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INTRODUCTION

Solid state physics in concerned with the study of the electrons and nuclei of materials
in the solid phase. In its modern form, the subject began in 1897, with the discovery of
the electron by J.J. Thomson. In 1911, Rutherford developed his theory of the atom in
which negatively charged electrons orbit a dense positive nucleus. Two years later,
Niels Bohr explained the electromagnetic stability of the atom by combining
Rutherford’s model with Max Plank’s theory of quantisation [1]. In 1912, a paper was
presented to the Bavarian Academy of Sciences in Munich. This paper contained a
general theory of diffraction, formulated by Max von Laue, and the first experimental
observation of the diffraction of X-rays by a periodic lattice of atoms by Friedrich and
Knipping. In 1913, W.L. Bragg published a simpler explanation of the diffracted
beams from crystalline materials [2] and proceeded to perform the first structure
determinations [3]. The majority of the progress in solid state physics has been made
investigating crystalline materials, although recently considerable attention has been

paid to more disordered materials [4] [5] [6].

A complete description of the behaviour of the electrons and nuclei in a material
would involve the inclusion of all the electrostatic, magnetic and quantum mechanical
exchange interactions between all the constituent elements. Although the relative
magnitudes of these interactions varies, enabling some to be neglected, the huge
number of atoms present in a macroscopic sample makes such a calculation
impossible. In order to proceed, mathematical techniques have been developed that
reduce this complexity, such as replacing the individual effect of many particles with
an average or using a phenomenological approach that neglects the details of the
interactions completely. At first sight, these simplifications may seem rather drastic,
but both the qualitative and quantitative predictions of the calculations are often
strikingly accurate as is shown by the huge success of the electronics industry.
Traditionally, the electrons in solid materials have been placed in one of two distinct
categories: localised electrons which are constrained to move only around their
respective nucleus, and itinerant electrons that are free to move throughout the whole

material.
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The interactions between the electrons in solid state materials are responsible for a
wide range of interesting co-operative phenomena, such as superconductivity and long
range magnetic order. Heavy fermion and valence fluctuation behaviour are other co-
operative effects in which the traditional distinction between localised and itinerant
electronic behaviour breaks down. In many compounds, different types of co-
operative phenomena are displayed simultaneously and a large amount of research has
been dedicated to understanding the interplay between them, particularly where one

suppresses another.

The rare earth nickel borocarbides (RNi,B,C) are the subject of this thesis. In several
of the compounds, [R =Dy, Ho, Er and Tm], superconductivity and long range
magnetic order coexist [7]. In YbNi,B,C, neither superconductivity nor long range
magnetic order have been observed although it does exhibit heavy fermion
behaviour [8]. The majority of this thesis is dedicated to the examination of the heavy
fermion state in the ytterbium compound using the technique of neutron scattering and
investigating its role in the suppression of the other types of correlated electron
behaviour. The neutron scattering experiments in this thesis have been conducted at
the Institut Laue Langevin (I.L.L.) in Grenoble, France, and at the ISIS facility of the
Rutherford Appleton Laboratory in Didcot, U.K.

Chapter 1 begins with an outline of the history of the study of correlated electron
behaviour in compounds containing rare earth ions. This is followed by a discussion

of the known properties of the rare earth nickel borocarbide series.

In Chapter 2, the different types of rare earth correlated electron behaviour are
discussed in detail. The chapter is divided into two parts. The first deals with the rare
earth standard model that provides an accurate description of many rare earth
compounds. The second part describes heavy fermion and valence fluctuation
behaviour in compounds that have dilute and concentrated distributions of Kondo
ions. In both parts, the interplay between long range magnetic order, heavy fermion or

valence fluctuation behaviour and superconductivity is stressed.
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The theory of neutron scattering is described in Chapter 3. The first part introduces the
basic concepts and experimental procedures. This is followed by detailed descriptions

of the specific experimental techniques used in this thesis.

Chapter 4 outlines the data analysis techniques used in this thesis. It describes how
Bayesian probability theory provides a unifying mathematical framework for deriving

the procedures of least squares refinement and maximum entropy image construction.

The experiments to determine the magnetisation density in YbNi,B,"C, ErNi,B,"C,
HoNi,B,™C and LuNi,B,"C are described in Chapter 5. These experiments were
performed on the D9 and D3 diffractometers at the I.L.L. This chapter also contains a
description of an experiment performed using the D10 diffractometer at the I.L.L. that
was designed to search for long range magnetic order in the YbNi,B,''C compound at
low temperatures. An elastic scattering experiment using the D1B diffractometer at
the I.L.L. is also included in this chapter. This experiment was used to determine the
amount of Yb,05 impurity present in the YbNi,B,''C polycrystalline sample that was

used in some of the inelastic scattering experiments.

Chapter 6 contains the inelastic scattering experiments conducted on the YbNi,B,'C
compound. Two experiments, performed using the H.E.T. spectrometer at ISIS and
the IN20 spectrometer at the I.L.L., were designed to look for and study the
Crystalline Electric Field (C.E.F.) transitions in the compound. Three experiments,
performed using the IN5, IN14 and IN6 spectrometers at the I.L.L., were designed to
study the low energy transfer scattering. The H.E.T. and IN5 experiments were
performed on a polycrystalline sample of YbNi,B,'C. The IN20, IN14 and IN6

experiments were performed on a single crystal mosaic sample.

The final chapter provides a summary of the main conclusions of the experiments.
Suggestions for further work needed to obtain better images of the magnetisation
density in the RNi,B,*'C series and gain a clearer understanding of the excitation
scheme of YbNi,B,'C are included in this chapter. A brief appendix gives the dates

at which all the experiments, mentioned above, were performed.
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CHAPTER 1

THE RARE EARTH NICKEL
BOROCARBIDES

This chapter begins with an outline of the history of the study of correlated electron
behaviour in compounds containing rare earth ions. This is followed by a discussion

of the known properties of the rare earth nickel borocarbide series.

1.1 A Dbrief history of the study of the coexistence of superconductivity and

magnetism.

In 1957, Bardeen, Cooper and Schrieffer published their famous microscopic theory of
superconductivity [1]. The first investigation into the coexistence of superconductivity
and magnetism was made shortly afterwards when Ginzburg predicted that the
coexistence of long range ferromagnetic order and superconductivity was almost
impossible [2]. In the following year, the first experimental studies were

performed [3].

The history of this subject falls into several periods, each associated with the study of
a different class of compounds. From 1958 until around 1975, experiments were
performed on superconducting binary compounds containing small amounts of
magnetic rare earth impurities. These experiments were largely inconclusive, as the
magnetic order seen was often short range and difficult to characterise. However, the
experiments provided a basis for a theoretical understanding of the effect of adding
paramagnetic impurities into a superconducting matrix. The most important theory on

this subject was provided by Abrikosov and Gor’kov [4].

From 1975 until around 1986, rare earth ternary compounds such as RRh,B4, RM0gSs
and RMogSeg were studied. In these compounds, magnetic ordering of the rare earth
electrons can coexist with superconductivity of the conduction electrons as exchange

interactions between the two are weak. In most of the compounds studied,
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superconductivity coexists with antiferromagnetic order. However, in a few
compounds, superconductivity and ferromagnetic order coexist over a small
temperature range close to the magnetic ordering temperature. If the temperature is
lowered much below the ordering temperature, the superconductivity is destroyed. In
the region where ferromagnetic order and superconductivity coexist, the interaction
between the two leads to the formation of a sinusoidally modulated magnetic

structure.

The high Tc cuprate superconductors were discovered by Bednorz and Mdller in

1986 [5]. The parent compounds have formulas such as R,CuQO,4 and RBa,Cu30-, and
display long range three dimensional antiferromagnetic order of the copper ions. As
the oxygen content is reduced, in order to precipitate superconductivity, this magnetic
order is suppressed. However, strong antiferromagnetic correlations between the
copper ions still exist. Several theories postulate that fluctuations between the copper

spins are responsible for the electron pairing in high T¢ superconductors. The rare

earth ions in these compounds enter a long range magnetically ordered state, but at

temperatures typically two orders of magnitude lower than Tc.

In 1994, superconductivity coexisting with long range magnetic order was discovered
in a new type of quaternary intermetallic compound, the rare earth nickel borocarbides
(RNi,B,C) [6]. These compounds are the subject of this thesis and are described in

detail in the following section.

A separate, but highly related, study began in 1930, with the discovery of a resistivity
minima in metals containing dilute concentrations of magnetic ions. It was not until
1964 that Kondo provided an initial understanding of this phenomenon [7]. He
described a ground state in which strong antiferromagnetic correlations exist between
the magnetic moments of the impurity ions and the conduction electrons, substantially
increasing the scattering of the conduction electrons at low temperatures. This effect
gives rise to heavy fermion and valence fluctuation behaviour which is described in
detail in § 2.2.
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Some of the most important theories, mentioned above, concerning the coexistence of

superconductivity and magnetism are outlined in § 2.1.4.

1.2 The properties of the rare earth nickel borocarbides.

Since the discovery of superconductivity in the rare earth nickel borocarbides they
have attracted a great deal of attention. Superconductivity and long range magnetic
order coexist in four of the compounds in the series, [R = Dy, Ho, Er and Tm].

However, unlike the ternary rare earth superconductors and the high T¢

superconductors, mentioned above, the critical temperatures for the two types of order
are the same order of magnitude [Ty =1.5 K (Tm) to 10.6 K (Dy) and T¢ = 6 K (Dy)
to 11 K (Tm)]. This means that the interplay between superconductivity and
magnetism is much stronger than in the two previous compound classes. The
borocarbides containing rare earth atoms that are lighter than dysprosium (Dy) are not
superconducting but RNi,B,C [R =Pr, Nd, Gd and Thb] display long range magnetic
order [8]. YbNi,B,C is anomalous in being neither superconducting nor magnetically
ordered at any temperature investigated (T >0.3 K) [9]. Its properties will be

discussed in more detail below.

The borocarbides have a body centred tetragonal crystal structure, space group
I14/mmm, and consist of alternating layers of rare earth / carbon and nickel / boron
ions. The lattice parameters are approximately a ~b ~3.5 A and ¢ ~10.5 A across the

whole series [8].
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Fig1.1: Structure of the rare earth nickel

borocarbides.
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The superconducting transition temperatures in the heavy rare earth borocarbides are
relatively high and there is still some debate over the pairing mechanism. The

borocarbides were initially thought to be similar to the high Tc superconductors

despite the three dimensional character of the superconductivity. There is some
evidence from neutron scattering measurements that the nickel ion possess a small
magnetic moment [10]. Some muon spin rotation experiments suggest that an exotic
pairing mechanism such as fluctuations amongst the nickel magnetic moments may
have a role in the borocarbide superconductivity [11]. However, the large isotope
effect [12] and the behaviour of the lattice dynamics [13] strongly suggest that the
borocarbides are conventional electron-phonon coupled superconductors. The high
transition temperatures are thought to arise because of the high electronic density of
states at the Fermi level, the strong electron-phonon coupling, and the high average
phonon frequency seen in the superconducting state [14]. The high electronic density
of states at the Fermi level was initially predicted from band structure
calculations [15] and was later confirmed by experiment [16]. The position of the
maximum in the density of states is a function of the ratio of the lattice parameters
c/a. In the light rare earth borocarbides, this maximum is shifted away from the
Fermi level as compared with the heavy rare earth compounds. This partially explains
the lack of superconductivity in these compounds [17]. Evidence for the strong
electron-phonon coupling comes from the heavy damping of phonons seen in inelastic

neutron scattering experiments [18]. The strength of the coupling depends on the rare
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earth atom present and it is larger for the heavy rare earth compounds. This is another

factor in the removal of superconductivity in the light rare earth borocarbides [17].

The borocarbides display a wide variety of structures in the magnetically ordered state.
The magnetic structures seen in the ternary rare earth superconductors are heavily
influenced by the dipolar interaction between the rare earth ions[19]. In the
borocarbides, the magnetic transition temperatures are too high for the dipolar
interaction to be important. The magnetic structures are predominately determined by
a competition between the indirect exchange interaction between the rare earth ions,
the R.K.K.Y. interaction, and the crystalline electric field (C.E.F.) at each rare earth
site. The R.K.K.Y. interaction usually favours the formation of a magnetically ordered
structure that is incommensurate with the crystal lattice. This is because the
wavevector associated with R.K.K.Y. ordering depends on the geometry of the Fermi
surface, which may be entirely independent of the crystal periodicity (see § 2.1.2.2).
The C.E.F. interaction breaks the directional degeneracy of the rare earth magnetic
moment and introduces a preferred direction, the ‘easy’ axis, along which it is
energetically favourable for the magnetic moment to align. As this effect is identical at
each rare earth site, the C.E.F. interaction favours the formation of commensurate

magnetic order (see § 2.1.2.1).

Below Ty =10.6 K, the DyNi,B,C compound has a commensurate antiferromagnetic

structure. The moments in the a-b plane are ferromagnetically aligned with an easy
axis of [110]. The structure is antiferromagnetically aligned along the ¢ axis with

wavevector (0,0,1). The ordered moment has a magnitude of 8.47 g and

superconductivity coexists with this structure below a temperature of Tc =6 K [8].

The ErNi;B,C compound is superconducting below T =11K and orders
antiferromagnetically below Ty = 6.8 K. The structure is a transversely polarised spin
density wave with a modulation wave vector of (0.5526, 0, 0) or (0, 0.5526, 0) with
the moments pointing along the b or a axes respectively. As the temperature is
lowered, higher order harmonics develop, indicating that the sinusoidal magnetic

structure is squaring up. The magnitude of the low temperature magnetic moment is
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7.19 1 g . A commensurate magnetic structure is not observed at low temperatures and

superconductivity coexists with the magnetic order at all temperatures below Ty [10].

The HoNi,B,C is the most interesting compound in which superconductivity and

magnetism coexist. It becomes superconducting at a temperature of To =8 K. At all
temperatures below Ty = 8.5 K, the magnetic structure contains a component that is

identical to that of DyNi,B,C. At the Neel temperature, another structure, in which the
ferromagnetic sheets in adjacent layers along the ¢ axis have a relative orientation of
~163.4 ° (instead of 180 ° seen in the commensurate structure) develops. These two
magnetic structures grow in intensity at the same rate as the temperature is lowered.
At a temperature of ~6.25 K, a third structure with a modulation wave vector of
(0.55, 0, 0) begins to develop. Just below the onset of the a axis modulation, at around
5 K, the superconductivity is suppressed, as is indicated by a minimum in the upper
critical field Hc. On further cooling, both the incommensurate structures disappear

and only the commensurate structure remains. This coincides with an increase in H¢.

At low temperatures, the magnetic moment has a magnitude of 8.62 x g [20].

The TmNi;B,C compound becomes superconducting below Ts =11 K and orders
magnetically at Ty = 1.5 K. The structure is very different from those seen in the

other borocarbides. The structure is a transversely polarised spin density wave with a
modulation wave vector of (0.093, 0.093, 0) and moments pointing along the c axis.
As the temperature is lowered, higher order harmonics develop as the magnetic

structure squares up. The low temperature magnetic moment is 3.78  g. The

magnetic ordering coexists with the superconductivity at all temperatures [21].
Lutetium does not posses a magnetic moment as it has a full 4f shell (n=14).
Therefore, the LuNi,B,C compound has shows no magnetic order. It is

superconducting below T =17 K [8].

The YbNi,B,C compound is particularly interesting. De Gennes scaling predicts it
will become superconducting below ~ 13 K, which is not observed experimentally,
and no long range magnetic order has been observed to date. Substitutional studies

with YbyLu;xNi,B,C show that superconductivity is completely destroyed by
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x =0.15 [22]. The large linear contribution to the specific heat, with a Sommerfield

coefficient of » ~530mJ/ mol K%, classes YbNi,B,C as a heavy fermion

compound [9].

A broad peak in the specific heat (fig. 1.2) is seen at ~8 K which is often a
characteristic of spin fluctuations in heavy fermion compounds. Crystal field

calculations suggest that the J=7/2 Yb +3 ground state multiplet, predicted by

Hund’s rules, should be split into four doublets. Above the peak, there are additional

contributions to the specific heat, perhaps due to excitations between these crystal

field split doublets.

Fig1.2: Magnetic specific heat
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The static magnetic susceptibility (figs. 1.3 and 1.4) of YbNi,B,C is larger when the
applied field is aligned parallel to the ¢ axis. This is similar to the TmNi,B,C
compound. The susceptibility measurements show Curie-Weiss behaviour above
~125 K, with an effective magnetic moment that is similar to that predicted for the
ground state of the ytterbium +3 ion. At temperatures below ~125 K, the susceptibility
deviates from this behaviour indicating that a paramagnetic local moment model is
insufficient to describe the properties of this compound. However, at low
temperatures, the susceptibility continues to rise as the temperature is lowered. This is
In contrast to the ‘typical’ temperature independent Pauli-like behaviour of many other

heavy fermion and valence fluctuation compounds (see § 2.2.3.2) and indicates that
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the 4f electrons still possess a substantial localised character. Separate evidence for
this is provided by X-ray absorption spectroscopy from which it was deduced that the

Yb ions are still in a stable +3 ionisation state at low temperatures [9].

For other members of the borocarbide series, [R = Dy, Ho, Er and Tm], the
susceptibility shows a Curie-Weiss temperature dependence above temperatures
comparable with the antiferromagnetic ordering temperatures. The Weiss

temperatures also agree with the Neel temperatures in these compounds.

0.07 Fig 1.3 : Magnetic susceptibility,
006 § Hpaaleltoc (closed) | normalised per mole Yb,
' H H perpendicular to ¢ (open)

005 3 H=1koe | versus temperature for
E 0.04 | i | YbNi,B,C. Data shown for
=}
5 0.03 I %x\ | 1 kOe applied field parallel
N 0.02 - %b 5 | (closed) and perpendicular

oot %%:::;;;;'---....., | (open) to crystallographic ¢

000000%00;8%8338 i
ol L axis [23].
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" perpendiculartoc (open) o susceptibility versus
150 | 4= 1Kkoe o temperature for YbNi,B,C.
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o OOO .... - .
91997 C 1 applied field parallel
.| 1 (closed) and perpendicular
50 | _
/ (open) to crystallographic ¢
| | axis [23].
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Measurements of the nuclear magnetic resonance of 'B in YbNi,B,C (fig. 1.5) also
indicate a gradual crossover between local moment behaviour for T >50K, to

itinerant correlated electron behaviour for T < 5 K.

80 Fig 1.5: Nuclear spin-lattice
H % | relaxation rate of ''B in a
] % % % # single crystal of YbNi,B,C.
l% % } % % % % 1 Data shown for field parallel

1 (closed) and perpendicular

UT (s

(open) to crystallographic ¢
axis [24].

H parallel to c (closed)
H perpendicular to c (open) |

100 200 300

Temperature (K)

Above T ~ 100 K, the electrical resistivity (figs. 1.6 and 1.7) is approximately linear,

and increases with temperature. Below this temperature, dp /dT begins to increase

with decreasing temperature. Below T ~40K, the decrease in resistivity with
decreasing temperature is substantially more rapid as compared with the high
temperature behaviour. This rapid decrease in resistivity is often seen in concentrated
heavy fermion compounds and is usually associated with the onset of coherence
between individual Kondo scattering sites. In concentrated heavy fermion compounds,
a peak is often seen in the resistivity, associated with a maximum in the Kondo
scattering of the conduction electrons before the coherent state is entered (see
8 2.2.4.1). However, such a peak is not seen in the resistivity of YbNi,B,C. At
temperatures below T ~1.5K, the resistivity displays a quadratic temperature
dependence which is often associated with the formation of an enhanced Fermi-liquid

ground state.
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Fig 1.6 : Resistivity in the a-b plane
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CHAPTER 2

RARE EARTH CORRELATED
ELECTRON BEHAVIOUR

In this chapter, the different types of rare earth correlated electron behaviour are
discussed. The first part describes the rare earth standard model that provides an
accurate description of many rare earth compounds. The second part describes heavy
fermion and valence fluctuation behaviour in compounds that have dilute and
concentrated distributions of Kondo ions. In both parts, the interplay between long
range magnetic order, heavy fermion or valence fluctuation behaviour and

superconductivity is stressed.

2.1 The rare earth standard model.

The rare earth or lanthanide series is made up of the fifteen elements from lanthanum
to lutetium. The electronic structure consists of a xenon core with a partially filled 4f

shell surrounded by a singularly occupied 5d shell and a full 6s shell.

Rare earth electronic configuration = xenon + 4f "[5d'6s?],

(lanthanum has n = 0, lutetium has n = 14).

The series is further divided into the light and heavy rare earths, depending on whether

the 4f shell is less or more than half filled [1].
2.1.1  The free atom.
2.1.1.1 Solution of the non-relativistic Hamiltonian.

The non-relativistic Hamiltonian for a free rare earth atom is
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) hZ Z ) Z 1 1 Z e2
__ﬂizvi +iZV“UC(r_i)+E4ﬂgO%‘ri_rj ' Eq2.1

The first two terms correspond to the kinetic energy of the electrons and their coulomb
interaction with the nucleus respectively. The last term represents the coulomb
interaction of the electrons with one another. In the Hamiltonian’s present form, the
calculation of the eigenstates of the atom is impossible due to the complexity of the
intra-atomic coulomb interaction. In order to determine the eigenstates, the problem
can be reformulated as a series of single electron Hamiltonians where the coulomb
interaction of an electron with all the other charges in the atom is replaced with an

effective potential Vg (1),

2 Eq 2.2

/]
b= _ﬁvz +Vetf ([)

If this is done, the resulting single electron wavefunctions can be calculated. The
solutions can be written as a product of a radial function, a spherical harmonic and a

spin function

‘//nlm|mS(LG)ZiIRm(I’)le(f);(ms. Eq23

One of the most important features arising from the above analysis is that the 4f radial
function lies within the 5d and 6s radial functions which is extremely important in
explaining the properties of rare earth ions in compounds. The increasing nuclear
charge and incomplete screening results in a decrease in the radii of the ion as n
increases which is referred to as the lanthanide contraction. The angular dependence
of the 4f wavefunctions leads to highly anisotropic charge distributions with

pronounced multipoles [2].
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Fig2.1 : The radial functions of
the single electron atomic

wavefunctions [2].

Cerium (n=1) and
Thulium (n=13) are

shown.
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The electronic wavefunction for the whole atom is constructed from a sum of the
single electron wavefunctions. The exchange interaction between the electrons

couples their spins s; to give the total spin S, and the coulomb interaction couples
the orbital angular momenta I, to give the total orbital angular momentum L. The

state with lowest energy is that which has the maximum values of S and L [3].
2.1.1.2 The spin-orbit interaction.

Relativistic effects are important in the rare earths due to their large atomic masses
and may be added as perturbations to the non-relativistic Hamiltonian. The most

important relativistic effect is the coupling of the total orbital angular momentum L
and the total spin S to give the total angular momentum J = L+ S [2]. This is called

the spin-orbit interaction and the magnitude of the total angular momentum J in the

ground state is given by

IL+S| (4f subshell is more than half full ) Eq 2.4
“|L=S| (4f subshell is less than half full )

The degeneracy of this ground state g is given by

g=2J+1 as Mj;=-J,..,0,..,J, Eq 2.5
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and the effective magnetic moment associated with it is

3 S(S+1)-L(L+D Eq2.6
yZi

A= T 23+

}IBJZQJ#BJ-

2.1.2 Interactions with other ions.

When rare earth atoms are placed in a metallic compound, the 5d and 6s electrons
leave the atom and contribute to the itinerant conduction band. In the majority of
compounds, the 4f electrons remain localised to the nucleus, resulting in a rare earth
valence of +3. The localised nature of the 4f electrons means that the wavefunctions,
derived above, may be used as a basis for calculating the rare earth ground state in rare
earth compounds. However, inter-ionic interactions are important and must be

included in order to calculate the properties of the compound.
2.1.2.1 The crystalline electric field (C.E.F.) interaction.

The rare earth 4f electrons experience a coulomb interaction with all the electronic and
nuclear charges on the neighbouring ions. As the 4f electrons are shielded by the 5d
and 6s electrons, the C.E.F. interaction is weaker than the spin-orbit interaction, but it
may still have a significant effect on the magnetic properties of the rare earth ions.
The potential between the 4f electrons of a single rare earth ion and the surrounding

charge distributions can be expanded in spherical harmonics,

Eq2.7

v([)_jep( ) 4R = S AMY™(6,4),

=& Im
where

Eq 2.8

R), —m

Alm:(_l)m(2|+1_|.p|+1 (‘9¢)
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and p (R) is the charge density of the external electrons and nuclei. The number of
terms in the expansion depends on the nature of the wavefunction in the crystal field.
For the 4f wavefunction, terms with |1 >6 are not included and |m| is less than or
equal to | always. The number of terms may be reduced further depending on the
symmetry of the rare earth site. For example, in the rare earth nickel borocarbides, the
tetragonal symmetry of the unit cell allows only the terms Ag, AL?, Aﬁ', Ag and Ag.

Calculations of the transition matrix elements of equation 2.7 are greatly simplified by
first expressing the spherical harmonics in terms of Cartesian coordinates. The
Wigner-Eckart theorem then allows the crystal field Hamiltonian to be written in
terms of the operator equivalents, which are functions of the projection of the total

angular momentum operator J onto the Cartesian axes (Jy,Jy,J;). If this is done,

and a sum over the lattice sites performed, the crystal field Hamiltonian can be written

as

cf :ZZAIma|<r'>O{n(gi)=ZZB|m or(3;), Eq 2.9

i Im i Im

where the « | are the Stevens factors which are functions of L, S and J, the < r'> are

the expectation values of the 4f electron radii, and the O"(J i) are the Stevens

operator equivalents which are tabulated. In principle, the crystal field parameters Bj"
can be calculated. In practice, this is usually not attempted due to the difficulty in
determining p (B) and their values are measured experimentally. The effect of the
C.E.F. interaction is to break the directional degeneracy of the 4f magnetic moment. A
preferred direction, or ‘easy’ axis, is introduced along which it is energetically
favourable for the magnetic moment to align. As this effect is identical at each rare
earth site, in compounds that magnetically order, the C.E.F. interaction favours the

formation of commensurate structures [4].



RARE EARTH CORRELATED ELECTRON BEHAVIOUR 6

2.1.2.2 The exchange interaction.

As the rare earth 4f electrons are highly localised and lie within the 5s and 5p
electrons, there is virtually no overlap of their wavefunctions and therefore the direct
exchange interaction is negligible. However, an indirect exchange interaction, the
Ruderman, Kittel, Kasuya, Yosida (R.K.K.Y.) interaction, does occur via direct
exchange with the conduction electrons. The Heisenberg direct exchange Hamiltonian

for the interaction between a rare earth ion at position R, with total angular

momentum J, and a conduction electron spin density s(r) can be written as

Vs =—(95-1)[i(r-R)J.s(r)dr =-gu [ H(r). s(r)dr, Eq 2.10

where j(r—R) is the exchange parameter. Therefore, the effective magnetic field

experienced by the conduction electrons due to the rare earth ion is given by

(g, -1) Eq2.11
o i(r-R)J.

H(r)=

Using equations 2.11 and 3.13, the spin density induced in the conduction electrons at

position r by arare earth ion at position R, , with total angular momentum J,, is

Eq2.12

where y (r—r") is the non local susceptibility which can be written as a scalar if the
crystal is unmagnetised and the spin-orbit coupling of the conduction electrons is
ignored. The indirect exchange Hamiltonian for the interaction between a rare earth

ion at position R;, with total angular momentum J., and this spin density is therefore



RARE EARTH CORRELATED ELECTRON BEHAVIOUR 7

Lik="9H BIﬂi([)- S ([)d[ Eq2.13

If the Fourier transform of the above equation is taken, and a sum over rare earth

lattice sites performed, it becomes

RKKY ———Z Y (gJ - )2 %‘ ( )‘ ( )exp(lq ( Bk)) Ji-dy

N2 2
|k|\| Q#B

Eq2.14

which is the Hamiltonian for the R.K.K.Y. interaction. The expression in square
brackets is the indirect exchange parameter between the rare earth ions and is a
function of the direct exchange parameter and the conduction electron susceptibility. It
can be seen from equation 2.14 that the R.K.K.Y. interaction will favour an

arrangement of the rare earth magnetic moments that is modulated by a wavevector
that corresponds to a maxima in the product |j(9)|2;((9). Assuming the above

approximations, the conduction electron susceptibility can be written as

— fiiq Eq2.15
—Ey '

-2

+a

Evaluation of this expression for a real rare earth compound requires a detailed
knowledge of the Fermi surface. However, it is clear that a large contribution to the

sum over k is made by pairs of electronic states with similar energies, separated by a

wavevector . Therefore, the conduction electron susceptibility will have a large

value at gq=Q, if the Fermi surface has large parallel regions separated by a

wavevector Q. This is called ‘nesting’ of the Fermi surface, and the peaks it gives rise

to in the conduction electron susceptibility are called Kohn anomalies. These are often

extremely important in determining the modulation wavevectors of the rare earth
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magnetic moments in the magnetically ordered state. As the modulation wavevectors
do not depend on the periodicity of the crystal lattice, the R.K.K.Y. interaction usually

favours the formation of incommensurate magnetic order [4].
2.1.2.3 The dipolar interaction.
In addition to the R.K.K.Y. interaction, the rare earth magnetic moments interact via

the classical dipolar interaction. The Hamiltonian for the dipolar interaction between

two rare earth ions with magnetic moments J. and gj, at positions R; and Bj, IS

given by

-f)(lj-f) Eq 2.16

where r=|R; —le- This interaction extends over a long distance and is highly

anisotropic. In many rare earth compounds, it is considerably weaker than the
R.K.K.Y. interaction. In the heavy rare earth nickel borocarbides, it plays no role in
determining the magnetically ordered structure. The above Hamiltonian can be
expressed in a similar form to equation 2.14, and the combined anisotropic

Hamiltonian for the indirect exchange and dipolar interactions can be written as

y Eq 2.17
(RKKY/dp) = %Zk:[ RKKY|k§aﬁ+J(dp)|kaﬂ} Jia Jkp
a |

where « and £ represent the Cartesian coordinate axes [2].

2.1.3  Magnetic structures and the mean field approximation.

From equations 2.9 and 2.17, the total Hamiltonian for the lattice of rare earth ions in

a compound can be written as
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REL CF (RKKY/dp) " Eq218

The second term in this Hamiltonian contains two ion operators of the form J..J, . If

the magnetic structure of the rare earth lattice is to be calculated, these two ion
operators must be decomposed into terms containing only single ion operators. The

two ion operator may be expanded as

di- Iy z(ii _<li>)'(ik _<lk>) + 303+ 31:(35) (32 ) - Eq219

The first term on the right hand side is associated with two site fluctuations, and can
be neglected in the mean field approximation as only the static magnetic structure is
being considered. Therefore, the above expansion allows the R.K.K.Y./ dipolar

Hamiltonian to be written in the form

" (RKKY/dp) Z_%ZZ(Jia_%<Jia>)-%jikaﬂ <Jkﬂ>, Eq 2.20

apfi

where the right hand side of the dot-product is the « 8 th component of the mean field

atthe i™ site. The above equation can be combined with the crystal field Hamiltonian

to give the mean field approximation to ' rg_ . Provided that there are no other

significant contributions to the rare earth lattice Hamiltonian, /= gg_ can be used to
calculate the magnetic structure of the rare earth lattice in the magnetically ordered
state. The magnetic structure is determined by a competition between the R.K.K.Y./
dipolar interaction, tending to produce incommensurate structures, and the C.E.F.

interaction, which favours the formation of commensurate magnetic order [2].
2.1.4  Coexistence of magnetism and superconductivity.

In most compounds, consisting of rare earth ions embedded in a metallic environment,

superconductivity does not occur. This is because the exchange interaction between
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the rare earth 4f magnetic moment and the conduction electrons prevents the
formation of the superconducting electron pairs. This occurs as the exchange
interaction has the effect of raising the energy of one of the electrons in the pair and
reducing the energy of the other. This is called magnetic pair breaking. However, in
some compounds, where the rare earth ions are well isolated from the conduction
electrons, the interaction between the two is weak and superconductivity can occur.

Magnetic pair breaking still exists, but now it results in a suppression of T rather

than a complete removal of superconductivity [5].
2.1.41 Abrikosov-Gor’kov theory and the de Gennes factor.

The Abrikosov-Gor’kov theory predicts the Te of an alloy produced by dissolving

rare earth ions in a superconducting matrix [6]. The theory holds for positive values of

the exchange parameter between the conduction electrons and the rare earth ions j.

The drop in the superconducting transition temperature from the undoped value with

increasing concentration of the rare earth ions n is given by

dTe Eq2.21

72 1 2 2
dn :_[_jkB 9c(0)j%(95 -1)73(3 +1),

2

n=0

where g.(0) is the conduction electron density of states, and J is the total angular

momentum of the rare earth ion. The factor (g; —1)2J(J +1) is called the

de Gennes factor.
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Fig2.2: The de Gennes factor
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The de Gennes factor scales roughly with the value of S(S+1) and reaches a
maximum for Gadolinium where the 4f shell is exactly half full (S=7/2, L=0 and

1=7/2).

2.1.4.2 The suppression of superconductivity by the Kondo effect.

A rare earth or actinide ion that has a negative exchange parameter with the
conduction electrons of the a host compound is called a Kondo ion. If such an ion is
placed in a superconducting compound, there is a competition between the formation

of a superconducting ground state with energy Eg =kgTc g, and the formation of a

Kondo singlet with energy Ex =kgTk due to local antiferromagnetic correlations

between the Kondo ion 4f electrons and the conduction electrons. Here, Tc( is the
superconducting transition temperature of the undoped compound. For Tx < Tz, the

value of T is depressed by an amount larger than that predicted by the Abrikosov-

Gor’kov theory. This depression reaches a maximum at Tx =Tgg When
superconductivity is completely removed. For Tk << Tcq, there can be re-entrant

superconducting behaviour: on cooling, at temperatures below the onset of

superconductivity at an upper critical temperature T, the increase in the scattering

due to the Kondo effect causes the compound to re-enter the normal state at Tc o [7].
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2.1.4.3 Coexistence of long range magnetic order and superconductivity.

The onset of long range magnetic order in a superconductor establishes a static
exchange field at the superconducting electron sites. If this field exceeds the

paramagnetic limiting field given by

Eq2.22
[ 0 }%A i
P_ )

An~Xs

where g.(0) is the superconducting electron density of states, A is the energy gap,
and y, and yx ¢ are the normal and superconducting electron magnetic
susceptibilities, the superconductivity will be destroyed [8]. If y ¢ can be increased,
Hp will also increase, and the coexistence of superconductivity and a static exchange

field will be more favourable.

The paramagnetic limiting field is considered in several theories describing the
coexistence of superconductivity and ferromagnetic order. The Gor’kov and Rusinov
theory provides a simple explanation of the re-entrant superconductivity seen in some
of the ferromagnetic rare earth ternary compounds [9]. Below the superconducting

transition temperature, in the presence of spin orbit or exchange scattering, y ¢ will

have a finite value, and R.K.K.Y. ordering of the magnetic ions can occur. The raised
value of the superconducting electron susceptibility also allows the superconducting
order to persist in the presence of the static exchange field. However, as the

temperature is lowered, the exchange field increases, eventually exceeding Hp, and

the compound re-enters the normal state. The above theory neglects the g dependence
of the superconducting electron susceptibility. The Anderson and Suhl theory suggests
that the ferromagnetic order will contain an oscillatory modulation corresponding to

the q value for which y ¢(q) attains a maximum [10]. A sinusoidally modulated state

coexisting with superconductivity has been observed in ErRhsB,4 [11]. However, the
formation of this state has been attributed to effects other than the exchange
interaction considered by Anderson and Suhl, such as the formation of spontaneous
vortex lattices [12] or the electromagnetic interaction between the rare earth magnetic

moments and the persistent current [13].
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The first theory describing the coexistence of superconductivity and commensurate
long range antiferromagnetic order was provided by Baltensperger and Strassler [14].
They concluded that superconductivity and antiferromagnetic order are not mutually
exclusive if the exchange field averages to zero over the superconducting coherence
length. However, the magnetic order still has a large effect on the superconductivity.

Their most striking prediction was the finite momentum pairing of the

superconducting electrons into states (5T,—K+9~L) where Q is a reciprocal lattice

vector. Subsequent theories have described other modifications of the

superconductivity. These include a prediction that, around Ty, magnetic moment
fluctuations increase the magnetic pair breaking, and below Ty, magnons decrease

the strength of the phonon mediated electron-electron pairing mechanism [15]. To
date, no accepted theory of the coexistence of incommensurate antiferromagnetic
order and superconductivity has been put forward. A theory by Morozov describing
the suppression of superconductivity by incommensurate order in HoNi,B,C
concludes that an interaction between the incommensurate Bragg planes and the
electron Fermi surface allows superconductivity to be destroyed by small
concentrations of non-magnetic impurities [16]. This interaction is not present when

the compound is in a commensurate antiferromagnetic ordered state.
2.2 Heavy fermion and valence fluctuation behaviour in rare earth compounds.
2.2.1 Introduction.

Heavy fermion and valence fluctuation behaviour can arise in compounds containing
rare earth elements such as Ce or Yb, or actinide elements such as U or Np. This
thesis is concerned with rare earth compounds; therefore, the actinide compounds will
not be considered here. The rare earth standard model describes compounds in which
the rare earth 4f electrons are localised. The conduction band is made up of the rare
earth 5d and 6s electrons and electrons from other ions in the compound. In heavy
fermion and valence fluctuation compounds, the 4f electrons are not completely
localised and, to varying degrees, hybridise with the conduction electrons. At high

temperatures, the thermal population of energetic conduction electron states ensures
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that these compounds exhibit behaviour broadly consistent with the standard model.
For example, the static susceptibility is indicative of non-interacting local moment
paramagnetism of the 4f electrons. As the temperature is lowered below a

characteristic temperature, Tk or the Kondo temperature, the thermodynamic

behaviour of these compounds becomes dominated by excitations within the rare earth
4f / conduction electron correlated system. The explanation of the low temperature
behaviour presents a major challenge to theoretical physicists and is one of the main
reasons for experimental interest in heavy fermion and valence fluctuation
compounds. For example, heavy fermion compounds, in particular, display coexistent
localised and itinerant electronic behaviour which is difficult to reconcile with
traditional theoretical models. The behaviour of heavy fermion and valence
fluctuation compounds is often described using Fermi liquid theory. The interactions
between the 4f and the conduction electrons are considered to renormalise or scale the
properties of the non-interacting conduction electrons. The resulting quasi-particles
therefore possess, to some extent, the character of both the conduction and the 4f

electrons.

In valence fluctuation compounds, the 4f/conduction electron mixing is strong
enough to cause both spin fluctuations and fluctuations in the 4f charge. The values of

Tk are high in these compounds (~ 100 K). In heavy fermion compounds, the mixing

is too weak to produce charge fluctuations and only the spin fluctuations remain. The

values of Ty are much lower than in valence fluctuation compounds and the more

localised behaviour of the quasi-particles results in extremely large values of the

effective mass.

In compounds with a low concentration of rare earth ions, the interactions between
different rare earth sites can be ignored. If spin-orbit and crystal field effects are
included, the properties of these compounds can be understood in terms of
4f / conduction electron mixing occurring independently on each rare earth site. The
Anderson model, outlined below, describes this situation very well. In more
concentrated compounds, the interactions between different rare earth sites can no

longer be ignored. Exchange interactions between the rare earth sites can lead to long



RARE EARTH CORRELATED ELECTRON BEHAVIOUR 15

range magnetic order and coherence between the sites can lead to superconductivity.
The concentrated compounds are more difficult to understand as it is here where the
coexistence of localised and itinerant behaviour is most conspicuous. Models are often

based on the formation of narrow itinerant bands of interacting quasi-particles.

2.2.2  The Fermi liquid theory.

The phenomenological Fermi liquid theory describes an interacting fermion system. In
dilute heavy fermion and valence fluctuation compounds the interactions are taken to
be those between the 4f and the conduction electrons. In a simple model, the band
structure of the conduction electrons is ignored and they are approximated by a free
electron gas. The interactions are considered to readjust the Fermi sphere of the
conduction electrons. The energy required to add an electron near the surface of this

readjusted Fermi sphere is calculated to be

Eq 2.23

k —k

k.

e(k)=pu +—
m

As the entire Fermi sphere has been readjusted as a result of the interactions, the
energy of this electron is different to that of a free electron. The interactions are said to
‘dress’ the electron and its consequential lack of physical identity results in it being
referred to as a quasi-particle. The increase in the energy required to create a quasi-
particle in moving away from the Fermi surface is characterised by an effective mass
m". If more quasi-particles are introduced into the system, their energies will be
different from those predicted by equation 2.23 as the energy of any one quasi-particle
is now a function of the distribution of all the others. If the quasi-particle distribution
function is known, the thermodynamic properties of the interacting system can be
calculated. It can be shown that the electronic specific heat of the Fermi liquid has the
same form as an ideal gas but with m replaced by m". Similarly, the static
susceptibility is proportional to the Pauli susceptibility of a free electron gas, but is
enhanced by a factor depending on m’/ m. Therefore, both the conduction electron
mass, or the electronic specific heat, and the static susceptibility are enhanced or

renormalised by the interactions with the 4f electrons. In more concentrated heavy
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fermion and valence fluctuation compounds, the interactions between different rare
earth sites can be incorporated within the Fermi liquid theory by considering

interactions between the quasi-particles [4].
2.2.3  Dilute compounds.

If spin-orbit and crystal field effects are taken into account, the electronic properties of
dilute heavy fermion and valence fluctuation compounds are described very well by
the Anderson model [16].

In this model the conduction electrons form a single band consisting of the 5d and 6s
electrons from the rare earth ions and the conduction electrons from other ions in the
compound. In the absence of mixing with the conduction electrons, the ground state of
the 4f electrons, subject to spin-orbit and crystal field effects, is described by the rare
earth standard model. However, interactions via the R.K.K.Y. exchange between the
4f electrons on different rare earth sites are neglected as the rare earth concentration is

low.

The Anderson Hamiltonian describes a mixing between the ground state multiplet of

the 4f electrons and the conduction band,

A= X kCintom 1 2 T fm +V X Favcem + S fn ) U X i i il

k,m m k,m m>m'

Eq 2.24

The first term is the energy of the electrons in the conduction band; ¢ is the
conduction electron energy, and ¢, and ¢, are the creation and annihilation
operators. The second term is the energy of the 4f electrons; f. and f,, are the
creation and annihilation operators for a 4f electron with energy ¢ ¢ . The hopping

matrix element which describes the mixing of the 4f and the conduction electrons is
V . The last term represents the interaction of the 4f electrons with each other. The

Fermi level lies at an energy of zero and the unhybridised 4f electron level lies below
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it (¢ ¢+ 1s negative). The conduction electron bandwidth is given by D, and V is

related to the hybridised width of the 4f electron level A (when the 4f electron

interaction energy U is zero) by
A=rxg.(0V?, Eq 2.25

where g(0) is the conduction electron density of states for both spin directions at the

Fermi level.

In valence fluctuation compounds, the hybridised width of the 4f electron level is

greater than its separation from the conduction band (|& ¢|< A). This overlap gives

rise to charge fluctuations. In heavy fermion systems, the hybridised width of the 4f

electron level is much less than its separation from the conduction band (|¢ ¢|>> A),

and charge fluctuations do not occur.

If |e ¢§]>>A, U>>A and U +2¢ =0, the Anderson Hamiltonian represents heavy

fermion behaviour, and in this region can be transformed into the Cogblin-Schrieffer

Hamiltonian [18]

lcs =25 kC_kaCkm_j ZCI—:‘m'frﬁrzfm‘Ckmv Eq2.26
k,m kk',mm'

which represents the weak 4f / conduction electron mixing as an effective exchange

interaction with coupling constant

U Eq 2.27

i\ 2
J_V 8f(8f+U).

For U+¢ >0, the exchange constant is negative and this results, at low

temperatures, in a reduction in the effective magnetic moment at the rare earth site.
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For heavy fermion systems where the lowest crystal field multiplet is a doublet and
excitations to the excited multiplets sufficiently energetic to be ignored, the Cogblin-

Schrieffer Hamiltonian can be further transformed into the Kondo Hamiltonian

K= 26k ChoCko— ] 2ICKk6 10 CKks Eq2.28
k,o ; kk',oo'

where J and o give the angular momentum associated with the rare earth site and

conduction electrons respectively [19].

A solution of the Anderson, Cogblin-Schrieffer or Kondo Hamiltonians gives a value
for the Kondo temperature, below which valence fluctuation or heavy fermion

behaviour are displayed

D (7es Eq 2.29
TK=EGXD ol

where g is the degeneracy of the unhybridised 4f multiplet. Below the Kondo

temperature, the thermodynamic behaviour of these compounds becomes dominated
by excitations within the rare earth 4f / conduction electron correlated system. These
quasi-particle excitations give rise to a large peak in the electronic density of states
near the Fermi level. This phenomenon is known as the Kondo resonance and is one
of the main theoretical predictions associated with heavy fermion and valence
fluctuation behaviour. It can be experimentally observed by X-ray absorption
spectroscopy. At temperatures above the Kondo temperature, the resonance is washed
out as higher energy excitations become important in determining the properties of the

compound.
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Fig2.3: The Kondo resonance. The density of states of the quasi-particles

verses energy. Eg is the Fermi level and & ¢ is the position of the

unmixed 4f electron level. U is the 4f electron self interaction energy.

The thermodynamic behaviour of the quasi-particles is similar in many respects to that
of a non-interacting electron gas. However, the large density of quasi-particle states at

the Fermi level leads to an effective electronic mass scaled by

m o Te Eq2.30

oC .
m TK

For heavy fermion compounds, where Ty is low (~ 10 K), the effective mass is often

of the order 108 m. In many compounds, as the temperature tends towards absolute

zero, the antiferromagnetic correlations amongst the 4f and the conduction electrons
leads to a complete removal of the rare earth magnetic moment. In this case, the

ground state of the compound is a non-magnetic singlet [20].
2.2.3.1 Magnetic specific heat.

If the phonon contribution is subtracted, the Kondo resonance is clearly visible in the

specific heat of heavy fermion and valence fluctuation compounds.
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Fig2.4: Typical magnetic specific

0.6
heat verses temperature for
o“.
o a dilute heavy fermion or
04+ . % 4 .
. . valence fluctuation
m i .
X [ ] °
s S H compound.
@) : *
02 . |
o....
0 1 1 1
0.01 0.1 1 10 100
TIT,

The general form of the magnetic specific heat is the same for heavy fermion and
valence fluctuation compounds. The exact position and width of the Kondo peak is
dependent on the degeneracy of the 4f ground state. Variations from the above form
can occur in dilute compounds where the crystal field splitting is the same order of
magnitude as the Kondo energy. In these compounds, the Kondo peak may be shifted
in temperature and superimposed on a background due to transitions to the excited
crystal field levels. In heavy fermion compounds, the linear contribution to the

specific heat is very large (the Sommerfield coefficient lies in the range

400 mJ mol ™t K2 < y < 16 J mol ! K'2) due to the enhanced electron effective

mass [21].

2.2.3.2  Static susceptibility.

The form of the static susceptibility depends on the extent to which the compound
exhibits heavy fermion or valence fluctuation behaviour. This is reflected in the value

of the average rare earth 4f valence n; . In the case of cerium or ytterbium ions, a

valence of unity corresponds to the rare earth ion having an ionisation state of +3. In
this state, a cerium ion will posses one 4f electron, and a ytterbium ion will posses one

4f hole (or 13 4f electrons). As n¢ decreases, and the compound moves towards

valence fluctuation behaviour, a cerium ion will tend to lose its 4f electron, and a

ytterbium ion will tend to lose its 4f hole (or gain an electron). These two processes
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are related by an electron/ hole inversion and are qualitatively analogous. The static

susceptibility also depends on the degeneracy of the 4f ground state multiplet involved

in the formation of the Kondo resonance.

12 Fig 2.5: Typical static susceptibility
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The most significant feature in figures 2.5 and 2.6 is the different types of behaviour
above and below Ty . Above this temperature, the susceptibility is indicative of non-
interacting local moment paramagnetism. As the temperature is reduced below Ty,
the effective rare earth magnetic moment is reduced. This leads to a reduction in the
paramagnetic contribution to the susceptibility. At very low temperatures, the

susceptibility is entirely due to the temperature independent Pauli susceptibility of the
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quasi-particles. Figure 2.5 shows the variation of the form of the static susceptibility

as a function of n; for a rare earth ground state multiplet with g = 6. As the value of
ng decreases (moving towards valence fluctuation behaviour), the peak in the

susceptibility below Tk becomes more pronounced. Figure 2.6 shows the variation in

the susceptibility as a function of the value of g of the rare earth ground state
multiplet. The peak in the susceptibility becomes less pronounced as the value of g

decreases. For g =2, and values of n; close to unity, the behaviour of the compound

is described by the Kondo formulation of the Anderson Hamiltonian, and the

susceptibility peak disappears completely [22].

2.2.3.3 Resistivity.

Fig 2.7 . Typical resistivity verses
11 eeeee,, 1 temperature for a dilute
08 ., heavy fermion or valence

% fluctuation compound.
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The form of the resistivity for heavy fermion and valence fluctuation compounds is
the same. As the temperature is lowered, the proportion of conduction electrons
involved in the formation of the Kondo resonance increases. This equates to an
increase in the scattering of the conduction electrons by the rare earth 4f electrons. As
the temperature tends towards absolute zero, the Kondo resonance becomes fully
formed and the resistivity achieves a maximum. This behaviour should be contrasted

with the resistivity of more concentrated rare earth systems [21].
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2.2.4  Concentrated compounds.

In compounds with a high concentration of rare earth ions, the interactions between
different rare earth sites become important. There is now a competition between the
formation of a non-magnetic ground state via the Kondo effect and the formation of a
magnetic ground state via the R.K.K.Y. interaction. The energy of both these ground

states depends on the 4f/ conduction electron exchange parameter j and the
conduction electron density of states at the Fermi level. For small values of |j g, (0)|,

the energy of the R.K.K.Y. interaction is the greater, and the rare earth sites in the
compound have stable local moments consistent with the standard model. For values

of |jgc(0)| close to unity, the Kondo energy is the greater, and the compound

displays valence fluctuation behaviour; in this regime, the magnetic moment of the 4f
electrons is completely compensated by the conduction electrons, and the inter-site
magnetic interactions are unimportant. In between these two extremes, the properties
of the compound are more difficult to predict; in many heavy fermion compounds,
hybridisation of the 4f / conduction electrons is observed coexisting with long range

magnetic order of the substantially reduced 4f magnetic moments.

One theoretical description of concentrated heavy fermion and valence fluctuation

compounds is given by the periodic Anderson Hamiltonian

PA= D EKChmCkm +& £ 2 fri fmi +V 2, [exp(iK.Bi)c;mfmi +h.c|+
k.m m, i k.m,i

U 2 i fmi fovi foni Eq231

m>m', i

where the intra-site electron hopping term of the Anderson Hamiltonian is replaced by

a summation over all rare earth lattice sites at positions{R; }. A solution of this

Hamiltonian predicts the formation of narrow itinerant bands of independent quasi-
particles. The narrowness of these bands is responsible for the large density of states at
the Fermi level (or Kondo resonance) seen in concentrated compounds. The energy

profile of the Kondo resonance is more complicated than in dilute compounds, and
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may no longer be isotropic, as it is now a function of the quasi-particle band structure
and crystal symmetry of the compound. The R.K.K.Y. interaction can be included in
the above analysis by introducing interactions between the quasi-particles; it can also
be added explicitly to the periodic Anderson Hamiltonian. Both approaches predict
long range magnetic order in the itinerant quasi-particle Fermi liquid [22]. This
description has similar features to the Stoner theory of itinerant magnetic order in the

transition metal elements [4].

2.2.4.1 Resistivity.

One of the most striking differences between the behaviour of concentrated and dilute

compounds is seen in the resistivity.

Fig 2.8 : Typical resistivity verses
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In concentrated compounds, as the temperature is lowered below another
characteristic temperature Ty < Ty, coherence can arise between the individual
Kondo hybridised rare earth lattice sites. In this region, the magnetic moments of the
rare earth ions either vanish due to complete spin compensation or they form a
periodic magnetic structure. In both cases, the elastic scattering of the conduction

electrons is substantially removed. Below the coherence temperature Ty, many

properties of the compound can be described by the Fermi liquid theory. This theory

successfully predicts the quadratic temperature dependence of the resistivity which is
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observed in many concentrated compounds below Tj. A gradual progression between

dilute and concentrated resistivity behaviour is shown in figure 2.8 [20].
2.2.4.2 Heavy fermion superconductivity.

Some concentrated heavy fermion compounds become superconducting. Initially this
may seem unlikely, as small concentrations of ‘Kondo’ rare earth ions added to a
‘non-Kondo’ rare earth superconductor can suppress the formation of the
superconducting pairs and drastically reduce the transition temperature as compared
with the non-doped compound (see §2.1.4.2). However, in many superconducting
heavy fermion compounds, the jump in the specific heat on entering the
superconducting state corresponds to the enhanced effective mass. This implies that
the superconducting pairs are formed by the quasi-particles. The nature of the quasi-
particle attraction is still unclear. Some theories rely on conventional electron-phonon
coupling while others consider that the pairing is due to quasi-particle - quasi-particle
interactions analogous to those responsible for pairing in superfluid *He [23]. One
reason for the adoption of the latter approach is that Fermi liquid theory is used to
describe both the properties of superfluid ®He and the non-superconducting behaviour

of heavy fermion compounds (See § 2.2.2).

2.2.5 Inelastic neutron scattering experiments on dilute and concentrated

compounds.

The relationships between the partial differential cross section for the magnetic
scattering of neutrons, the magnetic correlation function and imaginary part of the
magnetic susceptibility are given in § 3.2.4.3. The following discussion assumes that
the instrumental resolution function has been deconvolved. For non-interacting rare
earth ions, without any interaction with the conduction electrons, the imaginary part of

the magnetic susceptibility consists of a series of delta functions

z (a)):Z5 (0—A,), Eq2.32
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where A, is the energy of the i C.E.F. level. In the case of paramagnetic rare earth

ions, interacting with the conduction electrons via a direct exchange (without heavy
fermion or valence fluctuation hybridisation), the resulting relaxation pathways lead to
a broadening of these delta peaks. The main contribution arises from the spin-spin

interactions, and this leads to a Korringa-like Lorenztian linewidth I'(T) associated

with each of the peaks
(T) o [(g 1) jgc (O k,T - Eq 2.33

The width of the zero-energy transfer peak is governed solely by this broadening and
goes to zero as T —0. The inelastic peak widths have additional broadening
contributions arising from interactions between the C.E.F. transitions, and remain
finite as the temperature goes to absolute zero. A theoretical description of the above
scheme is given by the Becker-Fulde-Keller (B.F.K) theory [25]. The hybridisation of
the rare earth and conduction electrons in heavy fermion and valence fluctuation
compounds results in a substantial departure from the B.F.K. predictions for the low
energy magnetic susceptibility. For moderate heavy fermion compounds, the

Korringa-like line width is replaced by
I(T)ocT, +bT 2, Eq 234

where the residual Lorenztian width at T = 0, I, gives an estimate of the energy scale
of the rare earth/ conduction electron hybridisation (I,/2 ~kgT, /#). For more
heavily hybridised valence fluctuation compounds (T, is large), the temperature
dependent part of this line width is less significant than I',, resulting in a temperature

independent line width up to high temperatures.

In concentrated compounds, interactions between the rare earth ions, or the onset of
superconductivity, can cause departures from this simple scheme. For example, in
compounds where the residual magnetic moments enter an ordered state, the quasi-

elastic peak may move to finite energies and gain a q dependence in addition to that
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determined by the C.E.F. selection rules[22]. In some compounds, interactions
between the C.E.F. transitions and the lattice excitations introduce further relaxation
pathways. In these cases, the excited peaks may be additionally broadened, their

degeneracy broken, and their position in energy moved [24].
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CHAPTER 3
NEUTRON SCATTERING

This chapter describes the theory of neutron scattering. The first two sections
introduce the basic concepts and experimental procedures. This is followed by

detailed descriptions of the specific experimental techniques used in this thesis.
3.1 Introduction.

Neutron scattering is an experimental technique used in a wide range of scientific
subjects to study the nuclear and magnetic structure and excitations of materials.
There are many different types of neutron scattering experiment, but all of them

depend on the same general principle:

A beam of neutrons is directed at a sample of the material to be studied. These
neutrons are scattered by the sample. The neutrons can be produced with wavelengths
that are comparable to the interatomic spacing in materials, and with energies that are
comparable to the separation of their energy levels. Therefore, analysis of interference
effects between the scattered neutrons gives information concerning the structure of
the sample, and analysis of the energies of the neutrons gives information concerning

the nature and spacing of the energy levels of the sample.

3.2 General neutron scattering.

3.2.1  The production of neutrons.

The neutron scattering experiments in this thesis have been conducted at the Institut
Laue Langevin (I.L.L.) in Grenoble, France, and at the ISIS facility of the Rutherford

Appleton Laboratory in Didcot, U.K. The method of producing neutrons at these two

establishments is different.
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The I.L.L. operates a 58 MW enriched uranium nuclear reactor. The neutrons
produced within the fuel element have an average wavelength of the order of 10 A,
which corresponds to an energy of several MeV. Therefore, to be of use in scattering
experiments, these neutrons have to be slowed down or moderated. This is done by a
tank of heavy water that surrounds the fuel element. In this tank, the fast neutrons are
slowed down by repeated collisions with the D,O molecules. The wavelength
distribution of the neutrons that emerge is dependent on the temperature of the tank.
The temperature of the tank at the I.L.L. is 300 K, which corresponds to a neutron
wavelength range of 1 A to 3 A. Neutrons with these wavelengths are called thermal
neutrons, and are suitable for use in many types of scattering experiment. However,
certain experiments require longer or shorter wavelengths, and these are produced
using different moderators. A liquid deuterium moderator at a temperature of 25 K is
used to produce neutrons with wavelengths in the range 3 A to 30 A, which are
referred to as cold neutrons. Neutrons with wavelengths below 1 A are called hot

neutrons, and are produced using a graphite moderator at a temperature of 2400 K [1].

At ISIS, neutrons are produced by bombarding a depleted tantalum target with highly
energetic protons from a particle accelerator. Each proton produces many neutrons
when it hits the target nuclei. These neutrons also have too much energy to be used in
scattering experiments and have to be moderated. Different final wavelength ranges
are obtained using water (316 K), liquid methane (100 K), and liquid hydrogen (20 K)
moderators. In contrast to the I.L.L., the neutrons at ISIS are produced in pulses at a
frequency of 50 Hz, which allows certain types of experiment to be performed more

easily [2].

3.2.2 Interaction of the neutron with matter.

A free neutron interacts with an atom in two ways: with the nucleus via the strong
nuclear force, and with the electrons via the electromagnetic force. The neutron does
not have a charge and is therefore able to penetrate into the interior of a sample
without being scattered by the coulomb interaction with the atoms. Therefore, it can

be used to study the bulk properties of the sample.
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3.2.2.1 The strong nuclear force interaction.

Neutrons are hadrons, and therefore interact with the nuclei of atoms via the strong
nuclear force. The potential between a neutron and the nucleus of an atom can be

written as

27 h® Eq 3.1
V(D) == b ()

where m is the mass of the neutron. This potential is called the Fermi
pseudopotential, and is very short range (~ 10** m to 10> m), hence the definition in
terms of a delta function. The constant b is called the scattering length. It is a measure

of the strength of the interaction, and is defined as

b=A+Bgo-i, Eq 3.2

where (1/2)o is the spin of the neutron, i is the spin of the nucleus, and A and B

are constants. In general, the scattering length is complex; the imaginary part
represents absorption of the neutron by the nucleus; the real part may be positive or
negative, depending on the energy of the neutron and the type of nucleus, and
represents scattering of the neutron. For the majority of nuclei, the imaginary
component is considerably smaller than the real component; in this case, the real part
is assumed to be independent of the energy of the neutron while the imaginary part is
considered to be a function of the neutron energy. For a small number of nuclei,
neutron absorption corresponds to the formation of a compound nucleus close to an
excited state; in this case, the imaginary component of the scattering length may be
large, and both the real and imaginary components are considered to be dependent on

the incident neutron energy [3].
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3.2.2.2 The electromagnetic force interaction.

Neutrons have a spin of 1/2, and an associated magnetic moment. Therefore, they also

interact with the magnetic moment of the unpaired electrons in atoms via the

electromagnetic force. The potential between a neutron with Pauli spin operator o,

and an electron with spin s and linear momentum p is

H, sxf) 1pxf Eq 3.3
Vi)=-,"7 uNZﬂBQ-(YX( 2 )+g‘rz ]

The two terms on the right hand side of the above equation are referred to as the spin
and orbital contributions respectively. It should be noted that the potential is long

range, and both terms correspond to non central forces [3].
3.2.3  The detection of neutrons.

There are several different types of detector used in neutron scattering experiments.
One of the most common is the *He gas detector. It consists of a stainless steel tube
containing ®He gas under pressure. A thin tungsten wire, charged to a high voltage,
runs down the centre of the tube. The detection process starts with the absorption of a

neutron by a *He nucleus
3 3,,- +
He + n - "H + p + Energy.

The high energy ions that are produced cause further ionisation of *He atoms, and this
triggers a cascade discharge to the tungsten wire. The voltage of this discharge is
small, and it must therefore be amplified before it is transferred to the detection

electronics [4].
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3.2.4 A general neutron scattering experiment.

X
K K Scattered neutrons
>k
O
=l K E, =
—f
0 r ds
dQ
Incident neutrons 0
|
K. E o. Sample yA
L N> A
Conservation of energy
y Ei— B =B By

Fig3.1: Geometry of a general neutron scattering experiment.

A neutron in a state with wavevector k., energy E; and spin state o, is directed onto

a sample of the material to be investigated. The sample is at a temperature T, and has

a finite probability of being in one of a range of states { A }. The probability P,; that
the sample is in a state A; is proportional to the product of the thermodynamic

occupation factor and the degeneracy for that state.

Eq 3.4

=
Papj o< exp[— ké\_;_) xg (Ai)

Let us assume that the sample is in a state A;. After the neutron enters the sample, it

will interact with the atoms via the processes described in § 3.2.2. As a consequence

of these interactions, the neutron will be scattered into a state with wavevector k  ,

energy E¢ and spin stateos . If Ej =E¢ (or|k;| = |k [), then the scattering is
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elastic and the sample remains in the state A;. If E; = E¢ (or|k;| # |k |), then the
scattering is inelastic and the sample will change to a state A s, such that the law of
conservation of energy, E; —E¢ = EAj — Es , iIs satisfied. The process whereby the
sample goes from a state A; to a state A is called an excitation. In a neutron

scattering experiment, many neutrons are scattered in this way, and they will, in

general, all have different values for k;, E¢ and o .

A number of quantities are defined to describe the scattering. The flux ® of neutrons

in the incident beam is defined as

@ = number of neutrons per second, per unit normal area . Eq3.5

The total scattering cross section of the sample is defined as

total number of neutrons scattered per second. Eq 3.6
O = .
O

The differential cross section of the sample is defined as

number of neutrons scattered per second, into solid angle dQ, in
do  thedirection 6, ¢. Eq3.7
Q- ® dQ -

The partial differential cross section of the sample is defined as

number of neutrons scattered per second, into solid angle dQ?, in
d%c _ the direction @, ¢, with final energy between E and E +dE¢ . Eq3.8

dQdE; ® dQ dE ¢

For an arbitrary interaction potential V , the partial differential cross section for the

process where neutrons are scattered from a state (k,, E;, o;) to a state

(k¢, Ef,o¢), and the sample changes from a state A; to astate A ¢ , is given by
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dzav kiEfofAg ” ,
[deEfJ :k_iKo'foAf Vloi KiAi>‘ 5(Ei —Ef +Eni _EAf),
KiEj oi Aj

Eq 3.9

where the delta function represents the conservation of energy in the scattering
process. There may be other transitions within the sample that scatter neutrons into a

state (k;, Ef, o), and this equation must be summed over A; and A ¢ in order to

include these

dzo_ K¢ Efoy K ,
v f
dQdE T K ZPA“<"foAfN|"iKiA‘>‘ 5(Ei ~Ef +Eni —Exf ).
) E o i AiAf
1=~

Eq 3.10

In the case of the scattering of neutrons from an arbitrary distribution of N nuclei via
the strong nuclear force, the above equation reduces to

<O'fAf O'iAi>

where the difference between the initial and final wavevector and energy of the
h

2

N
> by exp(iK-n)
n=1

kafO’f
{dZUN kf

=— D Pai
dQdE ki o

6(ha)+EAi—EAf),

kiEj o

Eq3.11

neutron is K=k; —k; and hw=E; —E, respectively. The position of the nt
nucleus is n, and its scattering length is by, . This equation gives a connection between
(K, w,0j, o¢) and the nuclear structure and excitations of the sample. This

connection is not obvious as the equation is written in a very general form. Its use
becomes more transparent when it is applied to a specific type of neutron scattering

experiment and sample [5].
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In the case of the scattering of neutrons from an arbitrary distribution of M electrons

via the electromagnetic force, equation 3.10 becomes

420 k¢ Et oy 2 K
M m 2 f
[ ] =[ ] (ZV#NﬂB) (4”)2k— D Pai %

2 .
21h i A
KiEjoj il

eafeal

o, A, ><a A, (g-gp)‘o] Ai>5(ha)+ Ey—Ey )

Eq 3.12

The position, spin and linear momentum of the m™ electron are m, s, and p

respectively. This equation gives a connection between (K, @, oj, o¢) and the

magnetic structure and excitations of the sample. As with equation 3.11, the use of
this equation becomes more clear when it is applied to a specific type of neutron

scattering experiment and sample [6].

If the values of K, @, o; and o are measured for a large number of neutrons, then

the function d?cy /dQdE (K,@,0;,0¢) can be experimentally determined. It can

then be compared with equation 3.11 (applied to the specific type of experiment and

sample) to give information concerning the nuclear structure and excitations of the

sample. The function d2cy /dQdE¢ (K,@,07,0¢) can be determined in the same

way, and compared with equation 3.12 (again, appropriately applied) to give

information concerning the magnetic structure and excitations of the sample.

To map out the above functions for all useful values of K, @, o; ando; would take

a very long time. In practice, in any one neutron scattering experiment, the above

functions are only measured for small regions of (K, @, oj, o ) space. The region



NEUTRON SCATTERING 9

of this space that is measured defines the type of neutron scattering experiment. Most
of the different types of experiment fall into four groups: unpolarised elastic,

unpolarised inelastic, polarised elastic, and polarised inelastic neutron scattering.

3.2.4.1 Unpolarised elastic neutron scattering.

In unpolarised elastic neutron scattering experiments, the value of o; for each neutron

is random and the value of ¢ is not measured. In most experiments, only k; and the
direction of k ; are measured. As [k ¢ | (or @ ) is not measured, there is no way to

determine if the neutron has been scattered elastically or inelastically. This does not
present a large problem when the number of inelastically scattered neutrons is much
less than the number of elastically scattered neutrons as only a small error is
introduced if it is assumed that all the neutrons have been scattered elastically.
However, in some experiments, the number of inelastically scattered neutrons is large,
and theoretical corrections must be made; if this is not possible, an experiment can be

performed where |k ; | is measured and the inelastically scattered neutrons subtracted.

These types of experiments are used to give information concerning the structure of
the sample and are often referred to as diffraction experiments. The experiments
described in 8 5.1, 5.3 and 5.4 use this technique [3].

3.2.4.2 Unpolarised inelastic neutron scattering.

In unpolarised inelastic neutron scattering experiments, again, the value of o; for each

neutron is random and the value of o is not measured. Both K and o are

measured, and any region of (K, @) space may be explored. This type of experiment

is designed to examine the region where @ = 0, and therefore to study the excitations

of the sample. The experiments described in chapter 6 use this technique [3].
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3.2.4.3 Magnetic susceptibility and inelastic neutron scattering.

The dynamic, q dependent, susceptibility of a material that has a magnetisation

M(q,@) induced by a magnetic field H(q, ) is defined as

Eq 3.13

=
B

=
E

In general, the susceptibility is complex, reflecting the fact that a phase difference may

exist between the induced magnetisation and the driving magnetic field.

7‘(9’@) X I(Q’Q)”Z ”(910_))- Eq 3.14

The partial differential cross section for the magnetic scattering of neutrons, given in

equation 3.12, can be rewritten in the general form

Eq 3.15

2
d%c K 1 (yu g2
M ___{—N S(gla))1
mc

dea)f B ki 27 2

where S(q,@) is the spatial and temporal Fourier transform of the magnetic

correlation function. There are two theorems that are especially useful for interpreting
the results of inelastic neutron scattering experiments. The fluctuation dissipation
theorem relates the Fourier transformed correlation function to the imaginary part of

the susceptibility

Eq 3.16

¢ o) 1ol 5 lae)

The factor in square brackets satisfies the principle of detailed balance which is

needed to correct for the initial thermal population of states within the scattering
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system. The Kramers-Kronig theorem relates the integral of the imaginary

susceptibility with respect to e to the static, g dependent, susceptibility.

Eq 3.17

e|H

ae)= [ 5 ao)io

This theorem is useful for relating the results of inelastic neutron scattering
experiments to static susceptibility measurements performed using laboratory

magnetometers [7].
3.2.4.4 Polarised neutron scattering.

In polarised elastic, and polarised inelastic neutron scattering experiments, o; and

o¢ are measured, in addition to the quantities listed above for the unpolarised

experiments. These experiments are only performed when the required information
concerning the sample cannot be obtained using unpolarised neutrons. This is because
the production and detection of polarised neutrons is complicated and the incident
neutron flux is considerably reduced. The experiment described in § 5.2 uses polarised

neutrons [8].

3.3 Neutron scattering techniques.

3.3.1 Determination of the nuclear structure, average crystallite radius and
mosaic spread of single crystals using unpolarised elastic neutron
scattering and the D9 diffractometer at the I.L.L.

3.3.1.1 Derivation of the nuclear unit cell structure factor and Bragg’s law.

The partial differential cross section for the scattering of neutrons from an arbitrary

distribution of nuclei via the strong nuclear force is given by equation 3.11. For a non-

Bravais single crystal sample and unpolarised neutron beam, this equation reduces to
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dZGN o ki 1 . -
(deEfJ_ Zk_i%%%<bdbd'>sp,isoexp('ﬁ'(“—‘!‘g))x Eq3.18

+00

I (exp(~iK-u(l",d",0))exp(iK -u(1,d,t))) exp(~ict)d t

—00

Ith

where t is time, | is the position of the unit cell and d is the equilibrium

dth

position of the nuclei within that unit cell.

Position vector of the d¥

/ Fig 3.2 :
u('d;‘)S) / nuclei in the 1M unit cell.
d y

@ cquilibrium position
1 uniit cell (O instantaneous position

Origin

The thermal displacement of the nucleus from its equilibrium position is given by

u(l,d,t), and this can be expressed as a sum of the displacements due to a set of

normal modes

Zﬁ{gdqjaﬁ exp(i(g-l—a)gjt)) +§§9ja§j EXP(—i(g-l—a)qjt))} )

Eq 3.19

where ¢, J, @gj and €qqj are the wavevector, polarisation index, angular frequency

and polarisation vector of the mode. The mass of the d™ atom is given by My, and

there are N values of q in the first Brillouin zone. The creation and annihilation
+.
q)

operators for the mode q j are a;; and agj respectively. The products of the
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scattering lengths in equation 3.18 are averaged over variations in nuclear spin and

isotopic composition.

Equation 3.18 implicitly describes two distinct types of scattering, known as coherent
and incoherent. Incoherent scattering depends on the correlation between the positions
of the same nucleus at different times; therefore, it does not give rise to interference
effects. The coherent scattering depends on the correlation between the positions of
the same nucleus at different times, and on the correlation between the positions of
different nuclei at different times. This type of scattering gives rise to interference
effects, and is therefore useful for determining the nuclear structure of the crystal. The

coherent partial differential cross section is

ki E
dzo'N,coh o ki 1 ; g
{m " 200 2 005000 o SPUIK(1+d= 1)) -

ki Ej

fo (exp(~iK-u(l',d",0))exp(iK - u(1.d,1))) exp(-iwt)d t Eq 3.20

—0o0

The average over the scattering lengths is no longer an average over their product, but
two separate averages before the product is performed. The coherent elastic

differential cross section can be derived from the above equation, and is

Eq3.21

k

don, coh el) f (27)® 2

———=| =N S(K-7)FyN(K)

) "yt k)
i z

where v is the volume of the unit cell, z is a reciprocal lattice vector of the crystal,

and the nuclear unit cell structure factor is

Eq3.22
Fn(z)= %(bd >Sp’iso expliz-d)exp(—Wy )-
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The nuclear unit cell structure factor is dependent on the scattering lengths and
positions of the atoms in the basis, and quantities that are dependent on the thermal
motions of the atoms which correspond to a superposition of normal mode vibrations.

These quantities are called the Debye-Waller factors and are given by

2
Z'quj‘ /
a Eq 3.23

/]
Wy = >
4MdN9j C()qj

where ngj is the quantum number for the mode g j. It can be rewritten, for an

orthorhombic crystal, as

1 * . Eq 3.24
Wy = 3{Biggha’ha” + By kb"kb® + Bgglc”lc”. g

where (ha”,kb",Ic") is the reciprocal lattice vector, and By, By, and Bgg, are

the anisotropic temperature factors for the d th

atom. These give the axes lengths of
an ellipsoid that corresponds to the standard deviation of the atom’s distribution in

space.

Equation 3.21 implies that there is scattering only in directions where the change in
wavevector of the neutrons K is equal to a reciprocal lattice vector of the crystal z.
This principle is known as Bragg’s law, and is fundamental to all elastic scattering

experiments on periodic structures [3].
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3.3.1.2 A description of the general technique.

Cop
Monochromator (3(1) Sanjple crystal
inside a
cryorefrigerator

Two dimensional

Eulerian detector

cradle k

1=

Fig 3.3 : The D9 diffractometer [9].

It is assumed that the lattice parameters of the crystal to be studied are known
approximately before the following experiment is performed. This will usually have
been done by performing an elastic neutron, or X-ray scattering experiment, on a

powder sample of the material under investigation.

In this technique, a monochromatic neutron beam is directed at a single crystal, placed
inside a cryo-refrigerator, mounted at the centre of an Eulerian cradle. An Eulerian
cradle is a device with three independent axes of rotation that is used to orientate the
crystal with respect to the incident neutron beam. If the orientation of the reciprocal
lattice of the crystal is known with respect to the angles of the Eulerian cradle
(@, y, ¢), and the change in wavevector of the neutrons is known with respect to the
angle of the detector 26, then the values for these angles needed to access any
reciprocal lattice vector can be calculated. The relationship between the angles
(o, y, ¢) and the reciprocal lattice is expressed by a matrix, called the orientation
matrix, and the values of 26 for each reflection are calculated using Bragg’s law. In

practice, due to the geometry of D9, and the magnitude of the neutron wavevector
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used, there are limitations on the regions of reciprocal space that may be

accessed [10].

After the orientation matrix has been calculated, the angles @, y, ¢ and @ are

adjusted to move the crystal and detector to positions where the Bragg condition is
satisfied for a reciprocal lattice vector of the crystal, so that the number of neutrons
scattered per unit time into the associated Bragg peak can be measured. A single
crystal consists of many crystallites, all slightly misaligned with respect to one
another. This misalignment is called the mosaic spread of the crystal, and causes the
delta function in equation 3.21 to be spread out into a peak of finite width (see
8 5.1.4.2). Therefore, in order to include the scattering from all of the crystallites in
the mosaic, a scan is performed where the value of @ is stepped through a series of
positions either side of the Bragg peak centre. At each of these positions, the detector
iIs left to count the number of neutrons scattered for a fixed period of time. Due to the
finite resolution of the D9 diffractometer, the scattered neutrons for a particular step in
the scan will have a spread in their final trajectories. In order to count all of these
neutrons, the D9 detector has a finite aperture. The number of neutrons scattered per
unit time as a function of @ is called the rocking curve for the particular reciprocal
lattice vector. A two dimensional detector is used on D9 to improve the accuracy of

centering on the Bragg peaks [9].

The integrated area under the rocking curve gives the intensity of the Bragg peak,
which is the total number of neutrons scattered per unit time into the Bragg peak. This

can be calculated from equation 3.21, and is given by

) Eq3.25

v 23
! (Z):VO_ZCD sin26

Fn(2)

where A is the wavelength of the neutrons, V is the sample volume and @ is the

incident neutron flux. In a typical experiment, | (z) is measured for a large number

of Bragg reflections. This set of Bragg reflections is usually chosen so that a large
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unique region of reciprocal space is represented. Using the above equation, the

corresponding set of {|Fy ()|} are calculated [10].

The set of {|Fy (r)|?} are used to determine the positions, occupancies and thermal

parameters of the atoms in the unit cell, and the average crystallite radius and mosaic

spread of the crystal, as described in § 5.1.5.1.

The values of w, y,and @ at the centre of each Bragg peak are also recorded. These

values are used to calculate the real space unit cell lattice vectors more accurately, as
described in § 5.1.5.2.

3.3.2 Determination of the magnetisation density in single crystal samples

using polarised elastic neutron scattering and the D3 diffractometer at

the I.L.L.
Polarising
monochromator. 10 T magnet.
Flipper.
/ PP Sample
inside

/ %quf. On.

cryostat.

20 Single detector.

y Neutron spin up, u.

X Neutron spin down, v.

Fig 3.4 : The D3 diffractometer [9].

The partial differential cross section for the scattering of neutrons from an arbitrary
distribution of nuclei via the strong nuclear force and an arbitrary distribution of

electrons via the electromagnetic force is given by the sum of equations 3.11 and 3.12.
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<O'fAf <7|Ai>

Eq 3.26

2

X

[ A+ Ba -1, explik-n)| -7 oo @

n

ki Efo
dzONM e kf
_ki EPI

dQdE . 4
f KE o i Ai Af

5(ho+Exj —Ent ),

where ry = u 0e2 / 47 my is the classical radius of the electron.

For a non-Bravais single crystal sample with localised electrons, the above equation

becomes, in the dipole approximation,

e A s et il e
K E; o
S(ho+Exi —Exr ), Eq 3.27
where
() =2 (As +Boo L), o, opliK ) Eq3.28
Eq 3.29

A

f o (K)=Rx| > fg(K)exp(ik-d)(24) <K |

and the positions of the nuclei are defined as shown in figure 3.2, [3]. The term

f4 (K) in the above equation describes the distribution of the electrons orbiting the
gt nuclei, and <§d> IS a unit vector parallel to the average direction of the

electrons angular momentum operator. For many atoms, this distribution can be

described by

Eq 3.30

fg(K)=2. Zl:adlm Faim(K),

I m=-I
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where the sum is over wavefunctions with azimuthal and magnetic quantum numbers

given by | and m, and ag, is the magnitude of the angular momentum operator

associated with the unpaired electrons in the Im" wavefunction. The normalised form

factor for this wavefunction is
Faim(K) = Y(l,m)<j| (5)>d : Eq3.31

where Y (I,m) is the spherical harmonic, and < j;(K) >4 is the radial integral. The

values of the radial integrals for a particular ion, and value of |, are calculated using
Hartree-Fock theory (transition metal elements) and Dirac-Fock theory (rare earth and

actinide elements) and are given in crystallography tables [11].

In this technique, a monochromatic polarised neutron beam is directed at a single
crystal placed inside a cryostat. The crystal is orientated such that the scattering plane
to be accessed is near the horizontal (in the xy plane in figure 3.4). The polarisation of
the neutron beam can be such that the neutron spins are aligned parallel (neutron spin
up, u), or antiparallel (neutron spin down, v) to the positive z direction. The polarising
monochromator produces a neutron beam in the spin up state. A spin flipper, when set
to on, is used to give a neutron beam in the spin down state. In this geometry,
equation 3.27 can be spilt into four terms corresponding to the four spin state
transitions (u—u), (v—V), (u—v) and (v — u). For each of these terms, the spin

matrix elements are given by

Jin(K) - 7roo- 1, (Ko =S ( A +Ba1F)_ explik-0) -7 (K).

q sp, iso
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The first two terms are referred to as non-spin-flip as the spin state of the neutron is
not changed on scattering; the second two terms are referred to as spin-flip. The spins
of the nuclei in the crystal are randomly orientated at all temperatures above a few

mK. Therefore, an average over their values gives

1&) =0,(1y) =0 and (1F) =o0. Eq3.33
sp sp sp
i) =700y, (K)u)= 2 (Ag) g ol -d) =7 o i (K).

)

i (K)-r - 1 (5)V>:§<Ad>isoexp(iﬁ'g)+7r0fl\%l(ﬁ)’
)
> Eq 3.34

If a magnetic field is applied to the crystal, strong enough to align the magnetic
moments of the unpaired electrons along the negative z direction, and only scattering

within the xy plane is considered, we have

()= fg(K)exp(ik -d) . fyi(K)=0 and f}(K)=0. Eq3.35
d
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Under these conditions, the spin matrix elements are

U (K) = 7o £, ()= D (Ag) oy expliK ) + 7 1o (K).

)
VN (K)-yroo- | (K)V>=§<Ad>isoexp(iﬁ'g)_Vrofl\%l(ﬁ)’

Eq 3.36

and there is no spin-flip scattering. The above equations can be substituted into

equation 3.27 to give the partial differential cross sections for the two non-spin-flip

scattering processes. The corresponding coherent elastic differential cross sections can

then be derived. These are given by

d ka 3

[%} (2”) 25 o) [Fu(K) + 7 oFu (K)*  and
kiU

don M cohel iV (2 ) ?

_ VAP - F FumiK)

( dQ ]k-v 25 T| N " M( )|

where

P (K) = 22(Ag )., exp(iK - d)exp(— Wy )
d
is the nuclear unit cell structure factor, introduced in § 3.3.11, and

Fu (K) =2 fq (K) exp(iK - d) exp(— W )

d

is the magnetic unit cell structure factor [6].

Eq 3.37

Eq 3.38

Eq 3.39

Eq 3.40
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After the crystal has been mounted and aligned, the crystal and detector are moved to
positions where the Bragg condition is satisfied for a reciprocal lattice vector. In
principle, this is done in the same way as in the D9 experiment; however, the details
are different. The D3 diffractometer is not fitted with an Eulerian cradle and the
crystal, once mounted, can only be rotated about the z axis (). The detector can

move through a large angle in the xy plane () and can be rotated by a smaller angle

out of this plane (-25 < v < +5), (see figure 3.4). This lack of orientational flexibility
means that only a limited region of reciprocal space is accessible for each crystal
mounting and during an experiment the crystal will have to be remounted in order to
gain access to a larger region (the angle between the incident and diffracted beam
is 26).

After the Bragg peak has been located with respect to the detector angle 26, a scan is
performed to find the position of its maximum with respect to @ . Once this maximum
has been located, the spin flipper is set to ‘off’, to give an incident neutron beam in the
spin up state. The detector is left to count the number of neutrons scattered for a fixed
period of time. The spin flipper is then set to ‘on’, to give an incident neutron beam in
the spin down state. The detector is left to count for the same period of time. This
flipper off / flipper on counting is also performed with the crystal and detector moved
to positions either side of the Bragg peak; this is done to obtain values for the

background scattering.

The ratio of the spin up to spin down scattering, at the maximum of the Bragg peak, is
called the flipping ratio. As the integrated area under the Bragg peak is proportional to

its maximum, the flipping ratio can be given by the ratio of equations 3.37 and 3.38,

ka

R(z)= aQ kiu ‘FN (2)+yroFm (Z)‘z

_ (dJ [P (2~ roFu (e
k

(dUN M ,coh,el
Eq 341

dQ

iV
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The flipping ratios are measured for a large number of Bragg reflections. The set of
Bragg reflections is chosen carefully so that a large region of reciprocal space is
represented. If the nuclear unit cell structure factors can be calculated from a
theoretical model of the crystal, then a set of magnetic unit cell structure factors

{|Fpm (z) } can be calculated using the above equation and the method described

in§5.25.1.

The analysis described above assume that the electrons are localised around the
positions of the nuclei. If this is not the case, a more general version of equation 3.29
is appropriate where the magnetic scattering term is not specific to any electronic

model of the unit cell. This is given by

f M (K)_LKXH Im([)exp(iﬁ.[)d[} XK]’ Eq 3.42

unit cell
where the magnetisation density vector in the unit cell is m([) [6].
If the above equation is used, instead of equation 3.29, in the above derivation, the

relationship between the projection of the magnetisation density vector along the z

direction m([) and the set of magnetic unit cell structure factors is given by

m(£)=</l—sz Fm (z)exp(— iz-[) and Eq 3.43
z
Fim (£)=i Im([)exp(ig-[)d[. Eq 3.44
HB unit cell

The set of {FM (T)} can be used to determine the magnetisation density or magnetic

moment density associated with each atom in the unit cell using the methods
described in § 5.2.5.2.
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3.3.3 Determination of the crystal structure of a polycrystalline sample using

unpolarised elastic neutron scattering and the D1B diffractometer at the

lLL.L.
i
. —

Polycrystalline
sample inside
cryostat

Multidetector

Monochromator

X, :
K K

Fig 3.5: The D1B diffractometer [9].

The derivation of the Laue equation is given in the description of the D9 experiment
(8 3.3.1). This experimental technique is similar to that of D9 in that the sample is
placed in an unpolarised monochromatic beam. However, now, the Bragg condition is
satisfied for all the reciprocal lattice vectors of the sample simultaneously by using a
polycrystalline sample. For a particular reciprocal lattice vector, the elastically
scattered neutrons emerge in a cone defined by a constant angle 26 to the direct beam.
The neutrons are collected by a large flat cone multidetector. The position in 26 of
the peaks in intensity can be used to determine the space group and lattice spacings of
the crystal structure. With the use of equation 3.25 the intensity of the peaks can be
used to determine the crystal basis. If more than one compound is present in a sample,
the relative intensities of the Bragg reflections can be used to calculate the

concentration of each of the compounds [3].
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3.3.4 Magnetic inelastic neutron scattering from a polycrystalline sample

using a direct geometry Time Of Flight (T.O.F.) spectrometer.

Monochromator and
chopper assembly Sample

Cryostat
+ >
E. k

Non overlaping pulses of
monochromatic neutrons

Detector Bank

Fig 3.6 : A direct geometry time of flight spectrometer.

A polycrystalline sample is placed in a non-overlapping pulsed monochromatic
neutron beam. The method of producing such a neutron beam varies depending on the
type of neutron source and the particular T.O.F. spectrometer. At a spallation source,
such as ISIS, the incoming neutrons are already produced in pulses. They must still be
monochromated and, if the neutron energy is high enough, some pulses may have to
be removed in order to ensure that they do not overlap. At a reactor source, such as the
I.L.L., a continuous polychromatic neutron beam is produced. Therefore, it must be
monochromated and pulsed. The exact method for monochromating and pulsing the
neutrons for the instruments used in this thesis will be described in the relevant

experimental sections (8 6.1, 6.4 and 6.5).

The time that each neutron pulse hits the sample position is recorded. The neutrons are
scattered into a large angle detector bank with many individual detectors at different
angles relative to the incident neutron beam. The times that the scattered neutrons
reach the individual detectors in the detector bank is also recorded. Therefore, the time
differences can be used to calculate the final energies of the scattered neutrons. In this

way both the momentum transfer 9=gi—gf and energy transfer
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= (h/ 2m)(ki2 — k%) into the sample can be calculated for the scattered neutrons. If

the non-magnetic background scattering can be subtracted, the data obtained can be
compared with the magnetic partial differential cross section given in
equation 3.12, [12]. The non-magnetic background arises from nuclear scattering from
the sample and spurious scattering from the instrument itself. A simple method of
subtracting the former is to measure a non-magnetic sample with the same structure as
the sample under investigation (for rare earth materials, this involves measuring the
yttrium or lutetium compounds). An estimate of the instrument background can be
made by performing measurements with just the sample holder in the beam. These
techniques are explained further in the relevant experimental sections of this thesis
(8 6.1, 6.4and 6.5).

The magnetic partial differential cross section obtained can be normalised to units of
‘mb sr’ meV™ [formula unit]™’ by measuring a vanadium sample. Vanadium has a
high incoherent scattering length and a small coherent scattering length and therefore
scatters isotropically and can be used for normalising for the solid angles of the

individual detectors (see § 6.1).

After the above data processing has been completed, equations 3.15 and 3.16 can be

used to give the imaginary part of the dynamic, g dependent, susceptibility from the

magnetic partial differential cross section. This can then be compared with theoretical

models of the magnetic properties of the sample under investigation [12].

It should be noted that as a polycrystalline sample is used, the partial differential

cross section measured at q represents an average over all directions of the scattering

vector in the reciprocal lattice of the sample. No directional information can be

obtained.
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3.3.5 Magnetic inelastic neutron scattering from a single crystal sample using

a triple axis spectrometer.

Monochromator Analyser

Detector

Reactor

Sample
Cryostat

Fig 3.7 : Geometry of a triple axis spectrometer.

A single crystal sample is placed in the sample cryostat so that the scattering plane to
be studied is approximately horizontal. The sample cryostat may be tilted to a limited
extent afterwards in order to align the crystal precisely. A polychromatic neutron beam
is incident on the monochromator. Monochromatic incident neutron beams with

different values of k; can be directed towards the sample by altering the angle 6, .

The sample scatters the incident neutrons in all directions with a range of final

energies. The angle 26 is adjusted to move the analyser to a position where it
receives neutrons scattered in a particular direction Kf . The angle 6, is adjusted so
that the analyser selects only those neutrons with a particular final energy E¢ . In this
way, adjustment of the angles 26 and 6, allows the detector to count only the

neutrons scattered from the sample with a final wavevector k ;. Once both k; and

k; have been set, the scattering vector gq=k; —k; and the energy transfer

a):(h/2m)(ki2—k%) will have been determined. The scattering vector can be

orientated with respect to the crystal lattice, within the scattering plane, by altering the

angle 6. The region of ( g,) space that may be accessed in this way is governed

by the values of k; and k. that the spectrometer can produce and measure
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respectively. A triple axis spectrometer is operated in one of two ways: ‘constant-|K;

mode, or ‘constant-|K ¢ |" mode. The constant-|k ; | mode keeps & fixed at each point

in a scan through ( g, @) space which enables an easier calculation of the resolution of

the spectrometer. There are two types of common scan that are performed: a ‘g-scan’
where the spectrometer measures neutrons scattered with a constant value of @ at

different positions in q space, and an ‘@-scan’ where the spectrometer measures

neutrons scattered with different values of « at the same positionin g space.

If the nuclear inelastic scattering can be subtracted, equations 3.15 and 3.16 can be

used to give the imaginary part of the dynamic, q dependent, susceptibility from the

magnetic partial differential cross section. This can then be compared with theoretical

models of the magnetic properties of the sample under investigation [12].
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CHAPTER 4
DATA ANALYSIS

This chapter outlines the data analysis techniques used in this thesis. It describes how
Bayesian probability theory provides a unifying mathematical framework for deriving
the procedures of least squares refinement and maximum entropy image construction.
A derivation of the appropriate raw errors to be assigned in scattering experiments is

also given.
4.1 The basic rules of probability.

The basic rules of probability theory are given in two equations: the sum rule, and the

product rule. The sum rule is
prob (A1) + prob (All) =1, Eq4.1

and states that the probability that A is true plus the probability that A is false is
equal to one. The symbol ‘|’ means ‘given‘, so everything to the right of this symbol is
taken to be true. The letter | stands for the relevant background information that is
available; this is needed, as calculations in probability are always based on a stated
group of assumptions, which must be specified if the calculation is to have any

meaning. The product rule is
prob (A, Bl1) = prob (AlB, 1) x prob (BI1), Eq4.2

and states that the probability that both A and B are true is equal to the probability
that A is true, given that B is true, multiplied by the probability that B is

true irrespective of A.
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In general, if {AnNzl} is a set of parameters, then prob ({A}II) isan N dimensional

function called the probability density function.

4.2 Bayesian probability theory.

The Bayesian formulation of probability theory provides a unified framework for
deriving results in probability and statistical analysis. At the heart of this framework
are two equations derived from the basic rules of probability: Bayes’ theorem, and the

theory of marginalisation.

Bayes’ theorem is

prob(B|A, 1) x prob( All) Eq 4.3
prob(B|1) ’

prob(A|B, I) =

and can easily be derived from the product rule. It is extremely useful for the analysis

of experimental data, as will be seen in the following sections, as it relates

prob( AlB, 1) to prob(B|A, 1). The theory of marginalisation is

+00 Eq4.4
prob(All) = [ prob(A,Bl1) dB,

—0o0

and provides a mechanism for removing a probability density function’s dependence

on a variable that is of no interest in an experiment.

Two statistical analysis techniques are used in this thesis: least squares refinement,
and maximum entropy image construction. The justification for using both of these, in
the applicable situation, can be found within the Bayesian formulation. The
calculation of the errors associated with the counting of neutrons can also be

performed within this framework.
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4.3 Least squares refinement.

In least squares refinement, a set of experimental data { DnNZO} is compared with a set
of theoretical data { Fn'\io} generated from a model of the sample under investigation.

Within this model, there are a set of parameters {Xn'Y'ZO} that can be iteratively

adjusted until the experimental and theoretical data agree to the desired tolerance. In
this raw form, least squares refinement is most effective when the sample model is

well determined and the number of sample parameters is small.

From Bayes’ theorem, the probability that the sample parameters are equal to { X, },

given a set of data { D, }, is

prob({xm}‘{Dn}, I)= Cx prob({DnH{Xm}, I)x prob({xm}“)_ Eq 4.5

This is called the posterior probability density function; the denominator in Bayes’

theorem has been rewritten as a normalisation constant C, as it is of no importance to
the following analysis. The term prob({xm}ll) is called the prior probability density

function, and reflects everything that is known concerning the sample parameters

before the collection of the data. If nothing is known, this can be set to a constant
prob({xm}l I) = constant , Eq 4.6

and absorbed into C. The posterior p.d.f. can now be written as

prob({xm}‘{Dn}, I) =Cx prob({Dn}HXm}, I) , Eq4.7

The term on the right is called the likelihood function, and gives the probability of
obtaining the set of data {Dn} given that the sample parameters are equal to {Xm} f

the data are independent, then it can be written as
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Eq 4.8

prob({Dn}HXm}, I): ﬁprob(Dn‘{Xm}, I),

n=1
using repeated application of the product rule. If the variations associated with the

experimental measurements form a Gaussian distribution, then the probability of

measuring an individual datum can be written as

(Fol X)) -0n)° S

where oy, is the standard deviation associated with the n™ datum. Equations 4.7, 4.8

and 4.9 combine to give

\ 2 Eq 4.10
prob({xm}‘{D} ) Cexp—Zzl( ({ }) Dn) 1

20‘n

if the coefficients of the exponential terms in equation 4.9 are absorbed into the
constant C. The above function can vary very rapidly with the values of the sample
parameters. For this reason, it is often more convenient to work with the logarithm of

the posterior p.d.f. This gives

=In[prob({xm}‘{Dn}J)]:|nC_ZTZ, Eq4.11

where

_ %(Fn({xm})—Dn)z Eq4.12

n=1 On
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is the sum of the squares of the normalised residuals R, = (Fn -D, )/an . The most

probable values of the sample parameters {Xmo} will be obtained when L is a

maximum. The condition for this maximum Ly, is given by the sets of equations

AL 221 Eq 4.13
P {X } =0 and > <0
™ o) 7 Pl )
The errors associated with the {XmO} are given by the covariance matrix
52| -1 Eq4.14
aiJZ=—— , (1<i<M, 1<j<M),
aXid Xj
{ mO}

which is derived from a Taylor series expansion of L around Lg. The values of the

{Uii} give the standard deviations associated with the values of the {Xio}, and the
values of the {a% } provide information on the correlations between the values of the

{Xio} and the {XJ—O} (fori=j).

In principle, the method for determining the values of the {Xmo} is simple. An initial

guess in made for the values of the sample parameters {Xmg} , and the values of

(oo Pl

} calculated. These local gradient values are used to determine
mg

changes in the values of the sample parameters {Axm} needed to move nearer to L.
This is repeated iteratively, until equation 4.12 is satisfied and the values of the

{Xmo} determined. The ease with which this is accomplished is heavily dependent on

the shape of the function L, which is, in turn, dependent on the function Fn({Xm}).
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A measure of the agreement between the experimental and theoretically generated

data is given by y 2 A good agreement is often thought to have been achieved when

X 2 ~N, as this implies that each experimental datum agrees on average with its

theoretical counterpart to a tolerance of the standard deviation of the experimental

data.
4.4  Maximum entropy and image construction.

If the properties of the sample are not understood very well, the least squares sample
model will necessarily be very general, and will contain a large number of sample
parameters in order to provide sufficient flexibility in the refinement. As the number

of sample parameters increases past a certain point, the function L will become flat in
certain directions in the parameter space {Xm}, and the technique of least squares

refinement will cease to be a reliable method of analysis. This is because there will be

many sets of values of the sample parameters that maximise L, and it will therefore
be impossible to determine a unique set of the most probable values {Xmo}- In other

words, the information contained within the data is less than that required to give
unique values for all the sample parameters. Therefore, in order to proceed, it becomes
necessary to introduce further information. If it is not possible to increase the number
of data, or introduce a more specific model that reduces the number of sample

parameters, the only option is to think more carefully about the assignment of the prior
probability density function prob({xm}ll). This situation can arise when the

experimental data is used to give a real space image of some property in the sample. In
this case, the sample parameters are the intensities of pixels in this image, and they

will be large in number to achieve the necessary resolution.

The principle of maximum entropy states that when least squares refinement gives
more than one set of values for the most probable sample parameters, the set with the
largest entropy should be chosen. The set with the largest entropy will be the set that
contains the least amount of information, or is the least complex. This set is more

formally defined as the set that is most likely to arise out of pure chance while also
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being compatible with the data. This set is chosen because all the information
contained within the data has been used in deriving the function L, and there is
therefore no justification for introducing further complexity into the sample
parameters. This principle can be used in the assignment of the prior probability

density function in an improved version of the least squares refinement.

In the case where the sample parameters are used to produce an image, the entropy of

the image is given by

X } Eq4.15

M {
S=—> Xpln
m=1 X

mg
This form of the entropy is known as the Shannon-Jaynes entropy, as it includes the

terms {Xmg}. In formal maximum entropy theory these terms are known as the

measure. In effect, they define the position of the global maximum of entropy before
any data has been introduced. In this context, they are simply the initial guesses of the
pixel intensities in the image, and are all set to the same value as this corresponds to
an image with no information or detail. There is still the question of what this value

should be, as will be discussed in section § 5.2.5.2.3.

The principle of maximum entropy gives an assignment for the prior probability

density function as
prob({xm}l I) ocexp(S), Eq 4.16

which states that, before any data has been collected, the image with the

highest entropy is favoured. If the above equation is used in the least squares method,

instead of assigning a value of unity to prob({xm}l I) , equation 4.5 becomes

Ls :In[prOb({Xm}HDn},E,|)]=InC—ES_lT2_ Eq 4.17
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The above equation is the same as the least squares equation, except that it has a
constraining term ES which always favours the image containing the least amount of

information.

The term E is a function that is used to give a weighting between the entropy term
and the least squares term. As for the least squares case, the above equation must be
maximised in order to find the most probable values of the pixel intensities in the
image. This maximisation can be thought of as a contest between disorder (entropy
term) and order (least squares term), with E determining the relative contributions of
each. If the data is of good quality, E will have a small value and the least squares

term will have a large contribution to the maximisation of Lg. If the data is of bad

quality, then E will have a large value and the entropy term will have a larger
importance in the maximisation. For the case where the variations associated with the

experimental measurements form a Gaussian distribution, E is often chosen such that

z 2 ~ N after the maximisation has been completed. This will be discussed further

in§5.25.2.3.

The condition for the maximum value of Lg, Lgq is given by the sets of equations

Eq 4.18

As for least squares refinement, in principle, the method for determining the values of

the {Xmo} is simple. The values of the pixel intensities are set to values where they

have maximum entropy {Xmg}. The values of (& (ES)/&{Xm}){XmQ} and
(ﬁ()( 2)/& {Xm}){xmg} are calculated, and the changes in the pixel intensities

{Axm} needed to reduce y 2 while keeping S as large as possible are determined.
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This is repeated iteratively, until equation 4.18 is satisfied and the values of {Xmo}

determined.

As in the least squares method, the errors associated with the {Xmo} are given by the

covariance matrix

2 -1 Eq 4.19

2 J°Ls : .

of = ——>— , (1<i< M, 1<j< M),

i 1 M, 1 M

é’Xié’Xj {X }
m0

As M s large, the error associated with a particular pixel intensity is likely to be
large. However, as these pixels are small, a detail in the image may often be spread
over many pixels. In this case, it is more appropriate to calculate the error associated

with the sum of the pixel intensities in the entire image detail

M Eq 4.20
d= meum ,

m=1

where up, is equal to 1 if the pixel is part of the detail and O otherwise. The standard

deviation of d is given by

Y Eq 4.21

In this thesis, the technique of maximum entropy is used to give three dimensional
images of magnetisation density in single crystals from magnetic unit cell structure

factors measured using the D3 diffractometer at the I.L.L.



DATA ANALYSIS 10

4.5 Maximum entropy and counting statistics.

In general, neutron scattering experiments involve counting the number of neutrons

Py scattered in a particular direction (perhaps with a particular energy and spin state)
for a fixed period of time T. If any statistical analysis is to be performed on the
information obtained from such a measurement, the standard deviation a(PN) of
Py has to be calculated. In order to do this, the probability of measuring a different

number of neutrons P in a second hypothetical experiment has to be calculated. In the

Bayesian formulation, this corresponds to determining the probability density function

prob(P\PN : I).

As P has only been measured once, the average value for P, (P) is equal to Py.

This can be written as

» Eq 4.22
(P)= Y P prob(P|Py,1)= Py,
P=0

and provides the only piece of information concerning this probability density
function. There will be many probability density functions that satisfy this constraint,
so more information is needed to arrive at a unique choice. As with deciding amongst
the equally probable images in the previous section, the principle of maximum
entropy can provide this extra information. In this case, the Shannon-Jaynes entropy is

written as

prob (P‘PN : I) Eq4.23

prob(P|1)

S=- iprob(P‘PN : I)Iog
P=0

where prob(PII) is the probability density function for P appropriate before the

value of Py has been measured. By comparing with equation 4.15, it can be seen that

prob(P|l) is the measure. It gives the value of P that one would choose without
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access to any data, and is assigned by assuming that in any small increment of time
dT, during the period T, the probability of counting a neutron is the same as the

probability of not counting a neutron (i.e. equal to 1/2). If this is the case, then

prob(PII) will not be uniform; the probability of counting P neutrons will be

proportional to the number of ways that their detection can be distributed over the
total counting time T. This leads (in the limit of dT — 0) to an assignment of the

measure as

_ P Eq 4.24
lim (%T) T
prob (PI) = (" pr &P~ g7

The equation that has to be maximised in order to determine prob (P\ PN I) IS given

by

Lg = —éoprob(P|PN , |)|og[pr2?o(bp(|z|\'lil)}ﬂ{PN - éop prob (P[Py 1) .

Eq 4.25

This equation is of exactly the same form as equation 4.17 as it consists of an entropy

term that is constrained by the available data. Its solution is

(PN )P exp(— Py ) Eq 4.26

P! !

prob(P\PN,l):

which is the Poisson distribution. If Py is large, this can be approximated by the
Gaussian distribution, and if this is done the value for the standard deviation of Py is

found to be

o (Pn) =Py . Eq4.27
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CHAPTER 5

ELASTIC NEUTRON SCATTERING
EXPERIMENTS

This chapter contains the experiments to determine the magnetisation density in
YbNi;B,'C, ErNi,B,**C, HoNi,B,**C and LuNi,B,*'C. These experiments were
performed on the D9 and D3 diffractometers at the I.L.L. This chapter also contains a
description of an experiment performed using the D10 diffractometer at the I.L.L. that
was designed to search for magnetic order in the YbNi,B,"'C compound at low
temperatures. An experiment using the D1B diffractometer at the I.L.L., needed to
determine the amount of Yb,Os impurity present in the YbNi,B,"'C polycrystalline

sample, is also included.

5.1 Determination of the nuclear structure, average crystallite radius and
mosaic spread of single crystals of RNi;B,"'C [R = Yb, Er, Ho, Lu] using
unpolarised elastic neutron scattering and the D9 diffractometer at the
I.L.L.

5.1.1 Aims of the experiment.

In order to calculate the magnetisation density in a single crystal from the flipping
ratios obtained in the D3 experiment (8 5.2), the nuclear structure, including the
thermal displacement parameters, average crystallite radius, and mosaic spread of that
crystal must be known. In this experiment, these quantities were determined for single
crystals of RNi,B,"'C, [R = Yb, Er, Ho, Lul.

5.1.2 Sample preparation.

The single crystals used in this experiment were prepared at the Ames laboratory
using the Ni,B'* flux growth technique [1]. The B! isotope was used as it has a

considerably lower neutron absorption cross section as compared with naturally
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occurring boron (containing 20% by mass of B'%). The following grey flat-plate’

crystals were obtained:

Crystal Mass (mg) | ~Length (mm) | ~Width (mm) | ~Thickness (mm)
YbNi,B,'*C |73 5.5 5.0 0.5

ErNi,B,"*'C | 160 4.7 45 0.6

HoNi,B,''C |45 3.8 35 0.4

LuNi,B,**'C | 89 7.0 45 0.55

Fig5.1: Approximate masses and dimensions of the single crystal samples.

5.1.3 Data collection.

For each crystal, sets of Bragg peak intensities {1(z)} were measured using the
technique described in §3.3.1.2. Measurements were made at different neutron
wavelengths to aid in the determination of the average crystallite radius and mosaic
spread of the crystal (see §5.1.4.2). For each set of intensities, a standard reflection
was periodically measured to check that D9, the reactor and the crystal were stable

throughout the experiment.
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YbNi,B,”'C |15 | 0548 (881 |[302 |-3tol0 |-8to7 |-24t024 |5to52
0.706 |507 |153 |-4to6 |-6to5 |-19t019 | 6to40
0.840 [528 |154 |-2to6 |-6to5 |-19t019 |4to50

ErNi,B,”'C |20 [0.548 | 1091 | 298 4108 8t07 |-24t024 |5t040

0.840 | 652 153 -410 6 -6to5 |-19t019 | 5to50

HoNi,B,"'C [ 20 [0.548 |874 | 299 4108 -8t07 |-24t024 |5t040

0.706 | 586 159 -410 6 -7to5 |-19t019 | 6to53

0.840 | 702 163 -410 6 -6to5 |-19t019 |5to53

LuNi,B,"'C |15 [0.548 | 1061 | 297 Otol0 |Oto8 |-24t024 |5t052

0.840 | 664 180 -6 10 6 Oto6 |-20t020 |5to55

Fig5.2: The data collected in the D9 experiment.
5.1.4  Correction factors.

Equation 3.25 relates the Bragg peak intensity 1(z) to the nuclear unit cell structure
factor F(z). This equation is based on a number of ideal assumptions concerning

the diffraction process. In a real experiment, these assumptions are not valid, and the
equation must be modified if it is to be used to determine the desired information
concerning the crystal [2].

V a8 V A3 Eq5.1

2
| - o [ uncorr - o
(©) v,o sin 20‘ N (ﬂ v,© sin20

AE@M (2)|Fe" (o)

The factors A(z), E(zr) and M(z) represent corrections made in order to take
account of absorption, extinction and multiple scattering of the neutrons as they pass
through the sample crystal. It follows that F™" (z) is the structure factor that has been
corrected for absorption, extinction and multiple scattering, and F,"*"(z) is the

structure factor that has not.
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5.14.1 Absorption and incoherent scattering.

When a monochromatic neutron beam of initial intensity Iy passes through a
homogeneous sample of thickness p, its intensity is reduced due to absorption and
incoherent scattering to

Ia=loexp(—up), Eq5.2

where g is the total linear attenuation coefficient. This coefficient is given by
o) Eq5.3
H= _Zni(o_Ai (/1)+O_Ii)’

where m. is the mass of the unit cell, n; is the number of atoms of type i in the unit

cell, and p is the density of the sample. The absorption cross section for the i™ atom
is opj, and refers to the capture of neutrons by the nuclei of the atoms; it is a

function of the neutron wavelength A . The incoherent scattering cross section for the

i atom iIsopj, and is normally considered to be independent of the neutron

wavelength; incoherent scattering is included here, as it results in an apparent
absorption of the coherent beam [2] [3] (see § 3.2.2.1).

It can be seen from the two preceding equations that the absorption of neutrons by a
sample depends on the physical properties of the unit cell, the wavelength of the
neutrons, and the path length that the neutrons travel through the sample. Absorption

is independent of whether the sample is in a powder or a single crystal form.

The above theory can be used to determine the value for A(z) in equation 5.1. The

physical properties of the unit cell and the neutron wavelength are constant for each

value of z, but the path length is different. In order to calculate the path length for
each value of z, the crystal dimensions and the orientation of the crystal with respect

to its reciprocal lattice must be known.
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5.1.4.2 Extinction.

Corrections due to extinction are necessary when performing diffraction experiments
using single crystal samples. In general, a single crystal is not perfect, and consists of
many crystallites. These crystallites may be of differing sizes, and are misaligned with
respect to one another. In the mosaic crystal model, a single crystal can be
characterised by two parameters with respect to these imperfections: the average

crystallite radius t, and the mosaic spread g which is a measure of the angular

variation of the alignment of the crystallites [4].

Extinction is a reduction of the intensity of the incident or diffracted neutron beam
due to coherent scattering, and exists in two forms: primary, and secondary extinction.

In general, both types of extinction occur within a crystal.

Primary extinction occurs in crystals where t is large enough to cause a substantial
reduction in the intensity of the incident beam within an individual crystallite. In this
case, after the incident beam has travelled a small distance into a crystallite at the
surface of the crystal, the majority of it will have been diffracted. This reduction in
intensity of the incident beam means that crystal planes further inside the crystallite
contribute less to the diffraction. Also, because of the perfect alignment of the crystal
planes, the diffracted beam can be rescattered within the crystallite, causing it to
become parallel to the incident beam again. This causes an overall reduction in the
intensity of the diffracted beam. These effects can be thought of as an interference
between the incident and diffracted beams within the crystallite causing a mutual

transfer of intensity.
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Diffracted beam.
Diffracted beam.

Incident beam. f )
\ f Incident beam. f

N
/\/_
Reduction in intensity of the Reduction in intensity of the

incident beam due to diffraction. diffracted beam due to rescattering.

Fig 5.3: Primary extinction.

Secondary extinction occurs in crystals where t is small enough to cause only a small
reduction in the incident beam intensity within an individual crystallite. However, if
the mosaic spread is small, the incident beam will pass through many aligned
crystallites, and after it has travelled a short distance into the crystal, the intensity may
be substantially reduced. This means that crystallites further inside the crystal will
contribute less to the diffraction. Also, the diffracted beam from one crystallite can be
rescattered by another aligned crystallite, causing it to become parallel to the incident
beam again. This leads to an overall reduction in the intensity of the diffracted beam.
As with primary extinction, these effects constitute an interference between the
incident and diffracted beams causing a mutual transfer of intensity. However, with
secondary extinction, this interference involves beams scattered in many crystallites.
As the scattering is from different crystallites, there is no phase coherence between the

scattered beams, unlike in the primary extinction case.
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Fig 5.4 : Secondary extinction.

Simple scattering theory assumes that the incident beam is not reduced in intensity by
diffraction, and the diffracted beam does not undergo rescattering. As can be seen
from the above descriptions of primary and secondary extinction, these two
assumptions are invalid. The corrections to the Bragg peak intensities due to

extinction are given by

1y(z)=E()1c = yp(2)ys(2)ic, Eq5.4

where | is the uncorrected intensity, and Ic is the corrected intensity [5]. The
corrections for primary and secondary extinction are treated independently, and are
given by yp and yg ; these are combined to give the total correction E . The starting
point in the calculation of both extinction corrections is a differential equation

expressing the mutual transfer of intensity between incident and diffracted beams
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ol ol )
O X oy

where (x,y) is a general point in the crystal. An analytic integration of this equation

across the whole crystal is not possible, even for the simplest crystal shapes.

Therefore, the integration is done numerically, and analytic expressions for yp and

yg are found by a least squares fit to the data. These are

_ Eq 5.6
Yp = 1+2Xp +M %, Xp :L f(t,g)‘FN (T)‘Z, i
1+Bp(0)xp v§ sin(20) -
and
_ . Eq 5.7
ys = 1+2XS+M %1 S:Lf(t’g)‘FN(T)‘Z’ !
1+ Bg(0)xs v§ sin(20) -

where T is the absorption weighted mean path length through the crystal for the

reflection, and Fy is the nuclear structure factor. The neutron wavelength is 4, v is
the volume of the unit cell, and f (t,g) is a function of the average crystallite radius

and mosaic spread of the crystal. The angle between the incident and diffracted beams

is 20,and A,(9), B.(9), As(9) and By (&) are functions of & only [6].

The relative amounts of primary and secondary extinction, for a particular reflection,

are determined by the values of T, t, g and . The fact that both types of extinction

are proportional to 4 3 s important, as this dependence is useful for characterising

the extinction in an experiment.
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5.1.4.3 Multiple scattering.

Multiple scattering is a transfer of intensity between the incident or diffracted beams
of two different reflections k and h [2]. Some of the intensity of the incident beam for
reflection k can be taken by reflection h, reducing the intensity of the diffracted beam
for reflection k. This process is known as ‘Aufhellung’. Also, the diffracted beam for
reflection h can be considered to contribute to the incident beam for the reflection k-h.
This causes an increase in the intensity of the diffracted beam for the k-h reflection.
This is called ‘Umweganregung’. Multiple scattering depends on the size, mosaic
spread and crystallite radius of the sample and the divergence of the incident neutron
beam. It is almost independent of the neutron wavelength. For crystal structures with a
high density of reflections, the Umweganregung effect is the more serious. A
resonable correction can often be made by subtracting a fixed contribution from all the
reflections [7]. This results in a large percentage reduction in the intensities of the
weak reflections, but makes a much smaller difference to the more intense reflections.
Extinction, where the incident and diffracted beams are from the same reflection, is a

special cases of multiple scattering and is the larger effect.

5.1.5 Analysis of the data.

The processing of the data was performed using three of the standard diffraction data
analysis computer programs available at the I.L.L: RACER, DATAP and REFORM.
The least squares refinement was performed using the SFLSQ program of the
Cambridge Crystallography Subroutine Library (C.C.S.L.) [8]. All the programs are
written in the FORTRAN language.

For each crystal, RACER, DATAP and REFORM were used to produce sets of
nuclear structure factors for each neutron wavelength. A SFLSQ refinement was
performed on each data set to determine the multiple scattering correction needed to
be made to the output of DATAP (see 8 5.1.5.1.2.1). After these corrections had been
made, for each crystal, the corrected files output by REFORM at different
wavelengths were combined and the final least squares refinement performed on the

combined data.
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5.15.1 Determination of the positions and thermal parameters of the atoms in
the unit cell, and the average crystallite radius and mosaic spread of the

crystal using least squares refinement.
51511 RACER.

RACER calculates the integrated Bragg peak intensities from the collected data. The
raw data from a D9 experiment is stored as a three dimensional array of intensities.
The three dimensions correspond to the x and z positions of the multidetector, and the
rotation of the crystal @ . In order to determine the correct total intensity of the Bragg
peak, a determination of the 3-D peak profile and background intensity is made, so
that the three dimensional integration does not include a large contribution from the
background. This would cause the estimated standard deviation of the peak intensity
to be artificially high which could prevent a successful measurement of the weak
reflections. In RACER, the strong reflections are used to determine ellipsoids in x, z
and @, throughout the observational space, that contain the minimum amount of
background intensity while still being certain to include the whole peak. These
ellipsoids are then used as a priori boundaries when performing the integration of the
weak reflections in the same region of detector space. After RACER has calculated

the Bragg peak intensities {1 (z) } and their standard deviations {o[I(z)]}, it
calculates the corresponding set of the squares of the uncorrected nuclear unit cell

structure factors {| Fy"°"(z)|*} and their standard deviations { of| F"°" ()| 21} [9].

5.15.1.2 DATAP.

DATAP takes the output from RACER, along with a file that contains the total linear
absorption coefficient, the crystal dimensions, and information that allows the
orientation of the reciprocal lattice of the crystal to be calculated with respect to the

angles of the Eulerian cradle, and calculates the transmission factors { A(z ) }, and the

absorption weighted mean path lengths {'_I'(’_r ) } for each reflection. The {'T(g )} are

used by REFORM to calculate parameters that are used by SFLSQ to calculate the

extinction corrections. DATAP then corrects the squares of the nuclear unit cell
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structure factors for absorption {|FN"°" ()]2/A(z)}, and calculates the corrected

standard deviations { & [|F"°" (£)|? /A(z)1}. DATAP outputs {T(z)}, {A(z)}

(RN (2)12/A(D) Y and { o [|IFN™" (2)] 2/ A()1}-
5.1.5.1.2.1 Multiple scattering correction to the output of DATAP.

For all four crystals, the experimentally determined nuclear structure factors were
found to be systematically higher than their theoretical counterparts for the weak
reflections in the initial refinements of the crystal structures (e.g. fig 5.5). This implied
that the data needed to be corrected for the ‘Umweganregung’ multiple scattering

process (see 8 5.1.4.3). This was done by subtracting a fixed contribution C from all

of the squares of the nuclear unit cell structure factors {|F3"°" (z)|%/A(z) } output

from DATAP. The size of this contribution was taken to be the average difference in
the squares of the experimentally and theoretically determined structure factors of the

weak reflections output by SFLSQ.

Fig5.5: Differences in the squares of

50 ‘ )
5 ]
a0l S o o ] the experimentally and
° % % e o] theoretically determined
30 o oo o o ]
s 0% ° o ] structure factors of the weak
JE20f @ °% 05 ©° 0° o ]
n 0 %80 © o o0 3 © 5 °0 reflections for LuNi,B,*'C
210 f g% ° o5 o000 o
T o 0 9 o °o ] using a neutron wavelength
or o ° °° ]
° ° ] of 0.0840 A.
-10 | ° 1
_20 L L L L L L L L L L 2 2
0 20 40 60 80 100 C = Fexp- Fitheo = 18.

Weak reflections

The multiple scattering correction had little effect on the final refined parameters, but

will prove important in the analysis of the polarised neutron data (see § 5.2).
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5.15.1.3 REFORM.

REFORM takes the output from DATAP and calculates the nuclear unit cell structure

factors (corrected for absorption) {FN""(7) /JA(Z) }, and their standard

deviations { o [ Fy"" (g)/,/A(g)]}. It also calculates four parameters C1, C2,

C3 and C4, that are used by SFLSQ to calculate the extinction corrections.
REFORM outputs all these quantities.

51514 SFLSQ.

SFLSQ performs the least squares refinement. Using the notation of §4.3, the

experimental data are given by

(DA) = [ (2)/ YA} a5

and their standard deviations by

{a rl1\l:1} - {J[Fﬁncorr(z)/\/@]}. Eq5.9

Using equations 5.1 and 3.22, the theoretically generated data are given by

Eq 5.10

{Fnl\il} - {\/@Ff\:‘orr (Z)} = {\/@%‘4 <bd >sp,iso eXp(iZ ’ Q) EXp(_ Wa )} '

The right hand side of the above equation is calculated from a model of the unit cell,
average crystallite radius and mosaic spread of the crystal. It is a function of many

variables, some of which are known before the experiment is performed, and some

that can be treated as adjustable parameters in the least squares refinement { Xn'Y':l}-
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Known variables. Adjustable sample parameters {Xm}.

A neutron wavelength. t average crystallite radius of the crystal.

u total linear absorption coefficient for | g mosaic spread of the crystal.

the sample. {g} basis positions of the atoms.

{z} reciprocal lattice vectors for the { N ) )
Biig } anisotropic temperature factors

reflections .
of the atoms.
{ p} path lengths for the reflections

( function of crystal dimensions ).

{<bd >} scattering lengths for the atoms.

Fig5.6 : Known variables and adjustable sample parameters in the least

squares refinement.

SFLSQ takes the output from REFORM and a file that contains the contains initial

guesses for the values of the adjustable sample parameters { X4 }. Equations 5.8, 5.9

and 5.10 can be substituted into equation 4.10, to give the probability density function

for the sample parameters

JE i), {7
pro{ X, D0} 1) = Coxp- . J

n=1 [ yncorr 2
2|7 VA

Eq5.11

SFLSQ maximises this function to obtain the most probable values for the sample
parameters { X0} (@ description of the general method used to do this is given in
8 4.3). After the refinement, SFLSQ changes the values of the sample parameters to

their most probable values. An additional file is output that contains the experimental
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data { F"°" (g)/,/A(g) }, their standard deviations { o [ FN"" (g)/,/A(g)]},

the theoretically generated data { \/E(z)F*" (z) } and the normalised residuals

i WEEE), {5 )
n=1 o, [Fﬁncorr(z)/M]

At the end of the output file, there are a set of values that characterise the success of
the refinement. The most important of these are the sum of the normalised residuals
N N
R = iz R and y%= iZ(Rn )2 where N is the number of observed reflections..
Ne= " N "=

As SFLSQ calculates the extinction corrections in producing the theoretically

generated data, the set of extinction corrections { E(z) } are also output.

5.1.5.2 Calculation of the real space unit cell lattice vectors using least squares

refinement.

Accurate values for the real space unit cell lattice parameters were determined using
another least squares refinement program called RAFD9. It takes an output file from
RACER, containing the values of @, y, ¢ and & for each Bragg reflection, and a
file containing the initial guesses for the values of the lattice parameters a, b, ¢, «,

£ and y . After the minimisation, the refined values for the lattice parameters are

output.
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5.1.6 Results
Crystal T Wav’th | Absorption Extinction | Multi’ | Scale
(K) (A) scatt’ | factor

Amin AmaLx Emin C S
(mm™)

YbNi,B,"'C | 15 0.548 0.0440 |0.87 |0.98 |0.78 5 5.08
0.706 0.0490 0.86 0.98 | 0.73 7 5.95
0.840 0.0550 0.83 0.97 | 0.71 9 6.96
ErNiZBZMC 20 0.548 0.0976 0.81 0.96 | 0.78 1 4,14
0.840 0.1380 0.66 0.95 | 0.56 3 5.90
HoNi,B,"'C | 20 0.548 0.0512 [0.89 [0.98 |0.81 2 432
0.706 0.0610 0.85 0.97 | 0.58 2 5.29
0.840 0.0694 0.83 0.97 | 0.55 3 6.12
LuNiszllC 15 0.548 0.0575 0.81 0.98 | 0.60 6 7.71
0.840 0.0791 0.70 0.98 | 0.35 18 16.44

Fig5.7 Data concerning the absorption, extinction and multiple scattering

corrections.

The above table shows the linear attenuation coefficient and the minimum and

maximum absorption and extinction corrections used in the processing of all the

reflections for each data set. It also gives the value of C (= erxp -

2
F theo,

see § 5.1.5.1.2.1) and the scale factor S. For all the data sets Ena, Was equal to unity.

YbNi,B,"'C | ErNi;B,"'C HoNi,B,”C | LuNi,B,"'C

R |ITF 0.098(5) 0.127(7) 0.017(8) 0.028(6)
Ni |ITF 0.094(5) 0.152(5) 0.159(6) 0.085(5)
B |ITF 0.26(1) 0.293(9) 0.27(1) 0.239(5)

z 0.36028(5) 0.35961(5) 0.35911(6) 0.36061(3)

SITE 1.002(5) 0.993(5) 0.967(6) 0.981(5)
C |ITF 0.238(9) 0.234(8) 0.24(1) 0.174(6)
MOSC 0.152(3) 0.264(5) 0.316(7) 0.72(2)
v 6.0 3.38 7.31 14.2

Fig 5.8 The refined sample parameters.
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ITF (A% - Isotropic temperature parameter.

Z (©) - Position of the boron atom on the crystallographic c axis.
SITE - Occupation of the boron site (unity is 100% occupation).
MOSC (rad®) - Mosaic spread of the crystal.

v* I N - * divided by the number of data.

Refinement of the value for the crystallite radius was not possible. A value of 70 um
was used for all four crystals. The site occupation of the boron site was refined
because the B** isotope used in the production of the crystals contains a small amount
of BY. Refinements with isotropic and anisotropic temperature factors were

performed; no significant differences in the success of the fit was found.

5.2 Determination of the magnetisation density in single crystals of RNi,B,*'C
[R=Yb, Er, Ho, Lu] using polarised elastic neutron scattering and the D3

diffractometer at the I.L.L.

5.2.1 Aims of the experiment.

This experiment was designed to look for differences in the magnetisation density
associated with the rare earth site and the nickel/ boron sublattice amongst the four
compounds RNi,B,"'C [R = Yb, Er, Ho, Lu]. The electronic properties of these four

compounds are discussed in detail in § 1.2.

The first aim of this experiment was to look for differences between the magnetisation
density in the YbNi,B,"'C compound below and above the Kondo temperature,
measured at temperatures of 2 K and 40 K respectively. The second aim was to
compare the magnetisation density in the YbNi,B,™C compound with that in the
ErNi,B,*C and HoNi,B,"'C, to look for differences between the non-superconducting
heavy fermion compound and superconducting compounds that also exhibit long
range magnetic order at low temperatures. There has been a debate as to the existence
of a magnetic moment on the nickel site in the superconducting nickel
borocarbides [10]. This is an important issue, as the presence of a moment on this site

would seem incompatible with conventional phonon mediated superconductivity and
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would perhaps lend weight to the idea that magnetic fluctuation pairing or other exotic
mechanisms are involved in the superconducting order in these compounds (see
8 2.2.4.2). The final aim was to look at the magnetisation density associated with the
nickel/ boron sublattice of the superconducting, but non magnetically ordered,

compound, LuNi,B,*'C.
5.2.2 Sample preparation.

The single crystals used in this experiment were the same ones (necessarily) that were

used in the D9 experiment (see § 5.1.2).
5.2.3 Data collection.

For each crystal, sets of flipping ratios { R(z) } were measured using the technique

described in 83.3.2. All the data were obtained using a neutron wavelength of
0.840 A. In order to survey a large enough region of reciprocal space, each set of
flipping ratios contained data measured with the crystal in two orientations: in the first
orientation, the magnetic field was approximately parallel to the [100] reciprocal

lattice vector of the crystal; in the second, the field was approximately parallel to the
[110] vector. As the crystals have a tetragonal unit cell, the magnitudes of m([)
projected along these two crystal vectors are equal (to 1% order), and the flipping ratios
obtained in each orientation could therefore be combined into a single data set. Any

discrepancies between the magnitudes of the magnetic structure factors obtained from

the two orientations was absorbed by a small scaling.
5.2.3.1 The YbNi,B,"C crystal.
Two sets of flipping ratios were measured at temperatures of 2 K and 40 K. These two

temperatures were chosen as they lie below and above the Kondo temperature of
YbNi,B,'C. The applied field was 4.6 T.
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5.2.3.2 The ErNi;B,"'C and HoNi,B,"'C crystals.

One set of flipping ratios was measured at a temperature of 20 K for each crystal. This
temperature was chosen as it is above both the superconducting and magnetic ordering
temperatures. Another set, measured for less time, was measured at 40 K for each
crystal. These higher temperature data were needed in order to determine uniquely the
magnetic structure factors from the flipping ratios (see § 5.2.5.1.3). The applied field
was 4.6 T.

5.2.3.4 The LuNi,B,"C crystal.

One set of flipping ratios was measured at a temperature of 1.5 K, using an applied
field of 9.2 T. The temperature and applied field were chosen to maximise the
magnetic signal. Measurements at this temperature were possible as the applied field
exceeded the critical field of LuNi,B,™'C [11]. A full set of flipping ratios were not
measured for this sample as the flipping ratios were all very close to unity and a
considerable amount of time was needed to achieve convincing statistics on each

reflection.
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2=
YbNi,B,"'C |2 4.6 531 | 135 |-6t06 4t05 |-19t019 |5to53
40 | 4.6 580 [136 |-6to6 |-4to5 |-19t019 |5to53
ErNi,B,”'C |20 | 4.6 357 | 123 |-5to4 6to6 |-18t019 |4to52

40 |46 235 123 -5t0 4 -4to6 |-18t019 |5to52

HoNi,B,"'C |20 | 4.6 737 145 6t06 -4t05 |-20t020 |4to50

40 |46 317 145 -6 10 6 -4to5 | -20t020 | 4to50

LuNi,B,"*C |15 [9.2 51 17 -2t03 -1t00 |-10t010 |4to33

Fig 5.9 : A summary of the data collected in the D3 experiment.
5.2.4  Correction factors.

Equation 3.41 allows a set of magnetic unit cell structure factors { Fy, (z)} to be
calculated from a set of flipping ratios { R(z) }. However, it must first be corrected for

the following effects:
5.2.4.1 Polarisation.

The polarisation of a neutron beam is defined as

o_ NT-N{ Eq5.12
S NT+NY

where N T and N { are the numbers of neutrons in the spin-up and spin-down states
respectively [12]. It is therefore a number between 1 (beam 100 % polarised in the
spin-up state) and -1 (beam 100 % polarised in the spin-down state). Equation 3.41
gives the flipping ratio for the case where the spin-up and spin-down beams are 100 %
polarised. In general, polarising monochromators and spin flippers are not perfect, and

the polarisation of neutron beams is less than 100 %.
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If the polarisations of the spin-up and spin-down beams are given by P7T

(0< PT <1)and P (—1< Pl <0) respectively, then equation 3.41 becomes

R(T):FN(Z)Jr?’roFME

o)1+ P 1) +|Fy () -y 0P (D) (2= P 1) Eq5.13
P -7 oFm () (2)

;)2(1— P)+|Fn(2)+ 7 oFm ;)2(1+ P»L)1

where P isequalto — P T xE and E is the flipper efficiency (0< E <1).

Before this experiment, P T and E were determined using two calibration samples,

Coo.92F€ 0.0s and Cu,MnAI (Heusler crystal). The cobalt-iron alloy has Fy (z) equal to
yroFm(z) for the (200) reflection. If this flipping ratio is measured, then
equation 5.13 gives a relation between P T and E . The Heusler crystal has Fn(z)
equal to —yryFpy(z) for the (111) reflection. A similar measurement gives another

equation relating P T and E . The two quantities can be determined by a solution of

the resulting simultaneous equations [13].
5.2.4.2 Scattering vector tilt.

The above equation assumes that the scattering vector is in the xy plane (see
figure 3.4, and equation 3.35) . However, flipping ratios are often measured with the
final neutron wavevector rotated an angle v out of this plane. If this is taken into

account, the above equation becomes

R(z)

- ‘FN (1)—7/ I Sin(n) T

_|Fn(2)+7 rosin(n) Py (2) (1+ P1)+|Fn (2) -7 ro sin(n)Fu (o) “(1- P 1) EA514
Fm(z) (1-P |

2(1-P L) +|F () +7 to sin(n)Fu () (L+ PY)

where 7 is the angle between the scattering vector and the direction of magnetisation

(z axis) [13]
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5.2.4.3 Extinction.

A description of extinction is given in 85.1.4.2. The extinction corrections are
different for the spin-up and spin-down measurements as the total scattering cross

sections for the two spin states are different. If these extinction corrections are denoted

by yT and y{, then the above equation becomes

yT‘FN(r)+;/rosin(17)FM(r)‘2(1+ PT)+yd|Fn(z) -7 rosin(n)F r‘z(l PT).

R(Z): ~ ) . 2 2
y\L‘FN(Z)—yrosm(n)FM(g)‘ (1—P~L)+yT‘FN(r +y 1o sin(n)F r‘ (1+P)

Eq 5.15

If the extinction correction to the nuclear structure factor, described in § 5.1.4, can be

represented as Fy"°" = F°" A/(1—dN) , then the relationship between the magnetic

structure factor obtained with and without the extinction correction, described above,

is Fpe" = FyP" /(1—2dN) . Therefore, the extinction correction to the flipping

ratios has twice the effect on the quantity of interest as compared with the extinction

correction in the D9 experiment [14].
5.2.4.4 Multiple scattering.

A description of multiple scattering is given in 8 5.1.4.3. The ‘Umweganregung’
transfer of intensity causes an additional contribution to the numerator and
denominator of equation 5.15, causing the flipping ratio to move closer to unity. This
effect is more serious for the weaker reflections and results in the magnetic structure
factors being underestimated. The multiple scattering corrections used in the D9
experiment were used to make a first order correction to the magnetic structure factors

obtained using equation 5.15,

.o mul Eq5.16

P (2) = (@) \/(Fﬁf"'C)2 +(Crs).

F ﬁalc
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Fre™!(z) is the magnetic structure factor obtained from equation 5.15, F{*°(z) is the
nuclear structure factor calculated from the information obtained in the D9
experiment, C is the multiple scattering correction applied to the squares of the
nuclear structure factors in the D9 experiment (see § 5.1.5.1.2.1), and S is the refined
D9 scale factor. The D9 multiple scattering corrections could be used in this way,
because in this experiment D3 was operating with a similar neutron wavelength and

incident neutron beam divergence [15].
5.2.5 Analysis of the data.

5.2.5.1 Calculation of the magnetic unit cell structure factors from the flipping

ratios.

Three C.C.S.L. programs were used to calculate the set of magnetic structure factors
{Fg(£)} from the set of flipping ratios { R(z) }. The data processing was done using

D30P97 and ARRNGE. The calculation of the magnetic structure factors was
performed by SORGAM.

52511 D30OP97.

D30P97 is the initial data processing program. It takes the raw data from the D3

computer and calculates a set of flipping ratios { R(z) } and their standard deviations
{o[R(2)]1}, and writes these to a file. D30OP97 outputs another file that contains
information concerning the orientation of the crystal with respect to the angles o, 26

and v, and the polarisation of the spin up P T and spin down P | beams.

After D30P97 has been executed, the output orientational and polarisation
information is manually merged with the file output by SFLSQ that contains the
refined nuclear structure, average crystallite radius, mosaic spread and absorption
parameters (see 8§ 5.1.5.1.4). The resulting file is used by ARRNGE and SORGAM as

described below.
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52512 ARRNGE.

ARRNGE arranges the flipping ratios output by D30OP97 into groups that are related
by the symmetry of the unit cell, and subgroups of repeated measurements, using the
space group information contained in the refined parameter file prepared using
D30P97 and SFLSQ.

5.25.13 SORGAM.

SORGAM takes the output from ARRNGE and the refined parameter file, produced
using D30P97 and SFLSQ, and calculates the magnetic structure factors from the
flipping ratios using equations 5.15 and 5.16. The flipping ratio is a quadratic function
of the magnetic structure factor and has two solutions. For samples where the
magnetic structure factors are small (i.e. magnetic structure factors << nuclear
structure factors), the flipping ratio is close to unity, and there is no doubt in deciding
which solution to accept as the magnetic structure factor as the other solution
produces an unphysical answer (i.e. very large). In the case of samples with larger
magnetic structure factors, this may not be the case, and additional information must
be obtained. The size of a magnetic structure factor should reduce with increasing
temperature as the thermal motion of the magnetic moments increases. This reduction
should be proportionately the same for all the structure factors. Therefore, if the
flipping ratio is measured at two temperatures, both solutions can be found at each
temperature, giving four magnetic structure factors. Only one of the four ratios of low
temperature to high temperature structure factors will give the correct value for the
reduction of magnetic structure factor with increasing temperature. A list can then be
given to SORGAM to tell it which solution of the flipping ratio equation to take to

produce the final magnetic structure factors { < Fy, (z) >} to be used to calculate the

magnetisation density.
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SORGAM averages together repeated measurements of the same flipping ratio and

those measurements that are related by the symmetry of the unit cell.

5.2.5.2 Calculation of the magnetisation density in the unit cell.

When the magnetic unit cell structure factors have been obtained, the calculation of
the magnetisation density in the unit cell can be performed. However, this calculation
Is not straight forward as the data set is limited. In any experiment, the time available
is finite, and this restricts the number of structure factors that can be measured, and
the precision to which any one structure factor can be determined. The wavelength of
the neutrons also places a limit on the range of reciprocal space that can be explored.
We can consider three methods of calculating the magnetisation density: a simple
Fourier transform of the structure factors, a least squares refinement to a model of the

magnetisation density, and maximum entropy image reconstruction.

5.2.5.2.1 Calculation of the magnetisation density in the unit cell by performing

a Fourier transform of the magnetic unit cell structure factors.

The asymmetric unit of the crystal is divided into M pixels of equal volume v,. The
magnetisation density within one of these pixels my, is found by substituting the

values of the { < F; (z) >g} obtained from SORGAM into equation 3.43. This gives



ELASTIC NEUTRON SCATTERING EXPERIMENTS 25

mm:'L\l/—BZ<FM(£)>S<exp(—iz-[m)>s , Eq5.17

a ¢

where 1 is the position vector of the centre of the pixel, and v, is the volume of the

asymmetric unit. The above equation can be used to determine the {m,}, and

construct an image of the magnetisation density in the unit cell. This method is
simple, but suffers from several significant problems. All the unmeasured structure
factors are implicitly set equal to zero. As the majority of unmeasured structure factors
are at high q, the resulting series termination may introduce high frequency spherical
ripples into the image that can make the detection of small real features difficult.

Calculations to determine the errors associated with the values of the {mg} are

difficult [16].

5.2.5.2.2 Calculation of the magnetisation density associated with each atom in

the unit cell using least squares refinement.

The problems with the method described above are due to the lack of data and their
Fourier nature. It would therefore be helpful to introduce some more information. This
can be done by using a model to describe the magnetisation density. The technique of
least squares refinement can then be used to refine this model based on the values of
the {< Fy(z) >g} as described in § 4.3. The difference between the experimental
structure factors and those calculated from the refined model can be taken. A Fourier
transform of these difference structure factors can be made. The resulting difference
image suffers much less from the effects of series termination as the unmeasured

difference structure factors should have a value of zero.

If the electrons are thought to be localised around the positions of the nuclei, the

model described in 8§ 3.3.2 can be used.

In this experiment, MPLSQ (a modification of the program SFLSQ used in the D9

experiment) was used for the least squares refinement. The experimental data
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{DnN:l} = {<F|v| (z)>s} : Eq5.18

and their standard deviations

LEE {U[<Fm(z)>s]}, Eq5.19

are output from SORGAM. The theoretically generated data are given by

{anzl}:{<FM<z)>;a'C}:{§z S | Fom(2) o0l -0l Wy ).

I m=-I

} Eq 5.20

where the adjustable sample parameters in the least squares refinement are the

{Xn'\1/|=1} = {agm Eq5.21

where agyy, is the magnitude of the angular momentum operator associated with the

unpaired electrons in the Im" wavefunction of the d™ atom in the unit cell. In a
refinement, the smallest number of the {ay,} are used that are needed to give a
satisfactory agreement between the experimental and theoretically generated data.
Apart from the experimentally determined magnetic structure factors, MPLSQ

requires an input file containing the initial guesses for the values of the {agy, }-

Equations 5.18, 5.19, 5.20 and 5.21 can be substituted into equation 4.10 to give the

probability density function for the sample parameters
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prob({ad|m}‘{<FM (g)>S } IJ =Cx

. H%‘,Z Zl‘,adlm<Fdlm(Z)eXp(iZ'Q)eXp(_Wd)>SJ (<FM(Z)>S)n]

I m=-I n

7

= [Gn [<FM (Z)>s

Eq 5.22

MPLSQ maximises this function to obtain the most probable values for the sample
parameters {aqmo }- After the refinement, MPLSQ changes the values of the sample
parameters to their most probable values. An additional file is output that contains
information concerning the success of the refinement, similar to the file output by
SFLSQ in the D9 refinement.

dth

The magnetisation density associated with the atom is given by the Fourier

transform of the normalised form factors used to model that atom { Fy,(z)}, scaled

by the refined values of the angular momentum operator magnitudes {agmgo}- The

total magnetic moment associated with the d ™ atom is given by

Eq5.23

I
pg =205, D adim

I m=-I

This method does not suffer to the same extent from the problems associated with the
simple Fourier transform method [16]. The standard deviations associated with the
{agimo} can be calculated from the probability density function. However, in many
problems, the reason for performing a magnetisation density experiment is to help
determine a model for the electronic structure of the sample, and if the electrons are

thought to be delocalised the above atom centred model is of limited use.
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5.25.2.3 Calculation of the magnetisation density in the unit cell using

maximum entropy image reconstruction.

The maximum entropy image reconstruction in this thesis was performed using
software written by A. J. Markvardsen [17]. The principle of maximum entropy with
respect to image construction was outlined in 8 4.4. In this context, it allows the
calculation of the magnetisation density in the unit cell without an a priori theoretical
model. However, the entropy constraint means that it does not suffer from the
introduction of noise to the same extent as the simple Fourier transform method. It
also allows the standard deviations of particular features in the resulting image to be

calculated more easily from the resulting probability density function.

The data {DnNzl} and their standard deviations { o r'1\l:1} are as given for the least

squares refinement. The theoretically generated data are given by

M Eq5.24

{Fan}_{<Fm(z)>§alc}—{v—m > {ewlinry)) (mn T -my 4

HB asym unit, m=1

where m_ T and m_ | are the positive and negative magnetisation densities in the m™"

pixel, and the sum is over the M pixels in the asymmetric unit. The Shannon-Jaynes

entropy is given by

S({mm})=- % [mmmn{mLTT}mm“nLTmLﬂD Eq5.25

asym unit, m=1 Mmg

The magnetisation density is split into separate positive and negative images because
the logarithmic nature of the single entropy term in the simple formalism outlined in
8 4.4 is only capable of producing positive images. This method of producing images
containing positive and negative regions was first used in the analysis of nuclear spin
density in N.M.R. experiments [18]. It follows that the posterior probability density

function for the magnetisation density is
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prob({mm}{<FM (z)>s } I) =Cx

[
exp ES({mn}) - . >
i Lo [(Fu (=) ]

Eq 5.26

Although a rigid model is not required, there are two a priori parameters that must be
decided upon before the maximisation procedure can take place. The first parameter,
E, gives a weighting between the entropy term and the least squares term.
Sophisticated methods exists for determining its value based on the covariance matrix

of the posterior probability density function [19]. However, Markvardsen uses a

simpler approach. He chooses E such that ;(2 ~ N at the end of maximisation
process. This was found to be satisfactory for data of high quality as small variations
from this criterion do not change the resulting image significantly [17]. The second

parameter, m,, =m, T M, d , determines the initial average magnetisation density

in each pixel in the image. A method for finding a suitable value for this parameter

has been determined by Markvardsen:

The maximisation is performed many times with different values for m_ . For each

maximisation, the resulting average magnetisation density, m, can be calculated. For

small values of m_ << m, the calculated values of the magnetic structure factors that

have not been experimentally measured (usually high q) are much less than an
extrapolation of the experimentally determined data would suggest. This situation is
similar to the one encountered in the Fourier transform analysis of the data

(see §5.2.5.2.1). For values of m  >> m, these calculated values are higher than an

extrapolation of the experimental data. A value of m, ~ m /4, causes the calculated

m
structure factors that have not been experimentally determined to be close to the
values that would be obtained by extrapolating the experimental data. This is found to
be the case in all the magnetisation images that have been produced using the
Markvardsen algorithm to date. Therefore, the most reliable maximum entropy

constructions are thought to be produced starting with a value for m_ of m /4 [17].
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The values of a priori parameters should be quoted with the results of all data analysis
techniques. This is especially true of techniques, such as maximum entropy, where the

prior information has a complex relationship with its effect on the resulting image.
5.2.6 Results.

Assuming a simple model, with spherical magnetisation density on the rare earth,
nickel, boron and carbon sites, the calculated contributions to all the observable
magnetic structure factors of RNi,B,*'C (up to a Q of ~12.5 A?) are shown in
fig 5.11. Approximately 60 % of the magnetic structure factors contain contributions
from all the atomic sites and the remaining structure factors have contributions from

the rare earth, boron and carbon sites only.
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Fig5.11: The calculated contributions to the magnetic structure factors of
RNi,B,"C from each site. The relative magnitudes of the structure
factors from different sites are on an arbritrary relative scale. This
scale varies significantly amongst the compounds. In general, the

rare earth structure factors are very much larger than the others.
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The contribution from the rare earth site to an individual structure factor is always
positive but the nickel, boron and carbon contributions may be positive or

negative [20].

For the YbNi,B,™C and LuNi,B,"'C samples, all the measured flipping ratios were
close to unity. Therefore, there was no difficulty in unambiguously assigning the
magnetic structure factors from the flipping ratios. For the ErNi,B,'C and
HoNi,B,**C samples, many flipping ratios were much larger or smaller then unity. In
these cases, the method outlined in §5.2.5.1.3 was used to determine the correct

solution of the flipping ratio equation.
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Fig5.12: The ratios of the magnetic structure factors obtained from the
flipping ratio equation at temperatures of 20 K and 45K for
ErNi,B,'C. S and B denote magnetic structure factors obtained
using the smaller and larger root of the flipping ratio equation

respectively.

It can be seen from figure 5.12 that the correct value for the ratio of the low
temperature to high temperature magnetic structure factor for the ErNi,B,**C data
is~ 2. Using this plot, and a similar one for the HoNi,B,"'C sample, magnetic
structure factors were discarded from each data set where none of the ratios of low

temperature to high temperature structure factors were near the obvious modal value.



ELASTIC NEUTRON SCATTERING EXPERIMENTS 32

The SORGAM program corrects the structure factors for polarisation, absorption,
extinction and multiple scattering. In order to see the relative sizes of the changes to
the structure factors from each of these corrections, the above procedure was used to
produce four sets of structure factors that each contained only one of the corrections.
The following figure provides a typical example of the relative contributions to the

magnetic structure factors from each of the corrections for all four crystals:

0.6 ‘
O  No correction

0.5 + ¢ Absorption correction only
B . [ N X Extinction correction only ]
-51 O Polarisation correction only
...(E +  Multiple scattering correction only
5 04 L -
@ +
= X
(&)
= 03 r x
n X % X
Q °
=
) - ¥
Qo 0.2 g g
(o))
=

0.1 ¢

0 . |
0 2

Q (A%

Fig5.14: Magnetic structure factors for YbNi;B,"'C output from SORGAM
with different corrections (the multiple scattering correction shown

here is equivalent to the D9 correction).

It can be seen from the above plot that the multiple scattering correction has a much
larger effect than the other corrections. The correction is proportionately larger for
those reflections with small nuclear structure factors. Unfortunately, there is a fair
degree of uncertainty about the size of the multiple scattering corrections to be made
to the structure factors for all four crystals. The D9 multiple scattering corrections on
which the D3 corrections are based are determined from graphs similar to the one
shown in fig5.5. It is obvious from this graph that there is a significant error
associated with the determination of C. Also, although similar, the neutron
wavelength and incident neutron beam divergence of D9 and D3 are not exactly the

same. As this correction is large and there is uncertainty as to its magnitude, its effect
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on the resulting magnetisation density maps of the compounds must be studied very

carefully.

For each compound, five sets of magnetic structure factors were produced with a
multiple scattering correction of 0, 0.5, 1, 1.5 and 2 times the D9 correction. The
magnetisation density was calculated from these structure factors using the least
squares refinement and maximum entropy methods described above. In the least
squares refinement, initially, the magnetisation density on each site was modelled only

with their Fyg form factors. The higher order anisotropic form factors were then

introduced to determine if they produced better agreement between experimental and
theoretical structure factors. After this had been completed, the ytterbium and erbium

sites were modelled with the Fyy and Fy4 form factors and the holmium site was
modelled using the Fyg, Fag, Fgo and Fgg form factors. The lutetium site was
modelled with the Fyy form factor only. The nickel, boron and carbon sites in all the
compounds were modelled with the Fy, form factor only. The maximum entropy

image construction for each set of structure factors was performed as described
in§5.25.2.3
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Fig 5.15:

Total magnetic moments of the Yb, Ni, B and C sites of YbNi,B,"C at 2 K for multiple

scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open)

circles are data determined by least squares refinement (maximum entropy image

construction). The Fy and F4 form factors are used for the Yb site least squares

refinement and the Fy, form factors are used for the Ni, B and C sites. The maximum

entropy a priori parameters are m,,, =0.845 g and xO° = 135 after maximisation has

finished.
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Fig 5.16 :

Total magnetic moments of the Yb, Ni, B and C sites of YbNi,B,"'C at 40 K for multiple

scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open)

circles are data determined by least squares refinement (maximum entropy image

construction). The Fy and F4 form factors are used for the Yb site least squares

refinement and the Fy, form factors are used for the Ni, B and C sites. The maximum

entropy a priori parameters are m,,, =0.507 1 g and xO° = 136 after maximisation has

finished.
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Fig 5.17 :

Total magnetic moments of the Er, Ni, B and C sites of ErNi,B,"C at 20 K for multiple
scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open)
circles are data determined by least squares refinement (maximum entropy image
construction). The Fg and F4 form factors are used for the Er site least squares

refinement and the Fy, form factors are used for the Ni, B and C sites. The maximum

entropy a priori parameters are m, =12.468 ;g and xO? = 123 after maximisation has

finished.
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Total magnetic moments of the Ho, Ni, B and C sites of HoNi,B,"C at 20 K for multiple

scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open)

circles are data determined by least squares refinement (maximum entropy image

construction). The Fq, Fs Fg and Fg form factors are used for the Ho site least

squares refinement and the Fy form factors are used for the Ni, B and C sites. The

maximum entropy a priori parameters are m, =15123 5 and xO? = 145 after

maximisation has finished.
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Fig 5.19:

Total magnetic moments of the Lu, Ni, B and C sites of LuNi,B,"C at 1.5 K for multiple
scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open)
circles are data determined by least squares refinement (maximum entropy image
construction). The Fq, form factors are used for all sites in the least squares refinement.

The maximum entropy a priori parameters are m, =0.0234 ug and xO? =17 after

maximisation has finished.
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The above graphs show the values of the total magnetic moments on the rare earth,
nickel, boron and carbon sites for the four compounds. In all compounds, the error
bars are larger for the maximum entropy refinement. This is a reflection of the fact
that the least squares refinement employs a larger amount of prior knowledge
concerning the distribution of the magnetisation density. In general, there is fairly
good agreement between the total magnetic moments determined from the least
squares and the maximum entropy methods. The agreement is worst for the
LuNi,B,*C compound, which is not surprising as only 17 independent structure

factors were measured for this compound.

Fig 5.15 shows the magnetic moments of the sites in YbNi,B,"'C at 2 K, which is

below the reported value of Ty . One of the main aims of this experiment was to study

the effect of heavy fermion behaviour on the magnetisation density of this compound,
particularly to look for signs of hybridisation between the ytterbium sites and the
nickel/ boron sublattice. Unfortunately, the multiple scattering correction has a large
effect on the magnetisation density in this compound. The effects of this correction
can be seen in fig 5.15; as the size of the correction increases, positive magnetisation
density is transferred from the Ni, B and C sites to the Yb site. The signs of the Ni, B
and C magnetic moments consequently change from positive to negative. As
mentioned above, a determination of the exact multiple scattering correction to be
used is extremely difficult with the information obtained in this experiment. However,
the data presented in fig 5.15 does perhaps provide some clues as to the magnitude of
the correction. Theoretically, the magnetic moment on the boron and carbon sites
should be zero. Therefore, it would be sensible to assume the multiple scattering
correction is 0.4 times the D9 correction as this value leads to a moment of zero on
both of these sites. As the nickel moment, with all corrections, is close to the value of
the boron and carbon moments, it follows that the nickel moment will also be zero

with this multiple scattering correction. Further evidence that this is an appropriate

correction to make comes from the fact that the value of y 2 in the least squares

refinement passes through a minimum at a value of 0.4 times the normalised D9
correction. This method of determining the correction (by comparing theoretical and

experimental structure factors) is similar to the method employed in the D9
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experiment (see 8 5.1.5.1.2.1). Therefore, the data suggests that the Ni moment in this
compound at 2 K is either zero or has a small finite positive or negative magnetic

moment which has a magnitude below the resolution of this experiment.

Another aim of this experiment was to compare the magnetisation density of the
YbNi,B,'C compound at temperatures of 2 K and 40 K. The higher temperature data
are presented in fig 5.16. The magnitude of the ytterbium magnetic moment has
reduced to ~ 0.6 of its 2 K value. The magnetic moments of the nickel, boron and
carbon sites display very similar behaviour to the 2 K data with increasing multiple
scattering correction. Their magnitudes are also broadly similar to the lower
temperature data. Therefore, the same conclusion can be reached regarding this data as
was reached for the 2 K data. It is most likely that the magnetic moments of the nickel,
boron and carbon sites are very close or equal to zero. Therefore, there is no evidence
of substantial changes in magnetic moment of the nickel site on moving to

temperatures below Ty .

The data for the ErNi,B,**C and HoNi,B,™C compounds, are presented in figs 5.17
and 5.18. The magnetic moments of the nickel, boron and carbon sites, for both
compounds, and for all the multiple scattering corrections shown, are
indistinguishable (or close to indistinguishable) from zero within experimental error.
The large errors associated with these moments are due to the proximity of the nickel,
boron and carbon sites to the very much larger magnetic moments of the rare earth

ions in these compounds.

The data for the LuNi,B,*C compound is presented in fig 5.19. The least squares
refinement suggests the existence of small moments on the nickel, boron and carbon
sites. The analogous data from the maximum entropy processing suggest that the
errors are too large to distinguish all the moments from zero; also, the magnitudes of
the moments are smaller by a factor of ~ 2. As only 17 independent structure factors
were measured for this compound, it is probably unwise to draw any firm conclusions

from this data.
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This experiment was also designed to look at the rare earth magnetisation density in
the YbNi,B,'C, ErNi,B,"'C and HoNi,B,'C compounds. In the least squares
refinement, the ytterbium and erbium magnetisation densities were modelled with
their Foo and F44 form factors, as these gave the best agreement between experimental
and theoretical structure factors. Likewise, the Foo, Fa0, Feo and Fe4 form factors were

used to model the magnetisation density of the holmium site.

Fig5.20:
Magnetisation density contour at 0.007 g /(01nm)2 of the Yb site in YbNi,B',C at

2 K obtained using maximum entropy image construction (a priori parameters are

m,,, = 0.845 1 g and xO? = 135 after maximisation has been completed).
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Fig 5.21 :

Magnetisation density contour at 0.004 g /(01nm)3 of the Yb site in YbNi,B',C at

40 K obtained using maximum entropy image construction (a priori parameters are

My, = 0.507 g and xO° = 136 after maximisation has been completed).
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Fig5.22:

Magnetisation density contour at 0.084 up /(01nm)* of the Er site in ErNi,B'LC at

20 K obtained using maximum entropy image construction (a priori parameters are

M, = 12.468 11 g and x0° = 123 after maximisation has been completed).
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Fig 5.23 :

Magnetisation density contour at 0.105 upg /(O.1nm)3 of the Ho site in HoNi,B,C at

20 K obtained using maximum entropy image construction (a priori parameters are

My, =15.123 g and X[ = 145 after maximisation has been completed).

It was thought that there might be a significant qualitative difference in the
magnetisation density of the Yb site in YbNi,B,"*C measured at 2 K and 40 K,
perhaps as the result of hybridisation of the 4f electrons and those of the nickel/ boron
sublattice in the heavy fermion state. However, as is shown in figs 5.20 and 5.21, the
general shape and anisotropy of the magnetisation density is the same at both
temperatures. It was also thought that there may be significant differences between the
Yb magnetisation density and the magnetisation density of the rare earth ions in the
compounds that display long range magnetic order and superconductivity
(R = [Er, Ho]). There is a significant difference between the Yb magnetisation density
and the Ho magnetisation density. Unfortunately, the Yb and Er magnetisation
densities are very similar. This would suggest that the two forms of rare earth
magnetisation density do not correspond to a particular type of correlated electron
behaviour. These general conclusions concerning the anisotropy of the rare earth
magnetisation density are not effected by the size of the multiple scattering correction

chosen.

Before this experiment was performed, it was thought that the heavy fermion
hybridisation in YbNi,B,"'C might result in measurable magnetisation density in

between the rare earth ions and the nickel/ boron sublattice; this was not observed. In
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general, in all four compounds, there was no inter-site magnetisation density that had

a value larger than its standard deviation.

These results will be discussed further in chapter 7. Some suggestions for further work
to improve the measurement of the magnetisation density in these compounds will

also be given.

5.3 Search for magnetic order in a single crystal sample of YbNi,B,'C using

elastic neutron scattering and the D10 diffractometer at the I.L.L.

5.3.1 The D10 diffractometer.

The general operating principle of the D10 diffractometer, when used in the standard
four-circle configuration, is similar to that descibed for the D9 diffractometer
(see 8 3.3.1). D10 operates with thermal neutrons, and the relatively high flux and low
background make it ideal for searching for and studying weak diffuse scattering and
incommensurate magnetic order with small magnetic moments. The Eulerian cradle
on D10 may be fitted with a dilution fridge enabling the sample to be cooled
to ~30 mK [21].

5.3.2  Aims of the experiment.

Measurements of specific heat capacity, resistivity and magnetic susceptibility in
YDbNIi,B,C have been made down to temperatures of 0.3 K. No indication of long
range magnetic order has been found. Neutron powder diffraction measurements have
also been made but no magnetic Bragg peaks were observed [22]. Other measurement
techniques, such as NMR, that would be sensitive to ordering of the Yb moments have
not been extended below 1.5 K [23]. Often, magnetic ordering is difficult to observe
in heavy fermion compounds. This is because the 4/5f magnetic moments may be
substantially reduced by the formation of antiferromagnetic correlations with the
surrounding conduction electrons. Also, if the ordering is short range or two
dimensional, then one would not expect to observe a sharp anomaly in the bulk

properties. For example, in heavy fermion UPt;, antiferromagnetic order was
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discovered by single crystal neutron diffraction and an unusually small ordered

moment of 0.02 g was found that has not been observed by any other technique.

The formation of a magnetically ordered state has been observed in other Yb heavy

fermion compounds [24].

The aim of this experiment was to search for magnetic order in a single crystal sample
of YbNi,B,C. The use of a single crystal and the D10 diffractometer meant that this
experiment was much more sensitive to magnetric Bragg scattering than the

previously performed polycrystalline neutron diffraction study.

5.3.3 Sample preparation.

The YbNi,B,"C single crystal used in this experiment was the same sample that was

used in the D9 and D3 experiments described in 8 5.1 and 8 5.2.

5.3.4 Data collection.

g scans were performed in the ab plane to grid a box defined by the corners at
positions in g of (-0.7,0.4,0), (0.7,0.4,0), (0.7,1.6,0) and (—0.7,1.6,0) with a step
size of ~0.01 in both the a and b directions. A scan was also performed along the ¢

axis from a position of ¢ equal to 0.8 to 2.2.
535 Results.
In all the g scans performed there was no sign of any scattering in addition to the

nuclear Bragg peaks. Therefore, no evidence of long or short range Yb-Yb

correlations was found.
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5.4 Determination of the concentration of Yb,O; in the polycrystalline sample
of YbNi,B,''C used in the H.E.T. experiment using the D1B diffractometer
atthe I.L.L.

5.4.1 Aims of the experiment.

The general principle of the D1B diffractometer is described in § 3.3.3. As outlined in
§6.1.3.2, the polycrystalline YbNi,B,*'C sample used in the H.E.T. experiment
contained a Yb,O3 impurity phase. Due to the cubic unit cell, large lattice parameters,
and the large number of formula units per unit cell of Yb,Os3, the Bragg reflections are
relatively few in number, located at low q values, and are weak in comparison with
those of the YbNi,B,''C phase. This experiment was designed to determine the
amount of Yb,0O3 present, in order to perform a satisfactory background subtraction
for the spectra obtained in the H.E.T. experiment. The D1B diffractometer was chosen

for this study as it has very good spacial resolution at low g values.

5.4.2 Data collection.

The scattering from the YbNi,B,"'C/ Yb,0O; sample was measured at room
temperature using a neutron wavelength of 1.9 A. The detector covered the angles

—16° < 26 < 158° with a step size of 0.05°.

5.4.3 Results.

The data collected was processed usind the least squares refinement program
FULLPROF, avaliable at the I.L.L., dedicated to the analysis of polycrystalline
neutron and X-ray data. The YbNi,B,'C and Yb,05; compounds were assumed to be
the only phases present in the sample. The Yb,O3; compound has a cubic structure,
space group 1A3, with a lattice parameter of 10.42 A. The results of the refinement are

shown in figure 5.24.
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Fig 5.24 : Calculated (red) and observed (green) diffraction spectra for
YbNi,B,"C and Yb,0O; samples. Observed spectrum measured on
the D1B diffractometer using a neutron wavelength of 1.9 A.
Magenta line is the subtraction of the observed spectrum from the
calculated spectrum. Vertical red marks show calculated positions of
the Bragg peaks for the YbNi;B,'"'C (lower) and Yb,Os; (upper)

contributing phases.

By comparing the relative intensities of the Bragg reflections, it was determined that

the Yb,0O3 sample constituted ~9 % of the total mass of the sample.
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CHAPTER 6

INELASTIC NEUTRON
SCATTERING EXPERIMENTS

This chapter contains the inelastic scattering experiments conducted on the
YbNi,B,™C compound. Two experiments, performed using the H.E.T. spectrometer at
ISIS and the IN20 spectrometer at the I.L.L., were designed to look for and study the
Crystalline Electric Field (C.E.F.) transitions in the compound. Three experiments,
performed using the IN5, IN14 and IN6 spectrometers at the I.L.L., were designed to
study the low energy transfer scattering. The H.E.T. and IN5 experiments were
performed on a polycrystalline sample of YbNi,B,"C. The IN20, IN14 and IN6

experiments were performed on a single crystal mosaic sample.

6.1 Search for the crystal field transitions in a polycrystalline sample of
YbNi;B,'"'C using inelastic neutron scattering and the H.E.T. direct

geometry time of flight spectrometer at ISIS.
6.1.1 The High Energy Transfer (H.E.T.) spectrometer.

The general principle of a direct geometry time of flight spectrometer is outlined
in 8 3.3.4. The neutron beam emerging from the proton target at ISIS is pulsed, and
H.E.T. uses a Fermi chopper to monochromate these incident pulses. A Fermi chopper
is an aluminium drum with thin sheets of highly absorbing material such as boron,
interleaved with neutronically transparent sheets of aluminium. The rotation of the
drum is phased to the ISIS pulse, and is only in the transmitting position at the point at
which it will transmit neutrons with the desired energy. The slits are curved in

opposition to the direction of rotation to optimise transmission.

A large amount of y-radiation is produced when the proton beam hits the target. The

large background that this causes is reduced using a nimonic chopper placed before
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the Fermi chopper. This chopper effectively closes the beam tube at the moment the

proton beam hits the target.

A neutron monitor is installed after the Fermi chopper and before the sample position
to allow the neutron counts measured in the detectors to be normalised to the

integrated incident neutron flux.

There are several detector banks on H.E.T: a low angle bank at 4m from the sample
position covers the angles 3° to 7°; another low angle bank at 2.5m covers the angles
9° to 29°; a 4m high angle bank covers the angles 110° to 125°, and the angles 130° to
140° are covered by a detector bank at 2.5m (see fig. 6.4) [1].

6.1.2  Aims of the experiment.

The spin-orbit 4f electronic ground state of the Yb +3 ion in YbNi;B,"'C has L = 3,
S=1/ 2 and J=7/ 2, and is eight fold degenerate (see §2.1.1.2). The tetragonal
symmetry of the rare earth site would imply that this ground state is split into four
doublets I CP1, I3/ CP2, Iz CP3and 77 CP4 by the crystal field
interaction (see § 2.1.2.1) . Calculations based on the crystal field transitions that have
been observed in the ErNi,B,™C, HoNi,B,'C and TmNi,B,"'C compounds indicate

that the positions in energy of the excited doublets are as shown below [2].
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Transitir?n Energy Fig6.1: Energy level diagram of the
strengt
r crah C.E.F. splitting of the 4f
[ CP3 J =7/ 2 spin-orbit ground
34 qllab(2/3) 24 meV .
allc(13) state of the Yb +3 ion in
YbNi,B,*C. Transition
strengths and selection rules
I, cp2 are shown; q is the
36 qllc 8 meV scattering vector and a, b
and c are the
I' CP1 _
7 qllab Ground state crystallographic axes.

The aim of this experiment was to search for the C.E.F. transitions in a polycrystalline
sample of YbNi,B,"*C and compare them to the scheme presented above. In other
heavy fermion and valence fluctuation compounds, there is significant movement and
broadening of C.E.F. levels due to the hybridisation of the rare earth 4f and
conduction electrons and the introduction of the associated relaxation pathways
(see § 2.2.5). A non-magnetic YosLuosNi,B,"'C background sample was also
measured to provide a method of subtraction of the nuclear scattering contribution to
the measured YbNi,B,"'C spectra. The 0.5/ 0.5 mixture of yttrium and lutetium was
chosen so that the compound had the same total linear attenuation coefficient as the
YbNi,B,'C compound.

6.1.3  Sample preparation.

The B isotope was used in the preparation of the following compounds as it has a
considerably lower neutron absorption cross section as compared with naturally
occurring boron (containing 20% by mass of B%). The samples were prepared at the

University of Warwick, U.K.
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6.1.3.1 Polycrystalline YosLugsNi;B,*C.

This sample was produced using an argon arc furnace. An arc furnace is a copper
chamber with a removable base or hearth into which the unreacted elements are
placed. The chamber can be evacuated of air and filled with Argon. Two movable
cathode electrodes with sharply pointed tungsten tips pass through the top of the
chamber. The hearth acts as the anode. The electrodes are connected to a high current,
low voltage power supply. If the two electrodes are brought into contact an arc is
struck between them that may then be used to melt the elements together to form a

compound.

‘ ’ Fig 6.2 : A cross section through an
argon arc furnace.
/Ca

thodﬁ
{3 [

Tungsten e, « e for Cooling
Tips
To Vacuum To Argon
Pump Supply

/ °

Anode and
Hearth

Water Pipes

Sample

A nickel ball was first arc melted with the powdered boron. Then the carbon in
powdered form and the yttrium and lutetium in ingot form were added. The elements
were added one at a time and the compound weighed at each stage in order to make
sure that there were no losses. After all the elements had been added, the resulting
ingot was turned over and remelted. This was done several times in order to ensure

that the elements were completely reacted. The final sample mass was 12.0g.
6.1.3.2  Polycrystalline YbNi,B,''C.
Ytterbium has a high vapour pressure and YbNi,B,**C cannot be produced by the

argon arc furnace method alone as the ytterbium would vaporise as soon as the arc

struck the unreacted elements.
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A nickel ball and powdered boron were first arc melted together in the standard way
and then ground to a very fine powder. This powder was then mixed thoroughly with
appropriate amounts of powdered ytterbium and carbon. The resulting mixture was
pressed into pellets. These pellets were placed in molybdenum crucibles. The
crucibles were welded shut under argon in an arc furnace. The crucibles were in turn
sealed under vacuum in quartz tubes and slowly heated in a box furnace over a period
of six days up to a temperature of 1200 °C. The temperature was then reduced to
1050 °C and kept there for a further four days to anneal the sample. The sample was

then furnace cooled. The final sample mass was 13.25g.

An X-ray diffraction experiment was performed on the resulting compound which
showed the presence of an Yb,O3; impurity phase. Due to the cubic unit cell, large
lattice parameters, and large number of formula units per unit cell, only a few small
impurity peaks, located at low g values, were visible in the X-ray specta. It was
therefore difficult to estimate the amount of impurity present. In order to achieve a
better estimate, a neutron diffraction experiment was performed on D1B at the
I.L.L. (see §5.4). This experiment indicated that the YbNi,B,"'C sample contained
~9 % by mass of Yb,0s.

6.1.3.3 Polycrystalline Yb,O3 and Y,0s.

A 14 g sample of Yb,03 was obtained from Alpha Chemicals (99.9% pure). A 14.2 g
sample of Y,03 was obtained from Aldrich Chemicals (99.99% pure). The Y,03
sample was used to subtract the lattice contribution to the measured Yb,Oj3 spectra.

The vanadium sample used was a standard test sample available at ISIS.
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6.1.4 Data collection.

The following spectra were taken:

Compound Temp | Time E, (meV) Energy range (AE, meV)
(K) (2 Ahr) Start End
YbNi,B,"'C 5 1875.2 250 -150 200
773.1 75 -40 70
1295.5 35 -15 30
YosLugsNioB,'C | 2.7 986.7 250 -150 200
500 75 -40 70
487.1 35 -15 30
Yb,03 20 1500 250 -150 200
1598.3 75 -40 70
Y03 20 282.1 250 -150 200
300.3 75 -40 70
Vanadium 300 40.3 250 -150 200
40.4 75 -40 70
40.1 35 -15 30
Fig 6.3 : The spectra measured on H.E.T.

Measurements of vanadium with a polychromatic beam are made regularly on H.E.T.
These measurements are used to correct for detector efficiency fluctuations over long
periods of time. They enable monochromatic vanadium scans to be used in the
normalisation of sample data that were measured a significant time before the sample

data were taken [1].
6.1.5 Analysis of the data.
6.1.5.1

Initial data processing.

The initial processing of the raw data was performed using the HOMER computer

program available at ISIS [1]:
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The number of neutrons scattered into an individual detector for a given time channel
Isam IS divided by the integrated incident neutron flux Fg,,, using information from
the monitor placed in between the Fermi chopper and the sample position. The
number of neutrons scattered into the same detector and time channel from the
vanadium sample 1., is also divided by the integrated incident flux for that
measurement F,p, . For the vanadium sample, if this process is repeated for all of the

time channels of the detector, the integral across those representing the elastic peak
Evan can be taken. For the sample, the value of 1, / (FsgmEvan) 0ives the intensity
normalised to incident flux and vanadium scattering. The polychromatic vanadium
runs are used to correct this result for variations in detector efficiency. This value is
corrected for the different absorptions of the sample and the vanadium by multiplying
by (Tyan / Tsam) - The result is multiplied by Nyano yan /47 (where Nygq is the
number of vanadium atoms in the sample) as this is the total incoherent scattering
cross-section of the vanadium sample per unit solid angle. Finally, this is divided by

the number of formula units in the sample Ng,,. If the data in rebinned in terms of

energy transfer instead of time of flight, the output is in the units “mb sr't mevt

[formula unit]'l’. A masking file gives the detectors to be discarded because they are

abnormally noisy, contain spurious Bragg scattering, or have an efficiency that has
varied significantly between polychromatic vanadium measurements. The data from
each detector are grouped according to the angle of the detector. The angles defining
these groups are given in a mapping file. In this experiment the detector groupings

were as follows:

Detector group Average angle (°) Detector bank
W1 4.9 4 m low angle
W2 4.9 4 m low angle
W3 11.5 2.5 m low angle
W4 16.5 2.5 m low angle
W5 21.5 2.5 m low angle
W6 26.5 2.5 m low angle
W7 114.9 4 m high angle
W8 133.4 2.5 m high angle

Fig6.4: H.E.T. detector groupings [1].
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The above process is summarised in the following equation:

2
d“oc 1 Tvan NvanOvan 1 Eq6.1

= lsgm X

6.1.5.2 Non magnetic and Yb,0O3 background subtraction.

The cross-section for the magnetic scattering of neutrons is a function of the square of
the magnetic form factor. Magnetic form factors decrease rapidly with increasing q
(the form factor for ytterbium decreases to a quarter of its zero-q value by q ~ 7 A*). In
contrast, the nuclear cross-section is proportional to q°. These different g
dependencies provide a method for subtracting the phonon contribution from the

spectra taken for the YbNi,B,**C and Yb,03; compounds:

The YosLugsNi,B,C and Y,0; samples have no magnetic scattering. The intensity
of the nuclear scattering collected from the low and high angle detector banks will be
different. The factors {x} that are needed to scale the high angle YqsLugsNi.B,*'C
and Y,0; data to match their respective low angle data can be calculated. The high
angle data for the YbNi,B,"'C and Yb,0; compounds will contain almost no magnetic
contribution. Therefore, these data, when multiplied by the corresponding value of x,
give an estimate of the phonon contributions to the low angle YbNi,B,"'C and Yb,03
data. This method is preferable to simply assuming that the Yo5LUosNi-B, M C and
Y,0; data represent the lattice contributions to the YbNi,B,''C and Yb,Os scattering
as the two non-magnetic compounds will have slightly different phonon spectrums to

the Yb compounds.

The high and low angle detector groups were chosen as follows for the different E,

spectra:
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E, (meV) Low angle detector group | High angle detector group
250 W1 and W2 W7
75 W3 and W4 W8
35 W1 and W2 W7

Fig 6.5: Detector groups chosen for the background subtraction procedure for

different values of E,.

After this procedure had been used to subtract the nuclear scattering from the
YbNi,B,''C and Yb,0j3 data, a proportion of the Yb,O3 data was subtracted from the
YbNi,B,™C data consistent with a 9 % by mass impurity.

The three resulting YbNi,B,"'C spectra were corrected for the energy dependent

absorption of the neutrons by the sample. Finally, the spectra were divided by the
square of the magnetic form factor f *(q) to correct for variations in the strength of

the magnetic scattering with g.

The results of all the inelastic experiments performed in this thesis are described
together in § 6.6.

6.2 Search for the crystal field transitions in a single crystal mosaic sample of
YbNi,B,C using inelastic neutron scattering and the IN20 triple axis

spectrometer at the I.L.L.
6.2.1  The IN20 spectrometer.

The general principle of a triple axis spectrometer in outlined in § 3.3.5. IN20 operates
with thermal neutrons, 2.66 A™ <k; < 4.1 A™. In this experiment, a variable curvature
pyrolytic-graphite  (P.G.) monochromator [(002), d-spacing 3.355A] and a
horizontally focusing variable curvature P.G. analyser were used. A 60’ collimator
was placed just after the monochromator and a convergent collimator was placed
before the entrance to the analyser. Two diaphragms were placed before and after the

sample position to reduce the beam size to approximately that of the sample. A P.G.
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filter was placed just before the convergent collimator to remove the A/2

contamination of the beam. There are two monitors on IN20: monitor 1 is located
before the sample position and is used to normalise the detector counts to the
integrated incident flux; monitor 2 is inside the analyser and is used to detect increases
in scattering that may be due to spurious Bragg scattering entering the analyser from

the sample or cryostat [3].

6.2.2  Aims of the experiment.

The YbNi,B,"'C data from the H.E.T. experiment showed three broad peaks centered
at energies of 3 meV, 17 meV and 43 meV (see fig. 6.12). As mentioned in 8§ 6.1.3.2,
the polycrystalline sample used in the H.E.T. experiment contained a 9% by mass
Yb,03 impurity. This experiment was designed to re-examine the energy range
covered by the H.E.T. experiment using a pure single crystal YbNi,B,"*C sample. As
a single crystal sample was used, the g dependence of the excitations could be studied,
enabling comparisons to be made with the calculated selection rules of the crystal
field transitions of the ytterbium ion shown in fig. 6.1. A non-magnetic LuNi;B,"'C
sample was used to give a estimate of the phonon contribution to the scattering

measured from the YbNi,B,**C sample.

6.2.3 Sample preparation.

The YbNi,B,"'C and LuNi,B,™C single crystals used in this experiment were
prepared at the Ames laboratory using the Ni,B*" flux growth technique [4]. In order
to achieve a reasonable sample mass, mosaic samples were constructed by mutually
aligning many crystals on a flat aluminium plate. The YbNi,B,''C sample consisted of
forty single crystals with a total mass of 0.945g with a composite mosaic spread of
~8°. The LuNi,B,"C sample consisted of six single crystals with a total mass of

0.486g with a composite mosaic spread of ~707°,
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6.2.4 Data collection.

IN20 was used in ‘constant-K¢ > mode throughout this experiment. The following

o — scans were performed for the YbNi,B,™C and LuNi,B,"'C samples:

k¢ (A | q position qmag (A1) | Temp (K) | energy (meV)
h k I start end
2.662 1.15 0 0.6 2.10 15 -5 30
2.662 1.2 0 0 2.15 15 -5 30
2.662 0 0 3.56 2.13 15 -5 30
4.1 1.9 0 0 3.41 5 -10 75
4.1 0.4 0 5.7 3.48 5 -8 75

Fig 6.6 : The spectra measured on IN20.

The results of all the inelastic experiments performed in this thesis are described

together in § 6.6.

6.3 Low energy magnetic excitations in a single crystal mosaic sample of
YbNi,B,'C using inelastic neutron scattering and the IN14 triple axis

spectrometer at the I.L.L.

6.3.1 The IN14 spectrometer.

The general principle of a triple axis spectrometer in outlined in § 3.3.5. IN14 operates

with thermal neutrons, 2 A <4 ;< 6 A, and is capable of achieving energy resolutions

of 1 meV to 0.02 meV. In this experiment, a variable vertically curved pyrolytic-
graphite (P.G.) monochromator [(002), d-spacing 3.355 A] and a horizontally focusing
variable curvature P.G. analyser were used. No collimation was used before or after
the sample position. Two diaphragms were placed between the monochromator and
the sample, and one diaphragm was placed between the sample and the analyser. The
opening of all the diaphragms was adjusted so that they were just larger than the size

of the sample. A beryllium filter was placed in between the last diaphragm and the
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analyser to remove A /2 contamination of the beam. There are two monitors on IN14:

monitor 1 is located before the sample position and is used to normalise the detector
counts to the integrated incident flux; monitor 2 is inside the analyser and is used to
detect increases in scattering that may be due to spurious Bragg scattering entering the
analyser from the sample or cryostat. The base of the cryostat (level with the sample)
was placed at the centre of a large evacuated cylinder. This reduced air scattering of
the incident beam. This ‘vacuum box’ was needed so that positions in reciprocal space
with low energy and g could be reached without the analyser receiving stray neutrons

from the incident beam [3].

6.3.2  Aims of the experiment.

A study of the low energy magnetic excitations in a polycrystalline sample of
YbNi,B,™C has been made by C. Sierks et al using the IN5 spectrometer [5]. They
modelled their low temperature data (T = 1.5 K) data with two inelastic components.
The first of these was a narrow Lorentzian, centred at ~ 0.34 meV, with a HWHM of
~ 0.33 meV. The energy scale of this peak corresponds well with a Kondo temperature
of ~10 K that has been obtained from specific heat measurements [6]. The second
component, centred at ~3.5 meV, had a much broader width, which they attributed to

a transition to the first excited C.E.F. level.

50 Fig 6.7 : Low energy transfer

. neutron spectrum of
I | YbNi;B,'C at T= 1.5 K
with incident energy of

3.15 meV. Measured on IN5

with a polycrystalline

S(w) [barn / meV sr Yb-atom]

sample [5].

Energy transfer (meV)
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The aim of this experiment was to study the YbNi,B,"C compound over the same
energy range and at the same temperature as C. Sierks et al. but using a single crystal
sample. As a single crystal sample was used, the q dependence of the low energy
scattering could be studied. This would provide more information as to the origin of
the observed features. As with the IN20 experiment, a non-magnetic LuNi,B,"'C
sample was used to give a estimate of the phonon contribution to the scattering

measured from the YbNi,B,"*C sample.

6.3.3  Sample preparation.

The YbNi,B,**C and LuNi,B,"C single crystals used in this experiment were the

same ones that were used in the IN20 experiment (see § 6.2.3).

6.3.4 Data collection.

The spectrometer was used in ‘constant-K¢ > mode throughout this experiment. The

following w-scans and g-scans were performed at a temperature of 1.5 K for the
YbNi,B,™C and LuNi,B,"C samples:

K¢ (Ah g position q magnitude (A™) energy range (meV)
h k I start end
15 055 |0 0 0.99 -1.5 5.9
15 125 |0 0 2.24 -1.1 5.9
15 0.4 0.4 0 1.02 -1.5 4.9
15 0 0 3.7 2.21 -14 5.9
Ky (A1) | Energy (meV) | q start position g end position
h k I h k I
1.4 0.5 0.05 0 0 1.05 0 0
15 0.6 0.05 0.05 0 1.05 1.05 0

Fig 6.8 : The spectra measured on IN14.
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The results of all the inelastic experiments performed in this thesis are described
together in § 6.6.

6.4 Low energy magnetic excitations in a polycrystalline sample of YbNi,B,**C
using inelastic neutron scattering and the IN5 direct geometry time of flight

spectrometer at the I.L.L.

6.4.1 The IN5 spectrometer.

The general principle of a direct geometry time of flight spectrometer in outlined
in § 3.3.4. The neutron beam emerging from the reactor at the I.L.L. is continuous and
polychromatic. IN5 uses four disc choppers to pulse and monochromate the incident
beam. A disc chopper is a rotating disc with an opening that allows neutrons to pass
only when the disc is in a certain portion of its rotation cycle. The first chopper,
situated furthest from the sample position, produces a pulse of polychromatic
neutrons. The fourth chopper is synchronised to the first so that only neutrons with the
desired wavelength pass through to the sample position. The second chopper is close
to the midpoint between the first chopper and the fourth chopper. It eliminates the
unwanted harmonics of the selected neutron wavelength. The third chopper can be
rotated more slowly than the others to blank out some of the pulses generated by the
first chopper. This facility is needed when fast neutrons from one pulse catch up slow
moving neutrons from a previous pulse in their passage to the detector banks. This
‘frame overlap’ makes the time of flight measurement impossible and must be
removed. IN5 has extremely good energy resolution which makes it ideal for studying
very low energy excitations such as the quasielastic scattering of heavy fermion

compounds [3].

6.4.2  Aims of the experiment.

This experiment was designed to study the low energy magnetic excitations in a
polycrystalline sample of YbNi,B,'C. The aim was to look for the excitations
responsible for the heavy fermion behaviour exhibited by this compound. As

mentioned in the description of the IN14 experiment, a study of the low energy
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magnetic excitations in YbNi,B,"'C has been made by C. Sierks et al. using IN5
(see § 6.3.2). When a proposal for this IN5 experiment was submitted, this data had

not been published.

6.4.3 Sample preparation.

The YbNi,B,"'C and YqsLugsNizB,*'C polycrystalline samples used in this
experiment were the same ones that were used in the H.E.T. experiment described
in 8 6.1.3. A 10 g sample of Yb,03 was obtained from Fluka Chemicals (99.9% pure).
The vanadium sample used was a standard test sample available at the I.L.L.

6.4.4 Data collection.

The following spectra were taken using an incident wavelength of 5 A. The energy

range covered was -30 meV to 2.5 meV.

Compound Temp (K) Time (s)
YbNi,B,"'C 1.5 42681
Yo5LugsNizB,C 1.5 43200
Yb,0;4 1.5 41896
Empty can 1.5 21600
100-250 30111
Vanadium 100-250 5807

Fig6.9: The spectra measured on IN5.
6.4.5 Analysis of the data.

The preliminary analysis of the data was performed using the LAMP (Large Array

Manipulation Program) software available at the I.L.L. [7]. The procedure used to

normalise the data to units of *mb sr™* meV! [formula unit]'l’ was similar to that

performed by the HOMER software used to process the H.E.T. data (see § 6.1.5.1).
The IN5 data shown in § 6.6 was produced by summing the energy scans measured by

all the detectors at all positions in g.
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The results of all the inelastic experiments performed in this thesis are described
together in § 6.6.

6.5 Low energy magnetic excitations in a single crystal mosaic sample of
YbNi,B,*C using inelastic neutron scattering and the IN6 direct geometry

time of flight spectrometer at the I.L.L.

6.5.1 The IN6 spectrometer.

The general principle of a direct geometry time of flight spectrometer in outlined
in § 3.3.4. The neutron beam emerging from the reactor at the I.L.L. is continuous and
polychromatic. IN6 uses three composite pyrolytic graphite monochromator crystals to
select the desired incident neutron wavelength and two choppers to pulse the beam.
The monochromators can deliver four wavelengths: 4.1 A, 46 A 5.1 Aand 5.9 A. A
Fermi chopper with a short slot length, to achieve good transmission, is situated 38 cm
from the sample positions (see § 6.11). At Fermi chopper rotation velocities greater
than 7500 rpm, a suppresser chopper is placed before the Fermi chopper to eliminate
frame overlap. The higher order reflections from the graphite monochromators are
removed by a beryllium-filter situated between the monochromators and the chopper

assembly [3].

6.5.2  Aims of the experiment.

As mentioned in § 6.6, the quality of the IN5 data was spoilt by the presence of the
Yb,0s5 impurity in the YbNi,B,"'C sample. This experiment was designed to study the
low energy transfer magnetic scattering over a similar energy range to the IN5
experiment but with a pure single crystal sample. The experiment was conducted
during a short period of test time on IN6. There was insufficient time to set up the
instrument in the desired configuration. As a result, the energy loss data contained a
region of large spurious scattering originating from the cryostat, in the energy transfer

region of interest. However, the energy gain scattering was not effected.
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6.5.3 Sample preparation.

The YbNi,B,™C single crystals used in this experiment were the same ones that were
used in the IN20 experiment described in 8§ 6.2.3. The vanadium sample used was a
standard test sample available at the I.L.L.

6.5.4 Data collection.

The following spectra were taken using an incident wavelength of 4.1 A. The energy

range covered was -50 meV to 3.5 meV.

Compound Temp (K) Time (s)
YbNi,B,"'C 1.8 7200
10 7200
Empty can 10 4620
100 5979
Vanadium 100 6000

Fig 6.10 :  The spectra measured on ING.

6.5.5 Analysis of the data.

As for the IN5 experiment (see § 6.4.5).

The results of all the inelastic experiments performed in this thesis are described

together in the following section

6.6 Results.

The scattering observed in all the inelastic experiments performed on YbNi,B,''C in
this thesis is broad in energy or relatively weak in relation to the background
scattering. These factors have made the identification of real features in the data
difficult. The most reliable method of identifying the magnetic scattering of interest

has been to compare measurements produced using different neutron spectrometers
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and samples of YbNi,B,"'C. For this reason, the results from all the experiments are

presented together in this section.

A description of the H.E.T. spectrometer and a list of the scans performed is given in

8 6.1. This section also gives a detailed account of the preliminary data analysis.

20
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Fig 6.11 :
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The magnetic scattering from a polycrystalline sample of
YbNi;B,'C at a temperature of 5K obtained using the H.E.T.
spectrometer. Data obtained using incident neutron energies of

35 meV, 75 meV and 250 meV are shown.

The above figure shows the fully processed H.E.T. data obtained with all the incident

neutron energies overlaid. The features in this data are broad in energy and extend

beyond 150 meV.

Each sample transition in the above data can be represented by two broadened

Lorentzians [A (neutron energy loss scattering) and D (neutron energy gain scattering)

in equation 6.2]. The fractional coefficient of the term in square brackets in

equation 6.2 and the terms labelled by B, F, C and G ensure that the principle of detail

balance in satisfied and that the spectral intensity for each peak remains constant as

the temperature in changed.
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Eq 6.2

S(E)=> 7 E - [ ABC + DFG],
i 1—exp[—j

where

e
1 &P~ kgT

= = and G= E Y
1+ exp(— ” ITJ 1+ exp(— ” IT)
B B

In the above equations E is the neutron energy transfer and yj, E; and I are the

amplitude, centre and half width half maximum of the i™ peak.

Three inelastic peaks P1, P2 and P3 were identified in the neutron energy loss
scattering shown in figure 6.11 (see fig. 6.12). The P1 peak was also treated as a
quasielastic peak (centred on 0 meV). However, this provided a less good fit to the
low energy scattering (i.e. P1 and P2) of the data. The data presented in figure 6.12
can be compared with the theoretically calculated C.E.F. transitions shown in
figure 6.1. A preliminary comparison would suggest that P2 and P3 can be identified
with the CP2 and CP3 transitions. It would seem unlikely that P3 would correspond to
the CP4 transition as there is such a large mismatch in the transition strengths. If this
assignment is made then P1 must correspond to the ground state (CP1l) of the
theoretically calculated C.E.F. scheme. The theoretical model gives the transition
intensities for CP1, CP2 and CP3 as 497, 260 and 228 mb sr* [Yb ion]*
respectively [2]. Making the identification as above, the relative intensities of P1, P2
and P3 are broadly consistent with this model although they are all less by a factor of
~0.7 than predicted. The most striking difference between the H.E.T. data and the
theoretical model is that the positions of P1, P2 and P3 are roughly a factor of two

greater than the predicted values.
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S(E) (mb sr* meV™* [Yb ion]?)

o Ei=250 meV
o Ei=75meV

Energy (meV)
Peak Centre E; Width HWHM Intensity y i
(meV) [ (meV) (meV?)
P1 3 3 43
P2 17 6.5 8
P3 43 7.5 3
Fig 6.12 : Magnetic scattering, below 70 meV, from a polycrystalline sample of

YbNi,B,"'C at a temperature of 5K obtained using the H.E.T.

spectrometer. Data obtained using incident neutron energies of

35 meV, 75 meV and 250 meV are shown. The broken lines represent

the three component peaks P1, P2 and P3 that make up the overall

lineshape.

The IN20 experiment was designed to confirm the general features of the magnetic

scattering seen in the H.E.T. experiment and also to gain information concerning the q

dependence of the peaks. A description of the IN20 spectrometer and a list of the

scans performed are given in § 6.2. Figures 6.13 and 6.14 show energy scans taken at

a temperature of 5 K using a final neutron wavevector of 4.1 A™, at q positions of

(1.9,0,0) and (0.4,0,5.7) respectively. A position in g of (0.4,0,5.7) was chosen,

instead of a position with no ab plane component, as positions with a similar

magnitude in g lying exactly on the c axis were found to have spurion contamination.
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obtained using the IN20 spectrometer. The data was taken with a
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obtained using the IN20 spectrometer. The data was taken with a

final neutron wavevector of 4.1 A,
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According to the calculated selection rules, the CP2 transition is seen when q is
parallel to the ¢ axis. Two thirds of the CP3 transitions is seen when ¢ is in the ab
scattering plane and the remaining third when q is parallel to the c¢ axis. Transitions

within the ground state doublet are visible when q is in the ab scattering plane.

It is clear from figures 6.13 and 6.14 that the scattering at the two q positions is very
different. Perhaps the most easily identifiable feature in figure 6.13 is the broad peak
centred at ~48 meV. This feature is also visible in figure 6.14, although it is less
intense. This corresponds to the P3 peak seen in the H.E.T. data. The g dependence of

this peak corresponds well with the selection rules for the CP3 transition.

The other feature present in figure 6.13 is the larger intensity scattering that starts
from a maximum near the elastic line and falls off sharply with increasing energy
transfer. It is also present, to a much lesser extent, in the (0.4,0,5.7) data. This
scattering may be identified with the P1 peak seen in the H.E.T. data. The q
dependence of this feature agrees well with that predicted by the selection rules for the

CP1 transition.

In addition to the two features already mentioned in figure 6.14, there is broad
scattering between energies of 15 meV and 25 meV, which is not present in
figure 6.13. This scattering corresponds to the P2 peak seen in the H.E.T. data. Again,
its q dependence agrees with the theoretical prediction that it should only be seen with

g parallel to c.

Figure 6.15 shows the sum of two thirds the (1.9,0,0) scan and one third the (0.4,0,5.7)

scan superimposed on the H.E.T. data and scaled to the correct intensity.
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Fig6.15: Two thirds the YbNi,B,"'C (1.9,0,0) energy scan added to one third
of the (0.4,0,5.7) scan taken on IN20 superimposed on the H.E.T.
data.

There is good agreement for the P1 and P3 scattering in the above figure. The P2 peak
is more pronounced in the H.E.T. data, although it is certainly present in the data
taken on IN20. Overall, the agreement provides evidence that the observed features

are real and not from phonon or spurious scattering.

A description of the IN14 spectrometer and a list of the scans performed are given in
8 6.3. The measurements performed on IN14 explored the low energy magnetic
scattering inYbNi,B,™'C in more detail. Figures 6.16 to 6.19 show energy scans
performed, at a temperature of 5 K, at different positions in g with a final neutron

wavevector of 1.5 A™.
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Energy scans of YbNi,B,'C and LuNi,B,"'C taken on IN14

at different positions in g. All data taken at a temperature of
1.5 K.

Figure 6.16 shows an energy scan performed at a g position of (0.55,0,0). The P1 peak

seen in the H.E.T. and IN20 data is clearly visible in the subtracted data. This feature

also appears in the others scans taken at q positions in the ab plane (figures 6.17 and

6.18). The position of the centre of this peak, at ~3 meV, corresponds very well to the
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position of P1 determined in the fit to the H.E.T. data. The height of the peak
maximum at the three q positions in the ab plane scales very well with the square of
the ytterbium form factor. This suggests that the P1 scattering is isotropic in the ab
plane. The P1 scattering is also visible in the scan taken at a q position of (0,0,3.7).
However, the magnitude of g at this position is similar to that at (1.25,0,0), but the

peak maximum is less by a factor of ~2/ 3.

Figures 6.20 and 6.21 show the IN14 data from figures 6.17 and 6.19 with two IN20
energy scans taken at a similar q superimposed. The IN20 data was measured with a

final neutron wavevector of 2.66 A™,
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Fig6.20: Energy of YbNi,B,*C and LuNi,B,*'C scans taken on IN14 and
IN20 at a g position of (1.25,0,0). The IN14 (IN20) data was taken
with a final neutron wavevector of 1.5 (2.66) A™. All data taken at a

temperature of 1.5 K.
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Fig6.21: Energy scans of YbNi,B,'C and LuNi,B,™C taken on IN14 and
IN20 at a q position of (0,0,3.7). The IN14 (IN20) data was taken
with a final neutron wavevector of 1.5 (2.66) A™. All data taken at a

temperature of 1.5 K.

Figure 6.20 again shows evidence for the P1 scattering in both the IN14 and the IN20
data. There is no evidence of the P2 peak in this figure. The magnitude of the P1
scattering is reduced in figure 6.21. There is some evidence of the presence of the P2
peak in this scan although it is not as clear as it is in the IN20 data taken with a final
neutron wavevector of 4.1 meV or the H.E.T. data. Therefore, the data presented in
the above two figures agrees broadly with the selection rules for the CP1 and the CP2

peaks.

In all the IN14 scans presented above, there is no evidence of the low energy peak,
centred at ~0.34 meV, reported by C. Sierks et al. (see § 6.7). Figures 6.22 and 6.23
show q scans along the [100] direction at an energy of 0.5 meV with a final neutron
wavevector of 1.4 A, and along the [110] direction at an energy of 0.6 meV with a
final neutron wavevector of 1.5 A™ respectively. It could be that the low energy peak,
should it exist, is localised in its position in g, and these scans were performed to

explore this possibility.
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Two q scans of YbNi,B,”'C and LuNi;B,"'C measured using IN14 at a
temperature of 1.5 K. Figure 6.22 extends from (0.15,0,0) to (1.05,0,0) and is
measured at E = 0.5 meV using a final neutron wavevector of 1.4 A™* . Figure 6.23
extends from (0.1,0.1,0) to (1.05,1.05,0) and is measured at E = 0.6 meV using a

final neutron wavevector of 1.5 A™.

In both the above figures, the g dependent variation in the scattering from the
YbNi,B,™C sample is qualitatively very similar to the variation of the scattering from
the LuNi,B,"*C non-magnetic blank sample. Therefore, there is no evidence of any q
localised low energy magnetic scattering of the type seen by C. Sierks et al. in these

scans.

Two further experiments were performed on IN5 and IN6 to search for signs of the
low energy scattering mentioned above. As highlighted in the relevant experimental
descriptions (IN5, § 6.4 and ING, 8 6.5), there were problems in the conduct of both
these experiments (Yb,O3; contamination in the IN5 experiment, and large cryostat
spurions and inadequate time in the IN6 experiment). However, some useful data was

obtained.

Figure 6.24 demonstrates the problems caused by the Yb,O3 impurity phase in the IN5

experiment. It shows a YbNi,B,''C energy scan, taken at a temperature of 1.5 K,
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using an incident neutron wavelength of 5 A, with the LuNi,B,*'C data subtracted.
Superimposed on this figure is a Yb,O3 energy scan taken at the same temperature.
The YbNi;B,''C data with both the LuNi,B,"'C data and the Yb,O5 data subtracted is

also shown.
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Fig 6.24 : Energy scan of YbNi,B,"'C performed on IN5 at a temperature of
1.5 K with the non-magnetic and Yb,O3; impurity scattering

subtracted. Initial neutron wavelength of 5 A,

The antiferromagnetic ordering temperature of Yb,O3; is 2.7 K. Below this
temperature, there will be low energy scattering due to magnon excitations. This
scattering is clearly seen, centred at an energy of ~0.6meV, in both the Yb,03 and the
YbNi,B,*C magnetic scattering data of the above figure. Efforts to gain meaningful
data by subtracting the Yh,O3 scan from the YbNi,B,*'C scan proved very difficult
due to the large relative size of this impurity scattering. The data shown in figure 6.24
is not reliable above E ~ 1.5 meV as this is the limit of the energy loss scattering that
IN5 is capable of measuring with an initial neutron wavelength of 5 A. Although the
fully subtracted data is of bad quality, there does seem to be two components to the
low energy scattering. There is a rise in scattering from 0.5 meV towards the elastic
line. A gradual rise in also seen from 0.5 meV with increasing energy which is

consistent with the P1 peak seen in all the data discussed so far. The overall
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magnitude of the magnetic scattering from YbNi,B,'C measured in this experiment
agrees well with an extrapolation of the higher energy data measured in the H.E.T.

experiment.

A check on the above interpretations of the IN5 data was provided by the ING6
experiment using a single crystal sample with no impurity contamination. Figure 6.25
shows a subtraction of a YbNi,B,"'C energy scan taken on IN6, at a temperature of
2 K, using an initial neutron wavelength of 4.1 A, from a YbNi,B,"C scan taken at
10 K. The neutron energy gain data is shown as the energy loss side of the energy scan
was contaminated by cryostat spurion scattering. This particular method of
background subtraction was performed as there was no time in this experiment to

measure the non-magnetic LuNi,B,"'C sample.
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Fig 6.25: Energy scan of YbNi,B,"C taken on IN6 at a temperature of 10 K. A
similar scan of taken at a temperature of 2 K has been subtracted.
The vertical lines indicate the region of elastic line contamination.

Initial neutron wavelength of 5 A

The bold line shows the theoretical subtraction assuming the presence of just the P1
peak. There is some additional scattering close to the elastic line that is not described

correctly with this theoretical curve. Perhaps this scattering is of the same origin as the
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scattering below 0.5 meV in the IN5 data. The scattering in figure 6.25 extends to
larger energy transfers than the IN5 data. This could be because the IN6 scan was
performed at a higher temperature and the peak position and width have changed. As
with the IN5 data, the data taken in this experiment is not conclusive. However, the
same scattering has been seen in both experiments and this provides evidence that the

very low energy signal is real.

The low energy scattering seen in the IN5 and the IN6 data could have the same
physical origin as the ~0.34 meV scattering reported by C. Sierks et al. However, our

INS data has significant differences to their published IN5 data:

In figure 6.7, the magnitude of the 0.34 meV scattering is substantially greater than the
level of scattering at an energy transfer of 1.5 meV. The level of scattering at these
two energies are closer in magnitude in the IN5 data obtained in this thesis. The data
shown in figure 6.7 has a significant amount of scattering at an energy of 0.5 meV
which is not present in the data in this thesis. It is obviously difficult to speculate as to
the exact reasons for the differences mentioned above without access to the sample
used by C. Sierks et al., but several possibilities exist. Very pure polycrystalline
samples of ytterbium compounds are difficult to produce for the reasons outlined in
86.1.3.2. A 9% Yb,O3 impurity was present in the polycrystalline sample of
YbNi,B,™"'C used in this thesis. This amount on impurity had a huge effect of the
observed scattering across the entire energy range studied. However, the impurity was
difficult to detect for the reasons mentioned in § 6.1.3.2. Perhaps, the substantial
scattering at 0.5 meV in figure 6.7 is because the sample used by C. Sierks et al.
contained a small amount of Yb,Os. If their sample contained a percentage
contamination much smaller than the one effecting the sample used in this thesis, then
it would have been extremely difficult to detect by laboratory based X-ray diffraction,
but unless it was very small indeed, it would still have had a large effect of the
observed scattering over the IN5 energy range that they studied. Also, to our
knowledge, C. Sierks et al. did not measure a non-magnetic blank sample to enable an
approximate phonon subtraction. The scattering observed from the LuNi,B,*'C
sample on IN14 at several positions in gq (e.g. figures 6.16 and 6.18) shows an

increasing phonon contribution from ~2 meV moving towards the elastic line. This
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behaviour was also seen in the IN5 LuNi;B,"'C data. If this is not taken into account,
one would be led to believe that the magnetic scattering from the YbNi,B,*'C
compound at low energies is much larger than it in fact is. This effect would be worse
the lower the energy studied. This could be the reason C. Sierks et al. observed a very
much larger amount of scattering close to the elastic line, at ~0.34 meV, than at an
energy transfer of 1.5 meV. To test this hypothesis, the IN5 analysis was performed,

but without removing the non-magnetic LuNi,B,"'C scattering.
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Fig6.26 : Energy scan of YbNi,B,"'C performed on IN5 at a temperature of
1.5 K with the Yb,O3; impurity scattering subtracted. The non-

magnetic LuNi,B,"'C scattering has not been subtracted.

The data presented in the above figure clearly has a larger amount of scattering close
to the elastic line than figure 6.24 which has had the LuNi,B,"'C scattering subtracted.
The overall magnitude of the very low energy scattering is now much more consistent

with the data obtained by C. Sierks et al.

In the following discussion and conclusion section, the low energy (< 0.5 meV)
scattering seen in both the IN5 and IN6 experiments in this thesis will be referred to as
PO. If the above reasoning concerning the C. Sierks et al. data is correct, it would

explain why the PO scattering was not seen in the IN14 experiment; at a temperature



INELASTIC NEUTRON SCATTERING EXPERIMENTS 32

of 1.5 K, the PO peak does not extend above 0.5 meV, and the resolution of the energy
scans performed on IN14 was to large to resolve scattering at this energy. Likewise,
the g scans designed to search for the PO scattering were performed at energies of

0.5 meV and 0.6 meV. They perhaps should have been performed at lower energies.

6.7 Discussion and conclusions.

In many ytterbium heavy electron compounds, the energy scales of the Yb/ conduction
electron correlations and the C.E.F. interaction are similar. Therefore, the
interpretation of magnetic inelastic neutron scattering experiments performed on these
compounds can be controversial [8]. If the compounds also exhibit short or long range
order of the Yb moments, or superconductivity, the difficulty in interpretation may be

even more extreme.

The data presented in the previous section for YbNi,B,**C shows clear evidence of the
C.E.F. transitions CP1, CP2 and CP3. In the data, these are denoted by P1, P2 and P3.
The most conclusive evidence that these are C.E.F. transitions, or that they have a
strong C.E.F. character, is that the g dependence of the IN20 (P1, P2 and P3) and IN14
(P1) data agree well with that predicted by theory. The magnitude of the P1 transition
shows zero or fairly weak dispersion within the ab plane when corrected for the Yb
form factor. This is evidence that the P1 scattering arises from a single site transition.
The C.E.F. model predicts that the CP1 transition should only be visible when g has a
component in the ab plane. The IN20 (figures 6.14 and 6.21) and IN14 (figure 6.19)
data show that this transition is visible at a position in g of (0,0,3.7) although its
magnitude is substantially reduced. Due to the difficulty in mounting the YbNi,B,"'C
and LuNi,B,"'C single crystals in both the mosaic samples, there were large overall
mosaic spreads of ~+ 4° and ~+ 3.5° respectively. This would mean that, although the
spectrometer had been moved to collect neutrons scattered at a position in g with no
ab component, some ab scattering may have been detected. Alternatively, perhaps the
P1 peak could be observed at q positions with no ab component due to a ‘softening’ of
the selection rules caused by heavy fermion correlations of the Yb +3 ion or some
other coupling that would mean that the ground state is no longer described

completely by the rare earth standard model.



INELASTIC NEUTRON SCATTERING EXPERIMENTS 33

The fact that reasonably strong C.E.F. transitions are observed in YbNi,B,"'C implies
that a good approximation of the state of the Yb +3 ion is provided by the rare earth
standard model. This evidence is complimented by the fact that L edge X-ray
absorption spectroscopy shows that the Yb ions are in a stable 3+ ionisation state [9].
However, the C.E.F. transitions are substantially broadened which indicates the
presence of strong relaxation pathways (see § 2.2.5). The H.E.T. data indicates that the
relative intensities of the P1, P2 and P3 peaks are broadly consistent with the C.E.F.
model although they are all less by a factor of ~0.7 than predicted. This could be
because of a reduction in the Yb moment due to spin compensation with the electrons
of the surrounding ions. However, the problems associated with the Yb,O3 impurity
subtraction in the H.E.T. experiment make an exact determination of the overall
magnitude of the scattering from the YbNi,B,™C sample difficult. Perhaps the most
striking difference between the data and the C.E.F. model is that the positions of P1,
P2 and P3 are roughly a factor of two greater than the predicted values. This could be
due to a movement in the positions of the ligands of the surrounding ions due to their
hybridisation with the Yb 4f electrons. It could also be due to the coupling of the
C.E.F. transitions to other excitations within the compound. At very low temperatures,
the effects of detail balance make it extremely hard to distinguish between truly
quasielastic and very low energy inelastic transitions. However, both the data obtained
by C. Sierks et al. and the data collected in this thesis would suggest that P1 is a truly
inelastic transition. This would imply that the doublet has been split or is now no
longer the true ground state of the Yb ion. A splitting of the doublet can only be
caused by a static exchange field at the Yb site [10]. However, no evidence of long
range magnetic order has been observed in other types of experiment performed on
YbNi,B,'C. Another reason for the rejection of a low energy scattering model where
the P1 peak exists as a unique quasielastic components concerns its width. The width

of the P1 peak, at a HWHM of 3 meV, suggest a value for Ty that is too large when

compared with the value of ~8 K obtained from the magnetic specific heat of
YbNi,B,MC (see fig 1.2). This fact, and the observation of the very low energy peak
by C. Sierks et al. was the motivation for the IN5 experiment and the search for the PO
peak in the IN14 experiment. The width of the peak mentioned by C. Sierks et al. is
0.33 meV. The width of the PO peak in the IN5 data presented here is ~0.29 meV,

although the quality of the IN5 data means that this is only an approximate value. This
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agrees much better with the value for Ty determined from specific heat

measurements.

As mentioned above, the inelastic nature of the P1 peak implies that the ground state
degeneracy has been lifted, or that the doublet position has been moved to finite
energies. As no signs of static magnetic order have been observed in YbNi,B,''C,

perhaps another mechanism can explain this observation.

In CeAl,, the C.E.F. transitions are substantially different from the rare earth standard
model scheme [11]. Only one transition is predicted but two are observed in inelastic
neutron scattering. The widths of the transitions are also substantially different to that
proposed for the single transition by theory. In this compound, it is thought that there
is a strong coupling between the lattice vibrations and the C.E.F. transitions. This
‘magneto-phonon’ coupling leads to a large modification of the entire inelastic
response of the compound. Interestingly, the two peaks observed in CeAl, show
negligible dispersion [12], as do the ‘C.E.F.” peaks observed for YbNi,B,''C in this
thesis. In CeAl,, the nuclear (high q) - phonon scattering was characterised and a low
temperature softening was observed as the C.E.F./lattice coupling was
established [13]. The Yb monopnictides YbX (X = N, Sb, As and P) also have
anomalous C.E.F. excitation schemes [14]. The magnitude of the C.E.F. splittings in
these compounds is also larger than those predicted by a simple point charge model.
These compounds all order magnetically but at temperatures much lower than the
RKKY exchange interactions would suggest. In YbN and YbSb, the experimental
observation of more transitions than expected has been interpreted in terms of
magneto-phonon coupling. These compounds have large phonon scattering coinciding

with the positions of the magnetic peaks.

Perhaps a similar effect is responsible for the movement of the P1, P2 and P3
transitions in YbNi,B,'C. If this was a correct interpretation, the PO quasielastic
peak, representing a local Yb/ conduction electron heavy fermion coupling, would
constitute the ground state of the compound. The width of this peak would agree well
with the position of the maximum in the magnetic specific heat. The three inelastic

peaks P1, P2 and P3 would constitute excitations within the C.E.F. magneto-phonon
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system. The position of P1, at ~3 meV, would explain why there is still a large
contribution to the magnetic specific heat at temperatures (at ~30 K) above the Kondo
peak position. The much larger widths of the P1, P2 and P3 transition, when
compared to the PO width, would also be less surprising due to the introduction of
more complicated relaxation dynamics due to the coupling of the magnetic and lattice
excitations. In support of this theory, strong phonon scattering was observed at similar

energies to the P2 and P3 peaks in a high g IN20 energy scan performed in this thesis.

If the P1 peak is quasielastic, the P1, P2 and P3 excitations could be consistent with
the standard C.E.F. model with a broadening of the P1 peak due to single site
hybridisation of the Yb 4f and conduction electrons with a energy scale of ~3 meV.
The PO peak might then signify lower energy excitations, perhaps due to short range
intersite Yb correlations with the correct energy to be responsible for the peak at ~8 K
in the specific heat. If this was the case, this peak might have significant dispersion.
Unfortunately, as the PO peak was not observed in the IN14 experiment, its q
dependence was not studied in this thesis. It should be noted, however, that no broad
features were observed in the D10 experiment performed in this thesis which could
have been interpreted as evidence of short range Yb-Yb correlations. This two
component quasielastic excitation scheme has been proposed before, to explain the

low energy inelastic response of CeRu,Si, and CeCug [15].

Further experimental and theoretical work is necessary to determine if either of the
above excitation schemes is plausible for YbNi,B,™C. Suggestions for this work will

be given in the following chapter.
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CHAPTER 7

CONCLUSIONS AND
SUGGESTIONS FOR FURTHER
WORK

The magnetisation density experiment performed on YbNi;B,''C did not show any
features that could be specifically identified with the formation of a heavy fermion
state. Within the experimental resolution, there was no evidence of a magnetic
moment on the Ni, B or C sites, above or below the Kondo temperature. No moment
was observed on these sites in the ErNi,B,**C, HoNi,B,"’C and LuNi;B,"'C
compounds. The anisotropic magnetisation density on the Yb site did not change

significantly on moving to temperatures below Ty . The anisotropy of the Yb density

was qualitatively very similar to that on the Er site. As ErNi,B,"'C is not a heavy
fermion compound, this form of rare earth magnetisation density can not be linked
with heavy fermion behaviour. Interestingly, the anisotropy of the Ho site was
different to the Yb and Er sites. There are several possible explanations for these

observations:

The features associated with the heavy fermion behaviour could be below the
resolution of the experiment. The problems of multiple scattering in the YbNi,B,''C
crystal make the measurements of very small magnetic moments difficult. The most
important factor in causing the large amount of multiple scattering in the YbNi,B,"'C
crystal was the tight mosaic spread. In a future experiment, an effort should be made
to obtain crystals with wider mosaic spreads. Before the advent of accurate models for
correcting for extinction became avaliable, single crystals were often subjected to
thermal shock treatment in an attempt to increase their mosaic spreads and reduce
their crystallite radii. Perhaps a similar process could be performed here, if the NiB!
flux technique was found to be incapable of growing crystals with wider mosaic
spreads. The model used for correcting for extinction (see § 5.1.4.2) is most accurate

for cubic crystals. Therefore, it would be sensible to use crystals with a more regular
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shape instead of the ‘flat plate’ ones used in this thesis even if this meant that the
overall sizes of the crystals were smaller. In a future experiment, it would be a good
idea to make a greater effort to determine the exact mutiple scattering correction to
make in the D3 experiment. This could be done by measuring a set of Bragg
intensities (instead of just the flipping ratios) as was done using the D9 diffractometer.
This set of reflections could then by refined and plots such as that shown in
fig. 5.5 could be produced. This would be prefereable to determining the D3
correction from the D9 correction as was done in this thesis. It would also be a good
idea to try using an applied magnetic field of ~10 T in the YbNi,B,**C D3 experiment
as it has been shown that the heavy fermion state is not completely supressed by such
a field (y is still two-thirds of its zero field vaue with a 10 T field) [1]. A field of this

magnitude was not available on D3 when the first set of measurement in this thesis
were performed. Alternatively, it could be that the effects of heavy electron behaviour
are not visible in magnetisation density images. The modifications of the atomic
electron shells could be too subtle or of an internal nature. In order to dtermine if this
is the case, it would be useful to study the magnetisation density in other heavy

fermion compounds; perhaps ones with higher y values.

The inelastic experiments performed on YbNi,B,"'C presented in this thesis were
more successful than the magnetisation density experiments. All the data shown in
chapter 6 would indicate the exisitence of a ‘C.E.F. like’ excitation scheme, consisting
of three substantially broadened Lorenztians, situated at energies of 3, 17 and 43 meV.
The selection rules for these transitions agree well with their theoretical predictions.
However, the magnitudes of the 17 and 43 meV transitions are a factor of ~2 greater
than predicted. Also, the simple C.E.F. model, assuming no Yb-Yb interactions or
coupling of the C.E.F. transitions to other excitations, would imply that the 3 meV
transition should be quasielastic and correspond to the ground state doublet of the Yb
+3 ion. There is evidence in this thesis, and from other authors, that there is also a
quasielastic component with a HWHM of ~0.33 meV which corresponds well to the
published Kondo temperature for YbNi,B,**C. A mechanism has been suggested to
account for the differenes between the calculated and measured excitation schemes

based on a coupling of the C.E.F. and lattice exciations. A large amount of further
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work is needed to verify the results presented in chapter 6 and explore the possibility
of a C.E.F./ phonon coupling. One of the problems with the inelastic scattering
experiments was the low sample masses that were used used. In future experiments, it

would be useful to have larger samples of both YbNi,B,'C and LuNi,B,C.

Inelastic
sum up results briefly

polarised neutron time with bigger xtals better alignment and holder

inl14, tighter elastic line lower energy g scans.

mag field to pull p0 out

Explore temerature dependence of peaks.
theory should be done

measures phonons in material
this thing about g depence at 0.5, Ni spins perhaps ???

A similar experiment on YbNi,B,''C would provide useful information concerning the

nature of the excitation scheme
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