄ s, ε) = p(m|M̄ s, ε)p(Fobs|m, M̄ s, ε) . (4.39)

Clearly the last factor does not depend on the prior model constants M̄ s and ε,

and the equation that will be used for calculating p(Fobs|M̄ s, ε) is the following

marginalised distribution of Eq. (4.39)

p(Fobs|M̄ s, ε) =

∫
p(m|M̄ s, ε)p(Fobs|m)dm , (4.40)

where p(Fobs|m) is a multivariate Gaussian likelihood and p(m|M̄ s, ε) is the prior

distribution in Eq. (4.12) (with M̄d = 0).

As it stands, the integral in Eq. (4.40) is too complicated to be evaluated

even by modern computer standards, and, of course, there is no hope of solving

it analytically for the general case. Still, attempts have been made to handle

an integral problem of the type in Eq. (4.40) with the purpose of obtaining a

replacement for the Q = P constraint. Attempts have been made by Gull &

Skilling and by Johnston [15], Chap. 3, Sec. 3.5.3. Both involve the following

approximation of the integral in Eq. (4.40). We know how to calculate mmax for

which the integrand in Eq. (4.40) assumes its maximum value. This map is just

the mode of the posterior and can be calculated with relative ease. Next, make

a second order Taylor expansion of the logarithm of the integrand in Eq. (4.40)

around mmax and assume that this quadratic approximation is not only valid in

a region close to mmax but for all maps m. This approximation transforms the

integral in Eq. (4.40) into an analytically solvable integral and the result is a

function of mmax.

Inserting a Gaussian likelihood and the prior in Eq. (4.12) into the integral in

Eq. (4.40) and using the approximation explained above, the integral is evaluated

99



to

p(Fobs|M̄ s, ε) = p(mmax|M̄ s, ε)p(Fobs|mmax)|Σ|1/2
√

2π
I

=
1

B(M̄ s/ε)

vI

εI

√
2π

I−P |Σ|1/2

|Σ0|1/2
e
− 1

2

PP
i=1

(Fobs
i −Fmax

i )2

σ2
i (4.41)

× e
PI

i=1
v
ε

�√
(mmax

i )2+(M̄s/V )2−mmax
i sinh−1(

mmax
i V

M̄s )

�
,

where

Σ−1 = ATΣ−1
0 A + D , (4.42)

and A is the image to data transformation matrix in Eq. (4.23), Σ0 a diag-

onal matrix with diagonal elements σ2
i and D a diagonal matrix with Dii =

v
ε

1√
(mmax

i )2+(M̄s/V )2
.

Further manipulations of Eq. (4.41) are made in search of a replacement for

the Q = P constraint equation in the work of Gull & Skilling and Johnston.

However, there is no need for any further manipulations of Eq. (4.41), because it

can just be plotted! If M̄ s is kept fixed this is just a one dimensional graph.

The expression in Eq. (4.41) may seem a bit tricky at first to evaluate, because

it involves the calculation of a I× I matrix Σ, where I is the number of bins and

this number may be as high as e.g. 64*64*64 or more for a three dimensional grid.

However, due to the structure of Σ, we can reduce to the problem of calculating

the determinant to that of a P × P eigenvalue problem, where P is the number

of data points. Since a PND data set rarely contains more than P = 100 data

points and finding the eigenvalues and eigenvectors of a 100 × 100 matrix takes

little time, then the same applies to p(Fobs|M̄ s, ε) in Eq. (4.41) which contain Σ.

An explanation of how to do this is shown in App. E.

Clearly the accuracy of the quadratic approximation which led to Eq. (4.41)

will depend on how close the integrand in Eq. (4.40) already is to a Gaussian

form, this will depend on the choice of image grid I, the prior model constants

and the data. As an example, the situation with I = P is expected to give a

better quadratic approximation than when I > P in general. The reason being
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that when I > P there will be integration variables of the integral in Eq. (4.40)

for which the Gaussian part of the integrand cannot dominate over the prior

part of the integrand. We would expect there to be I − P of these. Further,

the discussion below will contain examples which will indicate the validity of

Eq. (4.41).

p(Fobs|M̄ s, ε) for large M̄ s values

For large values of M̄ s (and moderate size ε’s) the prior will get gradually closer

to a Gaussian distribution (see Sec. 4.4.3 and Fig. 4.2). Hence, as M̄ s increases

the expression for the quadratic approximation in Eq. (4.41) will get closer to

the exact expression in Eq. (4.40). With a Gaussian prior Eq. (4.40) can be

evaluated analytically. It would therefore be interesting to consider the case

where the sinh−1 prior is substituted with its corresponding Gaussian distribution

(for large M̄ s only) in Eq. (4.33) in order to get a better understanding of how

p(Fobs|M̄ s, ε) behaves for large values of M̄ s.

With the Gaussian prior in Eq. (4.33), p(Fobs|M̄ s, ε) is calculated to be

p(Fobs|M̄ s, ε) =
1

(
√

2π)P
∏P

i=1

√
σ2

i + εM̄ s
exp

(
−1

2

P∑
i=1

(F obs
i )2

σ2
i + εM̄ s

)
. (4.43)

If all the standard deviations are the same and equal to σ, then the probability

in Eq. (4.43) has its maximum when

M̄ sε =
1

P

P∑
i=1

(F obs
i )2 − σ2 . (4.44)

If there is symmetry in the unit cell, then it has its maximum when

M̄ sε =
1

Psym

P∑
i=1

(F obs
i )2 − σ2 , (4.45)

where Psym is the number of uniquely observed structure factors and σ is here

referring to the standard deviation for each of the P structure factors21. Eq. (4.43)

to Eq. (4.45) are derived in App. D.

21Say, F obs
11 has the three equivalent structure factors F obs

1−1, F obs
−11 and F obs

−1−1 and each has
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With a Gaussian prior the mode of the posterior can also be evaluated ana-

lytically. Using the solution for the mode in Eq. (4.34) the mode is related to Q

by22

Q =
P∑

i=1

(F obs
i − F obs

i

1+σ2
i /(εM̄s)

)2

σ2
i

. (4.46)

Assuming again that σ = σi, i = 1, 2, . . . , P , Eq. (4.46) simplifies to

M̄ sε =
σ√
Q

√√√√
P∑

i=1

(F obs
i )2 − σ2 , (4.47)

which when M̄ sε in Eq. (4.47) is inserted into Eq. (4.45) tells us that the Q value

which maximizes the probability distribution in Eq. (4.43) is

Q =
P 2

symσ2

∑P
i=1(F

obs
i )2

, (4.48)

independent of M̄ s.

p(Fobs|M̄ s, ε) for a couple of simple cases

Numerically Eq. (4.40) can be calculated for a couple of simple cases without

invoking Eq. (4.41). The two examples that will be considered are i) the special

case with one bin and the zero-q data point ii) two bins and the zero-q data

point.

In Fig. 4.6 p(F obs|M̄ s, ε) is plotted both exactly as in Eq. (4.40) and in the

quadratic approximation as in Eq. (4.41) for the one bin one data point example.

In the upper two frames the zero-q data point is F obs = 1µB with σ = 0.01µB and

for the lower two frames F obs = 1µB with σ = 0.5µB. Both with σ = 0.01µB and

σ = 0.5µB there is a very good agreement between the quadratic approximation

the standard deviation σ. Then an equivalently way of representing this information is by the

unique structure factor F obs
11 with standard deviation σ/

√
4 and a specific space group for the

crystal. See also end of Sec. 4.4.2.
22This result is independent of symmetry as long as the standard deviations correspond to

the P structure factors and not the Psym unique structure factors, see previous footnote.
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Figure 4.6: p(F obs|M̄ s, ε) is plotted for the one bin one data point example. In

the upper two frames F obs = 1µB with σ = 0.01µB and for the lower two frames

F obs = 1µB with σ = 0.5µB. The volume of the bin and unit cell is V = 1Å2 (the

notation from Sec. 4.4.2 is used).
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Figure 4.7: p(F obs|M̄ s, ε) is plotted for the two bin one data point example. In

the upper two frames F obs = 1µB with σ = 0.01µB and for the lower two frames

F obs = 1µB with σ = 0.5µB. The volume of the unit cell is V = 1Å2.
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and the exactly calculated p(F obs|M̄ s, ε). In all four plots a dotted line is drawn.

This line represents the values of ε and M̄ s for which the variance of the total

moment for the prior distribution is equal to the right-hand side of Eq. (4.45),

i.e. the values of ε and M̄ s for which

f(ε, M̄ s) ≡ Var[v
I∑

i=1

mi]prior =
1

Psym

P∑
i=1

(F obs
i )2 − σ2 . (4.49)

It can be seen from the plots in Fig. 4.6 that the dotted line coincides approxi-

mately with the maximum of p(F obs|M̄ s, ε) for any fixed value of M̄ s. f(ε, M̄ s)

will be discussed in more detail below and in the next subsection. A common

characteristic of p(Fobs|M̄ s, ε) in general and in Fig. 4.6 is that p(Fobs|M̄ s, ε) ap-

pears to peak sharply as a function of Q for constant M̄ s but not as a function

of M̄ s for constant Q. This means that the probability distribution p(Fobs|M̄ s, ε)

has a clear preference for a Q value but not for a M̄ s value. Hence p(Fobs|M̄ s, ε)

could potentially be used to select a Q value, thereby giving an alternative to the

Q = P criterion. Unfortunately, this does not work, as will be discussed below

and in the next subsection.

Fig. 4.7 shows the same plots as in Fig. 4.6 but for the two bins and zero-q

data point example. The quadratic approximation is way off the numerically

exactly calculated p(F obs|M̄ s, ε) for this example. In particular as a function of

M̄ s for constant Q. But, for any fixed value of M̄ s, the correct Q dependence

seem to be reproduced. Hence, the plots in Fig. 4.7 show that Eq. (4.41) may

still be used for the general case to calculate the Q dependence of p(F obs|M̄ s, ε)

for fixed M̄ s. However, the Q dependence of p(F obs|M̄ s, ε) depends on the grid

used, i.e. on I (here whether I = 1 or I = 2), whereas we know from Sec. 4.4.7

that the mode is basically independent of I. For the simplified case of a system

consisting of any number of bins and the zero-q data point the mode is exactly

the same for any I. However, by comparing the plots in Fig. 4.6 and Fig. 4.7 it

is seen that for values of M̄ s < 1µB the Q dependence of p(F obs|M̄ s, ε) is not the

same for the two examples. For higher values of M̄ s (M̄ s > 10µB) the prior will
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be approximately Gaussian distributed and p(F obs|M̄ s, ε) will peak according to

Eq. (4.48). This means that for the σ = 0.01µB plots p(F obs|M̄ s, ε) peaks when

Q = 0.0001 and for the σ = 0.5µB plots it peaks when Q = 0.25, in accordance

with Fig. 4.6-4.7.

Discussion of p(Fobs|M̄ s, ε)

In Eq. (4.49) the variance of the total moment for the prior distribution was

denoted as f(ε, M̄ s). From all the plots in Fig. 4.6-4.7 it is seen that the Q

dependence can be explained from Eq. (4.49), i.e. for a given M̄ s, p(F obs|M̄ s, ε)

peaks close to the ε value for which Eq. (4.49) is satisfied. Since f depends

on I, except in the limit where the prior is close to being Gaussian distributed

(where f(ε, M̄ s) ' εM̄ s), the I dependence of p(F obs|M̄ s, ε) can be traced to

the I dependence of f . This is a property not shared by the mode. The mode

looks the same for any choice of grid as long as the prior model constants Q

and M̄ s are kept constant. So, it must be required from p(Fobs|M̄ s, ε) that it is

likewise independent of the choice of grid, otherwise it would be possible to have

any value of Q to maximize p(Fobs|M̄ s, ε), simply by choosing a particular grid,

which is clearly not acceptable. As an example take the mock data in columns 4

and 5 in table 4.2 with M̄ s = 1 and make a reconstruction on the following grids:

8× 16, 16× 32, 32× 64, 64× 128, 128× 256 and 256× 512 . For all six grids the

mode looks identical however the Q values for which p(Fobs|M̄ s = 1, ε) peaks are:

Q ' 0.001, Q ' 0.008, Q ' 0.085, Q ' 1.15, Q ' 17 and Q ' 260 respectively.

These values of Q would keep increasing as the grid becomes even finer. The use

of the Q value which maximizes p(Fobs|M̄ s, ε) is therefore not recommended, and

as stated in the beginning of this section the best option is to set Q = P .
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4.5.2 Estimating M̄ s

Based on the detailed analysis in Sec. 4.4.3, and taking into account the nature

of the statistical model used in Sec. 4.1 to deduce the sinh−1 prior, the options

for selecting a value for the prior model constant M̄ s will be discussed.

The determination of a prior constant like M̄ s can be difficult because it

cannot be related directly to any measurable quantity. Even when the true answer

is known, as it was when we tried to reconstruct the thesis model in Sec. 4.4,

problems still arise, generally because there are different opinions about which

of the reconstructions resembles the thesis model best. Therefore, it is the aim

of this section not to select one value for M̄ s but to provide guidance on how

to choose a value for M̄ s by outlining how different choices for M̄ s affect the

resulting reconstructed images. It is then up to the individual person to choose a

specific value for M̄ s according to this information. Most importantly, however,

one should always remember to quote the value used for a prior model constant

such as M̄ s in every MEMx application, and the value of any other prior model

constants which likewise critically effect the output of a MEMx analysis.

One figure of merit in particular can be easily plotted and which summarizes

the behavior of the mode of the posterior in Eq. (4.24) as a function of M̄ s. This

figure of merit is found to be23

FOM1 = v

I∑
i=1

|mmax
i | (4.50)

i.e. the sum of the magnitude of the total negative magnetic moment and the

total positive magnetic moment contributing to the unit cell (mmax = (mmax
1 ,

mmax
2 , . . ., mmax

I ) is the mode of the posterior). In Eq. (4.50) the notation FOM1

stands for Figure Of Merit and the subscript ”1” indicates that it is one of many

23A number of other figure of merits, such as v[
∑I

i=1(m
max
i )2]1/2 etc., have been tried out as

possible quantities which could potentially be used to characterize how the mode of the posterior

depends on M̄s. The conclusion was that the best figure of merit is the one in Eq. (4.50).
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Figure 4.8: The solid curve shows the figure of merit FOM1 = v
∑I

i=1 |mmax
i | as

a function of M̄ s. Q = 15 and the mock data in columns 4 and 5 of table 4.2 is

used.

possible figures of merit which can be used for the image mmax. The use of the

particular figure of merit in Eq. (4.50) is also supported by the statistical model

used to deduce the sinh−1 prior in Sec. 4.1. In the statistical model of Sec. 4.1,

M̄ s is interpreted as the sum of the magnitude of the Poisson mean value of the

total negative moment and the Poisson mean value of the total positive moment,

see Eq. (4.5), this is basically what is calculated by the figure of merit FOM1 in

Eq. (4.50). From this comparison it is expected that for M̄ s values around the

point where the selected value for the prior model constant M̄ s coincides with

FOM1, the reconstruction will have a specific characteristic which can be used as

a reference point to map out the ways in which different choices of M̄ s will affect

the reconstruction. A FOM1 versus M̄ s curve will, in general, have a particular

shape, and as an example, in Fig. 4.8, FOM1 is plotted as a function of M̄ s for

the thesis data in the 4th and 5th columns of table 4.2. The arrow in Fig. 4.8

shows the value for which M̄ s = FOM1, and this point will be used as a reference
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point for M̄ s and denoted M̄ s
ref . When M̄ s greater than M̄ s

ref and is increased

we move into the region of M̄ s values for which the reconstructions are basically

identical to the image obtained by taking the ‘inverse’ Fourier transform of the

data. For instance, in Fig. 4.8 for M̄ s > 100µB we have FOM1 ' 3.7µB which

is close to v
∑I

i=1 |minv
i | ' 3.694µB, where minv = (minv

1 , minv
2 , . . . , minv

I ) is the

‘inverse’ Fourier transform of the data used in Fig. 4.8 (see Fig. 4.4(b) for a plot

of minv).

In Fig. 4.8 M̄ s is equal to FOM1 when M̄ s
ref ' 2.85µB. This is what could

be expected since v
∑I

i=1 |mmodel
i | = 2.79µB, where mmodel is the thesis model

in Fig. (4.3). As we move away from the ’inverse Fourier’ area and down the

slope of the solid curve in Fig. 4.8 towards smaller values of M̄ s, the areas in the

reconstructed image with non-zero magnetization density tend to become grad-

ually smaller24. This starts to happen when M̄ s ≈ 10 − 50µB in Fig. 4.8. As

M̄ s decreases the reconstruction begins to generate calculated structure factors

which are non-zero for structure factors lying outside the set of measured struc-

ture factors Fobs. The reference point is where we have a “natural” transition

between the ‘observed’ calculated structure factors and the ‘unobserved’ calcu-

lated structure factors. Compare for instance the calculated structure factors,

the circles, in the top right-hand plot in Fig. 4.11 with the circles plotted in the

middle right-hand figure in Fig. 4.12. Also, from the figures in Fig. 4.11-4.13 it

is seen that when M̄ s = M̄ s
ref the reconstruction matches the overall features of

the thesis model well. M̄ s = M̄ s
ref is in general a good choice for M̄ s. However,

based on the rigously performed simulations in Sec. 4.4 and other simulations not

shown here the conclusion is that even better choices for M̄ s lay in the interval

M̄ s ∈ [M̄ s
ref/8; M̄ s

ref/2] , (4.51)

where the best of these are typically close to M̄ s = M̄ s
ref/4. Eq. (4.51) is based

on a large number of simulations and the usefulness of FOM1 in summarizing

24See footnote 19.
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the effect of M̄ s on the posterior distribution is supported by the statistical

model used to deduce the sinh−1 prior. In choosing M̄ s there is no reason to

be too accurate, provided that M̄ s ∼ M̄ s
ref/4 there will be no differences in

the conclusions drawn from the reconstruction. To get a significant change in

the reconstruction a value outside the range in Eq. (4.51) must be used. As an

example for determining a M̄ s value in practice, take the thesis data in columns

4 and 5 of table 4.2. From Fig. 4.8, M̄ s
ref ' 2.85µB, which is close to 2.5µB and

divided by 5 (instead of 4) is equal to 0.5µB. Thus, in choosing a M̄ s value it is

not necessary to be that accurate, as long as M̄ s is chosen within the interval in

Eq. (4.51) and a good candidate for the thesis data is to chose M̄ s = 0.5µB.

One effect of choosing a value for M̄ s which is too small is that the reconstruc-

tion will start to appear artificially spiky relative to the real physical situation.

This is due to a property of the sinh−1 prior discussed in Sec. 4.4. It is therefore

possible (for most data) to check if the value of M̄ s is chosen too small by com-

paring the calculated and observed structure factors. If there is not a “natural”

transition from the calculated structure factors which belong to Fobs to the calcu-

lated structure factors outside Fobs, then this is evidence that the reconstructed

image is artificially spiky. For examples see the bottom figure in Fig. 4.13 or

Fig. 4.22.

4.6 Errorbars

So far we have been concentrating on the study of the mode of the posterior,

i.e. the most probable image, as the values of the prior model constants are

varied. However, what about other images close to the mode? We would like to

know more about the probability distribution for images around the mode and

formulate a measure of uncertainty for the integrated density of any specified

region of the image. In theory all this is provided by the posterior, since it

not only returns the value for the probability of the most probable image, i.e.
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the mode, but the probability of any image. However, for many multivariate

problems and the posterior in Eq. (4.24) this information is inaccessible. This is

a reason why we have up until now, just been summarizing the posterior by its

mode, hoping that the mode is a good representative of the posterior, as is true

for the posterior in Eq. (4.24). The purpose here is to show how more information

from the posterior, apart from its mode (its maximum), can be included in an

accessible form, that will explain the behavior of the posterior for images about

its maximum. To do this the posterior will be approximated with a multivariate

Gaussian distribution around its mode. The Gaussian distribution is probably

the best known continuous distribution and is fully defined by its mean value

(which is equal to the mode in this case) and covariance matrix. Hence in this

section the aim is to calculate such a covariance matrix and study it in a similar

manner to the way the mode of the posterior was studied in Sec. 4.4-4.5.

In order to do this the second derivative matrix (Hessian matrix) is calculated

at the mode and denoted by −Σ−1, as done in Eq. (4.42). The posterior is then

simplified by approximating it with the multivariate Gaussian distribution25

p(m|Fobs, M̄ s, ε) ' N(mmax,Σ) (4.52)

=
1√

2π
I |Σ|1/2

exp
(−1/2(m−mmax)TΣ−1(m−mmax)

)
,

where N(mmax,Σ) is the notation commonly used for a Gaussian (or normal)

distribution (see Chap. 2), which has mean mmax and covariance matrix Σ.

The robustness of mmax as a function of its prior model constants was studied

in Sec. 4.4-4.5. To study the behaviour of the correlation matrix Σ as a function

of the prior model constants, M̄ s and ε (M̄d = 0, see Sec. 4.4.6), consider first the

system consisting of one data point, the zero-q data point, and two bins. For this

system the mode will be uniform, i.e. mmax ≡ mmax
1 = mmax

2 and from Eq. (4.42)

25M̄d = 0 see Sec. 4.4.6.
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we have

Σ−1 =


 v2/σ2 + v/(εγ) v2/σ2

v2/σ2 v2/σ2 + v/(εγ)


 , (4.53)

where γ =
√

(mmax)2 + (M̄ s/V )2, and mmax is the solution to

−1

ε
sinh−1

(
mmaxV

M̄ s

)
+

F obs − V mmax

σ2
= 0 . (4.54)

The inverse matrix of Σ−1 in Eq. (4.53) is

Σ =
σ2 + vεγ

σ2 + 2vεγ


 (εγ)/v −(εγ)2/(σ2 + vεγ)

−(εγ)2/(σ2 + vεγ) (εγ)/v


 . (4.55)

For the special case considered, a Q constraint will fix a value for mmax. In fact

a Q constraint implies V mmax = F obs ±√Qσ. If F obs is positive, then because ε

must be positive in Eq. (4.54), the acceptable solution is V mmax = F obs −√Qσ,

and there is no solution when
√

Qσ > F obs 26. Insert V mmax = F obs −√Qσ into

Eq. (4.54) and solve for ε to give,

ε =
σ sinh−1

(
[F obs −√Qσ]/M̄ s

)
√

Q
. (4.56)

Insertion of this into one of the diagonal elements in Eq. (4.55) gives

Σ11 =
σγ√
Qv

sinh−1

(
F obs −√Qσ

M̄ s

)[
σ2 + vεγ

σ2 + 2vεγ

]
, (4.57)

where the last term in the square bracket is a number between 0.5 and 1.0 and

can be considered a constant. What is seen from Eq. (4.57) and Eq. (4.55)

is an explicit dependence of the variances on the prior constants ε and M̄ s in

Eq. (4.55) and Q and M̄ s in Eq. (4.57). Taking Eq. (4.57) for M̄ s/V À mmax (and

F obs À √
Qσ), and because sinh−1(x) ' x for small x, we have Σ11 ' σmmax√

Qv
and

Σ11 is independent of M̄ s but proportional to 1/
√

Q. Since sinh−1(x) ' log(2x)

for large values of x, when M̄ s/V ¿ mmax, we have Σ11 ' σmmax√
Qv

log(2mmaxV
M̄s ), and

26When F obs is negative the acceptable solution is V mmax = F obs +
√

Qσ and there is no

solution when
√

Qσ > |F obs|.
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Σ11 depends on M̄ s as − log(M̄ s) and again is proportional to 1/
√

Q. Thus, for

the limits considered above, Σ11, is found to be particularly sensitive to changes

in Q and proportional to 1/
√

Q.

A multivariate Gaussian, N(mmax,Σ) has the following convenient property:

For any r × p matrix C it can be shown that

Cm ∼ N(Cmmax,CΣCT ) . (4.58)

In Eq. (4.58) the practical shorthand notation ∼ stands for ‘distributed as’ (see

Chap. 2) so Eq. (4.58) says that Cm is distributed as a multivariate Gaussian

with mean values Cmmax and covariance matrix CΣCT . Consider the following

examples. Using the above described two-bin one-data point system as an exam-

ple we want to determine the distribution of the magnetization density of bin 1.

Take C to be the 1×2 matrix C = [1 0] then CΣCT = Σ11 and therefore the an-

swer to the above question is Cm = m1 ∼ N(mmax, Σ11), where Σ11 (Eq. (4.57))

is the variance of this probability distribution. Likewise, by putting C = v[1 1],

a variance estimate of the total magnetic moment, v(m1 + m2), of the two-bin

one-data point system is obtained

Var[v(m1 + m2)] = CΣCT =
σ2

σ2/(εγV ) + 1
, (4.59)

where Σ is given by Eq. (4.55). Using Eq. (4.58) it is possible to calculate the

variance of the (marginalised) probability distribution of any linear combination

of the mi’s. This is the measure of uncertainty which will be used to determine

whether a feature in a reconstruction is present or absent.

In general, the covariance matrix elements which are the easiest to relate to

are the diagonal elements. Furthermore, from the form of Σ in Eq. (4.42) it is

expected that the diagonal elements will be approximately given by27

Σii ≈ ε

v

√
(mmax

i )2 + (M̄ s/V )2 , i = 1, 2, . . . , I , (4.60)

27For the diagonal elements of Eq. (4.42) it is expected that Dii will be the dominating term

for most practical cases.
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when I À P . In Fig. 4.9 an example of a full correlation matrix is shown, using

the mock data set in columns 4 and 5 of table 4.2 and with M̄ s = 2µB and Q = 15.

The diagonal elements dominate the covariance matrix, and the top right picture

in Fig. 4.10 shows these diagonal elements together with (on the left) a plot of the

approximation in Eq. (4.60). The excellent agreement between these two pictures

verifies the approximation. In the bottom two frames in Fig. 4.10 the same two

pictures are shown but with Q = 0.0015 instead of Q = 15. It is seen that the

values of the diagonal elements are distributed in the same way as in the top two

pictures but are greater by one order of magnitude. In comparison we know from

Figs. 4.16-4.17 that the reconstructions with M̄ s = 2µB and Q = 0.0015 and

Q = 15 look identical. Hence, we have managed to keep the reconstruction mmax

constant and increase the value of the square-root of the variance (i.e. standard

deviation) in each bin by a factor of ten 28, this shows that the diagonal elements

of the covariance matrix are less robust to changes in Q than the mode of the

posterior for this example.

Since it is argued in Sec. 4.4 that Q should always be chosen to be equal to P ,

Q may be perceived as a fixed quantity and therefore the fact that the diagonal

elements of the covariance matrix are less robust to variations in Q compared to

the mode of the posterior might seem unimportant. Let us study the usefulness

of the measure of uncertainty calculated using Eq. (4.58) and Q = P with some

examples and test whether acceptable results are returned.

An important property of Σ is that given a fixed area of an image, the variance

calculated for that area, using Eq. (4.58), will be basically unaffected by the

choice of image grid used for that reconstruction. A property shared by the

mode of the posterior, and this is the reason why Σ must have the same property.

To illustrate this consider the covariance matrix to be fully represented by the

diagonal elements in Eq. (4.60) and consider the top diagonal element Σii, which

28In accordence with the discussion below Eq. (4.57), where approximately Σ1/2
ii ∝ Q−1/4.
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Figure 4.9: a) The correlation matrix is plotted as 153×153 matrix. 153 = 9∗17

is the number of unique bins for a 16× 32 grid with mm symmetry. b) shows the

first 50× 50 bins on a finer scale.
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Figure 4.10: The right-hand figures show the square-root of the diagonal elements

of the covariance matrix and the left-hand figures the approximation of these

diagonal elements in Eq. (4.60). In the upper two frames Q = 15 and in the

lower two frames Q = 0.0015.
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is the variance of the (marginalised) probability distribution of the density in bin

1, Var[m1] = Σ11. Say, the magnetization density is displayed on a 2D grid, and

scale this grid up by a factor of 2 along both image axes. Then bin 1 in the old

grid is split into 4 new bins, and let the values of each of these bins be m′
1, m′

2,

m′
3 and m′

4. Because the mode stays almost the same (see Sec. 4.4.7) then we

know that the densities satisfy m′
1 = m′

2 = m′
3 = m′

4 = m1. From Eq. (4.60) we

see that this implies Σ′
11 = Σ′

22 = Σ′
33 = Σ′

44 = 4Σ11 and finally using Eq. (4.58)

we get Var[(m′
1 + m′

2 + m′
3 + m′

4)/4] = Σ11. Thus, the variance of the average

value of m′
1, m′

2, m′
3 and m′

4 for the new grid is the same as the variance of m1 in

the old grid. This supports the claim that for any fixed sized area of the image

the variance calculated for that area will, for all practical purposes, be unaffected

by the choice of grid.

To further examine Σ consider the following example. Project the thesis

model 64 × 128 (Fig. 4.3) onto a 4 × 8 grid by grouping the bins together, such

that the first 16×16 bins become bin number one in the new grid, and so on. The

number of projected bins is 4 ·8 = 32 which is about equal to the number of data

points and the calculated standard deviations of the projected bin values may be

compared with the standard deviations of the data. The mock data in columns 4

and 5 in table 4.2 is used, and reconstructions are performed with M̄ s = 0.25µB,

M̄ s = 0.5µB and M̄ s = 1.0µB and keeping Q = P . The reconstructions are

performed on the 64×128 grid, the same as the thesis model grid (to allow easier

comparison between reconstruction and model), and projected mean values and

standard deviations for the three reconstructions are shown in table 4.4, table 4.5

and table 4.6 respectively. The tables show the first 3 × 5 bin values of the

projected 4× 8 reconstructions. To compare these reconstructed values with the

thesis model, table 4.3 shows the mean value of the same 3× 5 projected bins.

According to Eq. (4.51) the three M̄ s values used for tables 4.4-4.6 cover

approximately the range of recommended M̄ s values29. Tables 4.4-4.6 indicate

29M̄s
ref ' 2.85µB for this data set, which means the interval covered by Eq. (4.51) is
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that the standard deviations calculated using Eq. (4.58) do not change much as

M̄ s is varied. However, even if such changes do occur they are perfectly acceptable

since the mode of the posterior has a similar behavior. As an example, the mean

density of the first bin with center at ( 15
128

, 15
256

) varies from 3.89±1.11 10−2µBÅ−2

to 4.00± 1.00 10−2µBÅ−2 over the full range of recommended M̄ s values and for

the next bin to the right in tables 4.4-4.6 the variation goes from 7.17±1.42µBÅ−2

to 7.10± 1.24µBÅ−2, which is fully acceptable.

Looking at the calculated errorbars in table 4.5 for instance, it is seen that

apart from the bin features centered at ( 15
128

, 79
256

), ( 47
128

, 15
256

) and ( 79
128

, 15
256

) the

remaining mean value in the table are significant, meaning that they have larger

mean values than standard deviations. Comparing with the mean values of the

thesis model in table 4.3 it is clear that all the significant features in table 4.5 are

also present in the thesis model. Hence, the error estimates calculated using Σ

can be used to get a quick overview of which features may be present and absent

in the reconstruction.

Tables 4.4-4.6 show also, in brackets for each table entry, the value of an ap-

proximate standard deviation obtained by using Σ with the approximate diagonal

elements in Eq. (4.60) and with all its remaining elements put equal to zero (i.e.

its off-diagonal elements = 0). In general, there is a close agreement between the

standard deviation in the bracket and the standard deviation calculated using

the full covariance matrix (listed just above the value in the bracket). Such an

agreement is expected to become less good as the feature integrated over covers a

larger fraction of the image. This should be clear because calculating a standard

deviation for a gradually larger region using Eq. (4.58) involves more and more

of the off-diagonal elements of Σ and although these may indivially contribute

little the approximation of putting them all equal to zero clearly becomes less

good for gradually larger areas. For small areas (one bin areas) there is almost

M̄s ∈ [0.356; 1.425] and this range is close enough to the range of M̄s covered in tables 4.4-4.6.
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Projected thesis model

y = 15
256

y = 47
256

y = 79
256

y = 111
256

y = 143
256

x = 15
128

2.72 8.34 0.60 -3.31 -3.51

x = 47
128

-0.46 7.24 -1.01 17.69 22.24

x = 79
128

-0.54 8.20 -1.15 20.39 24.94

Table 4.3: Shows 3× 5 projeced bin mean values. The bin values are in units of

10−2µBÅ−2.

an exact agreement, see Fig. 4.10, and for the integrated 16×16 projected bins in

tables 4.4-4.6 the agreement is still very good. Hence, for such smaller regions the

standard deviations may be calculated using the approximate diagonal elements

in Eq. (4.58) and putting all the remaining elements of Σ equal to zero. This

can offer a very significant reduction in computational cost and computer stor-

age. Calculating the approximate standard deviations costs almost nothing extra

once the mode of the posterior has been found (this is apparent by looking at the

expression of the diagonal elements in Eq. (4.60)). Whereas calculating the full

covariance matrix can be non-trivial depending on the problem. For instance, for

crystals with low symmetry the full storage of Σ requires of the order I2 doubles

(for most computers one double = 8 bytes)30. The physical systems treated in

this thesis are all of a size and crystal symmetry which enable the full covariance

matrix to be calculated, and unless otherwise stated, standard deviations will be

obtained this way. App. F explains how Σ can be calculated.

A more obvious way of amalgamating the bins than projecting them onto a

4 × 8 grid would be to sum up the magnetic moments around the features of

interest in the image. As an example, in table 4.7, the magnetic moment around

five features of the thesis model is calculated by summing the moment in the

bins surrounding these 5 features. The location of the center of these features are

30However, it is possible to partially get around this problem by never storing the full covari-

ance matrix at once.
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Projected M̄ s = 0.25µB reconstruction

y = 15
256

y = 47
256

y = 79
256

y = 111
256

y = 143
256

x = 15
128

3.89± 1.11
(1.26)

7.17± 1.47
(1.69)

0.31± 0.49
(0.53)

−2.79± 0.95
(1.10)

−3.23± 0.99
(1.17)

x = 47
128

0.21± 0.48
(0.52)

6.32± 1.40
(1.59)

−1.36± 0.81
(0.90)

16.94± 2.34
(2.64)

22.64± 2.56
(3.02)

x = 79
128

0.25± 0.48
(0.53)

7.53± 1.48
(1.73)

−1.56± 0.85
(0.95)

19.93± 2.48
(2.86)

26.73± 2.69
(3.28)

Table 4.4: The data in columns 4 and 5 in table 4.2 is used. The numbers in the

brackets show the value of an approximate standard deviation and is discussed

in the text. The units for the 3 × 5 mean values and standard deviations are

10−2µBÅ−2.

Projected M̄ s = 0.5µB reconstruction

y = 15
256

y = 47
256

y = 79
256

y = 111
256

y = 143
256

x = 15
128

3.93± 1.04
(1.18)

7.13± 1.34
(1.54)

0.36± 0.57
(0.62)

−2.87± 0.91
(1.04)

−3.30± 0.94
(1.10)

x = 47
128

0.21± 0.56
(0.63)

6.32± 1.29
(1.45)

−1.51± 0.85
(0.93)

17.31± 2.15
(2.43)

22.66± 2.33
(2.74)

x = 79
128

0.26± 0.56
(0.63)

7.52± 1.35
(1.58)

−1.72± 0.87
(0.98)

20.35± 2.27
(2.62)

26.73± 2.44
(2.97)

Table 4.5: See caption table 4.4.
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Projected M̄ s = 1.0µB reconstruction

y = 15
256

y = 47
256

y = 79
256

y = 111
256

y = 143
256

x = 15
128

4.00± 1.00
(1.13)

7.10± 1.24
(1.42)

0.39± 0.69
(0.75)

−2.98± 0.91
(1.03)

−3.41± 0.92
(1.07)

x = 47
128

0.19± 0.68
(0.76)

6.34± 1.20
(1.35)

−1.70± 0.90
(0.99)

17.77± 1.97
(2.22)

22.76± 2.11
(2.46)

x = 79
128

0.26± 0.68
(0.77)

7.49± 1.25
(1.44)

−1.92± 0.92
(1.03)

20.85± 2.07
(2.39)

26.79± 2.20
(2.66)

Table 4.6: See caption table 4.4.

description location model data : small s.d. data : large s.d.

center peak (0.5, 0.5) 1.2717 1.2656 0.00993 1.1442 0.26654

edge negative (0, 0.5) -0.17977 -0.16258 0.00986 0.02287 0.19806

edge positive (0, 0.15) 0.25599 0.25899 0.02547 0.10581 0.22358

middle positive (0.5, 0.18) 0.21781 0.19146 0.02189 0.03201 0.12954

middle negative (0.5, 0.37) -0.05620 -0.05665 0.01304 -0.06414 0.1522

Table 4.7: The location of the center of five thesis model features are listed in

the second column. The corresponding integrated moment in column 3 in units

of µB. In columns 4 and 5 are the integrated moments and calculated standard

deviations for the reconstruction with M̄ s = 0.5µB, Q = 15, grid = 64 × 128

using the mock data with the smaller errorbars in table 4.2. In columns 6 and 7

the same but using the mock data with the larger errorbars in table 4.2.
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listed in column 2 of table 4.7 and corresponding magnetic moments in column 3.

The thesis model is reconstructed on a 64×128 grid using M̄ s = 0.5µB (Q = P ),

using both the data with the smaller and larger errorbars in table 4.2. Again,

when comparing thesis and reconstructed mean values it is my opinion that very

reasonable standard deviations are obtained from Σ.

4.7 Summary and conclusions

Def. 7 defines the Bayesian image analysis technique and MEMx method of this

chapter. Once the three prior model constants are specified the optimization

problem is well defined and using one of the computer algorithms described in

Sec. 4.4.1 the mode of the posterior can be calculated. Furthermore, by calculat-

ing a covariance matrix and using Eq. (4.58), as discussed in Sec. 4.6, a reliable

error estimate for any feature of the mode of the posterior can be calculated.

From the detailed analysis in Sec. 4.4-4.5 it is suggested that the three prior

model constants of Def. 7 are selected as follows

• M̄d : select M̄d = 0 (see Sec. 4.4.6)

• Q : select Q = P where P is the number of data points (see Sec. 4.5.1)

• M̄ s : select value in the interval M̄ s ∈ [M̄ s
ref/8; M̄ s

ref/2] and preferably

close to M̄ s
ref/4 (see Sec. 4.5.2)

The above recipe for the use of the MEMx method is recommended for the

analysis of polarised neutron diffraction data and other data with equivalent

information content.

The main new feature in the above list is the suggestion of how to select an

M̄ s value. The selections of M̄d and Q, although used in the literature, have

not previously been discussed in terms of a Bayesian robustness analysis. Most

important, the analysis shows that the prior model constants critically affect
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the output of the MEMx technique and demonstrate the importance of selecting

sensible values.

Applications of the MEMx method will follow in the next two chapters. In

addition, Chap. 6 will include a comparison between the approach to the MEMx

method outlined here and other approaches to MEMx for a practical example,

and it will be illustrate how knowledge gained from this chapter can be used to

apply the MEMx method more convincingly to the analysis of polarised neutron

diffraction data.
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Figure 4.11: The mode of the posterior in Eq. (4.24) with the mock data in

columns 4 and 5 of table 4.2, M̄d = 0 and Q = 15 over a range of M̄ s values are

shown as magnetization density maps in the left-hand figures and as calculated

structure factors in the right-hand figures. In the right-hand figures the calculated

structure factors are shown as circles. These data points are compared with

the structure factor obtained from the model and shown as crosses. The larger

crosses show the mock data. q is the magnitude of the scattering vector, q =

2π
√

(h/a)2 + (k/b)2, where h and k are the miller indices.
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Figure 4.12: See caption Fig. 4.11.
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Figure 4.13: See caption Fig. 4.11.
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Figure 4.14: Same as in Fig. 4.11, but with Q = 1500.
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Figure 4.15: Same as in Fig. 4.11, but with Q = 0.1.
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Figure 4.16: Same as in Fig. 4.11, but where M̄ s is kept constant instead of Q

and M̄ s = 2µB. 129
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Figure 4.17: See caption Fig. 4.16.
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Figure 4.18: Same as in Fig. 4.11, but with the thesis data in columns 6 and 7

of table 4.2. 131
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Figure 4.19: See caption Fig. 4.18.
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Figure 4.20: See caption Fig. 4.18.
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Figure 4.21: Same as in Fig. 4.11, but without the zero-q data point in table 4.2.
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Figure 4.22: See caption Fig. 4.21.
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Figure 4.23: Same as in Fig. 4.11, but with M̄d = 2.012013.
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Figure 4.24: See caption Fig. 4.23.
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Figure 4.25: Same as in Fig. 4.11, but without the zero-q data point and with

M̄d = 2.012013. 138
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Figure 4.26: See caption Fig. 4.25.
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Figure 4.27: Same as in Fig. 4.11, but with the reconstructions made using a

32× 64 image grid. 140
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Figure 4.28: See caption Fig. 4.27.
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Figure 4.29: Same as in Fig. 4.11, but with the reconstructions made using a

8× 16 image grid. 142
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Figure 4.30: See caption Fig. 4.29.
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Chapter 5

Polarised neutron diffraction

data from PrBa2Cu3O6+x

This chapter describes the analysis of a polarised neutron diffraction data set

measured on a single crystal of PrBa2Cu3O6.24. These data were discussed in the

short paper [82]. Here, a more detailed discussion is presented using an improved

data analysis technique for inverting the measured magnetic structure factors into

magnetization density image, and additional theoretical calculations have been

performed to help in the interpretation of the magnetization density images. The

original purpose for investigating the magnetization density in PrBa2Cu3O6+x was

to look for evidence of a hybridisation of the Pr 4f electrons with electronic states

in the CuO2 planes, as has been predicted by a number of theoretical works to

cause the supression of superconductivity in PrBa2Cu3O6+x. However, very little

evidence is found which can support such an hybridisation. Of interest also, is

that a number of other moments, with significant magnitude, are observed in the

unit cell, which cannot be accounted for by existing theoretical work describing

the suppression of superconductivity in PrBa2Cu3O6+x. Such observed features

may prove useful in helping theoreticians to suggest new theoretical models for

PrBa2Cu3O6+x.
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5.1 Introduction to the PrBa2Cu3O6+x problem

It has been known for more than 10 years that the substitution of Pr for Y in

YBa2Cu3O6+x causes a suppression of superconductivity in that compound [1].

Despite intensive research it is still not known what causes this effect, the main

reason why it remains of strong interest is because of its relevance to the physics

of high-Tc superconductivity. For a very recent review on PrBa2Cu3O6+x see

Ref. [1]. Many aspects of PrBa2Cu3O6+x have been studied experimentially and

many theoretical models have been proposed (see also the older review paper in

Ref. [93]). For instance, the magnetic ordering of the Pr and Cu moments are

now well understood experimentally, but still not theoretically [1]. The aspect of

PrBa2Cu3O6+x which will be studied is its magnetic field induced magnetization

density. The original purpose of this study was to make a comparison between

the observed induced magnetization density and theoretical models which predict

electric interactions between Pr and the superconducting CuO2 planes.

A common theoretical model used for explaining suppression of superconduc-

tivity by Pr in PryY1−yBa2Cu3O6+x involves the valence state of the Pr ions.

Pr is situated at the centre of the unit cell in Fig. 5.1 and for superconducting

isostructural compounds of PrBa2Cu3O6+x this site is normally occupied by ions

with a 3+ oxidation state (like Y3+ or most other rare earths), but if Pr were more

highly ionised then holes in the CuO2 planes could be neutralised and the number

of mobile charge carriers reduced below the level needed to sustain superconduc-

tivity. In this context the most influential work has been that of Fehrenbacher &

Rice [94] who proposed a hybrid state containing stable Pr3+ and an intermediate

valence Pr(IV) state made from a linear combination of Pr4+ and Pr3+L, where

L denotes a ligand hole in the neighbouring oxygen 2p orbitals. Such a model

involves changes in the electronic structure of the Pr ions as compared to that

of Pr ions without interaction with the CuO2 layers. Information on the spatial

distribution of the 4f electrons of Pr would therefore be valuable to test models of
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Figure 5.1: Shows the unit cell of PrBa2Cu3O6+x in its tetragonal phase. For the

temperature parameters in table 5.1 it is assumed that the y-axis points in the

O(3)-Cu(1) direction and the x-axis in the Cu(2)-O(2) direction.

this kind, this information can be obtained by polarised neutron diffraction. That

was our original motivation for performing the PND measurements presented in

this chapter.

5.2 Data collection for PrBa2Cu3O6.24

A crystal of PrBa2Cu3O6.24 with mass 23 mg was selected from the same batch as

used in recent studies of the magnetic ordering[95]. To obtain a set of magnetic

structure factors, unpolarised neutron diffraction and polarised neutron diffrac-

tion measurements were performed using the D9 and D3 instruments at Institut

Laue-Langevin (ILL), Grenoble. The unpolarised measurements were done to

refine the crystal structure and extinction parameters. The data was collected

on a four-circle multidetector diffractometer, the detector being a gas-filled two-

dimensional multiwire proportional counter. The crystal was mounted in an Air
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Product two-stage Displex cryorefrigerator and the sample was cooled down to

T = 20K. 989, 1234 and 697 reflections were scanned at wavelengths 0.8389Å,

0.70Å and 0.54Å respectively. Different wavelengths were used in order to esti-

mate the amount of extinction. The three-dimensional arrays of counts observed

around each scanned reflection were corrected for background and reduced to

squared structure amplitudes using the three-dimensional integration method of

Wilkinson et al. [96]. Contamination from neighbouring reflections, a potential

problem at the shorter wavelenghts, was avoided by limiting the integration of

each reflection to extend no further than half way to the neighbouring reflections.

Averaging over repeated measurements and equivalent reflections gave 410, 648

and 412 reflections at the three wavelengths. After correcting for extinction and

absorption a least squares refinement program (UPALS) was used to refine the

nuclear structure against the data at all three wavelengths simultaneously1. The

position, anisotropic temperature parameters and fractional occupancy of each

site in the unit cell are listed in table 5.1.

The polarised neutron diffraction was also carried out at T = 20K, this is well

above the antiferromagtic ordering temperature of the Pr sublattice (TN = 12K

[95]). The setup of the polarised experiment is discussed in Chap. 1. The wave-

length of the neutrons was 0.843Å and an applied magnetic field B of 4.6 T was

used over the sample. In order to access a large amount of reciprocal space, the

experiment was carried out using two orientations of the crystal relative to the

applied field: B parallel to [1 0 0], i.e. B ‖ [1 0 0], and B parallel to [1 1 0], i.e.

B ‖ [1 1 0]. Because the crystal structure is tetragonal, the magnitude of the

induced moment is expected to be parallel to the applied field and the same for

both orientations on a macroscopic scale. With B ‖ [1 0 0] and B ‖ [1 1 0], 61 and

56 unique flipping ratios were measured respectively. To convert these flipping

ratios into magnetic structure factors the CCSL program SORGAM was used.

1Many thanks to Garry McIntyre for doing this.
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atom position temperature site occupancy

(z-component) parameters

Pr 0.5 B11 = 0.0864(159) 1

B33 = 0.1704(234)

Ba 0.19171(6) B11 = 0.3386(113) 1

B22 = 0.4955(184)

Cu(1) 0 B11 = 0.6158(128) 1

B33 = 0.2695(161)

Cu(2) 0.35224(4) B11 = 0.1394(67) 1

B33 = 0.3374(106)

O(1) 0.15288(7) B11 = 1.5016(170) 1

B33 = 0.4888(167)

O(2) 0.36970(4) B11 = 0.2236(99) 1

B22 = 0.3462(106)

B33 = 0.4983(100)

O(3) 0 B11 = 0.876(190) 0.1222(55)

B22 = 0.663(173)

B33 = 0.548(156)

Table 5.1: Refined fractional atomic coordinates, thermal parameters and

site occupancies are listed. The anisotropic temperature factor has the form

exp(−h2B11/4a
2−k2B22/4b

2− l2B33/4c
2), where the units of the Bii are Å2. The

space group of PrBa2Cu3O6.24 is P4/mmm and the lattice parameters refined

to a = 3.8982(3)Å and c = 11.7976(10)Å. Residuals for the refinement were

Rw(F 2) = 7.7%, R(F ) = 3.6% and goodness of fit = 2.52, see e.g. Ref [97],[98]

for the formal definition of these quantities. The site occupations of Pr, Cu(1),

Cu(2) and O(1) were also varied, but the values stayed within two esd’s of the

stoichiometric values. Notice that the displacement parameters of O(1) are sur-

prisingly large. The parameters for O(3) are also large, but the site is only slightly

occupied. The extinction parameter was 265.8 sec RMS mosaic.

148



SORGAM takes flipping ratios as input and structural information about the

position of nuclei, extinction2 and absorption parameters etc.. Structural infor-

mation for PrBa2Cu3O6.24 is listed in table 5.1. The resulting magnetic structure

factors are listed in table 5.5 except for the 13 structure factors which have the

same Miller indices for both B field orientations, these are listed separately in

table 5.6. In table 5.6 an estimated ‘average’ value of each of these 13 Miller

indices is listed in the last column, taken to be the arithmetic mean: F̄hkl =

(F
B ‖ [1 0 0]
hkl + F

B ‖ [1 1 0]
hkl )/2 and σ̄hkl = (σ

B ‖ [1 0 0]
hkl + σ

B ‖ [1 1 0]
hkl )/2. For the two

reflections with Miller indices (0, 0, 11) and (−1, 3, 0), σ̄hkl is further increased to

the value σ̄hkl = |F̄hkl − F
B ‖ [1 0 0]
hkl |. These 13 ‘averaged’ structure factor values

and standard deviations are estimated with the aim of accounting for possible

differences in the induced moment distributions in the unit cell when applying

B ‖ [1 0 0] and B ‖ [1 1 0]. In addition to the magnetic structure factors ob-

tained from polarised neutron diffraction the zero-q structure factor (with Miller

indices (0, 0, 0)), which is equal to the total moment in the unit cell, was de-

termined from a bulk magnetisation (SQUID) measurement on the same crystal

of PrBa2Cu3O6.24 also at T = 20K and B = 4.6T 3. The zero-q structure fac-

tor was measured to be 0.283 ± 0.011µB. The complete set of unique magnetic

structure factors for PrBa2Cu3O6.24 will be analysed both as a whole and as two

independent data sets.

5.3 Crystal field calculation and comparison with

two data sets

The two independently measured PND data set for PrBa2Cu3O6.24 with B ‖ [1 0 0]

and B ‖ [1 1 0] are analysed separately in this section using the Bayesian image

2Many thanks to Bruce Forsyth (one of the authors of the CCSL suite) who helped with the

insertion of the extinction parameter from the UPALS refinement into SORGAM.
3Many thanks to Steven Lister for doing this.
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analysis method of Chap. 4, and the resulting magnetization density maps are

compared. To help assess whether the density maps show evidence of an inter-

action between the Pr 4f electrons and electronic states in the CuO2 planes a

theoretical calculation is performed. The basis for the theoretical calculation is

discussed in the next subsection, in subsection 5.3.2 the theoretical and experi-

mental densities are compared.

5.3.1 Crystal field model for Pr3+

The induced magnetization density in PrBa2Cu3O6.24 will mainly originate from

Pr. Pr is believed to be in a Pr3+ valence state (or in a mixture of Pr3+/Pr4+

with the majority of Pr being in the 3+ valence state), Pr3+ is a magnetic ion

with an open 4f electron shell containing two electrons. These two electrons

may hybridise with electronic states of the CuO2 planes and cause suppression of

superconductivity as, for example, is claimed by the theoretical work in Ref. [94].

If this is true, such a hybridisation will result in a distortion of the Pr3+ 4f

electron density from that expected for an isolated Pr3+ ion under the influence of

the local crystal field. To assist such an investigation, the magnetization density

of an isolated Pr3+ ion in the local crystal field of PrBa2Cu3O6.24 is calculated.

The magnetization density of Pr3+ is calculated by evaluating the quantum

expectation value of magnetization density operators with respect to a specified

wave function. Thus, the first step is to determine the wave function for Pr3+

in PrBa2Cu3O6.24 at T = 20K, with an applied field of B = 4.6T , from a model

taking into account the local crystal field. Pr is a rare earth and is well described

within the intermediate coupling angular momentum scheme because the mean

radius of the 4f electrons is small and the dominating interaction is the Coulomb

repulsion between the 4f electrons. With reference to a carefully measured exper-

iment [99], an appropriate theoretical model for the crystal field which includes

all 2S+1LJ terms of the f 2 configuration of Pr3+ was deduced. The magnetic
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B ‖ [1 0 0] B ‖ [1 1 0]

M |0〉 |1〉 |0〉 |1〉
−4 −0.002 0.003 0.002− 0.002i −0.002− 0.002i

−3 0.645 −0.663 0.645i 0.663

−2 −0.163 0.002 −0.114− 0.114i −0.001 + 0.001i

−1 0.205 0.211 0.205 0.210i

0 −0.002 0.0 0.0 −0.001− 0.001i

1 0.205 −0.211 0.205i 0.210

2 −0.163 −0.002 −0.114− 0.114i 0.001− 0.001i

3 0.645 0.663 0.645 0.663i

4 −0.002 −0.003 −0.002 + 0.002i −0.002− 0.002i

Table 5.2: |0〉 is the calculated ground state and |1〉 is the first excited state

0.12meV above the ground for both B field directions. At T = 20K it is assumed

that |0〉 and |1〉 are equally populated. The complete wave functions contain

∼ 10% admixture of higher 2S+1LJ terms, but only the components of the 3H4

term are listed. The wave functions were calculated using a computer program

written by Andrew Boothroyd and described in Ref. [99].

properties are found to be dominated by the ground state and 1st excited state.

The wave functions of these states are given in table 5.2 with B ‖ [1 0 0] and

B ‖ [1 1 0].

Once the wave function of Pr3+ is specified the magnetization density is ob-

tained by calculating the expected value of appropriate magnetization density

operators with respect to this wave function. Take the magnetization density

spin and orbital operators to be [100]

MS(r) = −2µB

n∑
i=1

siδ(r− ri) (5.1)

and

ML(r) = (1/[cr])

∫ ∞

r

zr̂× jL(zr̂)dz , (5.2)
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where

jL(r) = −(µBc/~)
n∑

i=1

[piδ(r− ri) + δ(r− ri)pi] . (5.3)

ri, pi and si are the position, momentum and spin of the ith magnetic electron

respectively, and r̂ is the unit vector of r. With the operators in Eqs. (5.1-5.2)

the relevant matrix elements can be written as [100]

〈SLJM |MS
q (r)|S ′L′J ′M ′〉 = −µB

π

∑

K,Q,K′,Q′
Y K

Q (r̂)U2(r)(−1)
1
2
+M+q−J ′+L′+S′

×
√

3/2 [l][K ′]
√

[K][S][S ′][L][L′][J ][J ′] n
∑

θ̄

(θ{|θ̄)(θ′{|θ̄)(−1)S̄+L̄

×
{

S 1 S ′
1
2

S̄ 1
2

}{
L K L′

l L̄ l

} 



1 K K ′

S ′ L′ J ′

S L J





×
(

J K ′ J ′

−M Q′ M ′

)(
K K ′ 1

Q Q′ −q

)(
l K l

0 0 0

)
(5.4)

and

〈SLJM |ML
q (r)|S ′L′J ′M ′〉 = −µB

π

∑

K,Q,K′,Q′
Y K

Q (r̂)
1

r

∫ ∞

r

U2(z)dz

× (−1)q+M+L+L′+SδSS′ [l]
3/2

√
[J ][J ′][L][L′][K]l(l + 1)[K ′]

×
(

l K l

0 0 0

){
l K ′ l

K l 1

}{
K ′ L′ L

S J J ′

}
n

∑

θ̄

(θ{|θ̄)(θ′{|θ̄)(−1)L̄

×
{

K ′ l l

L̄ L L′

}(
J K ′ J ′

−M Q′ M ′

)(
K K ′ 1

Q Q′ −q

)
. (5.5)

The notation used in Eqs. (5.4-5.5) originates from atomic physics [101]. The 2×3

arrays with round and curly brackets are named 3j and 6j symbols respectively,

and the 3 × 3 array in Eq. (5.4) is a 9j symbol. θ, θ′ and θ̄ are shorthand for

SL, S ′L′ and S̄L̄ respectively, where θ and θ′ are possible LS coupling terms (or

Russell-Saunders terms) which can be formed from the ln electronic configuration

and θ̄ possible coupling terms formed from the ln−1 configuration (called parent

terms); l is the orbital quantum number of the open ionic shell and n is the

number of electrons in that shell. As an example, for Pr3+, which has two 4f
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electrons, then l = 3 and n = 2 and since only one LS coupling term can be

formed from a one electron configuration (ln−1 = 31), Pr3+ has only one parent

term with S̄ = 1/2 and L̄ = 3 (in spectroscopic notation 2F). (θ{|θ̄) is a so-

called coefficient of fractional percentage, see for instance Chap. 5, Sec. 6 of

Ref. [101] for how to calculate such fractional percentage in general. For Pr3+,

which has only one parent term, the fractional percentage is simply (θ{|θ̄) = 1.

Y K
Q is the well-known spherical harmomic of rank K and order Q, and U(r) is

the radial wave function for an electron of the ln configuration, assumed to be

the same for all n electrons. For the calculation of the magnetization denisty

of Pr3+ the radial wave function in Eq. (4.31), Sec., Chap. 4 is used. The total

magnetization density at any point in space is clearly the sum of the spin and

orbital magnetization density, i.e. Mq = MS
q + ML

q . The sub-index q of MS
q and

ML
q refers to the spherical components and q = 1, 0,−1. These relate to cartesian

vector components as follows Mx = 1√
2
(M−1 −M1), My = 1

i
√

2
((M−1 + M1) and

Mz = M0.

The expressions in Eqs. (5.4-5.5) may look complicated, but are relatively

straight forward to derive, although this is somewhat painstaking to do. A num-

ber of authors have contributed to obtaining matrix expressions of this type.

In this context, a theory suitable for relativistic calculations can be found in

Ref. [102], and a general summary and introduction to these works can be found

in Chap. 11 in Ref. [4].

Andrew Boothroyd and I have independently written computer programs

for calculating the matrix elements 〈ψ|Mi|ψ〉, i = x, y, z, where |ψ〉 is a wave

function from table 5.2. The calculation of the densities was carried out on a

65 × 65 × 65 grid of a cubic box with length a (a being the lattice parameter a

for PrBa2Cu3O6.24). The grid point (nx, ny, nz), where nx, ny, nz are any integers

0, 1 . . . 64, is the center of a bin at (nx, ny, nz)
a
64

stretching from nia
64
− a

2∗64
to

nia
64

+ a
2∗64

along i = x, y, z. To make the comparison with experimental results

easier the center of the Pr3+ density is positioned at (a
2
, a

2
, a

2
) within the cubic
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box. Since the orbital magnetization density diverges at r = 0, see Eq. (5.5), then

special care need to be taken for obtaining a number representing the average

density for the bin centered at (a
2
, a

2
, a

2
) (in Eq. (5.5) at r = 0). For this purpose,

notice that when integrating the spherical components of 〈SLJM |M(r)|SLJM ′〉
over a sphere with radius r0 we obtain

∫ r0

0

∫ π

0

∫ 2π

0

〈SLJM |Mq(r)|SLJM ′〉r2drdΩ (5.6)

=




−µB g̃MδMM ′ for q = 0

−µB g̃(−q) 1√
2
[(J − qM ′)(J + qM ′ + 1)]1/2 δM(M ′+q) for q = −1, 1

,

where

g̃ =

∫ r0

0

[
r2U2(r) + f(r) + (r2U2(r)− f(r))[S(S + 1)− L(L + 1)]/(J(J + 1))

]
dr ,

(5.7)

and f(r) = r
∫∞

r
U2(z)dz. Hence, an average density for the bin centered at

(a
2
, a

2
, a

2
) is obtained separately using the expression in Eq. (5.6) with r0 = a

2∗64

(and divided by ( a
64

)3 to obtain a density). Notice, with r0 = ∞ then g̃ in

Eq. (5.7) reduces to the expression for the well known Landé splitting factor for

a paramagnetic ion4.

Consider first the wave function for Pr3+ calculated with the applied field

B ‖ [1 0 0] in table 5.2. The component of 〈M(r)〉[1 0 0]
5pointing in the [1 0 0]

direction6 is drawn as two isosurfaces in Fig. 5.2(e-f). What is suggested perhaps

unexpectedly, by the theoretical calculation is that the tetragonal crystal symme-

try of PrBa2Cu3O6.24 is broken by an applied B field of 4.6T . This is interesting

because it stresses that the induced moment distribution in PrBa2Cu3O6.24 with

4Use
∫∞
0

r2U2(r)dr = 1 and
∫∞
0

f(r)dr = 1
2 then g̃(∞) = 3

2 + 1
2 [S(S +1)−L(L+1)]/(J(J +

1)). U(r) is the radial part of the orbital function. In atomic units the radial part of the density

ρ in Eq. (4.31) is related to U as ρ = U2.
5where 〈M(r)〉 is the thermal average 〈M(r)〉 = 〈0|M|0〉+〈1|M|1〉

2 due to |0〉 and |1〉 being

equally populated, see caption table 5.2.
6The other two components have integrated moments of zero.
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different applied field directions may be slightly or even considerably different.

It is for this reason that the data measured for PrBa2Cu3O6.24 are analysed as

two separate data sets here, one data set for each B-field orientation, before

being analysed as an ‘averaged’ data set. Fig. 5.2(a-d) show the projection of

〈Mx(r)〉[1 0 0] onto the plane [0 1 0]− [0 0 1] in Sec. 5.4. It is the spatial distribu-

tion of the magnetization density perpendicular to the applied field that can be

observed most directly by polarised neutron diffraction, see Chap. 1.

In Fig. 5.3(e-f) the component of 〈M(r)〉[1 1 0] parallel to [1 1 0] is shown as

two isosurfaces, where the thermal average 〈M(r)〉[1 1 0] is calculated using the

wave functions given in table 5.2 (see also footnote 5). As for 〈Mx(r)〉[1 0 0] the

theoretical calculation predicts that the applied B field breaks the tetragonal

crystal symmetry. Otherwise, apart from being rotated by 45◦, the calculated

magnetization densities are quite similar, in particular when comparing the pro-

jected densities onto the plane perpendicular to the field direction.

5.3.2 Comparison with data

From the data measured with the applied field B ‖ [1 0 0] consider the structure

factors in the [0 1 0] − [0 0 1] plane. There are 52 of these in tables 5.5-5.6 and

by adding the zero-q data point a data set consisting of 53 structure factors is

generated. A reconstruction of this data set with7 M̄ s = 0.1µB (Q = P = 53) on

a 64× 256 grid is shown in Fig. 5.4 for four different cut-off values. a and c are

the lattice parameters along [0 1 0] and [0 0 1] and the plane crystal symmetry

is mm (same symmetry as used for the thesis model in Sec. 4.4.2, Chap. 4).

A cut-off value means the value above which all magnetization density values

are set equal to this value. Using cut-off values helps emphasize structures at

different magnetization density levels in Fig. 5.4. Separately, in Fig. 5.6(a) a

contour plot of the magnetization density without cut-off for a part of the unit

7The M̄s value is obtained using the recipe in Sec. 4.7, Chap. 4, see also Fig. 5.9.
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cell centered around the Pr site is shown. From this figure it is clear that at the

highest contour levels the magnetization density of Pr is spherically distributed.

A similar structure is observed from the crystal field calculation in Fig. 5.2(a)

and comparing with Fig. 5.6(a) the only difference is a depletion of density at the

center of the Pr density that is not observed experimentally. However, even if

this feature was present it is probably not detected with the data in tables 5.5-5.6

because of its small spatial dimensions. Its spherical diameter is close to a
64

, to

reveal a structure of this scale it would require data with Miller indices of the

order (32, 32, 96), this is beyond the data in tables 5.5-5.6 8.

By comparing Fig. 5.2(b) with Fig. 5.4(a), Fig. 5.2(c) with Fig. 5.4(b) and

Fig. 5.2(d) with Fig. 5.4(c) a good comparison is seen between the shape and

diameter of the calculated and experimentally obtained Pr density. This suggests

that the theoretical model is adequate for describing the observed Pr density for

density values ranging from the maximum density value to a factor of 100 or more

below that value; only at this point does the observed Pr density start to show

substantial derivations from the calculated density.

To obtain an idea of the significance of the individual features in Fig. 5.4(a-

d), error estimates (standard derivations) are calculated using the covariance

procedure outlined in Sec. 4.6, Chap. 4. These are listed in table 5.3 for the

[0 1 0] − [0 0 1] reconstruction. The feature listed first represents an integra-

tion of the corner densities, presumably originating from an induced moment on

Cu(1). It is found to be of size 0.0109±0.0028µB. Such a moment is small relative

to the induced moment of the Pr ion, which is found to be 0.2492±0.0028µB, but

significant within the uncertainty of the data. Its slightly odd shape suggests that

8As a rule of thumb, a Miller index h may give structural information on interval length
a
2h . This rule of thumb is a simplified version of the well-known sampling theorem in Fourier

analysis (see e.g. [103] page 230) which states that any band width limited function where for

all |h| > hmax, Fh = 0 then the function in real space is fully defined by sampling at points

with the interval equal to a
2h .
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description position area of integration multi- moment ± s.d.

of feature [Å] [0 1 0] [a] [0 0 1] [c] plicity [µB]

Cu(1) (0, 0) −13
64

: 13
64

− 29
256

: 29
256

1 0.0109± 0.0028

Pr (a
2
, c

2
) 17

64
: 47

64
107
256

: 149
256

1 0.2492± 0.0028

Pr on Ba site (a
2
, 2.5) 21

64
: 43

64
43
256

: 73
256

2 0.0164± 0.0032

probably Pr (or O(2)) (a
2
, 4.1) 25

64
: 39

64
77
256

: 97
256

2 0.0021± 0.0014

negative feature (a
2
, 0) 19

64
: 45

64
− 19

256
: 19

256
1 −0.0103± 0.0027

negative feature (0.5, 2.0) 1
64

: 21
64

33
256

: 57
256

4 −0.0034± 0.0014

left/right of Pr (0, c
2
) − 9

64
: 9

64
111
256

: 145
256

1 0.0036± 0.0020

Table 5.3: Summed moments over bins of the [0 1 0] − [0 0 1] reconstruction in

Fig. 5.4. The area of integration defines the area which is summed over, and a

and c are the refined lattice constants for PrBa2Cu3O6.24 (see table 5.1). The

multiplicity, calculated moment and standard deviation in the reconstruction of

each integrated feature is listed in columns 4 and 5.

description position area of integration multi- moment ± s.d.

of feature [Å] [−1 1 0] [ a√
2
] [0 0 1] [c] plicity [µB]

Pr ( a√
2
, c

2
) 15

64
: 49

64
107
256

: 149
256

1 0.2530± 0.0030

Pr on Ba site ( a√
2
, 2.5) 19

64
: 45

64
41
256

: 69
256

2 0.0109± 0.0025

probably Pr (or Cu(2)) ( a√
2
, 3.8) 23

64
: 41

64
73
256

: 87
256

2 0.0020± 0.0013

negative feature ( a
2
√

2
, 2.1) −13

64
: 13

64
37
256

: 55
256

2 −0.0030± 0.0016

negative feature ( a
2
√

2
, 5.1) − 9

64
: 9

64
103
256

: 121
256

2 −0.0012± 0.0012

left/right of Pr ( a
2
√

2
, c

2
) − 5

64
: 5

64
125
256

: 131
256

1 0.0003± 0.0008

‘deformation’ of Pr (3.4, 4.8) 41
64

: 51
64

99
256

: 107
256

4 0.0001± 0.0004

Table 5.4: Summed moments over bins of the [−1 1 0]− [0 0 1] reconstruction in

Fig. 5.5
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there may be an induced moment other than the Cu(1) moment contributing to

this feature. This Cu(1) moment may be compared to induced moments for the

same site in isostructural YBa2Cu3O6+x. A number of PND experiments have

been carried out on YBa2Cu3O6+x for a variety of different oxygen compositions,

applied B fields and temperatures [74],[104],[105],[106],[107],[108]. However, a di-

rect comparison to these works is difficult because the induced magnetic moments

in YBa2Cu3O6+x show a strong temperature dependence [74] and variation with

oxygen composition9. One notable difference, though, is that the Cu(1) moment

is between a factor of 2 to 10 times larger here, than in these references.

The largest feature not situated at the Pr site has its center at ∼ (a
2
, 2.5Å),

see Fig. 5.2(a-c), close to the Ba nuclear position (a
2
, 0.19171 · c ' 2.3Å) as

determined from the unpolarised neutron diffraction experiment (see table 5.1).

Since Ba is non-magnetic the feature centered at (a
2
, 2.5Å) cannot be explained

by an induced moment originating from Ba. Instead it is evidence of Ba/Pr

cation mixing, it shows the moment from the small fraction of Pr ions which

have been substituted for Ba ions on the Ba site in the PrBa2Cu3O6.24 single

crystal used for our neutron experiments. From table 5.3 this moment is found

to be 0.0164± 0.0032µB, which is 6% of the Pr moment and is only an estimate

taking into consideration that the susceptibility of Pr on the Ba site may not be

the same as Pr on the Pr site. A nearby feature with center ∼ (a
2
, 4.1Å) and

moment 0.0021± 0.0014µB may also be originating from an induced moment on

a tiny number of interstitual Pr ions on this site. Alternatively its position is

near the O(2) nuclear site (a
2
, 0.3697 · c = 4.4Å) hence it could be attributed to

O(2).

A number of relatively strong negative features are present. The largest of

these is positioned at (a
2
, 0), see Fig. 5.4(d), with moment −0.0103 ± 0.0027µB.

9In Ref. [106] it is argued that two crystals with the same oxygen composition held at the

same temperature may also exhibit different Cu(1) moments due to specific oxygen ordering of

each sample, depending on how the samples were prepared.
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An obvious guess would be that this feature originates from an induced moment

on the O(3) atom position at the crystallographic site (1/2, 0, 0). However, later

discussion suggests that it may be situated at the (1/2, 1/2, 0) crystallographic

site, or alternatively a combination of both (1/2, 0, 0) and (1/2, 1/2, 0). More

importantly, this feature is definitely real within the uncertainty of the data.

Close to (0.5Å, 2.0Å) in Fig. 5.4(d) is a smaller negative moment of −0.0034 ±
0.0014µB. Its multiplicity in the [0 1 0]− [0 0 1] reconstruction is 4 and therefore

its total moment contribution to the unit cell is 4(−0.0034µB) = −0.0136µB, and

it will be discussed in some detail later. The last feature of table 5.3 is situated

to the left and right of the Pr site with a moment of 0.0036 ± 0.0020µB. It is

quite a small moment and its origin is unknown.

The second independent data set to be discussed is obtained by selecting

those structure factors measured with B ‖ [1 1 0] and with Miller indices in the

[−1 1 0]− [0 0 1] plane. There are 36 of those in tables 5.5-5.6 and by adding the

zero-q structure factor a data set consisting of 37 structure factors is obtained. A

MEMx reconstruction of this data set with M̄ s = 0.1µB (Q = P = 37) is shown

in Fig. 5.5 and Fig. 5.6(b). The data are contained in the [−1 1 0]− [0 0 1] plane,

so the periodic lattice parameters are a√
2

and c respectively, and for convenience

the [−1 1 0] axis is displayed from a
2
√

2
to 3a

2
√

2
. As for the [0 1 0] − [0 0 1]

reconstruction the plane symmetry is mm and the reconstruction is calculated on

a 64× 256 grid.

For the highest magnetization density values the experimentally obtained den-

sity around the Pr site in Fig. 5.6(b) takes the form of a sphere, in agreement

with the theoretical calculated density in Fig. 5.5(a)10. This agrees with obser-

vations made for the [0 1 0]− [0 0 1] reconstruction and confirms that, with the

available data and at the strongest magnetization density levels, the Pr density

10Except for fine features in the theoretical density not present in the experimental observed

density. Even if these are present they are not expected to be revealed with the available data,

because of their small spatial dimension - see discussion of Fig. 5.6(a) in the text above.
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shows no evidence of deviating from the crystal field calculated density. For

magnetization density values a factor of 100 or more lower than the highest den-

sity value there is evidence of small ‘deformations’ of the Pr density from, the

shape predicted by the crystal field calculations. Of these deformations only one

seems to be pointing in the direction of one of the known nuclear sites (other

than the Pr site) as determined from the unpolarised neutron experiment (see

table 5.1). This feature is most clearly seen in Fig. 5.5(c) close to (3.4Å, 4.8Å)

and could possibly be pointing towards the O(2) nuclear positions at (0, 4.4Å).

It is relatively small in magnitude compared to the majority of other features in

the reconstruction and an attempt to integrate over it11 gave 0.0001± 0.0004µB.

To the left and right of the Pr site in Fig. 5.5(b-c) is another small feature with

0.0003 ± 0.0008µB, this is also weak. Another structure close to the Pr site is

the negative feature at ∼ ( a
2
√

2
, 5.1Å) with −0.0012± 0.0012µB (see Fig. 5.5(d)),

and is just about significant within the uncertainty of the data. The strongest

negative moment for the [−1 1 0]−[0 0 1] reconstruction appears at ∼ ( a
2
√

2
, 2.1Å)

with −0.0030± 0.0016µB. Combined with the observed negative features for the

[0 1 0] − [0 0 1] reconstruction, see Fig. 5.4(d), the strongest negative features

appear to be in and below the region of the Ba site (as seen from the bottom

Ba site). Apart from the moment on the Pr site, some of these contribute with

some of the biggest moments in the unit cell, for instance the (a
2
, 0) and (0.5, 2.0)

features in the [0 1 0]− [0 0 1] projection with total moments of 1× (−0.0103)µB

and 4× (−0.0034) = −0.0136µB respectively. Under the assumption that the in-

duced moments are distributed equally with B ‖ [1 0 0] and with B ‖ [1 1 0], the

observation of smaller negative moments for the [−1 1 0]− [0 0 1] projection may

be explained in the region z ' 0 by a concentration of negative density close to

the crystallographic site (1/2, 1/2, 0) which could be cancelled out by a positive

Cu(1) moment when projecting onto [−1 1 0]− [0 0 1]. Similarly, for z ' 2Å, a

11Because it is not located at an isolated position but is part of a larger feature it is difficult

to determine the area which is covered i.e. its area of integration in table 5.4.
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concentration close to the O(1) nuclear site may cancel out parts of the positive

density at the Ba site, originating from Pr/Ba cation mixing. This latter feature

is estimated to be 0.0109 ± 0.0025µB in the [−1 1 0] − [0 0 1] reconstruction,

this is 0.0060µB less than the same feature in the [0 1 0] − [0 0 1] projection,

and supports the explanation of a negative moment close to the O(1) site. The

moment at the Pr site is found to be 0.2530± 0.0030µB in the [−1 1 0]− [0 0 1]

reconstruction, this is within the experimental error of the value for the same

feature in the [0 1 0] − [0 0 1] reconstruction. The remaining feature listed in

table 5.4 is located at ∼ ( a√
2
, 3.8Å) with 0.0020±0.0013µB. This feature together

with the (a
2
, 4.1Å) feature in table 5.3 may be evidence of a small fraction of Pr

ions close to the crystallographic site (a/2, a/2, 4Å). Alternatively, the nuclear

position of Cu(2) in the [−1 1 0] − [0 0 1] projection is ( a√
2
,∼ 4.2Å) and the

(a
2
, 4.1Å) feature could be originating from Cu(2).

5.4 Reconstruction of ‘averaged’ PrBa2Cu3O6.24

data set

In this section all the 91 structure factors in table 5.5 and the 13 ‘averaged’

structure factors in table 5.6 are considered as one data set. Adding the zero-q

structure factor generates a data set consisting of 105 data points. In combin-

ing the data in tables 5.5-5.6 the assumption is (as also discussed in Sec. 5.2)

that the induced moment distributions with B ‖ [1 0 0] and B ‖ [1 1 0] are

very similar and the combined data set is analysed in space group P4/mmm, the

known space group for PrBa2Cu3O6.24. The extent to which this assumption is

valid is difficult to assess, but judging from i) the similarity of the 13 structure

factors in table 5.6 measured independently for both B field orientations (com-

pare F
B ‖ [1 0 0]
hkl ± σ

B ‖ [1 0 0]
hkl and F

B ‖ [1 1 0]
hkl ± σ

B ‖ [1 1 0]
hkl in table 5.6); ii) the

similarities between the reconstructions in Fig. 5.4 and Fig. 5.5; and iii) the fact
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that PrBa2Cu3O6.24 has tetragonal symmetry which means that an applied B

field with any direction within the xy-plane is expected to induce the same total

moment, the moment distributions with B ‖ [1 0 0] and B ‖ [1 1 0] are expected

to be at least reasonably similar. It is therefore valid to analyse the combined

data set. The data is reconstructed on a 16 × 16 × 64 grid and the prior model

constant M̄ s is found using the recipe in Sec. 4.7, Chap. 4. To illustrate the

latter, a FOM1 versus M̄ s plot is shown in Fig. 5.9, where the M̄ s reference point

is found to be M̄ s
ref ' 0.4µB and therefore a M̄ s value close to 0.1µB is selected.

Shown in Fig. 5.7 and continuing in Fig. 5.8 are 9 isosurfaces of the resulting

reconstruction.

Starting from the top left-hand frame in Fig. 5.7, the isosurface at the contour

level (CL) 1µBÅ−3 is shown. This value is close to the highest magnetization den-

sity value, which is 3.08µBÅ−3, and at this level, as expected, a single isosurface

centered at the Pr site is observed. Moving down in contour levels the diameter

of the isosurface enclosing the Pr site increases and at CL = 0.05µBÅ−3 the first

feature not centered at the Pr site is seen. At CL = 0.0025µBÅ−3 a number

of additional moments have appeared. All of these have been discussed in the

previous section, but the isosurfaces offer additional information about the more

precise spatial location in the unit cell, under the assumption that the induced

moment distributions are very similar with the two B field orientations. For in-

stance it is seen from the CL = 0.0025µBÅ−3 isosurface that the negative density

in the plane z ' 0 seems to be centered at (1/2, 1/2, 0) stretching towards the

Ba site. The last two isosurface plots in Fig. 5.8 show the CL = 0.00075µBÅ−3

isosurface from two different perspectives. 0.00075µBÅ−3 is more than a factor

of 1000 below the highest magnetization density value and at this level many

new features appear which are not supported within the uncertainty of the data.

However, none of the isosurfaces show any evidence of the density surrounding

the Pr site pointing towards any known nuclear positions, including nuclear sites

within the CuO2 planes. Only at CL = 0.001µBÅ−3 does the Pr density start to
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deviate from a spherical symmetric form, here it appears to be stretching towards

the (0, 0, 1/2) crystallographic site, which is unexpected as there are no known

atoms located at this site.

5.5 Polarised neutron diffraction data from PrBa2Cu3O7

One other PND experiment on PrBa2Cu3O6+x has been carried out [109], this

used a single crystal of PrBa2Cu3O7. It would be interesting to compare the

magnetization densities of PrBa2Cu3O7 and PrBa2Cu3O6.24. To achieve the best

conditions for such a comparison the sub-sets of data from both data sets with

common Miller indices are used. For PrBa2Cu3O7 this subset is taken from

Ref. [110], and both data subsets contain 30 structure factors which are listed

for PrBa2Cu3O7 in table 5.7 12. The reconstruction for the PrBa2Cu3O6.24 sub-

set with M̄ s = 0.1µB (as used previously), on a 64 × 256 grid, yields a total

calculated moment of 0.2265µB, and is displayed in Fig. 5.10. The reconstruction

for PrBa2Cu3O7 using the same grid and prior model constants yields a total

calculated moment of 0.3223µB, it is scaled down by a factor 0.2265
0.3223

to allow better

comparison between the two data set, and is displayed in Fig. 5.11. There are

differences between the two magnetization density maps in Fig. 5.10 and Fig. 5.11.

However, around the area of the Pr site there is striking similarity for both

positive and negative magnetization density values. This shows that the overall

structure of the magnetization density distribution in the neighbourhood of the

Pr site has little dependence on the oxygen content in PrBa2Cu3O6+x (at least

when going from x = 1 to x = 0.24). This might not be surprising considering

that the Pr site is furthest away from the Cu(1)-O(3) chains in the unit cell, where

oxygen atoms can be taken out or inserted into the structure. Probably the most

significant difference between the two PrBa2Cu3O6+x compounds is seen at the

Cu(1) position, where a stronger moment is induced on Cu(1) in PrBa2Cu3O7

12The equivalent sub-set for PrBa2Cu3O6.24 can be obtained from tables 5.5-5.6.
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relative to Cu(1) in PrBa2Cu3O6.24. The magnetization density near the Ba site

is also different. These differences may be caused by the use of single crystals

grown in different crucibles. To grow the PrBa2Cu3O7 and PrBa2Cu3O6.24 single

crystals, Al2O3 and MgO crucible were used respectively.

Another issue governs the interpretation of regions of a magnetization density

image which have zero density. This may seem trivial but it is worth a discussion

in the context of data presented in this chapter. Clearly the question is only

relevant when dealing incomplete data, as is usually the case, and the question

of whether an area of zero density means that there is nothing there, or whether

the zero density is caused by a shortcoming of the data may arise. As a first

example, the sub-set containing the 30 data points used to generate Fig. 5.10 is

taken from the larger 37 point data set discussed in Sec. 5.3.2 and displayed in

Fig. 5.5. By comparing Fig. 5.10 and Fig. 5.5 it is clear that notable differences

are present. Looking more carefully at these figures it is also apparent that there

are no features in Fig. 5.10 which are not seen in some form in Fig. 5.5. The

opposite is not the case, as expected. This emphasizes that when data are taken

out of the data set the picture of the resulting reconstruction may change. More

specifically, compare the Pr density in Fig. 5.10 and Fig. 5.5. From Fig. 5.10

the Pr density looks perfectly circular. However, the reconstruction in Fig. 5.5 is

circular but with a few additional small features.

For the special case of going from Fig. 5.5 to Fig. 5.10 most of the information

lost can regained by simply adding two of the seven structure factors which are

not part of the 30 point sub-set. This is illustrated in Fig. 5.12 where the the 0 0 1

and 0 0 2 structure factors have been inserted back to obtain a 32 structure factor

sub-set. It is therefore tempting to conclude that if the 0 0 1 and 0 0 2 structure

factor were measured for the PrBa2Cu3O7 crystal a similar re-distribution of the

negative and positive magnetization would be observed.
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5.6 Discussion and conclusions

Studying the magnetization density reconstructions of PrBa2Cu3O6.24 in Sec. 5.3-

5.4 and comparing then with the magnetization density of PrBa2Cu3O7 in Sec. 5.5,

a number of very interesting features are revealed, in many cases the evidence

of these features in the data is great. How do these new observations relate to

previous experimental and theoretical work?

Focusing on the induced moment density of the Pr ion, it was seen in Sec. 5.3

that its overall geometry (spherical) and size could be explained with a local crys-

tal field model for Pr3+. This is not surprising since a number of magnetic exci-

tation spectra on PrBa2Cu3O6+x have been measured [111],[112],[99],[113],[114],

and although the excitation spectra shown unusual peak broadening as compared

to spectra measured on RBa2Cu3O6+x (R=rare earth), the crystal field param-

eters describing the local environment of the Pr ion can be refined with good

accuracy. Hence it is not surprising that the major shape of the induced Pr mo-

ment in PrBa2Cu3O6.24 was found to be well described within such a crystal field

model. However, crystal field parameters do not describe every detail of a rare

earth local environment, for instance, effects which cause peak broadening are not

accounted for. In particular the enhanced widths in the magnetic excitation spec-

trum of PrBa2Cu3O6+x are attributed to an increased hybridisation between 4f

electrons and electronic states in the CuO2 planes [111],[112],[99],[113], and such

an hybridisation is said to be responsible for the TC suppression in PrBa2Cu3O6+x

by the majority of people working in this field (see review papers Refs. [1],[93]

and references therein). It would therefore be of key interest if the structure of

this hybridisation could be mapped out. A number of theoretical works, includ-

ing Fehrenbacher & Rice model [94], predict the cause to involve a hybridisation

of the 4f electrons of Pr and electronic states in the CuO2 planes. An ideal

experiment to perform in order to probe the exact spatial distribution of these

4f electrons is a PND experiment. This measures the Fourier components of the
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magnetization density distribution in the unit cell and since only the 4f electrons

of Pr are magnetic, it is only these Pr electrons which are detectable in a PND

experiment, plus other non Pr magnetic contributions. A unit cell magnetization

density may look different from a unit cell electron density (see Chap. 1), but

a B field of magnitude 4.6T was used for the PND experiments reported here

and these densities should be similar. In any case, to make a direct comparison

to a PND experiment the expectation value of magnetization density operators

may be calculated for any proposed theoretical model and then compared directly

with the observed magnetization density image.

In summary the following has been observed.

1. In the region around the Pr site the magnetization density distribution was

(a) found to be more or less independent of oxygen composition (at least

when going from x = 1 to x = 0.24 for PrBa2Cu3O6+x.

(b) The crystal field model refined from magnetic excitation spectra was

found to describe the features of the Pr density for magnetization den-

sity values ranging from the highest value to 1/100 of the highest value.

However, from the discussions in Sec. 5.5 it should be remembered that

if more structure factors are measured, the Pr density may gain more

fine structure, although, the dominating Pr feature will remain the

same.

(c) Small deviations of this density were seen below 1/100, this puts a con-

straint on the degree of possible hybridisation and theoretical models

like that of Fehrenbacher & Rice. In principle to make a full compar-

ison would require the calculation of the magnetization density cor-

responding to the Fehrenbacher & Rice state (and equivalent states

from other theoretical works) under the influence of an applied field,

at a temperature just above the Neel temperature of the Pr moments

(say T = 20K).
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2. The observed magnetic structure in the region around the Ba site is also

of interest, since some of these features could be key to the explanation

of the suppression of superconductivity in PrBa2Cu3O6+x, or may even be

the reason for such suppression. The experiment which would clarify this

uniquely, would be a PND experiment, as described in Sec. 5.2, using a

single crystal of PrBa2Cu3O6+x grown under special conditions [115],[116],

where superconductivity in this compound has been achieved. If the mag-

netization density distribution in the region of the Pr site is different for

such a single crystal13 then Pr on the Pr site does contribute to the suppres-

sion of superconductivity for a ‘standard’ PrBa2Cu3O6+x crystal. It could

may also be possible that small amounts of Pr/Ba mixing trigger the Pr

ions on the Pr sites to form a hybridisation state with O(2p) levels in the

CuO2?

13The comparison would be best for crystal grown with an oxygen composition where

PrBa2Cu3O6+x is in its tetragonal phase.
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Figure 5.2: Shows 〈Mx(r)〉[1 0 0]. Two isosurfaces illustrate 〈Mx〉 in (e-f), the

lighter coloured surfaces indicate negative magnetization of the same contour

level. In (a-d) a projection of 〈Mx〉 is shown where in (b-d) all negative density

= 0 and in addition in (b) all positive density above 0.1 is cut-off, in (c) cut-

off=0.01 and in (d) 0.005 µBÅ−2. 168
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Figure 5.3: Same as in Fig. 5.2 but using the wave function with B ‖ [1 1 0] in

table 5.2.
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Figure 5.4: Shows a reconstruction of the data set consisting of the structure

factors in tables 5.5-5.6 which are in the [0 1 0] − [0 0 1] plane. In (a-d) all

density above 0.1, 0.01, 0.005 and 0µÅ−2 respectively are cut-off. In addition in

(b-c) all negative density = 0. M̄ s = 0.1µB (Q = P = 53).
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Figure 5.5: Same as in Fig. 5.4 but for the data in tables 5.5-5.6 which are in the

[1 1 0]− [0 0 1] plane. M̄ s = 0.1µB (Q = P = 37).

171



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3
4

4.5

5

5.5

6

6.5

7

7.5

[0 1 0]  [0.1nm]

[0
 0

 1
]  

[0
.1

nm
]

a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1b) 

2 3 4
4

4.5

5

5.5

6

6.5

7

7.5

[−1 1 0]  [0.1nm]

[0
 0

 1
]  

[0
.1

nm
]

Figure 5.6: (a) same shows a contour plot of same reconstruction as described in

Fig. 5.4 with no cut-off and for part of the unit to emphasize the density close to

the Pr site. (b) same as (a) but for the reconstruction in Fig. 5.5.
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Figure 5.7: Reconstruction of the ‘averaged’ PrBa2Cu3O6.24 data in tables 5.5-5.6.

M̄ s = 0.1µB and Q = 105. Continues on next page.
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Figure 5.8: Continued from Fig. 5.7.
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Figure 5.9: Shows the figure of merit v
∑

i |mmax
i | as a function of M̄ s for the

data in tables 5.5-5.6 (Q = 105). The inset represents a zoom-in on the region

near the reference point M̄ s
ref estimated to M̄ s

ref ' 3.8µB. Using the recipe

in Sec. 4.7, Chap. 4 this suggests that the prior constant M̄ s should be selected

close to M̄ s = 0.1µB.

174



−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08a) 

2 3 4
0

2

4

6

8

10

[−1 1 0]  [0.1nm]

[0
 0

 1
]  

[0
.1

nm
]

0

1

2

3

4

5

6

7

8

9
x 10

−3

b) 

2 3 4
0

2

4

6

8

10

[−1 1 0]  [0.1nm]

[0
 0

 1
]  

[0
.1

nm
]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

c) 

2 3 4
0

2

4

6

8

10

[−1 1 0]  [0.1nm]

[0
 0

 1
]  

[0
.1

nm
]

−11

−10

−9

−8

−7

−6

−5

−4

−3

x 10
−3

d) 

2 3 4
0

2

4

6

8

10

[−1 1 0]  [0.1nm]

[0
 0

 1
]  

[0
.1

nm
]

Figure 5.10: Same as in Fig. 5.4 but for the 30 structure factor data sub-set

described in the text. M̄ s = 0.1µB (Q = P = 30).
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Figure 5.11: Same as in Fig. 5.4 but for the data given in table 5.7. M̄ s = 0.1µB

(Q = P = 30).
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Figure 5.12: Same as in Fig. 5.10 but where the 0 0 1 and 0 0 2 structure factor

in the B ‖ [1 1 0] columns of table 5.6 have been added to the data used to obtain

the reconstruction in Fig. 5.10. M̄ s = 0.1µB (Q = P = 32).
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Miller indices B ‖ [1 1 0] Miller indices B ‖ [1 0 0]
h k l Fhkl [µB] σhkl [µB] h k l Fhkl [µB] σhkl [µB]
0 0 6 0.20277 0.00497 0 1 0 -0.26468 0.00324
0 0 14 0.08150 0.03194 0 1 1 0.25115 0.00381
-1 1 0 0.26083 0.00209 0 1 2 -0.15615 0.00665
-1 1 1 -0.23235 0.00361 0 1 3 0.24869 0.00342
-1 1 2 0.18454 0.00907 0 1 4 -0.22842 0.00574
-1 1 3 -0.23857 0.00468 0 1 5 0.16901 0.01679
-1 1 4 0.22956 0.00651 0 1 6 -0.19589 0.00642
-1 1 6 0.19071 0.00591 0 1 7 0.20587 0.00940
-1 1 7 -0.18871 0.02693 0 1 8 -0.17158 0.01657
-1 1 8 0.15241 0.01017 0 1 9 0.14497 0.01666
-1 1 12 0.09527 0.01862 0 1 10 -0.14689 0.01096
-1 1 13 -0.08031 0.04310 0 1 11 0.16102 0.02396
-1 2 0 -0.22128 0.00615 0 1 12 -0.11327 0.04215
-1 2 1 0.19502 0.00904 0 1 13 0.13327 0.06028
-1 2 2 -0.12092 0.03144 0 1 14 -0.10895 0.03671
-1 2 3 0.21010 0.00513 0 1 16 -0.05703 0.05714
-1 2 4 -0.19940 0.00991 0 2 0 0.22949 0.00281
-1 2 6 -0.17748 0.01020 0 2 1 -0.20126 0.00731
-1 2 7 0.15539 0.02223 0 2 2 0.16382 0.01579
-1 2 8 -0.12791 0.01024 0 2 3 -0.21254 0.00624
-2 2 0 0.19310 0.00613 0 2 4 0.19731 0.00596
-2 2 1 -0.16029 0.01265 0 2 5 -0.17360 0.01037
-2 2 3 -0.17447 0.00833 0 2 6 0.17202 0.01177
-2 2 4 0.15847 0.00818 0 2 7 -0.18728 0.01274
-2 2 5 -0.15544 0.00704 0 2 8 0.14866 0.01003
-2 2 6 0.15380 0.00781 0 2 11 -0.09824 0.01487
-2 2 7 -0.13972 0.00727 0 3 0 -0.17707 0.01896
-2 2 8 0.12727 0.00691 0 3 3 0.15865 0.00945
-2 2 11 -0.07750 0.03007 0 3 4 -0.15783 0.02683
-1 3 4 0.06409 0.04017 0 3 6 -0.14440 0.01756
-2 3 0 -0.16987 0.01342 0 3 7 0.02916 0.05050
-2 3 3 0.14865 0.00776 0 3 8 -0.15290 0.02333
-2 3 6 -0.12437 0.03527 0 3 9 0.09669 0.08361
-3 3 0 0.13211 0.02068 0 3 10 -0.11438 0.02763
-3 3 3 -0.11202 0.04944 0 4 0 0.13762 0.00882
-3 3 6 0.10140 0.02731 0 4 1 -0.13746 0.01996
-2 4 0 0.11051 0.01689 0 4 4 0.11550 0.02277
-2 4 3 -0.08728 0.04690 0 4 5 -0.11624 0.02787
-2 4 4 0.11038 0.06397 0 4 6 0.13621 0.01684
-3 4 0 -0.12230 0.03199 0 5 3 -0.00554 0.04764
-3 4 3 0.07594 0.02354 0 6 0 0.06006 0.03051
-4 4 0 0.06281 0.03504 0 6 6 0.07999 0.02675
-4 4 6 0.00814 0.05156 -1 4 0 -0.13049 0.03646

-1 5 0 0.12043 0.04355
-1 5 1 -0.02056 0.09670
-1 4 3 0.12088 0.03028
-1 3 6 0.15335 0.01162
-1 5 6 0.03401 0.05516

Table 5.5: Shows the structure factors measured with B ‖ [1 1 0] and B ‖ [1 0 0]
which do not have common Miller indices.
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Miller indices B ‖ [1 1 0] B ‖ [1 0 0] Average
h k l Fhkl [µB] σhkl [µB] Fhkl [µB] σhkl [µB] F̄hkl [µB] σ̄hkl [µB]
0 0 1 -0.25995 0.00257 -0.26136 0.00390 -0.26066 0.00324
0 0 2 0.24081 0.01055 0.23386 0.00661 0.23734 0.00858
0 0 3 -0.24396 0.00604 -0.24463 0.00415 -0.24430 0.00510
0 0 4 0.25283 0.00537 0.25112 0.00612 0.25198 0.00575
0 0 5 -0.20652 0.00447 -0.21557 0.00827 -0.21105 0.00637
0 0 7 -0.21725 0.00648 -0.22942 0.00964 -0.22334 0.00806
0 0 8 0.16286 0.01319 0.16807 0.01134 0.16547 0.01227
0 0 9 -0.09085 0.05025 -0.10146 0.02917 -0.09616 0.03971
0 0 10 0.16137 0.02497 0.18291 0.04203 0.17214 0.00335
0 0 11 -0.15583 0.00879 -0.12644 0.01349 -0.14114 0.01470
-1 3 0 0.15186 0.02465 0.21622 0.01853 0.18404 0.03218
-1 3 1 -0.17214 0.02491 -0.14432 0.03295 -0.15823 0.02893
-1 3 3 -0.17616 0.02494 -0.17237 0.02146 -0.17427 0.02320

Table 5.6: Shows the structure factors measured with B ‖ [1 1 0] and B ‖ [1 0 0]
which have common Miller indices, and an estimated ‘averaged’ structure factor
value and standard deviation value for each hkl set.

Miller indices Miller indices
h k l Fhkl [µB] σhkl [µB] h k l Fhkl [µB] σhkl [µB]
0 0 3 -0.326 0.003 -1 1 12 0.153 0.009
0 0 4 0.31 0.007 -1 1 13 -0.137 0.01
0 0 5 -0.234 0.004 -2 2 0 0.306 0.008
0 0 6 0.314 0.003 -2 2 1 -0.174 0.006
0 0 7 -0.277 0.009 -2 2 3 -0.235 0.007
0 0 8 0.203 0.008 -2 2 4 0.238 0.011
0 0 11 -0.173 0.008 -2 2 5 -0.171 0.008
0 0 14 0.153 0.012 -2 2 6 0.235 0.009
-1 1 0 0.364 0.005 -2 2 7 -0.173 0.007
-1 1 1 -0.272 0.003 -2 2 8 0.164 0.011
-1 1 2 0.264 0.007 -2 2 11 -0.146 0.011
-1 1 3 -0.335 0.006 -3 3 0 0.205 0.011
-1 1 4 0.294 0.011 -3 3 3 -0.191 0.012
-1 1 6 0.291 0.008 -3 3 6 0.144 0.011
-1 1 8 0.193 0.006 -4 4 0 0.084 0.012

Table 5.7: Shows the structure factors measured on PrBa2Cu3O7 from Ref. [110],
page 74, which have common Miller indices with any of the data in tables 5.5-5.6.
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Chapter 6

A practical example of

comparing MaxEnt algorithms

A comparison will be made between the MEMx reconstructions presented in

Dobrzynski et al. [80],[81] using the algorithms presented by Sakata et al. [67]

and Papoular et al. [66], and reconstructions obtained using MEMx in Def. 7,

Chap. 4. This comparison of MEMx algorithms gives a fine illustration of the

sort of difficulties that can appear when comparing MEMx related publications.

The data analysed in [80],[81] is polarised neutron diffraction data of Ni (and

Fe), and this chapter provides support for features observed by Dobrzynski et al.

and others, and may provide additional insight into clarifying the magnetization

density of nickel.1

6.1 Introduction

MEMx

Although the name MEMx should refer to one method, authors of papers involv-

ing the MEMx method often ignore or find it difficult to understand each other’s

1Getting this far (and near the end) the reader almost deserves a good bottle of wine! Such

as maybe a Brunello di Montalcino, 1993.
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work. The papers by Dobrzynski et al. [80],[81] give a fine illustration of this.

Here two data analysis methods with the same name (maximum entropy) are

used to analyse the same data. In the introduction, Dobrzynski et al. [80],[81]

give a short description of the two maximum entropy methods. The notation

P-MEM and S-MEM are used respectively to refer to the MEMx algorithm of

Papoular et al. [66] and Sakata et al. [67]. Clearly both Papoular et al. and

Sakata et al. claim to be the authors of a MEMx method, so what is different? In

Dobrzynski et al. [80],[81] differences are explained in terms of ’soft’ and ’hard’

constraints. This is a notation which, to my opinion, indicates that the authors

do not totally understand the differences between these two MEMx algorithms.

This will become apparent when reading Sec. 6.2 and Sec. 6.3 where the algo-

rithms of Sakata et al. and Papoular et al. are discussed in detail. It is found

that the algorithm of Papoular et al. is more appropriate for the analysis of PND

data as compared to the algorithm of Sakata et al. for the particular case of PND

data because of the physical information which is available in such data.

The aim of the above discussion is not to criticise the individual works of

Sakata et al. and Papoular et al. but rather to present a criticism of the MEMx

literature in general, which can at times be obscure and hard to compare, par-

ticularly for anyone who simply wants to apply the method.

Nickel problem

For the majority of crystal structures only a small subset of the electrons of the

structure will be magnetic. Using polarised neutron diffraction the magnetization

density of these electrons is measured. In addition the electron and magnetization

densities are in general closely related and are often close to being proportional.

Polarised neutron diffraction has the ability to probe only the magnetic electrons,

and is the best known experimental method for obtaining information about the

electron density of these magnetic electrons (see also Chap. 1). Of interest here

are the transition metals, where the interpretation of experimentally measured
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structure factors is still not unique. As an example, the magnetic structure factors

(or equivalently form factors) calculated for free atoms are often scaled and fitted

to the data (see Ref. [80],[81] and references therein). For transition metals most

of the magnetic scattering comes from unpaired 3d electron spins. There is also

an orbital contribution to the magnetization, but, since this contribution is small

it introduces only a small uncertainty to the interpretation of the magnetization

density being proportional to the electron density of the unpaired electrons (see

Chap. 1).

Nickel is one of the most studied compounds using polarised neutron diffrac-

tion. As, for example, in the carefully performed experiments by Mook [117] and

Maniawski et al. [118]. These data showed evidence of small negative magneti-

zation in the regions between the Ni sites in addition to the dominating positive

moments at the Ni sites. The theoretical model which has most frequently been

used for modelling such data takes the negative magnetization density to be uni-

formly distributed throughout the unit cell, and the positive magnetization to

be modelled from free atom form factors. Despite being simple, this picture has

been successfully used to model experimental data. Alternative models have been

proposed with the aim of adding more details into the description of transition

metal magnetization densities. Discussion of such models can be found in Do-

brzynski et al. [80],[81] and references therein. Dobrzynski et al. use the MEMx

method to reanalyse the data of Mook and Maniawski et al., and observe new

features which had not been revealed previously. The most significant of these

being the depletion of magnetization density at the nuclei positions.

The main theme of this chapter is a discussion of the MEMx algorithms of

Sakata et al. and Papoular et al.. The algorithm used by Sakata et al. is not

directly applicable to reconstruction of magnetization densities from PND data,

since it is designed for physical problems where the total amount of positive and

negative integrated material of the unit cell are separately known, see Sec. 6.2.

On the contrary it is found, in Sec. 6.3, that direct comparison can be made
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between the reconstructions generated using the code of Papoular et al. and the

reconstructions obtained using MEMx in Def. 7, Chap. 4. This requires that

a specific choice is made for the value of the prior model constant, M̄ s, in the

MEMx method of Chap. 4, which turns out to be significantly different from the

one recommended using the recipe for finding such a constant in Chap. 4. The

mode of the posterior for the nickel data for two different M̄ s values is discussed in

Sec. 6.4. In addition error estimates are calculated for some of the nickel features

in Sec. 6.4. These results support the observations made by Dobrzynski et al. of

depletion of magnetization density at the Ni sites.

6.2 The approach of Sakata et al.

Sakata et al. study charge densities in Ref. [119],[120] and nuclear densities in

Ref. [67]. A description of the MEMx algorithm which has been used in their

studies can be found in Ref. [121] and an analysis of it in Ref. [87].

A charge density is positive everywhere and the authors take the approach of

interpreting the charge density as a probability distribution. Using the notation

in Ref. [120] let ρ′i be the probability density associated with the ith bin (or pixel)

of the image (charge density). Let ρi be the actual electron density, then ρ′i and

ρi are related by ρ′i = ρi/
∑

i ρi. Interpreting an image (charge density) in this

way (as a probability distribution) was first done, in the context of a maximum

entropy data analysis method, by Frieden, see Chap. 3. Often when this approach

is followed a ‘prior’ is associated with the ‘image’ probability distribution. It is

not a prior in the sense of being a prior in Bayes’ theorem but in the sense of the

definition of MEM in Def. 7, Chap. 3. Sakata et al. use the notation τ ′i to denote

the prior density for ρ′i.

In Ref. [67] Sakata et al. apply MEMx to obtain the nuclear density for TiO2.

The mean scattering lengths of Ti and O atoms are denoted by bTi and bO re-

spectively. Since these two scattering lengths are of opposite sign the nuclear
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density of TiO2 will contain regions of positive and negative density. Sakata et

al. treat the nuclear density originating from Ti and O separately and associate

the probability density ρ′Ti with the Ti atoms and ρ′O with the O atoms. Likewise

so-called priors τ ′Ti and τ ′O are introduced. An entropy is then defined as

S = −
∑

i

I∑
j=1

ρ′ij ln(ρ′ij/τ
′
ij) , (6.1)

where j is the sum over the image bins and i is the sum over the different types of

atoms in the unit cell; for TiO2 that is i =Ti and i =O. According to the broad

definition given in Def. 7, Chap. 3, MEMx is the maximization of entropy subject

to a chi-squared like statistic. The chi-squared like statistic used by Sakata et al.

is for non-overlapping and centro-symmetric data

C =
1

P

P∑
i=1

(F obs
i − Fi)

2

σ2
i

, (6.2)

where P is the number of data points, and F obs
i and Fi are the ith observed and

calculated structure factors respectively.

Introducing the Lagrangian multiplier λ and combining Eq. (6.1) and Eq. (6.2)

Sakata et al. aim to optimize

f = S − λC/2 . (6.3)

The independent variables in Eq. (6.3) are taken to be the ρ′i’s and f is maximized

with respect to these variables2. Sakata et al. assume that the total amount of

material contributed from each atom is known and denote these amounts nibi,

where bi is nuclear scattering length and ni is the number of atoms of type i. Then

the nuclear density and associated probability density for the ith atom are related

by ρijv = nibiρ
′
ij and it is therefore possible to write the image-to-data Fourier

2To be mathematical correct, f in Eq. (6.3) should have the form Q = S − λC/2 −
∑

i λi

∑I
j=1 ρ′ij , since presumably we must require the associated probability distributions ρ′ij

to be normalized for each type of atom i.

184



transform simply in terms of the ρ′ij’s, as Fl =
∑

i

∑I
j=1 nibiρ

′
ij exp(−2πikl ·rj)

3.

Hence, taking the derivative of f with respect to the ρ′ij’s and using ∂S/∂ρ′ij =

−1− ln(ρ′ij/τ
′
ij) (and ignoring the −1 term) Sakata et al. in Ref. [67] obtain

0 = − ln
ρ′ij
τ ′ij

− λ

2

∂C

∂ρ′ij
, (6.4)

where
∂C

∂ρ′ij
= (2nibi/P )

P∑

l=1

exp(−2πikl · rj)(Fl − F obs
l )/σ2

l .

Let τ ′ij be related to a ‘prior’ nuclear density τij as τijv = nibiτ
′
ij and Eq. (6.4)

may be written in terms of nuclear densities by substituting ln
ρ′ij
τ ′ij

with ln
ρij

τij
and

likewise substituting ρ′ij in ∂C
∂ρ′ij

with
ρijv

nibi
.

In the computer algorithm used for finding the solution to Eq. (6.4) Sakata

et al. use the following procedure. Rather than solving for Eq. (6.4) for fixed τ ′Ti

and τ ′O (and data) by, for example, using one of the search algorithms described

in Sec. 4.4.1 the MEMx solution is found within an approximation referred to

as the “zeroth-order single-pixel approximation”. The effect of employing this

approximation is that the so-called priors τ ′Ti and τ ′O do not stay fixed in the

optimization process, but are updated under each iteration circle. Hence, what

that means is that Sakata et al. must assume that the MEMx solution which is

obtained is not significantly dependent on the values of τ ′Ti and τ ′O. Also, these

values are never quoted in their publications.

The MEMx algorithm developed by Sakata et al. is not directly applicable to

the analysis of PND data. This is because the equivalent values of the nuclear

3Write the Fourier transform between density and structure factor as

Fl =
∫

cell

ρ(r) exp(−2πikl · r)dr .

This integral is in its discrete Fourier series approximation given as

Fl =
∑

i

I∑

j=1

ρ′ij exp(−2πikl · rj) .
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scattering lengths, bi (for TiO2 that is bTi and bO), are not available for a PND

experiment. These input values for the algorithm of Sakata et al. impose delta

function constraints on the reconstructed image. Such a situation does not com-

ply with the physical conditions of a PND experiment, where the total positive

magnetic moment and total negative magnetic moment are not known, and can-

not be measured separately4. The algorithm of Sakata et al. works well with

the physical situation of obtaining the nuclear density from nuclear diffraction

data but clearly not for analysising PND data. It is therefore concluded that the

algorithm of Sakata et al. should probably not have been used for analysis of the

PND data in Dobrzynski et al. because it forces information which is not available

into the data analysis process. For that reason the Sakata et al. reconstructions

in Dobrzynski et al. are not discussed further in Sec. 6.4.

6.3 The approach of Papoular et al.

Papoular et al. apply MEMx to the study of PND data in Refs. [66],[70],[122],[123].

MEMx is also used in Ref. [124] for the retrival of deformation electron densi-

ties and is applied in Ref. [125] to the reconstruction of Patterson and Fourier

densities in orientationally disordered molecules.

Like Sakata et al., Papoular et al. use the approach of Frieden and associate

a probability distribution with the physical density to be reconstructed. Using

the notation in Ref. [124], ρ+
i and ρ−i denote positive and negative material re-

spectively of the ith bin and p+
i and p−i the associated probabilities. The relation

4Information about the total magnetic moment can be obtained (e.g. from a magnetic sus-

ceptibility measurement) but not in the form represented probabilistically by a delta function.

The total moment is equal to the difference between the magnitude of the total positive moment

and the magnitude of the total negative moment.

186



between these quantities are written as

p+
i = ρ+

i /

I∑
i=1

(ρ+
i + ρ−i )

p−i = ρ−i /

I∑
i=1

(ρ+
i + ρ−i ) . (6.5)

The Papoular et al. definition of the associated probability distributions in Eqs. (6.5)

differs slightly from the Sakata et al. definition by using the denominator
∑I

i=1(ρ
+
i +

ρ−i ) instead of
∑I

i=1 ρ+
i and

∑I
i=1 ρ+

i . Notice that, in Eqs. (6.5) neither p+
i nor p−i

sum up to one and are therefore not probabilities according to the usual definition

of a discrete probability distribution. Similar to the definition for the entropy

function by Sakata et al. in Eq. (6.1), Papoular et al. define entropy as

S = −
I∑

i=1

[p+
i ln(p+

i /p+
0i) + p−i ln(p−i /p−0i)] , (6.6)

where p+
0i and p−0i

5 are the ‘prior’ probabilities to the ‘image’ probabilities p+
i

and p−i , and p+
0i and p−0i are related to ‘prior’ material densities ρ+

0i and ρ−0i as in

Eqs. (6.5). In Ref. [124] Papoular et al. define the chi-squared constraint function

as (assuming data to be centro-symmetric)

C =
P∑

i=1

(F obs
i − Fi)

2

σ2
i

, (6.7)

which is the same function as Q in Eq. (4.22), Chap. 4 and equal to C used by

Sakata et al. in Eq. (6.2) multiplied by P , where P is the number of data points.

The main difference between the work of Papoular et al. and the work of

Sakata et al., apart from differences in the search algorithms they use, is that

Papoular et al. do not assume the values of
∑

i ρ
+
i and

∑
i ρ

+
i are known. So,

when the derivative of the entropy in Eq. (6.6) is taken with respect to ρ+
i we

obtain
∂S

∂ρ+
i

=
− ln(ρ+

i /ρ+
0i) + A′

∑I
j=1(ρ

+
j + ρ−j )

, (6.8)

5Papoular et al. [124] use the notation m+
0i and m−

0i for these quantities but to avoid confusion

with notation already used in this thesis these are denoted here by p+
0i and p−0i.
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where

A′ =
I∑

j=1

[p+
j ln(ρ+

j /ρ+
0j) + p−j ln(ρ−j /ρ−0j)] . (6.9)

In particular when ρ+
0i = ρ−0i = ρ0 for all i = 1, 2, . . . , I, the 2I system of equations

which are to be solved are

0 = − ln ρ+
i + A− λ0[

I∑
j=1

(ρ+
j + ρ−j )](∂C/∂ρ+

i )

0 = − ln ρ−i + A− λ0[
I∑

j=1

(ρ+
j + ρ−j )](∂C/∂ρ−i ) (6.10)

for i = 1, 2, . . . , I, and A =
∑I

j=1[p
+
j ln ρ+

j + p−j ln ρ−j ] 6. What is interesting is

that if Eqs. (6.10) are to be solved exactly as written the resulting solution(s)

would be of no physical use. The main reason for this is the introduction of A

and its particular dependence on the ρ+
i ’s and ρ−i ’s. If A had been a constant,

i.e. independent of the ρi’s, then the solution to Eqs. (6.10) would be a MEMx

solution as will be demonstrated later. The relatively simple structure of the

equations in Eqs. (6.10) enables the following straightforward derivations of a

couple of properties which must be satisfied by any solution to Eqs. (6.10). C in

Eq. (6.7) depends only on the difference densities ρ+
i −ρ−i , i = 1, 2, . . . , I because

F obs
i and Fi in Eq. (6.7) are by definition Fourier components of the difference

density, and therefore ∂C/∂ρ+
i = −∂C/∂ρ−i for all i. Thus, adding together in

pairs the equations in Eqs. (6.10) with the same index number i the following I

equations are obtained

0 = − ln ρ+
i − ln ρ−i + 2A (6.11)

for i = 1, 2, . . . , I. From Eqs. (6.11) it is clear that ln(ρ+
i ρ−i ) = 2A for all i.

Multiply Eqs. (6.11) on both sides with
∑I

j=1(ρ
+
i + ρ−i ) to obtain

0 = −
I∑

j=1

(ρ+
j + ρ−j ) ln(ρ+

i ρ−i ) + 2
I∑

j=1

(ρ+
j ln ρ+

j + ρ−j ln ρ−j ) (6.12)

6Comparing with Eq. (9b) in Ref. [124] then A here is equal to ln A in that equation.
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Using the fact that ρ+
i ρ−i = ρ+

j ρ−j for all j = 1, 2, . . . I the first sum in Eq. (6.12)

can be written as
∑I

j=1(ρ
+
j + ρ−j ) ln(ρ+

j ρ−j ) and Eq. (6.12) can be reduced to

0 =
I∑

i=1

(ρ+
i − ρ−i ) ln(ρ+

i /ρ−i ) . (6.13)

Observe that each of the terms in the sum in Eq. (6.13) is always positive or

zero and for this reason any solution to this equation, and the 2I equations in

Eqs. (6.10), must satisfy ρ+
i = ρ−i for all i = 1, 2, . . . I, in addition to the relations

ln(ρ+
i ρ−i ) = 2A. This clearly shows that finding a solution to Eqs. (6.10) is

ambiguous, because any such solution must satisfy ρ+
i − ρ−i = 0 for all i, which

means that any solution to Eqs. (6.10) has to have an absolute density of zero

everywhere in the unit cell.

In practice, Papoular et al. fix some value for A in Eqs. (6.10) and then find a

solution for these equations. This way a solution to Eqs. (6.10) no longer has to

satisfy ρ+
i = ρ−i for all i = 1, 2, . . . I and a meaningful solution can be obtained.

Papoular et al. suggest ways of determining a value for A in Refs. [124],[125] in

the light of the expression for A in Eq. (6.9). However, since this expression has

the effect of making the system of equations in Eqs. (6.10) meaningless, then

these estimates of A probably have limited value. The notation in Eqs. (6.10)

is (partly) taken from Collins Ref. [126] and others (see references in Ref. [125])

and the observations made in this section also apply to these works.

With A considered a fixed MEMx constant, Eqs. (6.10) can be mapped onto

the MEMx in Def. 7, Chap. 4. Consider the expression in Eq. (4.28), Chap. 4

with M̄+ = M̄−, and use M̄+ = M̄− = M̄ s/2 (see Eqs. (4.5)) then Eq. (4.28),

Chap. 4 reads

logP =
v

ε

I∑
i=1

[m+
i + m−

i −m+
i ln(

2V m+
i

M̄ s
)−m−

i ln(
2V m−

i

M̄ s
)]− 1

2
Q (6.14)

where m+
i and m−

i are the separate positive and negative magnetization densities
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of the ith bin. The extremum of Eq. (6.14) is found by solving the 2I equations

0 = − ln(2V m+
i /M̄ s)− (ε/(2v))(∂Q/∂m+

i )

0 = − ln(2V m−
i /M̄ s)− (ε/(2v))(∂Q/∂m−

i ) . (6.15)

Identifying ε/(2v) with λ0[
∑I

j=1(ρ
+
j + ρ−j )] in Eqs. (6.10) and M̄ s/(2V ) with

exp(A) it is seen that these two systems of equations are identical provided A

is treated as a constant in Eqs. (6.10). Further, we know from the discussion in

Sec. 4.3, Chap. 4 that finding the solution to Eqs. (6.15) is equivalent to solving

for7

0 = − sinh−1(V mi/M̄ s)− (ε/(2v))(∂Q/∂mi) , i = 1, 2, . . . , I , (6.16)

where mi = m+
i −m−

i and provided Q only depends on the mi’s and that it is

only the mi’s that we are aiming to evaluate. Solving for Eqs. (6.16) returns the

output of the MEMx in Def. 7, Chap. 4 and it has hereby been shown that by

choosing a value of M̄ s in Eqs. (6.16) which matches A in Eqs. (6.10) 8 then these

two MEMx’s are identical. This will be illustrated in the next section, where the

reconstruction generated using the Papoular et al. algorithm in Dobrzynski et

al. is reproduced.

6.4 Nickel data in Dobrzynski et al.

Table 6.1 lists 28 unique form factors (or structure factors) of nickel. Nickel is

FCC (space group Fm3m) and its form factors and structure factors are related

by F obs
hkl = 4〈µNi〉f obs

hkl , where 〈µNi〉 is the number of Bohr magnetons per Ni

atom at room temperature. Using the numbers in Mook [117] then 〈µNi〉 =

0.606µB · 0.946 ' 0.5733µB. In comparison Maniawski et al. [118] measured the

total magnetic moment of nickel to be 〈µNi〉 = 0.579(5)µB by bulk magnetometry.

7Eqs. (6.16) is the derivative of Eq. (4.26), Chap. 4 with respect to mi and with M̄d = 0.
8The Q values automatically match because both MEMx methods use Q = P .
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The added standard deviation for the zero-q data point in table 6.1 is included

to reflect the discrepancy between the values of total magnetic moment of Mook

and Maniawski et al. and the errorbar (0.005µB) of Maniawski et al.. A test was

carried out in where a smaller errorbar was used, in order to determine whether

or not this would make a difference to the reconstruction; σ000 = 0.001 was used

instead of σ000 = 0.01 and no differences great enough to affect the comparisons

drawn to the papers by Dobrzynski et al. were observed. The remaining 27 form

factors in table 6.1 are copied from Ref. [80], and these form factors are an average

of the data of Mook [117] and Maniawski et al. [118].

By trying out different values of prior model constant, M̄ s, it becomes clear

that choosing a value near M̄ s = 0.00065µB reproduces the reconstructions pre-

sented by Dobrzynski et al. using the algorithm of Papoular et al.. In Dobrzynski

et al. [80],[81] three 2D contour plots show the magnetization density of nickel

obtained using the Papoular et al. algorithm as two slices through the unit cell

at z = 0 displaying the positive and negative density separately and one slice

through z = 1/4 displaying the negative density. To make the comparison to the

reconstruction with M̄ s = 0.00065µB using MEMx in Def. 7 this reconstruction is

displayed as follows: one contour plots shows a slice through the unit cell at z = 0

(top frame in Fig. 6.4), another a slice at z = 1/4 (bottom frame in Fig. 6.3)

and a third z = 0 but with the positive density values put to zero to emphasize

negative density features9. There is excellent agreement between Fig. 6.3 and

Fig. 6.4(top frame) and the plots in Dobrzynski et al. [80],[81] generated from

the Papoular et al. code. This justifies the claim that with M̄ s = 0.00065µB the

9Recall from the previous section that Papoular et al. calculate two densities for the unit cell

(the same applies to Sakata et al.’s MEMx); one for the positive density and one for the negative

density. When the sinh−1 prior is used (as is the case for the MEMx of Def. 7, Chap. 4) only

one density is calculated which for the mode of the posterior is equal to the difference between

the two densities used by Papoular et al. (providing matching prior model constants have been

used).
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Figure 6.1: Shows a figure of merit FOM1 = v
∑I

i=1 |mmax
i | versus M̄ s plot as the

solid line for the nickel data in table 6.1 (Q=P). To help identify when FOM1 is

equal to M̄ s, an M̄ s versus M̄ s plot is included as the dotted line.

plots using the Papoular et al. algorithm in Dobrzynski et al. are reproduced.

Choosing a value of M̄ s using the recipe in Sec. 4.7, Chap. 4 results in a value

of M̄ s significantly different from M̄ s = 0.00065µB. With help from Fig. 6.1 the

reference point for M̄ s is found to be approximately M̄ s
ref = 2.6µB and therefore

from the recipe of Sec. 4.7, Chap. 4 chose M̄ s ' M̄ s
ref/4 = 0.65µB. Equivalent

slices to those used to illustrate the M̄ s = 0.00065µB reconstruction are shown

for the reconstruction with M̄ s = 0.65µB in Fig. 6.4(bottom frame) and Fig. 6.5.

Observe in Fig. 6.4(bottom frame) the same main positive magnetization density

features: Firstly, the non-spherical distribution of the nickel density pointing

towards the corner atoms indicating an interaction between the nickel atoms.

Secondly, the depletion of magnetization density at the Ni sites, as observed by
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Dobrzynski et al.. By comparing the negative magnetization densities of the

reconstruction with M̄ s = 0.00065µB in Fig. 6.3 with M̄ s = 0.65µB in Fig. 6.5

significant differences are clearly observed. These differences can be explained by

the fact that a smaller value of M̄ s will tend to reduce the areas with non-zero

density, i.e. to ‘sharpen up’ the features in the image (see Chap. 4). Therefore

the M̄ s = 0.00065µB reconstruction appears more ‘spiky’ than the M̄ s = 0.65µB

reconstruction as seen by comparing the two z = 1/4 contour plots. The mode of

the posterior with M̄ s = 0.65µB is also illustrated by the 4 isosurfaces in Fig. 6.2.

The advantage of visualizing the reconstruction as a series of isosurfaces is that

a better overview of the positions and shapes of the individual features in the

unit cell is given. The isosurface plot with contour level (CL) values ±0.02µBÅ−3

shows that the largest negative feature is situated at the crystallographic site

(1/4, 1/4, 1/4) in the unit cell. It first appears at CL ' −0.028µB (see also

Fig. 6.5(bottom frame)) which is almost a factor of 100 less than the largest

positive feature of the image which occurs at CL = 1.83µB. For isosurfaces below

CL = −0.02µBÅ−3 the negative magnetization density takes on a complicated

pattern in the interstitial regions of the nickel atoms, and it is approximately

uniformly distributed. This supports the theoretical model proposed by Mook

(and Moon see reference in Mook [117]) in which the negative magnetization

density is treated as a uniform distribution throughout the unit cell.

With the Bayesian image analysis method of Def. 7 error estimates of se-

lected regions of the unit cell can be calculated. Of interest is the negative

density feature centered at (1/4, 1/4, 1/4). Integration over the bins in the cell

corresponding to the volume between 0.17969 and 0.32031, along the directions

of the three axes, gives the total moment −0.00154± 0.00388µB for that volume.

According to this error estimate it is almost insignificant10. Integrating instead

over all bins with negative magnetization density gives the total negative mo-

10The negative feature is repeated 4 times in the unit cell. Hence taking the crystal symmetry

into account, the error estimate for this feature is 0.00388/
√

4µB = 0.00194µB .
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ment −0.1519± 0.02233µB, which is significant. Modelling the negative density

as a uniform distribution; Mook [117] found the negative moment of the unit cell

to be −0.105µB, which is close to −0.1519µB considering the differences in ap-

proach and also the differences between the structure factors listed in Dobrzynski

et al. [80] and those used by Mook.

The mode of the posterior (reconstruction) with M̄ s = 0.65µB is also plotted

in ‘data space’ (i.e. as structure factors) in the plot to the left hand side in Fig. 6.6.

As expected from the selected M̄ s value (see Chap. 4) a smooth transition is

seen between the ‘observed’ calculated structure factors and the ‘unobserved’

calculated structure factors in the region close to q ' 14Å−1. It is of interest in

relation to the results in Sec. 4.4.4-4.4.5 because the data in table 6.1 provide

an example of a ‘good quality’ data set containing a large number of data points

with small σi/F
obs
i ratios. Say, on average, σ/F obs < 0.05. Applying Eq. (4.36)

it is expected that the mode of the posterior will be robust to changes of Q for

Q values smaller than about Q = P (0.1 ∗ 0.05)2 = 112. This was confirmed

by examining the reconstructions with Q = 0.1, Q = 1, Q = 28 and Q = 112,

keeping M̄ s = 0.65µB. As an example the reconstructions using Q = 0.1 and

Q = 28 are shown in ‘data space’ in Fig. 6.6. In particular observe the almost

exact agreement between the Fi’s in both plots in Fig. 6.6 for q > 14Å−1. The

values of these calculated structure factors are determined almost exclusively by

the value of the prior model constant M̄ s for all Q < 112 in the case of the nickel

data in table 6.1.

6.5 Conclusions of chapter

A discussion of the MEMx algorithms used in Dobrzynski et al. was presented

and compared to the MEMx of Chap. 4. This gave a fine illustration of some of

the problems of the MEMx literature and the content of this chapter may help

overcome some of these difficulties. The magnetization density of nickel was also
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presented using a value for M̄ s selected according to the recipe in Sec. 4.7. These

results mainly confirmed the observations made by Dobrzynski et al. [80],[81],

Mook [117] and Maniawski et al. [118] but, provided the accuracy of the data,

these results gives additional insight into the overall picture of the magnetization

density of nickel.
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Miller indices
h k l f obs

hkl σhkl

0 0 0 1.0000 0.0100
1 1 1 0.7876 0.0040
2 0 0 0.6985 0.0040
2 2 0 0.4437 0.0033
1 1 3 0.3189 0.0033
2 2 2 0.3090 0.0026
4 0 0 0.1558 0.0026
3 3 1 0.1670 0.0026
4 2 0 0.1307 0.0026
2 2 4 0.1070 0.0033
1 1 5 0.0357 0.0033
3 3 3 0.1089 0.0026
4 4 0 0.0574 0.0033
5 3 1 0.0317 0.0033
6 0 0 -0.0244 0.0026
4 4 2 0.0522 0.0033
6 2 0 -0.0092 0.0033
3 3 5 0.0357 0.0033
2 2 6 0.0059 0.0033
4 4 4 0.0370 0.0033
1 1 7 -0.0469 0.0033
5 5 1 0.0092 0.0033
6 4 0 -0.0007 0.0033
6 4 2 0.0007 0.0033
7 3 1 -0.0264 0.0033
5 5 3 0.0119 0.0033
8 0 0 -0.0627 0.0033
3 3 7 -0.0165 0.0033

Table 6.1: 28 unique magnetic structure factors for nickel which have been scale
such that the zero-q structure factor is one. The total moment of the unit cell is
estimated to 2.2931µB. See text for further description.
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Figure 6.2: Reconstruction with M̄ s = 0.65µB (Q = P ) illustrated at 4 different

contour levels (CL). The lighter coloured features show isosurfaces at -CL.

197



−0.024

−0.022

−0.02

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

[100]−axis

[0
10

]−
ax

is

z = 0   negative contours only

−0.02

−0.015

−0.01

−0.005

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

[100]−axis

[0
10

]−
ax

is

z = 1/4

Figure 6.3: Reconstruction with M̄ s = 0.00065µB (Q = P ). Illustrated here

with two slices through the unit cell at z = 0 and z = 1/4. In the top plot all

positive magnetization density has been put to zero to emphasize the negative

magnetization density in the z = 0 plane. The unit of the colour code bars is

µBÅ−3.
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Figure 6.4: Top plot shows reconstruction with M̄ s = 0.00065µB and bottom

plot with M̄ s = 0.65µB. Both show the slice through the unit cell at z = 0. The

unit of colour code bars is µBÅ−3.
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Figure 6.5: Reconstruction with M̄ s = 0.65µB, illustrated as in Fig. 6.3.
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Figure 6.6: In the left-hand side plot the mode of the posterior (reconstruction)

with M̄ s = 0.65µB and Q = P = 28 is shown in ‘data space’ as calculated

structure factors (the dots). In the right-hand side plot the same reconstruction

is shown but with Q = 0.1. In both figures the observed data are shown as the

circles with errorbars.

201



Conclusions and further work

The main accomplishments of this thesis are 1) the mapping of the induced

magnetization density in PrBa2Cu3O6+x; 2) An improved recipe for applications

of the MaxEnt technique to PND data and possibly other types of data with a

similar information content.

A brief summary of each of these two contributions is as follows:

1. In Chap. 5 the induced magnetization density of PrBa2Cu3O6+x revealed a

number of interesting new features which are summarized in Sec. 5.6. One

of these features is the small ‘deformation’ of the Pr induced density, the

possibility that this is caused by a hybridisation between the Pr 4f electrons

and electronic states in the CuO2 planes has yet to be fully justified, but

the possibility exists for work to be carried out in order to investigate this

further. This further investigation could include;

(a) Measurement of structure factors further out in reciprocal space, these

may help define the structure of the existing Pr ‘deformations’ with

greater detail.

(b) The calculation of the magnetization density under the experimental

conditions for existing and new proposed theoretical models. This

would enable a detailed comparison between theoretical models and

the experimentally observed magnetization density, and such calcu-

lations should be feasible to do with the current available computer

power.
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(c) An experiment, as described end of Sec. 5.6, but on a ‘superconducting’

single crystal of PrBa2Cu3O6+x. A comparison with the results in this

thesis on ‘non-superconducting’ PrBa2Cu3O6+x could help explain why

some samples are superconducting and others not.

A rich structure is also revealed in the region around the Ba site. Except

for the positive feature at the Ba, which shows evidence of Pr/Ba cation

mixing, the origin of the remaining features is uncertain, but they may

contain crucial information for the understanding of why PrBa2Cu3O7 for

standard grown single crystals do not superconduct.

2. The MaxEnt method was critically analysed in Chap. 4. A Bayesian robust-

ness analysis was performed to understand how the choice of prior model

constants affects the output. The results are summarized in Sec. 4.7 and

provide the basis for an improved MaxEnt method, tuned specifically to the

analysis of PND data. In Chap. 6 MaxEnt algorithms from the literature

are compared using a practical example with PND data and here for PND

data of Nickel. Chap. 6 provides a detailed picture of these algorithms and

how they relate to the work in Chap. 4.

The program used for the MaxEnt reconstructions is freely available. At

present it uses a rather primitive interface and therefore is not very user

friendly, however this will be improved in the future. Meanwhile, the code

for finding the mode of the posterior in Eq. (4.24) (equal to MaxEnt output)

is normally easy to write (see Sec. 4.4.1), it is more difficult to write code

for a program that can handle all possible space group symmetries together

with a proper graphical user interface. If a serious attempt is made to

produce such a program in the future the end product will remain freely

available for academics.
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Appendices

A Boltzmann’s reasoning in the limit N0 →∞
In this appendix we look more closely at the consequences of the Boltzmann

statistical model given in Def. 5. The purpose is to present the intuitive reasons

why as well as proof, that as N0 → ∞, the probability of the gas being in any

finite interval around Boltzmann’s most probable macro-state tends to unity. For

more details see Ref. [27] and references therein.

Let (x1, x2, . . . , xN0) be a sequence of r.v. each with range X = {a1, a2, . . . , aI}.
We will use the notation x to denote a sequence x1, x2, . . . , xN0 , and we will also

refer to x as a micro-state; in this context think of the elements of the set X as

the possible phase-space cells a molecule can be positioned in: a1 = cell 1, a2 =

cell 2 etc. As in the main text, define ni to be equal to the number of variables

in x which take on the value ai; e.g. if xj represents the jth molecule and ai the

ith phase-space cell, then ni is the number of molecules in cell i. Let nx be the

macro-state corresponding to a particular micro-state x, and let NN0 be the total

number of possible macro-states which can be formed from N0 r.v. x1, x2, . . . , xN0 .

The upper limit for NN0 is (N0 + 1)I , since there are I components in the vector

nx and each component can take on only N0 + 1 values. So there are at most

(N0 + 1)I choices for the macro-state vector. Of course, these choices are not

quite independent, for instance the sum of the ni’s must add up to N0, but a

sufficiently good upper bound here is NN0 ≤ (N0 + 1)I . Define T (n) to be the
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collection of all micro-states having n as their macro-state. Mathematically we

write this macro-class as T (n) = {x ∈ XN0 : nx = n}. Hopefully it is clear that

the number of micro-states in each macro-class is just |T (n)| = N0!/(n1! · · ·nI !),

i.e. a multinomial coefficient. As has been shown in Eq. (3.12) when N0 is large

|T (n)| ' e
N0He(

n
N0

)
, or more accurately it can be shown that (see e.g. [27])

1

(N0 + 1)I
e

N0He(
n

N0
) ≤ |T (n)| ≤ e

N0He(
n

N0
)
. (A.1)

An important argument in this appendix is that as N0 rises there is only a

polynomial increase in the number of possible macro-states NN0 , whereas the

number of micro-states in each macro-class increases exponentially with ∼ eN0He .

The set of all possible micro-states can be imagined as a staircase, where each

step represents one of the many possible values that He(n) can take and where

the height of each step is scaled by the number of micro-states having entropy

He(
n

N0
). The bottom step will then represent the micro-states for which all the

r.v. x1, x2, . . . xN0 take on the same value (e.g. x1 = a1, x2 = a1, . . . , xN0 = a1)

and therefore He = 0; the height of this step is I micro-states. As we move up

in entropy we move up the staircase and the top step represent the macro-class

of micro-states where He is maximum; the height of this step is |T (nbol)|. We

can now use this staircase to visualize what happens as N0 rises. The number

of steps will increase approximately as (N0 + 1)I , and at the same time the

distances between the steps will increase, such that, as N0 becomes larger the

number of micro-states in the step below will start to become vanishingly small

compared to the number of micro-states in the step above it. In the mathematical

limit N0 → ∞ we have: “The ratio of the number of micro-states in any finite

neighbourhood of steps to the number of micro-states in any other finite region

of steps laying above it goes towards zero as N0 goes to infinity.”

To justify the above picture we use the following theorem (for a proof see e.g.

Ref. [27])

Theorem 1 Let P be the set of all possible macro-states which can be formed
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for a fixed value of N0. Members of this set(or space if you like) are all macro-

states n = (n1, n2, . . . , nI), where each of the I coordinates ni can take the values

ni = 0, 1, . . . , N0 and satisfy
∑I

i=1 ni = N0. Let E be a subset of P and in

general E =
{
n :

∑
a∈X g(a)n(a) ≥ α

}
. The maximum entropy in the subset E is

Hmax
e = maxn∈E He(

n
N0

). The claim is then that for every fixed δ

Pr

(
|n− nbol| < δ

∣∣∣∣ n ∈ E
)
→ 1 (A.2)

as N0 goes to infinity.

B The modified Bessel prior

Consider for simplicity and without loss of generality the case where we have just

one bin, then

p(n+, n−|N̄+, N̄−) =
(N̄+)n+

n+!

(N̄−)n−

n−!
e−(N̄++N̄−) . (B.1)

Make the change of variables n = n+ + n− and q = n+ − n−. Since the map

between the space spanned by (n+, n−) and (n, q) is one-to-one and onto, the dis-

tribution in Eq. (B.1) in terms of the coordinates (n, q) is obtained by substituting

the parameters (n, q) directly into that equation, thus

p(n, q|N̄+, N̄−) =

(
N̄+

N̄−

)q/2
(N̄+N̄−)n/2

[(n + q)/2]![(n− q)/2]!
e−(N̄++N̄−) , (B.2)

where q = . . . ,−1, 0, 1, . . . and n = |q|, |q|+ 2, |q|+ 4, . . .. Introduce the dummy

index

l = 1/2(n− q) when q ≥ 0

l = 1/2(n + q) when q < 0
. (B.3)

If q is positive or zero, then in terms of (l, q) Eq. (B.2) becomes

p(l, q|N̄+, N̄−) =

(
N̄+

N̄−

)q/2
(N̄+N̄−)l+q/2

(l + q)!l!
e−(N̄++N̄−) , (B.4)
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where l = 0, 1, 2, . . . and q = . . . ,−1, 0, 1, . . .. Noting that a modified Bessel func-

tion can be expressed in term of the ascending series Iq(z) =
∑∞

l=0(z/2)2l+q/(Γ(l+

1 + q)l!), we see that marginalising over l in Eq. (B.4) gives,

p(q|N̄+, N̄−) =
∞∑

l=0

p(l, q|N̄+, N̄−) =

(
N̄+

N̄−

)q/2

Iq(2
√

N̄+N̄−)e−(N̄++N̄−) . (B.5)

For negative q we also arrive at the distribution in the above equation, and

Eq. (B.5) is the distribution in Eq. (4.4), Sec. 4.1.

Since the moments of the modified Bessel distribution in Eq. (B.5) appear not

to have been calculated in the literature, the first two moments will be calculated

here.

Changing to the prior model constants N̄ s = N̄+ + N̄− and N̄d = N̄+ − N̄−,

the aim is to calculate

〈q〉 =
∞∑

q=−∞
q

(
N̄ s + N̄d

N̄ s − N̄d

)q/2

Iq(

√
N̄ s2 − N̄d

2
)e−N̄s

. (B.6)

For notational convenience we introduce z =

√
N̄ s2 − N̄d2

and κ =
√

N̄s+N̄d

N̄s−N̄d
and

make use of the modified Bessel relation Iq(z) = z
2q

[Iq−1(z) − Iq+1(z)]. Eq. (B.6)

then implies

eN̄s〈q〉 =
∞∑

q=−∞
κq z

2
[Iq−1(z)− Iq+1(z)] =

[
κ− 1

κ

]
z

2

∞∑
q=−∞

κqIq(z) . (B.7)

Obviously the sum
∑∞

q=−∞ κqIq(z) is equal to the normalization constant eN̄s
of

the distribution (this is also clear from the well-known relation exp[ z
2
(κ + 1

κ
)] =

∑∞
q=−∞ κqIq(z)), and Eq. (B.7) implies

〈q〉 =




√
N̄ s + N̄d

N̄ s − N̄d
−

√
N̄ s − N̄d

N̄ s + N̄d




√
N̄ s2 − N̄d

2

2
= N̄d . (B.8)

Hence the mean value of the distribution is N̄d.

Next we aim to calculate the second moment of Eq. (B.5),

〈q2〉 =
∞∑

q=−∞
q2κqIq(z)e−N̄s

. (B.9)
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Using Iq(z) = z
2q

[Iq−1(z)− Iq+1(z)] in succession we find that

q2Iq(z) =
z2

4
[Iq−2(z) + Iq+2(z)− 2Iq(z)] +

z

2
[Iq−1 + Iq+1(z)] . (B.10)

Inserting the last term in Eq. (B.10) into Eq. (B.9) and comparing with the step

from Eq. (B.7) to Eq. (B.8) simply gives

∞∑
q=−∞

κq z

2
[Iq−1(z)− Iq+1(z)] = N̄ s . (B.11)

Inserting the first term of Eq. (B.10) into Eq. (B.9) and using again
∑∞

q=−∞ κqIq(z) =

eN̄s
gives

∞∑
q=−∞

κq z2

4
[Iq−2(z) + Iq+2(z)− 2Iq(z)] =

z2

4
[κ2 +

1

κ2
− 2] = N̄d

2
. (B.12)

Summing up Eq. (B.11) and Eq. (B.12) we have

〈q2〉 = N̄d
2
+ N̄ s , (B.13)

and the variance of the distribution in Eq. (B.5) is then

〈(q − 〈q〉)2〉 = 〈q2〉 − 〈q〉2 = N̄ s . (B.14)

The above equation and Eq. (B.8) are Eqs. (4.7,4.8) in Sec. 4.1.

C Comment on Skilling & Bryan algorithm and

notation by Skilling

In Sec. 4.4.1 we discussed various options for finding the mode of the posterior in

Eq. (4.12) numerically. One of these options is to use the algorithm in Ref. [84]

by Skilling & Bryan. They found that the optimization algorithm in Ref. [84]

was improved by incorporating the idea of a metric into the search space. Using

a metric in non-linear optimization problems is not uncommon, see for example

Ref. [127]. It is stated in Ref. [84] that using a specific form for the metric “is the
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single most important key to the development of a robust algorithm”. It is also

clear from the work in Ref. [84] that the metric is considered as a purely technical

option used with the purpose of improving the overall computing speed.

Perhaps because of the emphasis placed on the choice of metric in Ref. [84],

Skilling in Ref. [90] manages to include the metric in Ref. [84] into the expression

for the prior function itself. What becomes unclear at this stage is whether

this metric should now be interpreted as a real physical quantity or as a technical

option as in the previous paper [84]. If it is a real quantity, then it must imply that

Skilling’s MEMx version in Ref. [90] is different from previous MEMx versions

(including his own in Ref. [84]) and will result in a different output when applied.

Since this is probably not the intention the prior in Ref. [90] is referred to as a

notation.11

D Calculating p(Fobs|M̄ s, ε) with Gaussian prior

Changing to reciprocal space coordinates and using
∑I

i=1 m2
i = I

V 2

∑I
i=1(F

cal
i )2

the Gaussian prior in Eq. (4.33) becomes

p(Fcal|M̄ s, ε) =
1√

2πεM̄ s
I

exp

(
−1

2

I∑
i=1

(F cal
i )2

εM̄ s

)
. (D.1)

We aim to find p(Fobs|M̄ s, ε) from the expression in Eq. (4.40),

p(Fobs|M̄ s, ε) =
1√

2πεM̄ s
I

1√
2π

P ∏P
i=1 σi

(D.2)

∫
exp

(
−1

2

I∑
i=1

(F cal
i )2

εM̄ s
− 1

2

P∑
i=1

(F obs
i − F cal

i )2

σ2
i

)
dFcal .

We can immediately integrate out the F ’s not in Fobs (these are the F ’s present

in the first sum but not the second sum in the integrand in Eq. (D.2)) using

11To obtain a prior expression which includes a metric, Skilling in Ref. [90] follows a procedure

which may be compared to parts of Sec. 4.1, but when stepping from a discrete to a continuous

prior distribution he includes an extra term in the Stirling approximation to obtain a prior

expression which is discussed below Eq. (4.17).
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∫∞
−∞ exp(−ax2)dx =

√
π/a. Using the relation

(F cal
i )2

εM̄ s
+

(F obs
i − F cal

i )2

σ2
i

=
σ2

i + εM̄ s

εM̄ sσ2
i

(
F cal

i − εM̄ sF obs
i

σ2
i + εM̄ s

)2

+
(F obs

i )2

σ2
i + εM̄ s

,

the remaining F ’s can likewise be eliminated by integration to obtain

p(Fobs|M̄ s, ε) =
1√

2π
P ∏P

i=1

√
σ2

i + εM̄ s
exp

(
−1

2

P∑
i=1

(F obs
i )2

σ2
i + εM̄ s

)
, (D.3)

equal to Eq. (4.43).

When the unit cell has a space group symmetry other than the trivial space

group symmetry12 the number of independent variables is reduced. Denote by

Isym the number of calculated symmetry unique structure factors , and si the

number of symmetry equivalent structure factors of each unique structure factor.

Then in reciprocal coordinates (structure factor coordinates) the prior including

symmetry constraints is

p(Fcal|M̄ s, ε, Sgroup) =
1

∏Isym

i=1

√
2πεM̄ s/si

exp


−1

2

Isym∑
i=1

si(F
cal
i )2

εM̄ s


 , (D.4)

where Sgroup denotes the space group of the unit cell. Again we aim to find

p(Fobs|M̄ s, ε, Sgroup) =
1

∏Isym

i=1

√
2πεM̄ s/si

1√
2π

Psym ∏Psym

i=1 σi/
√

si

×
∫

exp


−1

2

Isym∑
i=1

si(F
cal
i )2

εM̄ s
− 1

2

Psym∑
i=1

si(F
obs
i − F cal

i )2

σ2
i


 dFcal , (D.5)

where Psym is equal to the number of unique observed structure factors. Now

comparing the above integral with the integral in Eq. (D.2) we see that

p(Fobs|M̄ s, ε, Sgroup) =
1√

2π
Psym ∏Psym

i=1

√
(σ2

i + εM̄ s)/si

exp

(
−1

2

Psym∑
i=1

si(F
obs
i )2

σ2
i + εM̄ s

)
.

(D.6)

12I.e. the group containing only the identity element. In crystallography this space group is

P1.
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If σi = σ, ∀ i = 1, 2, . . . , Psym then searching for the point at which the derivative

of Eq. (D.6) with respect to εM̄ s is zero we obtain

1

2

∑Psym

i=1 si(F
obs
i )2

(σ2 + εM̄ s)2
− Psym

2

1

σ2 + εM̄ s
= 0 (D.7)

which implies

εM̄ s = ε2N̄ s =
1

Psym

Psym∑
i=1

(si(F
obs
i )2 − σ2) =

1

Psym

P∑
i=1

(F obs
i )2 − σ2 , (D.8)

which is Eq. (4.45).

Comment

If, instead of the Gaussian prior in Eq. (4.33), we had used

p(m|ε, M̄ s, M̄d) =
1√

2πεM̄ s/(v2I)
I

exp

(
− v2I

2εM̄ s

I∑
i=1

(mi − M̄d/V )2

)
(D.9)

to calculate p(Fobs|M̄ s, M̄d, ε), we would have obtained exactly the same expres-

sion as in Eq. (D.6) but with the zero-q structure factor substituted by F0− M̄d.

Hence for most cases according to p(Fobs|M̄ s, M̄d, ε) we should select M̄d = 0

when the zero-q structure factor is absent and M̄d = F0 when it is present. The

latter choice, we know from Sec. 4.4.6, results in a reconstruction which is worse

than the reconstruction obtained using M̄d = 0.

E Calculating |Σ|
We can write ATΣ−1

0 A = (Σ
−1/2
0 A)T (Σ

−1/2
0 A) and

Σ−1 = D1/2(MTM + I)D1/2 , (E.1)

where M = Σ
−1/2
0 AD−1/2 and is of size P × I. Introduce the I × I orthogonal

matrix U whose columns are the eigenvectors of MTM, and write Eq. (E.1) as

Σ−1 = D1/2U(UTMTMU + I)UTD1/2 , (E.2)
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where UTMTMU is the eigenvalue matrix of MTM. Denote these eigenvalues

by λ1, λ2, . . . , λI . When I > P , then clearly the symmetric and positive definite

matrix MTM is singular and its non-zero eigenvalues are identical to the eigen-

values of the P × P symmetric matrix MMT . Therefore the determinant of the

matrix in Eq. (E.2) is

|Σ−1| =
I∏

i=i

Dii

P∏
i=1

(λi + 1) , (E.3)

where λ1, λ2, . . . , λP are the non-zero eigenvalues of the I × I matrix MTM,

which are identical to the eigenvalues of the P ×P matrix MMT . Hence we can

calculate the determinant of Σ as a P × P eigenvalue problem. It is very rare

that more than about 150 structure factors are measured in a PND experiment.

Therefore calculating |Σ| and p(Fobs|M̄S, ε) in Eq. (4.41) takes little time on a

standard PC or more powerful computer.

F Calculating Σ

Not surprisingly, the calculation of Σ is more computer intensive than the cal-

culation of |Σ| in App. E, nevertheless it is still manageable. In calculating the

matrix Σ from Σ−1 the procedure outlined in [51] and in chapter 3 in [16] will

be followed.

Taking the inverse of Σ−1 in Eq. (E.2) gives

Σ = D−1/2U(Λ + I)−1UTD−1/2 , (F.1)

where Λ is the eigenvalue matrix UTMTMU . Now add and subtract an I × I

identity matrix in Eq. (F.1)

Σ = D−1/2U[I− (Λ + I)(Λ + I)−1 + (Λ + I)−1]UTD−1/2 . (F.2)

The identical matrix is added and subtracted in the square bracket. Eq. (F.2)

reduces to

Σ = D−1 −D−1/2U[Λ(Λ + I)−1]UTD−1/2 . (F.3)
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When I > P Λ, is singular and at most P of its I eigenvalues are non-zero.

The diagonal matrix in the square bracket of Eq. (F.3) has the diagonal elements

λ1

λ1+1
, λ2

λ2+1
, . . . , λP

λP +1
as its first P diagonal elements, the rest being equal to zero.

We may therefore write Eq. (F.3) as

Σ = D−1 −D−1/2UIP [ΛPP (ΛPP + IPP )−1]UT
IPD−1/2 , (F.4)

where, for example, ΛPP is the submatrix of Λ consisting of the first P rows

and P columns. Hence it is possible to solve for Σ as a I × P SVD-problem.

A well-known theorem of linear algebra says that, any I × P matrix, MT , with

I ≥ P , can be written as the product of an I×P column-orthogonal matrix UIP ,

a P × P diagonal matrix Λ
1/2
PP and the transpose of an orthogonal matrix V,

MT = UIPΛ
1/2
PPVT . (F.5)

Hence MMT = VΛPPVT and MTM = UIPΛPPUT
IP , and the columns of V are

the eigenvectors of MMT , and the columns of UIP are the eigenvectors of the

non-zero eigenvalues of MTM. We see from Eq. (F.5) that MTV = UIPΛ
1/2
PP

and we may therefore rewrite Σ in Eq. (F.4) as

Σ = D−1 −D−1/2MTV(ΛPP + IPP )−1VTMD−1/2 . (F.6)

The second term in Eq. (F.6) clearly takes the most time to compute. Calculating

the eigenvalues and eigenvectors of MMT takes of the order o(P 3) computer op-

erations. A matrix multiplication like MTV takes of the order o(IP 2) operations

and the matrix multiplication of MTV with (ΛPP + IPP )−1VTM of the order

o(I2P )13. Thus when I > P the most computer intensive part is not the calcula-

tion of eigenvalues and eigenvectors, but is the matrix multiplication. However,

often we will only be interested in calculating the diagonal elements of Σ, in

which case even when I is significantly larger than P the cost of computing Σ is

13Of course we can exploit the fact the final matrix is symmetric, even so it will still take of

the order o(I2P ) computer operations.
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simply a case of finding the eigenvalues and eigenvectors of a symmetric matrix,

this is very similar to the cost of calculating |Σ| in the previous appendix.
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